1
|
Singh YR, Thakur A, Fontes CMGA, Goyal A. A novel thermophilic recombinant obligate xylobiohydrolase (AcGH30A) from Acetivibrio clariflavus orchestrates the deconstruction of xylan polysaccharides. Carbohydr Polym 2024; 340:122295. [PMID: 38858006 DOI: 10.1016/j.carbpol.2024.122295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/12/2024]
Abstract
GH30 xylobiohydrolases, an expanding enzyme category, need deeper insights for optimal use. The primary aim of this study was to characterize a new xylobiohydrolase, AcGH30A of GH30 family from Acetivibrio clariflavus. The gene encoding AcGH30A was cloned using pET28a(+) vector and expressed in E. coli BL21(DE3) cells. AcGH30A was purified by immobilized metal-ion affinity chromatography. SDS-PAGE analysis of AcGH30A showed molecular mass of ~58 kDa. AcGH30A showed optimum temperature 80 °C and optimum pH 7.0. AcGH30A was stable (maintaining >80 % of control activity) in pH range, 4-7 and temperature range, 30 °C -70 °C when incubated for 90 min. AcGH30A displayed melting temperature, 72 °C and half-life, 21 days at 4 °C. The enzyme activity of AcGH30A was enhanced by 10 mM Ca2+ and Mg2+ ions by 25 % and 21 %, respectively, whereas 10 mM Co2+, Zn2+, Fe2+, and Cu2+ ions significantly reduced it. AcGH30A showed activity against various xylan polysaccharides displaying highest Vmax, 139 U.mg-1 and KM, 0.71 mg.ml-1 against 4-O-methyl glucuronoxylan under optimum conditions. TLC, HPLC and LC-MS analyses of AcGH30A hydrolyzed products from xylan substrates revealed the release of sole product, xylobiose, confirming it as an obligate xylobiohydrolase. AcGH30A being a highly thermostable enzyme can be potentially utlilized in various biotechnological applications.
Collapse
Affiliation(s)
- Yumnam Robinson Singh
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Abhijeet Thakur
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Carlos M G A Fontes
- NZYTech - Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, 1649-038 Lisbon, Portugal; CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Takayesu A, Mahoney BJ, Goring AK, Jessup T, Ogorzalek Loo RR, Loo JA, Clubb RT. Insight into the autoproteolysis mechanism of the RsgI9 anti-σ factor from Clostridium thermocellum. Proteins 2024; 92:946-958. [PMID: 38597224 PMCID: PMC11222046 DOI: 10.1002/prot.26690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Clostridium thermocellum is a potential microbial platform to convert abundant plant biomass to biofuels and other renewable chemicals. It efficiently degrades lignocellulosic biomass using a surface displayed cellulosome, a megadalton sized multienzyme containing complex. The enzymatic composition and architecture of the cellulosome is controlled by several transmembrane biomass-sensing RsgI-type anti-σ factors. Recent studies suggest that these factors transduce signals from the cell surface via a conserved RsgI extracellular (CRE) domain (also called a periplasmic domain) that undergoes autoproteolysis through an incompletely understood mechanism. Here we report the structure of the autoproteolyzed CRE domain from the C. thermocellum RsgI9 anti-σ factor, revealing that the cleaved fragments forming this domain associate to form a stable α/β/α sandwich fold. Based on AlphaFold2 modeling, molecular dynamics simulations, and tandem mass spectrometry, we propose that a conserved Asn-Pro bond in RsgI9 autoproteolyzes via a succinimide intermediate whose formation is promoted by a conserved hydrogen bond network holding the scissile peptide bond in a strained conformation. As other RsgI anti-σ factors share sequence homology to RsgI9, they likely autoproteolyze through a similar mechanism.
Collapse
Affiliation(s)
- Allen Takayesu
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Brendan J. Mahoney
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Tobie Jessup
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Rachel R Ogorzalek Loo
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
- Molecular Biology Institute. University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Chen C, Yang H, Dong S, You C, Moraïs S, Bayer EA, Liu Y, Xuan J, Cui Q, Mizrahi I, Feng Y. A cellulosomal double-dockerin module from Clostridium thermocellum shows distinct structural and cohesin-binding features. Protein Sci 2024; 33:e4937. [PMID: 38501488 PMCID: PMC10949318 DOI: 10.1002/pro.4937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/20/2024]
Abstract
Cellulosomes are intricate cellulose-degrading multi-enzymatic complexes produced by anaerobic bacteria, which are valuable for bioenergy development and biotechnology. Cellulosome assembly relies on the selective interaction between cohesin modules in structural scaffolding proteins (scaffoldins) and dockerin modules in enzymes. Although the number of tandem cohesins in the scaffoldins is believed to determine the complexity of the cellulosomes, tandem dockerins also exist, albeit very rare, in some cellulosomal components whose assembly and functional roles are currently unclear. In this study, we characterized the structure and mode of assembly of a tandem bimodular double-dockerin, which is connected to a putative S8 protease in the cellulosome-producing bacterium, Clostridium thermocellum. Crystal and NMR structures of the double-dockerin revealed two typical type I dockerin folds with significant interactions between them. Interaction analysis by isothermal titration calorimetry and NMR titration experiments revealed that the double-dockerin displays a preference for binding to the cell-wall anchoring scaffoldin ScaD through the first dockerin with a canonical dual-binding mode, while the second dockerin module was unable to bind to any of the tested cohesins. Surprisingly, the double-dockerin showed a much higher affinity to a cohesin from the CipC scaffoldin of Clostridium cellulolyticum than to the resident cohesins from C. thermocellum. These results contribute valuable insights into the structure and assembly of the double-dockerin module, and provide the basis for further functional studies on multiple-dockerin modules and cellulosomal proteases, thus highlighting the complexity and diversity of cellulosomal components.
Collapse
Affiliation(s)
- Chao Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic BiologyQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hongwu Yang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic BiologyQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina
- Present address:
College of PharmacyNankai University, Tongyan Road 38, Haihe Education Park, Jinnan DistrictTianjin 300350China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic BiologyQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Cai You
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic BiologyQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
| | - Sarah Moraïs
- Department of Life Sciences and the National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Edward A. Bayer
- Department of Life Sciences and the National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | - Ya‐Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic BiologyQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinsong Xuan
- Department of Biological Science and Engineering, School of Chemical and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic BiologyQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic BiologyQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdaoChina
- Shandong Energy InstituteQingdaoChina
- Qingdao New Energy Shandong LaboratoryQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Han CJ, Cheng CH, Yeh TF, Pauchet Y, Shelomi M. Coconut rhinoceros beetle digestive symbiosis with potential plant cell wall degrading microbes. NPJ Biofilms Microbiomes 2024; 10:34. [PMID: 38555351 PMCID: PMC10981690 DOI: 10.1038/s41522-024-00505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Coconut rhinoceros beetle (CRB, Oryctes rhinoceros) is an invasive palm pest whose larvae eat wood, yet lack the necessary digestive enzymes. This study confirmed endogenous CRB cellulase is inactive, suggesting microbial fermentation. The inner lining of the CRB hindgut has tree-like structures covered with a conspicuous biofilm. To identify possible symbionts, 16 S rRNA amplicon sequencing was used on individuals from across Taiwan. Several taxa of Clostridia, an anaerobic class including many cellulolytic bacteria, were highly abundant in most individuals from all locations. Whole metagenome sequencing further confirmed many lignocellulose degrading enzymes are derived from these taxa. Analyses of eggs, larvae, adults, and soil found these cellulolytic microbes are not transmitted vertically or transstadially. The core microbiomes of the larval CRB are likely acquired and enriched from the environment with each molt, and enable efficient digestion of wood.
Collapse
Affiliation(s)
- Chiao-Jung Han
- Department of Entomology, National Taiwan University, Taipei, Taiwan.
| | - Chih-Hsin Cheng
- School of Forestry & Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Ting-Feng Yeh
- School of Forestry & Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Matan Shelomi
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Arumugam R, Ravichandran P, Yeap SK, Sharma RSK, Zulkifly SB, Yawah D, Annavi G. Application of High-Throughput Sequencing (HTS) to Enhance the Well-Being of an Endangered Species (Malayan Tapir): Characterization of Gut Microbiome Using MG-RAST. Methods Mol Biol 2023; 2649:175-194. [PMID: 37258862 DOI: 10.1007/978-1-0716-3072-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Tapirus indicus, also known as Malayan tapir, has been listed as a rapidly declining animal species in the past decades, along with being declared and categorized as an endangered species by the International Union for Conservation of Nature (IUCN) 2016. This tapir species is geographically distributed across several countries in Southeast Asia such as Peninsular Malaysia, Indonesia (Sumatra), South Thailand, and Myanmar. Amongst these countries, the Peninsula Malaysia forest is recorded to contain the highest number of Malayan tapir population. Unfortunately, in the past decades, the population of Malayan tapirs has declined swiftly due to serious deforestation, habitat fragmentation, and heavy vehicle accidents during road crossings at forest routes. Concerned by this predicament, the Department of Wildlife and National Parks (DWNP) Peninsular Malaysia collaborated with a few local universities to conduct various studies aimed at increasing the population number of tapirs in Malaysia. Several studies were conducted with the aim of enhancing the well-being of tapirs in captivity. Veterinarians face problems when it comes to selecting healthy and suitable tapirs for breeding programs at conservation centers. Conventional molecular methods using high-throughput sequencing provides a solution in determining the health condition of Malayan tapirs using the Next-Generation Sequencing (NGS) technology. Unaware by most, gut microbiome plays an important role in determining the health condition of an organism by various aspects: (1) digestion control; (2) benefiting the immune system; and (3) playing a role as a "second brain." Commensal gut bacterial communities (microbiomes) are predicted to influence organism health and disease. Imbalance of unhealthy and healthy microbes in the gut may contribute to weight gain, high blood sugar, high cholesterol, and other disorders. In infancy, neonatal gut microbiomes are colonized with maternal and environmental flora, and mature toward a stable composition in two to three years. Interactions between the microorganism communities and the host allow for the establishment of microbiological roles. Identifying the core microbiome(s) are essential in the prediction of diseases and changes in environmental behavior of microorganisms. The dataset of 16S rRNA amplicon sequencing of Malayan tapir was deposited in the MG-RAST portal. Parameters such as quality control, taxonomic prediction (unknown and predicted), diversity (rarefaction), and diversity (alpha) were analyzed using sequencing approaches (Amplicon sequencing). Comparisons of parameters, according to the type of sequencing, showed significant differences, except for the prediction variable. In the Amplicon sequencing datasets, the parameters Rarefaction and Unknown had the highest correlation, while Alpha and Predicted had the lowest. Firmicutes, Bacteroidetes, Proteobacteria, Bacilli, and Bacteroidia were the most representative genera in Malayan tapir amplicon sequences, which indicated that most of the tapirs were healthy. However, continuous assessment to maintain the well-being of tapir for long term is still required. This chapter focuses on the introduction of 16S rRNA amplicon metagenomics in analyzing Malayan tapir gut microbiome dataset.
Collapse
Affiliation(s)
- Ramitha Arumugam
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Dataplx Consultancy, Puchong, Selangor, Malaysia
| | - Prithivan Ravichandran
- Perdana University Graduate School (PUGSOM), Perdana University, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | | | - Shahrizim Bin Zulkifly
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Donny Yawah
- Department of Wildlife and National Parks (DWNP), Wildlife Genetic Resource Banking Laboratory, Ex-Situ Conservation Division, Peninsular Malaysia, Ministry of Natural Resources and Environment Malaysia (NRE), Kuala Lumpur, Malaysia
| | - Geetha Annavi
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
6
|
Moraïs S, Stern J, Artzi L, Fontes CMGA, Bayer EA, Mizrahi I. Carbohydrate Depolymerization by Intricate Cellulosomal Systems. Methods Mol Biol 2023; 2657:53-77. [PMID: 37149522 DOI: 10.1007/978-1-0716-3151-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology was established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer-cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.
Collapse
Affiliation(s)
- Sarah Moraïs
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lior Artzi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Edward A Bayer
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| | - Itzhak Mizrahi
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
7
|
Cerqueira FM, Photenhauer AL, Doden HL, Brown AN, Abdel-Hamid AM, Moraïs S, Bayer EA, Wawrzak Z, Cann I, Ridlon JM, Hopkins JB, Koropatkin NM. Sas20 is a highly flexible starch-binding protein in the Ruminococcus bromii cell-surface amylosome. J Biol Chem 2022; 298:101896. [PMID: 35378131 PMCID: PMC9112005 DOI: 10.1016/j.jbc.2022.101896] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/08/2023] Open
Abstract
Ruminococcus bromii is a keystone species in the human gut that has the rare ability to degrade dietary resistant starch (RS). This bacterium secretes a suite of starch-active proteins that work together within larger complexes called amylosomes that allow R. bromii to bind and degrade RS. Starch adherence system protein 20 (Sas20) is one of the more abundant proteins assembled within amylosomes, but little could be predicted about its molecular features based on amino acid sequence. Here, we performed a structure-function analysis of Sas20 and determined that it features two discrete starch-binding domains separated by a flexible linker. We show that Sas20 domain 1 contains an N-terminal β-sandwich followed by a cluster of α-helices, and the nonreducing end of maltooligosaccharides can be captured between these structural features. Furthermore, the crystal structure of a close homolog of Sas20 domain 2 revealed a unique bilobed starch-binding groove that targets the helical α1,4-linked glycan chains found in amorphous regions of amylopectin and crystalline regions of amylose. Affinity PAGE and isothermal titration calorimetry demonstrated that both domains bind maltoheptaose and soluble starch with relatively high affinity (Kd ≤ 20 μM) but exhibit limited or no binding to cyclodextrins. Finally, small-angle X-ray scattering analysis of the individual and combined domains support that these structures are highly flexible, which may allow the protein to adopt conformations that enhance its starch-targeting efficiency. Taken together, we conclude that Sas20 binds distinct features within the starch granule, facilitating the ability of R. bromii to hydrolyze dietary RS.
Collapse
Affiliation(s)
- Filipe M Cerqueira
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amanda L Photenhauer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Heidi L Doden
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Illinois, USA
| | - Aric N Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ahmed M Abdel-Hamid
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Illinois, USA
| | - Sarah Moraïs
- Faculty of Natural Sciences, Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Edward A Bayer
- Faculty of Natural Sciences, Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Zdzislaw Wawrzak
- Northwestern University, Synchrotron Research Center, Life Science Collaborative Access Team, Lemont, Illinois, USA
| | - Isaac Cann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Illinois, USA
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Illinois, USA; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme), University of Illinois at Urbana-Champaign, Illinois, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Illinois Institute of Technology, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
8
|
Research progress and the biotechnological applications of multienzyme complex. Appl Microbiol Biotechnol 2021; 105:1759-1777. [PMID: 33564922 DOI: 10.1007/s00253-021-11121-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 11/26/2022]
Abstract
The multienzyme complex system has become a research focus in synthetic biology due to its highly efficient overall catalytic ability and has been applied to various fields. Multienzyme complexes are formed by cascading complexes, which are multiple functionally related enzymes that continuously and efficiently catalyze the production of substrates. Compared with current mainstream microbial cell catalytic systems, in vitro multienzyme molecular machines have many advantages, such as fewer side reactions, a high product yield, a fast reaction speed, easy product separation, a tolerable toxic environment, and robust system operability, showing increasing competitiveness in the field of biomanufacturing. In this review, the research progress of multienzyme complexes in nature and multienzyme cascades in vivo or in vitro will be introduced, and the discovered enzyme cascades concerning scaffolding proteins will also be discussed. This review is expected to provide a more theoretical basis for the modification of multienzyme complexes and broaden their application in the field of synthetic biology. KEY POINTS: • The cascade reactions of some natural multienzyme complexes are reviewed. • The main approaches of constructing artificial multienzyme complexes are summarized. • The structure and application of cellulosomes are discussed and prospected.
Collapse
|
9
|
Abstract
Cellulosomes are elaborate multienzyme complexes capable of efficiently deconstructing lignocellulosic substrates, produced by cellulolytic anaerobic microorganisms, colonizing a large variety of ecological niches. These macromolecular structures have a modular architecture and are composed of two main elements: the cohesin-bearing scaffoldins, which are non-catalytic structural proteins, and the various dockerin-bearing enzymes that tenaciously bind to the scaffoldins. Cellulosome assembly is mediated by strong and highly specific interactions between the cohesin modules, present in the scaffoldins, and the dockerin modules, present in the catalytic units. Cellulosomal architecture and composition varies between species and can even change within the same organism. These differences seem to be largely influenced by external factors, including the nature of the available carbon-source. Even though cellulosome producing organisms are relatively few, the development of new genomic and proteomic technologies has allowed the identification of cellulosomal components in many archea, bacteria and even some primitive eukaryotes. This reflects the importance of this cellulolytic strategy and suggests that cohesin-dockerin interactions could be involved in other non-cellulolytic processes. Due to their building-block nature and highly cellulolytic capabilities, cellulosomes hold many potential biotechnological applications, such as the conversion of lignocellulosic biomass in the production of biofuels or the development of affinity based technologies.
Collapse
Affiliation(s)
- Victor D Alves
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Carlos M G A Fontes
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA, Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| |
Collapse
|
10
|
Galera-Prat A, Vera AM, Moraïs S, Vazana Y, Bayer EA, Carrión-Vázquez M. Impact of scaffoldin mechanostability on cellulosomal activity. Biomater Sci 2020; 8:3601-3610. [PMID: 32232253 DOI: 10.1039/c9bm02052g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lignocellulose is the most abundant renewable carbon source in the biosphere. However, the main bottleneck in its conversion to produce second generation biofuels is the saccharification step: the hydrolysis of lignocellulosic material into soluble fermentable sugars. Some anaerobic bacteria have developed an extracellular multi-enzyme complex called the cellulosome that efficiently degrades cellulosic substrates. Cellulosome complexes rely on enzyme-integrating scaffoldins that are large non-catalytic scaffolding proteins comprising several cohesin modules and additional functional modules that mediate the anchoring of the complex to the cell surface and the specific binding to its cellulosic substrate. It was proposed that mechanical forces may affect the cohesins positioned between the cell- and cellulose-anchoring points in the so-called connecting region. Consequently, the mechanical resistance of cohesins within the scaffoldin is of great importance, both to understand cellulosome function and as a parameter of industrial interest, to better mimic natural complexes through the use of the established designer cellulosome technology. Here we study how the mechanical stability of cohesins in a scaffoldin affects the enzymatic activity of a cellulosome. We found that when a cohesin of low mechanical stability is positioned in the connecting region of a scaffoldin, the activity of the resulting cellulosome is reduced as opposed to a cohesin of higher mechanical stability. This observation directly relates mechanical stability of the scaffoldin-borne cohesins to cellulosome activity and provides a rationale for the design of artificial cellulosomes for industrial applications, by incorporating mechanical stability as a new industrial parameter in the biotechnology toolbox.
Collapse
Affiliation(s)
- Albert Galera-Prat
- Instituto Cajal, Department of Molecular, Cellular and Developmental Neurobiology. IC-CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
11
|
Designing chimeric enzymes inspired by fungal cellulosomes. Synth Syst Biotechnol 2020; 5:23-32. [PMID: 32083193 PMCID: PMC7015840 DOI: 10.1016/j.synbio.2020.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Cellulosomes are synthesized by anaerobic bacteria and fungi to degrade lignocellulose via synergistic action of multiple enzymes fused to a protein scaffold. Through templating key protein domains (cohesin and dockerin), designer cellulosomes have been engineered from bacterial motifs to alter the activity, stability, and degradation efficiency of enzyme complexes. Recently a parts list for fungal cellulosomes from the anaerobic fungi (Neocallimastigomycota) was determined, which revealed sequence divergent fungal cohesin, dockerin, and scaffoldin domains that could be used to expand the available toolbox to synthesize designer cellulosomes. In this work, multi-domain carbohydrate active enzymes (CAZymes) from 3 cellulosome-producing fungi were analyzed to inform the design of chimeric proteins for synthetic cellulosomes inspired by anaerobic fungi. In particular, Piromyces finnis was used as a structural template for chimeric carbohydrate active enzymes. Recombinant enzymes with retained properties were engineered by combining thermophilic glycosyl hydrolase domains from Thermotoga maritima with dockerin domains from Piromyces finnis. By preserving the protein domain order from P. finnis, chimeric enzymes retained catalytic activity at temperatures over 80 °C and were able to associate with cellulosomes purified from anaerobic fungi. Fungal cellulosomes harbor a wide diversity of glycoside hydrolases, each representing templates for the design of chimeric enzymes. By conserving dockerin domain position within the primary structure of each protein, the activity of both the catalytic domain and dockerin domain was retained in enzyme chimeras. Taken further, the domain positioning inferred from native fungal cellulosome proteins can be used to engineer multi-domain proteins with non-native favorable properties, such as thermostability.
Collapse
|
12
|
Yi Y, Wang H, Chen Y, Gou M, Xia Z, Hu B, Nie Y, Tang Y. Identification of Novel Butyrate- and Acetate-Oxidizing Bacteria in Butyrate-Fed Mesophilic Anaerobic Chemostats by DNA-Based Stable Isotope Probing. MICROBIAL ECOLOGY 2020; 79:285-298. [PMID: 31263981 DOI: 10.1007/s00248-019-01400-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Butyrate is one of the most important intermediates during anaerobic digestion of protein wastewater, and its oxidization is considered as a rate-limiting step during methane production. However, information on syntrophic butyrate-oxidizing bacteria (SBOB) is limited due to the difficulty in isolation of pure cultures. In this study, two anaerobic chemostats fed with butyrate as the sole carbon source were operated at different dilution rates (0.01/day and 0.05/day). Butyrate- and acetate-oxidizing bacteria in both chemostats were investigated, combining DNA-Stable Isotope Probing (DNA-SIP) and 16S rRNA gene high-throughput sequencing. The results showed that, in addition to known SBOB, Syntrophomonas, other species of unclassified Syntrophomonadaceae were putative butyrate-oxidizing bacteria. Species of Mesotoga, Aminivibrio, Acetivibrio, Desulfovibrio, Petrimonas, Sedimentibacter, unclassified Anaerolineae, unclassified Synergistaceae, unclassified Spirochaetaceae, and unclassified bacteria may contribute to acetate oxidation from butyrate metabolism. Among them, the ability of butyrate oxidation was unclear for species of Sedimentibacter, unclassified Synergistaceae, unclassified Spirochaetaceae, and unclassified bacteria. These results suggested that more unknown species participated in the degradation of butyrate. However, the corresponding function and pathway for butyrate or acetate oxidization of these labeled species need to be further investigated.
Collapse
Affiliation(s)
- Yue Yi
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - HuiZhong Wang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - YaTing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, No. 122 Huanghe Middle Road Section 1, Shuangliu District, Chengdu, 610027, Sichuan, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| | - ZiYuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Bin Hu
- College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Yong Nie
- College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - YueQin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| |
Collapse
|
13
|
The Cellulosome Paradigm in An Extreme Alkaline Environment. Microorganisms 2019; 7:microorganisms7090347. [PMID: 31547347 PMCID: PMC6780208 DOI: 10.3390/microorganisms7090347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/01/2019] [Accepted: 09/10/2019] [Indexed: 11/19/2022] Open
Abstract
Rapid decomposition of plant biomass in soda lakes is associated with microbial activity of anaerobic cellulose-degrading communities. The alkaliphilic bacterium, Clostridium alkalicellulosi, is the single known isolate from a soda lake that demonstrates cellulolytic activity. This microorganism secretes cellulolytic enzymes that degrade cellulose under anaerobic and alkaliphilic conditions. A previous study indicated that the protein fraction of cellulose-grown cultures showed similarities in composition and size to known components of the archetypical cellulosome Clostridium thermocellum. Bioinformatic analysis of the C. alkalicellulosi draft genome sequence revealed 44 cohesins, organized into 22 different scaffoldins, and 142 dockerin-containing proteins. The modular organization of the scaffoldins shared similarities to those of C. thermocellum and Acetivibrio cellulolyticus, whereas some exhibited unconventional arrangements containing peptidases and oxidative enzymes. The binding interactions among cohesins and dockerins assessed by ELISA, revealed a complex network of cellulosome assemblies and suggested both cell-associated and cell-free systems. Based on these interactions, C. alkalicellulosi cellulosomal systems have the genetic potential to create elaborate complexes, which could integrate up to 105 enzymatic subunits. The alkalistable C. alkalicellulosi cellulosomal systems and their enzymes would be amenable to biotechnological processes, such as treatment of lignocellulosic biomass following prior alkaline pretreatment.
Collapse
|
14
|
Zealand AM, Mei R, Roskilly AP, Liu W, Graham DW. Molecular microbial ecology of stable versus failing rice straw anaerobic digesters. Microb Biotechnol 2019; 12:879-891. [PMID: 31233284 PMCID: PMC6681398 DOI: 10.1111/1751-7915.13438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/01/2022] Open
Abstract
Waste rice straw (RS) is generated in massive quantities around the world and is often burned, creating greenhouse gas and air quality problems. Anaerobic digestion (AD) may be a better option for RS management, but RS is presumed to be comparatively refractory under anaerobic conditions without pre-treatment or co-substrates. However, this presumption assumes frequent reactor feeding regimes but less frequent feeding may be better for RS due to slow hydrolysis rates. Here, we assess how feeding frequency (FF) and organic loading rate (OLR) impacts microbial communities and biogas production in RS AD reactors. Using 16S rDNA amplicon sequencing and bioinformatics, microbial communities from five bench-scale bioreactors were characterized. At low OLR (1.0 g VS l-1 day-1 ), infrequently fed units (once every 21 days) had higher specific biogas yields than more frequent feeding (five in 7 days), although microbial community diversities were statistically similar (P > 0.05; ANOVA with Tukey comparison). In contrast, an increase in OLR to 2.0 g VS l-1 day-1 significantly changed Archaeal and fermenting Eubacterial sub-communities and the least frequency fed reactors failed. 'Stable' reactors were dominated by Methanobacterium, Methanosarcina and diverse Bacteroidetes, whereas 'failed' reactors saw shifts towards Clostridia and Christensenellaceae among fermenters and reduced methanogen abundances. Overall, OLR impacted RS AD microbial communities more than FF. However, combining infrequent feeding and lower OLRs may be better for RS AD because of higher specific yields.
Collapse
Affiliation(s)
- Andrew M. Zealand
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ran Mei
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐Champaign205 North Mathews AveUrbanaIL61801USA
| | - Anthony P. Roskilly
- Sir Joseph Swan Centre for Energy ResearchNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - WenTso Liu
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐Champaign205 North Mathews AveUrbanaIL61801USA
| | - David W. Graham
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| |
Collapse
|
15
|
Zhivin-Nissan O, Dassa B, Morag E, Kupervaser M, Levin Y, Bayer EA. Unraveling essential cellulosomal components of the ( Pseudo) Bacteroides cellulosolvens reveals an extensive reservoir of novel catalytic enzymes. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:115. [PMID: 31086567 PMCID: PMC6507058 DOI: 10.1186/s13068-019-1447-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/20/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND (Pseudo)Bacteroides cellulosolvens is a cellulolytic bacterium that produces the most extensive and intricate cellulosomal system known in nature. Recently, the elaborate architecture of the B. cellulosolvens cellulosomal system was revealed from analysis of its genome sequence, and the first evidence regarding the interactions between its structural and enzymatic components were detected in vitro. Yet, the understanding of the cellulolytic potential of the bacterium in carbohydrate deconstruction is inextricably linked to its high-molecular-weight protein complexes, which are secreted from the bacterium. RESULTS The current proteome-wide work reveals patterns of protein expression of the various cellulosomal components, and explores the signature of differential expression upon growth of the bacterium on two major carbon sources-cellobiose and microcrystalline cellulose. Mass spectrometry analysis of the bacterial secretome revealed the expression of 24 scaffoldin structural units and 166 dockerin-bearing components (mainly enzymes), in addition to free enzymatic subunits. The dockerin-bearing components comprise cell-free and cell-bound cellulosomes for more efficient carbohydrate degradation. Various glycoside hydrolase (GH) family members were represented among 102 carbohydrate-degrading enzymes, including the omnipresent, most abundant GH48 exoglucanase. Specific cellulosomal components were found in different molecular-weight fractions associated with cell growth on different carbon sources. Overall, microcrystalline cellulose-derived cellulosomes showed markedly higher expression levels of the structural and enzymatic components, and exhibited the highest degradation activity on five different cellulosic and/or hemicellulosic carbohydrates. The cellulosomal activity of B. cellulosolvens showed high degradation rates that are very promising in biotechnological terms and were compatible with the activity levels exhibited by Clostridium thermocellum purified cellulosomes. CONCLUSIONS The current research demonstrates the involvement of key cellulosomal factors that participate in the mechanism of carbohydrate degradation by B. cellulosolvens. The powerful ability of the bacterium to exhibit different degradation strategies on various carbon sources was revealed. The novel reservoir of cellulolytic components of the cellulosomal degradation machineries may serve as a pool for designing new cellulolytic cocktails for biotechnological purposes.
Collapse
Affiliation(s)
- Olga Zhivin-Nissan
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- Proteomics Unit, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- Proteomics Unit, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Chen C, Yang H, Xuan J, Cui Q, Feng Y. Resonance assignments of a cellulosomal double-dockerin from Clostridium thermocellum. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:97-101. [PMID: 30377946 DOI: 10.1007/s12104-018-9859-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
Cellulosomes are highly efficient multienzyme complexes for lignocellulose degradation secreted by some lignocellulolytic bacteria. Cellulosomes are assembled through protein modules named cohesin and dockerin, and multiple cohesin modules in the scaffold protein generally determine the complexity of the cellulosomes. Some cellulosomal proteins contain multiple dockerin modules, which may generate more complex cellulosomal architectures. Genome mining revealed that cellulosomal proteins containing double dockerin modules and a protease module exist in many cellulosome-producing bacteria, and these proteins together with cellulosomal protease inhibitors were proposed to have regulatory roles. However, the structures and functions of these multiple-dockerin proteins in cellulosome have not been reported before. In this paper, we present the NMR chemical shift assignments of the double-dockerin of a cellulosomal protease from Clostridium thermocellum DSM1313. The secondary structures predicted from the chemical shifts agree with the structural arrangement of the tandem dockerin modules. The chemical shift assignments here provide the basis for the structural and functional studies of multiple-dockerin proteins in future.
Collapse
Affiliation(s)
- Chao Chen
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Hongwu Yang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jinsong Xuan
- Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
17
|
Kahn A, Moraïs S, Galanopoulou AP, Chung D, Sarai NS, Hengge N, Hatzinikolaou DG, Himmel ME, Bomble YJ, Bayer EA. Creation of a functional hyperthermostable designer cellulosome. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:44. [PMID: 30858881 PMCID: PMC6394049 DOI: 10.1186/s13068-019-1386-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/20/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Renewable energy has become a field of high interest over the past decade, and production of biofuels from cellulosic substrates has a particularly high potential as an alternative source of energy. Industrial deconstruction of biomass, however, is an onerous, exothermic process, the cost of which could be decreased significantly by use of hyperthermophilic enzymes. An efficient way of breaking down cellulosic substrates can also be achieved by highly efficient enzymatic complexes called cellulosomes. The modular architecture of these multi-enzyme complexes results in substrate targeting and proximity-based synergy among the resident enzymes. However, cellulosomes have not been observed in hyperthermophilic bacteria. RESULTS Here, we report the design and function of a novel hyperthermostable "designer cellulosome" system, which is stable and active at 75 °C. Enzymes from Caldicellulosiruptor bescii, a highly cellulolytic hyperthermophilic anaerobic bacterium, were selected and successfully converted to the cellulosomal mode by grafting onto them divergent dockerin modules that can be inserted in a precise manner into a thermostable chimaeric scaffoldin by virtue of their matching cohesins. Three pairs of cohesins and dockerins, selected from thermophilic microbes, were examined for their stability at extreme temperatures and were determined stable at 75 °C for at least 72 h. The resultant hyperthermostable cellulosome complex exhibited the highest levels of enzymatic activity on microcrystalline cellulose at 75 °C, compared to those of previously reported designer cellulosome systems and the native cellulosome from Clostridium thermocellum. CONCLUSION The functional hyperthermophilic platform fulfills the appropriate physico-chemical properties required for exothermic processes. This system can thus be adapted for other types of thermostable enzyme systems and could serve as a basis for a variety of cellulolytic and non-cellulolytic industrial objectives at high temperatures.
Collapse
Affiliation(s)
- Amaranta Kahn
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, 8499000 Beer-Sheva, Israel
| | - Anastasia P. Galanopoulou
- Microbiology Group, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece
| | - Daehwan Chung
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Nicholas S. Sarai
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
- Present Address: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - Neal Hengge
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Dimitris G. Hatzinikolaou
- Microbiology Group, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
18
|
Ren Z, You W, Wu S, Poetsch A, Xu C. Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:183. [PMID: 31338125 PMCID: PMC6628489 DOI: 10.1186/s13068-019-1522-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Efficient biotechnological conversion of lignocellulosic biomass to valuable products, such as transportation biofuels, is ecologically attractive, yet requires substantially improved mechanistic understanding and optimization to become economically feasible. Cellulolytic clostridia, such as Ruminiclostridium papyrosolvens (previously Clostridium papyrosolvens), produce a wide variety of carbohydrate-active enzymes (CAZymes) including extracellular multienzyme complexes-cellulosomes with different specificities for enhanced cellulosic biomass degradation. Identification of the secretory components, especially CAZymes, during bacterial growth on lignocellulose and their influence on bacterial catalytic capabilities provide insight into construction of potent cellulase systems of cell factories tuned or optimized for the targeted substrate by matching the type and abundance of enzymes and corresponding transporters. RESULTS In this study, we firstly predicted a total of 174 putative CAZymes from the genome of R. papyrosolvens, including 74 cellulosomal components. To explore profile of secreted proteins involved in lignocellulose degradation, we compared the secretomes of R. papyrosolvens grown on different substrates using label-free quantitative proteomics. CAZymes, extracellular solute-binding proteins (SBPs) of transport systems and proteins involved in spore formation were enriched in the secretome of corn stover for lignocellulose degradation. Furthermore, compared with free CAZymes, complex CAZymes (cellulosomal components) had larger fluctuations in variety and abundance of enzymes among four carbon sources. In particular, cellulosomal proteins encoded by the cip-cel operon and the xyl-doc gene cluster had the highest abundance with corn stover as substrate. Analysis of differential expression of CAZymes revealed a substrate-dependent secretion pattern of CAZymes, which was consistent with their catalytic activity from each secretome determined on different cellulosic substrates. The results suggest that the expression of CAZymes is regulated by the type of substrate in the growth medium. CONCLUSIONS In the present study, our results demonstrated the complexity of the lignocellulose degradation systems of R. papyrosolvens and showed the potency of its biomass degradation activity. Differential proteomic analyses and activity assays of CAZymes secreted by R. papyrosolvens suggested a distinct environment-sensing strategy for cellulose utilization in which R. papyrosolvens modulated the composition of the CAZymes, especially cellulosome, according to the degradation state of its natural substrate.
Collapse
Affiliation(s)
- Zhenxing Ren
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 Shanxi China
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Wuxin You
- Department of Plant Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Shasha Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Ansgar Poetsch
- Department of Plant Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- School of Biomedical and Healthcare Sciences, University of Plymouth, Plymouth, PL48AA UK
| | - Chenggang Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 Shanxi China
| |
Collapse
|
19
|
Catabolic repression in early-diverging anaerobic fungi is partially mediated by natural antisense transcripts. Fungal Genet Biol 2018; 121:1-9. [PMID: 30223087 DOI: 10.1016/j.fgb.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022]
Abstract
Early-diverging anaerobic fungi (order: Neocallimastigomycota), lignocelluolytic chytrid-like fungi central to fiber degradation in the digestive tracts of large herbivores, are attractive sources of cellulases and hemicellulases for biotechnology. Enzyme expression is tightly regulated and coordinated through mechanisms that remain unelucidated to optimize hydrolytic efficiency. Our analysis of anaerobic fungal transcriptomes reveals hundreds of cis-natural antisense transcripts (cis-NATs), which we hypothesize play an integral role in this regulation. Through integrated genomic and transcriptomic sequencing on a range of catabolic substrates, we validate these NATs in three species (Anaeromyces robustus, Neocallimasix californiae, and Piromyces finnis), and analyze their expression patterns and prevalence to gain insight into their function. NAT function was diverse and conserved across the three fungal genomes studied, with 10% of all metabolic process NATs associated with lignocellulose hydrolysis. Despite these similarities, however, only eleven gene targets were conserved orthologs. Several NATs were dynamically regulated by lignocellulosic substrates while their gene targets were unregulated. This observation is consistent with a hypothesized, but untested, regulatory mechanism where selected genes are exclusively regulated at the transcriptional/post-transcriptional level by NATs. However, only genes with high NAT relative expression levels displayed this phenomenon, suggesting a selection mechanism that favors larger dynamic ranges for more precise control of gene expression. In addition to this mode, we observed two other possible regulatory fates: canonical transcriptional regulation with no NAT response, and positive co-regulation of target mRNA and cognate NAT, which we hypothesize is a fine-tuning strategy to locally negate control outputs from global regulators. Our work reveals the complex contributions of antisense RNA to the catabolic response in anaerobic fungi, highlighting its importance in understanding lignocellulolytic activity for bioenergy applications. More importantly, the relative expression of NAT to target may form a critical determinant of transcriptional vs post-transcriptional (NAT) control of gene expression in primitive anaerobic fungi.
Collapse
|
20
|
Bule P, Cameron K, Prates JAM, Ferreira LMA, Smith SP, Gilbert HJ, Bayer EA, Najmudin S, Fontes CMGA, Alves VD. Structure-function analyses generate novel specificities to assemble the components of multienzyme bacterial cellulosome complexes. J Biol Chem 2018; 293:4201-4212. [PMID: 29367338 PMCID: PMC5857977 DOI: 10.1074/jbc.ra117.001241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Indexed: 02/02/2023] Open
Abstract
The cellulosome is a remarkably intricate multienzyme nanomachine produced by anaerobic bacteria to degrade plant cell wall polysaccharides. Cellulosome assembly is mediated through binding of enzyme-borne dockerin modules to cohesin modules of the primary scaffoldin subunit. The anaerobic bacterium Acetivibrio cellulolyticus produces a highly intricate cellulosome comprising an adaptor scaffoldin, ScaB, whose cohesins interact with the dockerin of the primary scaffoldin (ScaA) that integrates the cellulosomal enzymes. The ScaB dockerin selectively binds to cohesin modules in ScaC that anchors the cellulosome onto the cell surface. Correct cellulosome assembly requires distinct specificities displayed by structurally related type-I cohesin-dockerin pairs that mediate ScaC-ScaB and ScaA-enzyme assemblies. To explore the mechanism by which these two critical protein interactions display their required specificities, we determined the crystal structure of the dockerin of a cellulosomal enzyme in complex with a ScaA cohesin. The data revealed that the enzyme-borne dockerin binds to the ScaA cohesin in two orientations, indicating two identical cohesin-binding sites. Combined mutagenesis experiments served to identify amino acid residues that modulate type-I cohesin-dockerin specificity in A. cellulolyticus Rational design was used to test the hypothesis that the ligand-binding surfaces of ScaA- and ScaB-associated dockerins mediate cohesin recognition, independent of the structural scaffold. Novel specificities could thus be engineered into one, but not both, of the ligand-binding sites of ScaB, whereas attempts at manipulating the specificity of the enzyme-associated dockerin were unsuccessful. These data indicate that dockerin specificity requires critical interplay between the ligand-binding surface and the structural scaffold of these modules.
Collapse
Affiliation(s)
- Pedro Bule
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Kate Cameron
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José A M Prates
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luís M A Ferreira
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Steven P Smith
- the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Harry J Gilbert
- the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom, and
| | - Edward A Bayer
- the Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100 Israel
| | - Shabir Najmudin
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Carlos M G A Fontes
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal,
| | - Victor D Alves
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal,
| |
Collapse
|
21
|
Verdorfer T, Bernardi RC, Meinhold A, Ott W, Luthey-Schulten Z, Nash MA, Gaub HE. Combining in Vitro and in Silico Single-Molecule Force Spectroscopy to Characterize and Tune Cellulosomal Scaffoldin Mechanics. J Am Chem Soc 2017; 139:17841-17852. [PMID: 29058444 PMCID: PMC5737924 DOI: 10.1021/jacs.7b07574] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cellulosomes are polyprotein machineries that efficiently degrade cellulosic material. Crucial to their function are scaffolds consisting of highly homologous cohesin domains, which serve a dual role by coordinating a multiplicity of enzymes as well as anchoring the microbe to its substrate. Here we combined two approaches to elucidate the mechanical properties of the main scaffold ScaA of Acetivibrio cellulolyticus. A newly developed parallelized one-pot in vitro transcription-translation and protein pull-down protocol enabled high-throughput atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) measurements of all cohesins from ScaA with a single cantilever, thus promising improved relative force comparability. Albeit very similar in sequence, the hanging cohesins showed considerably lower unfolding forces than the bridging cohesins, which are subjected to force when the microbe is anchored to its substrate. Additionally, all-atom steered molecular dynamics (SMD) simulations on homology models offered insight into the process of cohesin unfolding under force. Based on the differences among the individual force propagation pathways and their associated correlation communities, we designed mutants to tune the mechanical stability of the weakest hanging cohesin. The proposed mutants were tested in a second high-throughput AFM SMFS experiment revealing that in one case a single alanine to glycine point mutation suffices to more than double the mechanical stability. In summary, we have successfully characterized the force induced unfolding behavior of all cohesins from the scaffoldin ScaA, as well as revealed how small changes in sequence can have large effects on force resilience in cohesin domains. Our strategy provides an efficient way to test and improve the mechanical integrity of protein domains in general.
Collapse
Affiliation(s)
- Tobias Verdorfer
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| | - Rafael C Bernardi
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aylin Meinhold
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| | - Wolfgang Ott
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| | - Zaida Luthey-Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael A Nash
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), 4058 Basel, Switzerland
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| |
Collapse
|
22
|
Pan-Cellulosomics of Mesophilic Clostridia: Variations on a Theme. Microorganisms 2017; 5:microorganisms5040074. [PMID: 29156585 PMCID: PMC5748583 DOI: 10.3390/microorganisms5040074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
The bacterial cellulosome is an extracellular, multi-enzyme machinery, which efficiently depolymerizes plant biomass by degrading plant cell wall polysaccharides. Several cellulolytic bacteria have evolved various elaborate modular architectures of active cellulosomes. We present here a genome-wide analysis of a dozen mesophilic clostridia species, including both well-studied and yet-undescribed cellulosome-producing bacteria. We first report here, the presence of cellulosomal elements, thus expanding our knowledge regarding the prevalence of the cellulosomal paradigm in nature. We explored the genomic organization of key cellulosome components by comparing the cellulosomal gene clusters in each bacterial species, and the conserved sequence features of the specific cellulosomal modules (cohesins and dockerins), on the background of their phylogenetic relationship. Additionally, we performed comparative analyses of the species-specific repertoire of carbohydrate-degrading enzymes for each of the clostridial species, and classified each cellulosomal enzyme into a specific CAZy family, thus indicating their putative enzymatic activity (e.g., cellulases, hemicellulases, and pectinases). Our work provides, for this large group of bacteria, a broad overview of the blueprints of their multi-component cellulosomal complexes. The high similarity of their scaffoldin clusters and dockerin-based recognition residues suggests a common ancestor, and/or extensive horizontal gene transfer, and potential cross-species recognition. In addition, the sporadic spatial organization of the numerous dockerin-containing genes in several of the genomes, suggests the importance of the cellulosome paradigm in the given bacterial species. The information gained in this work may be utilized directly or developed further by genetically engineering and optimizing designer cellulosome systems for enhanced biotechnological biomass deconstruction and biofuel production.
Collapse
|
23
|
Setter-Lamed E, Moraïs S, Stern J, Lamed R, Bayer EA. Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency. Biotechnol J 2017; 12. [PMID: 28901714 DOI: 10.1002/biot.201700205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/06/2017] [Indexed: 11/09/2022]
Abstract
Cellulose deconstruction can be achieved by three distinct enzymatic paradigms: free enzymes, multifunctional enzymes, and self-assembled, multi-enzyme complexes (cellulosomes). To study their comparative efficiency, the simple and efficient cellulolytic system of the aerobic bacterium, Thermobifida fusca, is developed as an enzymatic model. In previous studies, most of its cellulases are successfully converted to the cellulosomal mode and exhibited high cellulolytic activities, except for Cel6B, a key exoglucanase of the T. fusca enzymatic system. Here, the impact of the modular organization of Cel6B on enzymatic activity is investigated. The position of the cellulose-binding module (CBM), its family and linker segment are shown to affect activity. Surprisingly, exchange of the native family-2 CBM to family-3 generates an increase in Cel6B activity on cellulosic substrates. Conversion of Cel6B to the cellulosomal mode by fusing a cohesin to the catalytic module enables formation of divalent enzyme complexes with dockerin-bearing enzymes. The resultant pseudo-cellulosomes, containing Cel6B combined with endoglucanase Cel5A, exhibits enhanced enzymatic activity, compared to mixtures of wild-type enzymes or bifunctional enzymes, unlike similar pseudo-cellulosomes containing endoglucanase Cel6A or proccessive endoglucanase Cel9A. Insight into the different enzymatic paradigms benefits ongoing development of efficient cellulolytic systems for conversion of plant-derived biomass into valuable sugars. NOVELTY STATEMENT The protein engineering of the modular arrangement of a key exoglucanase from a highly cellulolytic bacterium, Thermobifida fusca, served to explore and compare three major enzymatic paradigms for cellulose degradation. This approach revealed highly active chimaeric forms of the exoglucanase that act in synergy together with a potent endoglucanase in bifunctional enzymes or divalent pseudo-cellulosome-like complexes. Such engineered enzymes could be further integrated into larger enzymatic complexes, thereby providing a significant step forward towards conversion of the entire T. fusca free cellulolytic system into the cellulosomal modex and the enhanced conversion of cellulosic biomass into soluble sugars.
Collapse
Affiliation(s)
- Eva Setter-Lamed
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
24
|
Yoav S, Barak Y, Shamshoum M, Borovok I, Lamed R, Dassa B, Hadar Y, Morag E, Bayer EA. How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium ( Ruminiclostridium) thermocellum DSM 1313? BIOTECHNOLOGY FOR BIOFUELS 2017; 10:222. [PMID: 28932263 PMCID: PMC5604425 DOI: 10.1186/s13068-017-0909-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/07/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Bioethanol production processes involve enzymatic hydrolysis of pretreated lignocellulosic biomass into fermentable sugars. Due to the relatively high cost of enzyme production, the development of potent and cost-effective cellulolytic cocktails is critical for increasing the cost-effectiveness of bioethanol production. In this context, the multi-protein cellulolytic complex of Clostridium (Ruminiclostridium) thermocellum, the cellulosome, was studied here. C. thermocellum is known to assemble cellulosomes of various subunit (enzyme) compositions, in response to the available carbon source. In the current study, different carbon sources were used, and their influence on both cellulosomal composition and the resultant activity was investigated. RESULTS Glucose, cellobiose, microcrystalline cellulose, alkaline-pretreated switchgrass, alkaline-pretreated corn stover, and dilute acid-pretreated corn stover were used as sole carbon sources in the growth media of C. thermocellum strain DSM 1313. The purified cellulosomes were compared for their activity on selected cellulosic substrates. Interestingly, cellulosomes derived from cells grown on lignocellulosic biomass showed no advantage in hydrolyzing the original carbon source used for their production. Instead, microcrystalline cellulose- and glucose-derived cellulosomes were equal or superior in their capacity to deconstruct lignocellulosic biomass. Mass spectrometry analysis revealed differential composition of catalytic and structural subunits (scaffoldins) in the different cellulosome samples. The most abundant catalytic subunits in all cellulosome types include Cel48S, Cel9K, Cel9Q, Cel9R, and Cel5G. Microcrystalline cellulose- and glucose-derived cellulosome samples showed higher endoglucanase-to-exoglucanase ratios and higher catalytic subunit-per-scaffoldin ratios compared to lignocellulose-derived cellulosome types. CONCLUSION The results reported here highlight the finding that cellulosomes derived from cells grown on glucose and microcrystalline cellulose are more efficient in their action on cellulosic substrates than other cellulosome preparations. These results should be considered in the future development of C. thermocellum-based cellulolytic cocktails, designer cellulosomes, or engineering of improved strains for deconstruction of lignocellulosic biomass.
Collapse
Affiliation(s)
- Shahar Yoav
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Advanced School for Environmental Studies, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
- Designer Energy Ltd, 2 Bergman Street, Rehovot, Israel
| | - Yoav Barak
- Bio-Nano Unit, Chemical Research Support, The Weizmann Institute of Science, 761000 Rehovot, Israel
| | - Melina Shamshoum
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Bareket Dassa
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Advanced School for Environmental Studies, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
25
|
Zhivin O, Dassa B, Moraïs S, Utturkar SM, Brown SD, Henrissat B, Lamed R, Bayer EA. Unique organization and unprecedented diversity of the Bacteroides (Pseudobacteroides) cellulosolvens cellulosome system. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:211. [PMID: 28912832 PMCID: PMC5590126 DOI: 10.1186/s13068-017-0898-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/29/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND (Pseudo) Bacteroides cellulosolvens is an anaerobic, mesophilic, cellulolytic, cellulosome-producing clostridial bacterium capable of utilizing cellulose and cellobiose as carbon sources. Recently, we sequenced the B. cellulosolvens genome, and subsequent comprehensive bioinformatic analysis, herein reported, revealed an unprecedented number of cellulosome-related components, including 78 cohesin modules scattered among 31 scaffoldins and more than 200 dockerin-bearing ORFs. In terms of numbers, the B. cellulosolvens cellulosome system represents the most intricate, compositionally diverse cellulosome system yet known in nature. RESULTS The organization of the B. cellulosolvens cellulosome is unique compared to previously described cellulosome systems. In contrast to all other known cellulosomes, the cohesin types are reversed for all scaffoldins i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. Many of the type II dockerin-bearing ORFs include X60 modules, which are known to stabilize type II cohesin-dockerin interactions. In the present work, we focused on revealing the architectural arrangement of cellulosome structure in this bacterium by examining numerous interactions between the various cohesin and dockerin modules. In total, we cloned and expressed 43 representative cohesins and 27 dockerins. The results revealed various possible architectures of cell-anchored and cell-free cellulosomes, which serve to assemble distinctive cellulosome types via three distinct cohesin-dockerin specificities: type I, type II, and a novel-type designated R (distinct from type III interactions, predominant in ruminococcal cellulosomes). CONCLUSIONS The results of this study provide novel insight into the architecture and function of the most intricate and extensive cellulosomal system known today, thereby extending significantly our overall knowledge base of cellulosome systems and their components. The robust cellulosome system of B. cellulosolvens, with its unique binding specificities and reversal of cohesin-dockerin types, has served to amend our view of the cellulosome paradigm. Revealing new cellulosomal interactions and arrangements is critical for designing high-efficiency artificial cellulosomes for conversion of plant-derived cellulosic biomass towards improved production of biofuels.
Collapse
Affiliation(s)
- Olga Zhivin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sagar M. Utturkar
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37919 USA
- BioEnergy Science Center, Oak Ridge, TN USA
| | - Steven D. Brown
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37919 USA
- BioEnergy Science Center, Oak Ridge, TN USA
- Biosciences Division, Energy and Environment Directorate, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille University and CNRS, Marseille, France
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Edward A. Bayer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Luo D, Gao Y, Lu Y, Qu M, Xiong X, Xu L, Zhao X, Pan K, Ouyang K. Niacin alters the ruminal microbial composition of cattle under high-concentrate condition. ACTA ACUST UNITED AC 2017; 3:180-185. [PMID: 29767159 PMCID: PMC5941115 DOI: 10.1016/j.aninu.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/03/2017] [Indexed: 11/18/2022]
Abstract
To understand the effects of niacin on the ruminal microbial ecology of cattle under high-concentrate diet condition, Illumina MiSeq sequencing technology was used. Three cattle with rumen cannula were used in a 3 × 3 Latin-square design trial. Three diets were fed to these cattle during 3 periods for 3 days, respectively: high-forage diet (HF; forage-to-concentrate ratio = 80:20), high-concentrate diet (HC; forage-to-concentrate ratio = 20:80), and HC supplemented with 800 mg/kg niacin (HCN). Ruminal pH was measured before feeding and every 2 h after initiating feeding. Ruminal fluid was sampled at the end of each period for microbial DNA extraction. Overall, our findings revealed that subacute ruminal acidosis (SARA) was induced and the α-diversity of ruminal bacterial community decreased in the cattle of HC group. Adding niacin in HC could relieve the symptoms of SARA in the cattle but the ruminal pH value and the Shannon index of ruminal bacterial community of HCN group were still lower than those of HF group. Whatever the diet was, the ruminal bacterial community of cattle was dominated by Bacteroidetes, Firmicutes and Proteobacteria. High-concentrate diet significantly increased the abundance of Prevotella, and decreased the abundance of Paraprevotella, Sporobacter, Ruminococcus and Treponema than HF. Compared with HC, HCN had a trend to decrease the percentage of Prevotella, and to increase the abundance of Succiniclasticum, Acetivibrio and Treponema. Increasing concentrate ratio could decrease ruminal pH value, and change the ruminal microbial composition. Adding niacin in HC could increase the ruminal pH value, alter the ruminal microbial composition.
Collapse
Affiliation(s)
- Dan Luo
- Jiangxi Provincial Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yufei Gao
- Jiangxi Provincial Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Youyou Lu
- Animal Husbandry Bureau of Jinxian County, Jinxian 331700, China
| | - Mingren Qu
- Jiangxi Provincial Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaowen Xiong
- Jiangxi Provincial Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lanjiao Xu
- Jiangxi Provincial Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xianghui Zhao
- Jiangxi Provincial Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke Pan
- Jiangxi Provincial Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kehui Ouyang
- Jiangxi Provincial Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Corresponding author.
| |
Collapse
|
27
|
Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum. Appl Environ Microbiol 2017; 83:AEM.03088-16. [PMID: 28159788 DOI: 10.1128/aem.03088-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/27/2017] [Indexed: 11/20/2022] Open
Abstract
Cellulosomes are considered to be one of the most efficient systems for the degradation of plant cell wall polysaccharides. The central cellulosome component comprises a large, noncatalytic protein subunit called scaffoldin. Multiple saccharolytic enzymes are incorporated into the scaffoldins via specific high-affinity cohesin-dockerin interactions. Recently, the regulation of genes encoding certain cellulosomal components by multiple RNA polymerase alternative σI factors has been demonstrated in Clostridium (Ruminiclostridium) thermocellum In the present report, we provide experimental evidence demonstrating that the C. thermocellum cipA gene, which encodes the primary cellulosomal scaffoldin, is regulated by several alternative σI factors and by the vegetative σA factor. Furthermore, we show that previously suggested transcriptional start sites (TSSs) of C. thermocellum cipA are actually posttranscriptional processed sites. By using comparative bioinformatic analysis, we have also identified highly conserved σI- and σA-dependent promoters upstream of the primary scaffoldin-encoding genes of other clostridia, namely, Clostridium straminisolvens, Clostridium clariflavum, Acetivibrio cellulolyticus, and Clostridium sp. strain Bc-iso-3. Interestingly, a previously identified TSS of the primary scaffoldin CbpA gene of Clostridium cellulovorans matches the predicted σI-dependent promoter identified in the present work rather than the previously proposed σA promoter. With the exception of C. cellulovorans, both σI and σA promoters of primary scaffoldin genes are located more than 600 nucleotides upstream of the start codon, yielding long 5'-untranslated regions (5'-UTRs). Furthermore, these 5'-UTRs have highly conserved stem-loop structures located near the start codon. We propose that these large 5'-UTRs may be involved in the regulation of both the primary scaffoldin and other cellulosomal components.IMPORTANCE Cellulosome-producing bacteria are among the most effective cellulolytic microorganisms known. This group of bacteria has biotechnological potential for the production of second-generation biofuels and other biocommodities from cellulosic wastes. The efficiency of cellulose hydrolysis is due to their cellulosomes, which arrange enzymes in close proximity on the cellulosic substrate, thereby increasing synergism among the catalytic domains. The backbone of these multienzyme nanomachines is the scaffoldin subunit, which has been the subject of study for many years. However, its genetic regulation is poorly understood. Hence, from basic and applied points of view, it is imperative to unravel the regulatory mechanisms of the scaffoldin genes. The understanding of these regulatory mechanisms can help to improve the performance of the industrially relevant strains of C. thermocellum and related cellulosome-producing bacteria en route to the consolidated bioprocessing of biomass.
Collapse
|
28
|
Artzi L, Bayer EA, Moraïs S. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 2017; 15:83-95. [PMID: 27941816 DOI: 10.1038/nrmicro.2016.164] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels.
Collapse
Affiliation(s)
- Lior Artzi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
29
|
Stern J, Artzi L, Moraïs S, Fontes CMGA, Bayer EA. Carbohydrate Depolymerization by Intricate Cellulosomal Systems. Methods Mol Biol 2017; 1588:93-116. [PMID: 28417363 DOI: 10.1007/978-1-4939-6899-2_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology has been established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.
Collapse
Affiliation(s)
- Johanna Stern
- Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel
| | - Lior Artzi
- Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel
| | - Sarah Moraïs
- Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Edward A Bayer
- Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel.
| |
Collapse
|
30
|
Abstract
Designer cellulosomes consist of chimeric cohesin-bearing scaffoldins for the controlled incorporation of recombinant dockerin-containing enzymes. The largest designer cellulosome reported to date is a chimeric scaffoldin that contains 6 cohesins. This scaffoldin represented a technical limit of sorts, since adding another cohesin proved problematic, owing to resultant low expression levels, instability (cleavage) of the scaffoldin polypeptide, and limited numbers of available cohesin-dockerin specificities—the hallmark of designer cellulosomes. Nevertheless, increasing the number of enzymes integrated into designer cellulosomes is critical, in order to further enhance degradation of plant cell wall material. Adaptor scaffoldins comprise an intermediate type of scaffoldin that can both incorporate various enzymes and attach to an additional scaffoldin. Using this strategy, we constructed an efficient form of adaptor scaffoldin that possesses three type I cohesins for enzyme integration, a single type II dockerin for interaction with an additional scaffoldin, and a carbohydrate-binding module for targeting to the cellulosic substrate. In parallel, we designed a hexavalent scaffoldin capable of connecting to the adaptor scaffoldin by the incorporation of an appropriate type II cohesin. The resultant extended designer cellulosome comprised 8 recombinant enzymes—4 xylanases and 4 cellulases—thereby representing a potent enzymatic cocktail for solubilization of natural lignocellulosic substrates. The contribution of the adaptor scaffoldin clearly demonstrated that proximity between the two scaffoldins and their composite set of enzymes is crucial for optimized degradation. After 72 h of incubation, the performance of the extended designer cellulosome was determined to be approximately 70% compared to that of native cellulosomes. Plant cell wall residues represent a major source of renewable biomass for the production of biofuels such as ethanol via breakdown to soluble sugars. The natural microbial degradation process, however, is inefficient for achieving cost-effective processes in the conversion of plant-derived biomass to biofuels, either from dedicated crops or human-generated cellulosic wastes. The accumulation of the latter is considered a major environmental pollutant. The development of designer cellulosome nanodevices for enhanced plant cell wall degradation thus has major impacts in the fields of environmental pollution, bioenergy production, and biotechnology in general. The findings reported in this article comprise a true breakthrough in our capacity to produce extended designer cellulosomes via synthetic biology means, thus enabling the assembly of higher-order complexes that can supersede the number of enzymes included in a single multienzyme complex.
Collapse
|
31
|
Moraïs S, Ben David Y, Bensoussan L, Duncan SH, Koropatkin NM, Martens EC, Flint HJ, Bayer EA. Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. Environ Microbiol 2016; 18:542-56. [PMID: 26347002 DOI: 10.1111/1462-2920.13047] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2023]
Abstract
Ruminococcus champanellensis is considered a keystone species in the human gut that degrades microcrystalline cellulose efficiently and contains the genetic elements necessary for cellulosome production. The basic elements of its cellulosome architecture, mainly cohesin and dockerin modules from scaffoldins and enzyme-borne dockerins, have been characterized recently. In this study, we cloned, expressed and characterized all of the glycoside hydrolases that contain a dockerin module. Among the 25 enzymes, 10 cellulases, 4 xylanases, 3 mannanases, 2 xyloglucanases, 2 arabinofuranosidases, 2 arabinanases and one β-glucanase were assessed for their comparative enzymatic activity on their respective substrates. The dockerin specificities of the enzymes were examined by ELISA, and 80 positives out of 525 possible interactions were detected. Our analysis reveals a fine-tuned system for cohesin-dockerin specificity and the importance of diversity among the cohesin-dockerin sequences. Our results imply that cohesin-dockerin pairs are not necessarily assembled at random among the same specificity types, as generally believed for other cellulosome-producing bacteria, but reveal a more organized cellulosome architecture. Moreover, our results highlight the importance of the cellulosome paradigm for cellulose and hemicellulose degradation by R. champanellensis in the human gut.
Collapse
Affiliation(s)
- Sarah Moraïs
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Yonit Ben David
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Lizi Bensoussan
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Sylvia H Duncan
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Harry J Flint
- Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - Edward A Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Xu Q, Resch MG, Podkaminer K, Yang S, Baker JO, Donohoe BS, Wilson C, Klingeman DM, Olson DG, Decker SR, Giannone RJ, Hettich RL, Brown SD, Lynd LR, Bayer EA, Himmel ME, Bomble YJ. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. SCIENCE ADVANCES 2016; 2:e1501254. [PMID: 26989779 PMCID: PMC4788478 DOI: 10.1126/sciadv.1501254] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/30/2015] [Indexed: 05/18/2023]
Abstract
Clostridium thermocellum is the most efficient microorganism for solubilizing lignocellulosic biomass known to date. Its high cellulose digestion capability is attributed to efficient cellulases consisting of both a free-enzyme system and a tethered cellulosomal system wherein carbohydrate active enzymes (CAZymes) are organized by primary and secondary scaffoldin proteins to generate large protein complexes attached to the bacterial cell wall. This study demonstrates that C. thermocellum also uses a type of cellulosomal system not bound to the bacterial cell wall, called the "cell-free" cellulosomal system. The cell-free cellulosome complex can be seen as a "long range cellulosome" because it can diffuse away from the cell and degrade polysaccharide substrates remotely from the bacterial cell. The contribution of these two types of cellulosomal systems in C. thermocellum was elucidated by characterization of mutants with different combinations of scaffoldin gene deletions. The primary scaffoldin, CipA, was found to play the most important role in cellulose degradation by C. thermocellum, whereas the secondary scaffoldins have less important roles. Additionally, the distinct and efficient mode of action of the C. thermocellum exoproteome, wherein the cellulosomes splay or divide biomass particles, changes when either the primary or secondary scaffolds are removed, showing that the intact wild-type cellulosomal system is necessary for this essential mode of action. This new transcriptional and proteomic evidence shows that a functional primary scaffoldin plays a more important role compared to secondary scaffoldins in the proper regulation of CAZyme genes, cellodextrin transport, and other cellular functions.
Collapse
Affiliation(s)
- Qi Xu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
| | - Michael G. Resch
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Kara Podkaminer
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
| | - Shihui Yang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - John O. Baker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
| | - Charlotte Wilson
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Dawn M. Klingeman
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Daniel G. Olson
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Stephen R. Decker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
| | - Richard J. Giannone
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Robert L. Hettich
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Steven D. Brown
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lee R. Lynd
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | | | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BioEnergy Science Center, Oak Ridge, TN 37831, USA
- Corresponding author. E-mail:
| |
Collapse
|
33
|
Sand A, Holwerda EK, Ruppertsberger NM, Maloney M, Olson DG, Nataf Y, Borovok I, Sonenshein AL, Bayer EA, Lamed R, Lynd LR, Shoham Y. Three cellulosomal xylanase genes inClostridium thermocellumare regulated by both vegetative SigA (σA) and alternative SigI6 (σI6) factors. FEBS Lett 2015; 589:3133-40. [DOI: 10.1016/j.febslet.2015.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 11/29/2022]
|
34
|
Voronov-Goldman M, Yaniv O, Gul O, Yoffe H, Salama-Alber O, Slutzki M, Levy-Assaraf M, Jindou S, Shimon LJW, Borovok I, Bayer EA, Lamed R, Frolow F. Standalone cohesin as a molecular shuttle in cellulosome assembly. FEBS Lett 2015; 589:1569-76. [PMID: 25896019 DOI: 10.1016/j.febslet.2015.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 11/20/2022]
Abstract
The cellulolytic bacterium Ruminococcus flavefaciens of the herbivore rumen produces an elaborate cellulosome system, anchored to the bacterial cell wall via the covalently bound scaffoldin ScaE. Dockerin-bearing scaffoldins also bind to an autonomous cohesin of unknown function, called cohesin G (CohG). Here, we demonstrate that CohG binds to the scaffoldin-borne dockerin in opposite orientation on a distinct site, relative to that of ScaE. Based on these structural data, we propose that the complexed dockerin is still available to bind ScaE on the cell surface. CohG may thus serve as a molecular shuttle for delivery of scaffoldins to the bacterial cell surface.
Collapse
Affiliation(s)
- Milana Voronov-Goldman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978, Israel; The Daniella Rich Institute for Structural Biology, Tel Aviv University, 69978, Israel
| | - Oren Yaniv
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978, Israel; The Daniella Rich Institute for Structural Biology, Tel Aviv University, 69978, Israel
| | - Ozgur Gul
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hagar Yoffe
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978, Israel; The Daniella Rich Institute for Structural Biology, Tel Aviv University, 69978, Israel
| | - Orly Salama-Alber
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Slutzki
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maly Levy-Assaraf
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978, Israel; The Daniella Rich Institute for Structural Biology, Tel Aviv University, 69978, Israel
| | - Sadanari Jindou
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978, Israel; Faculty of Agriculture, Meijo University, Nagoya 468-8502, Japan
| | - Linda J W Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978, Israel
| | - Edward A Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978, Israel; The Daniella Rich Institute for Structural Biology, Tel Aviv University, 69978, Israel.
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978, Israel; The Daniella Rich Institute for Structural Biology, Tel Aviv University, 69978, Israel
| |
Collapse
|
35
|
Cameron K, Najmudin S, Alves VD, Bayer EA, Smith SP, Bule P, Waller H, Ferreira LMA, Gilbert HJ, Fontes CMGA. Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors. J Biol Chem 2015; 290:13578-90. [PMID: 25855788 PMCID: PMC4505603 DOI: 10.1074/jbc.m114.633339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/31/2015] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of nature's most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼10(12) M). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes.
Collapse
Affiliation(s)
- Kate Cameron
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Shabir Najmudin
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal,
| | - Victor D Alves
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Edward A Bayer
- the Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Steven P Smith
- the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Pedro Bule
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helen Waller
- the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Luís M A Ferreira
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Harry J Gilbert
- the Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Carlos M G A Fontes
- From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal,
| |
Collapse
|
36
|
Abstract
Clostridium clariflavum is an anaerobic, cellulosome-forming thermophile, containing in its genome genes for a large number of cellulosomal enzyme and a complex scaffoldin system. Previously, we described the major cohesin-dockerin interactions of the cellulosome components, and on this basis a model of diverse cellulosome assemblies was derived. In this work, we cultivated C. clariflavum on cellobiose-, microcrystalline cellulose-, and switchgrass-containing media and isolated cell-free cellulosome complexes from each culture. Gel filtration separation of the cellulosome samples revealed two major fractions, which were analyzed by label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to identify the key players of the cellulosome assemblies therein. From the 13 scaffoldins present in the C. clariflavum genome, 11 were identified, and a variety of enzymes from different glycoside hydrolase and carbohydrate esterase families were identified, including the glycoside hydrolase families GH48, GH9, GH5, GH30, GH11, and GH10. The expression level of the cellulosomal proteins varied as a function of the carbon source used for cultivation of the bacterium. In addition, the catalytic activity of each cellulosome was examined on different cellulosic substrates, xylan and switchgrass. The cellulosome isolated from the microcrystalline cellulose-containing medium was the most active of all the cellulosomes that were tested. The results suggest that the expression of the cellulosome proteins is regulated by the type of substrate in the growth medium. Moreover, both cell-free and cell-bound cellulosome complexes were produced which together may degrade the substrate in a synergistic manner. These observations are compatible with our previously published model of cellulosome assemblies in this bacterium. Because the reservoir of unsustainable fossil fuels, such as coal, petroleum, and natural gas, is overutilized and continues to contribute to environmental pollution and CO2 emission, the need for appropriate alternative energy sources becomes more crucial. Bioethanol produced from dedicated crops and cellulosic waste can provide a partial answer, yet a cost-effective production method must be developed. The cellulosome system of the anaerobic thermophile C. clariflavum comprises a large number of cellulolytic and hemicellulolytic enzymes, which self-assemble in a number of different cellulosome architectures for enhanced cellulosic biomass degradation. Identification of the major cellulosomal components expressed during growth of the bacterium and their influence on its catalytic capabilities provide insight into the performance of the remarkable cellulosome of this intriguing bacterium. The findings, together with the thermophilic characteristics of the proteins, render C. clariflavum of great interest for future use in industrial cellulose conversion processes.
Collapse
|
37
|
Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Pühler A, Schlüter A. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:14. [PMID: 25688290 PMCID: PMC4329661 DOI: 10.1186/s13068-014-0193-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/22/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Decomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potential of a biogas-producing microbial community in an agricultural biogas reactor operating under wet fermentation conditions was analyzed by a metagenomic approach applying 454-pyrosequencing. The obtained metagenomic dataset and corresponding 16S rRNA gene amplicon sequences were compared to the previously sequenced comparable metagenome from a dry fermentation process, meeting explicitly identical boundary conditions regarding sample and community DNA preparation, sequencing technology, processing of sequence reads and data analyses by bioinformatics tools. RESULTS High-throughput metagenome sequencing of community DNA from the wet fermentation process applying the pyrosequencing approach resulted in 1,532,780 reads, with an average read length of 397 bp, accounting for approximately 594 million bases of sequence information in total. Taxonomic comparison of the communities from wet and dry fermentation revealed similar microbial profiles with Bacteria being the predominant superkingdom, while the superkingdom Archaea was less abundant. In both biogas plants, the bacterial phyla Firmicutes, Bacteroidetes, Spirochaetes and Proteobacteria were identified with descending frequencies. Within the archaeal superkingdom, the phylum Euryarchaeota was most abundant with the dominant class Methanomicrobia. Functional profiles of the communities revealed that environmental gene tags representing methanogenesis enzymes were present in both biogas plants in comparable frequencies. 16S rRNA gene amplicon high-throughput sequencing disclosed differences in the sub-communities comprising methanogenic Archaea between both processes. Fragment recruitments of metagenomic reads to the reference genome of the archaeon Methanoculleus bourgensis MS2(T) revealed that dominant methanogens within the dry fermentation process were highly related to the reference. CONCLUSIONS Although process parameters, substrates and technology differ between the wet and dry biogas fermentations analyzed in this study, community profiles are very similar at least at higher taxonomic ranks, illustrating that core community taxa perform key functions in biomass decomposition and methane synthesis. Regarding methanogenesis, Archaea highly related to the type strain M. bourgensis MS2(T) dominate the dry fermentation process, suggesting the adaptation of members belonging to this species to specific fermentation process parameters.
Collapse
Affiliation(s)
- Yvonne Stolze
- />Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Martha Zakrzewski
- />QIMR Berghofer Medical Research Institute Herston, 300 Herston Road, Brisbane, QLD 4006 Australia
| | - Irena Maus
- />Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Felix Eikmeyer
- />Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Sebastian Jaenicke
- />Bioinformatics Resource Facility, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Nils Rottmann
- />NORTH-TEC Maschinenbau GmbH, Oldenhörn 1, 25821 Bredstedt, Germany
| | - Clemens Siebner
- />Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- />Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas Schlüter
- />Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
38
|
Hamberg Y, Ruimy-Israeli V, Dassa B, Barak Y, Lamed R, Cameron K, Fontes CMGA, Bayer EA, Fried DB. Elaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin-dockerin interactions. PeerJ 2014; 2:e636. [PMID: 25374780 PMCID: PMC4217186 DOI: 10.7717/peerj.636] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/02/2014] [Indexed: 11/20/2022] Open
Abstract
Cellulosic waste represents a significant and underutilized carbon source for the biofuel industry. Owing to the recalcitrance of crystalline cellulose to enzymatic degradation, it is necessary to design economical methods of liberating the fermentable sugars required for bioethanol production. One route towards unlocking the potential of cellulosic waste lies in a highly complex class of molecular machines, the cellulosomes. Secreted mainly by anaerobic bacteria, cellulosomes are structurally diverse, cell surface-bound protein assemblies that can contain dozens of catalytic components. The key feature of the cellulosome is its modularity, facilitated by the ultra-high affinity cohesin-dockerin interaction. Due to the enormous number of cohesin and dockerin modules found in a typical cellulolytic organism, a major bottleneck in understanding the biology of cellulosomics is the purification of each cohesin- and dockerin-containing component, prior to analyses of their interaction. As opposed to previous approaches, the present study utilized proteins contained in unpurified whole-cell extracts. This strategy was made possible due to an experimental design that allowed for the relevant proteins to be "purified" via targeted affinity interactions as a function of the binding assay. The approach thus represents a new strategy, appropriate for future medium- to high-throughput screening of whole genomes, to determine the interactions between cohesins and dockerins. We have selected the cellulosome of Acetivibrio cellulolyticus for this work due to its exceptionally complex cellulosome systems and intriguing diversity of its cellulosomal modular components. Containing 41 cohesins and 143 dockerins, A. cellulolyticus has one of the largest number of potential cohesin-dockerin interactions of any organism, and contains unusual and novel cellulosomal features. We have surveyed a representative library of cohesin and dockerin modules spanning the cellulosome's total cohesin and dockerin sequence diversity, emphasizing the testing of unusual and previously-unknown protein modules. The screen revealed several novel cell-bound cellulosome architectures, thus expanding on those previously known, as well as soluble cellulose systems that are not bound to the bacterial cell surface. This study sets the stage for screening the entire complement of cellulosomal components from A. cellulolyticus and other organisms with large cellulosome systems. The knowledge gained by such efforts brings us closer to understanding the exceptional catalytic abilities of cellulosomes and will allow the use of novel cellulosomal components in artificial assemblies and in enzyme cocktails for sustainable energy-related research programs.
Collapse
Affiliation(s)
- Yuval Hamberg
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot , Israel
| | - Vered Ruimy-Israeli
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot , Israel
| | - Bareket Dassa
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot , Israel
| | - Yoav Barak
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot , Israel ; Chemical Research Support, The Weizmann Institute of Science , Rehovot , Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University , Ramat Aviv , Israel
| | - Kate Cameron
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa , Avenida da Universidade Técnica, Lisboa , Portugal
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa , Avenida da Universidade Técnica, Lisboa , Portugal
| | - Edward A Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot , Israel
| | - Daniel B Fried
- Department of Biological Chemistry, The Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
39
|
Bule P, Correia A, Cameron K, Alves VD, Cardoso V, Fontes CMGA, Najmudin S. Overexpression, purification, crystallization and preliminary X-ray characterization of the fourth scaffoldin A cohesin from Acetivibrio cellulolyticus in complex with a dockerin from a family 5 glycoside hydrolase. Acta Crystallogr F Struct Biol Commun 2014; 70:1065-7. [PMID: 25084383 PMCID: PMC4118805 DOI: 10.1107/s2053230x14013181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/05/2014] [Indexed: 11/10/2022] Open
Abstract
Cellulosomes are cell-bound multienzyme complexes secreted by anaerobic bacteria that play a crucial role in carbon turnover by degrading plant cell walls to simple sugars. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between cohesin modules located in a molecular scaffold and dockerin modules found in cellulosomal enzymes. Acetivibrio cellulolyticus possesses a complex cellulosome arrangement which is organized by a primary enzyme-binding scaffoldin (ScaA), two anchoring scaffoldins (ScaC and ScaD) and an unusual adaptor scaffoldin (ScaB). A dockerin from a family 5 glycoside hydrolase (GH5), which was engineered to inactivate one of the two putative cohesin-binding interfaces, complexed with one of the ScaA cohesins from A. cellulolyticus has been purified and crystallized, and data were processed to a resolution of 1.57 Å in the orthorhombic space group P212121.
Collapse
Affiliation(s)
- Pedro Bule
- CIISA–Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Ana Correia
- CIISA–Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Kate Cameron
- CIISA–Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Victor D. Alves
- CIISA–Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Vânia Cardoso
- CIISA–Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Carlos M. G. A. Fontes
- CIISA–Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Shabir Najmudin
- CIISA–Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
40
|
Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS One 2014; 9:e99221. [PMID: 24992679 PMCID: PMC4081043 DOI: 10.1371/journal.pone.0099221] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 05/12/2014] [Indexed: 12/20/2022] Open
Abstract
Background A complex community of microorganisms is responsible for efficient plant cell wall digestion by many herbivores, notably the ruminants. Understanding the different fibrolytic mechanisms utilized by these bacteria has been of great interest in agricultural and technological fields, reinforced more recently by current efforts to convert cellulosic biomass to biofuels. Methodology/Principal Findings Here, we have used a bioinformatics-based approach to explore the cellulosome-related components of six genomes from two of the primary fiber-degrading bacteria in the rumen: Ruminococcus flavefaciens (strains FD-1, 007c and 17) and Ruminococcus albus (strains 7, 8 and SY3). The genomes of two of these strains are reported for the first time herein. The data reveal that the three R. flavefaciens strains encode for an elaborate reservoir of cohesin- and dockerin-containing proteins, whereas the three R. albus strains are cohesin-deficient and encode mainly dockerins and a unique family of cell-anchoring carbohydrate-binding modules (family 37). Conclusions/Significance Our comparative genome-wide analysis pinpoints rare and novel strain-specific protein architectures and provides an exhaustive profile of their numerous lignocellulose-degrading enzymes. This work provides blueprints of the divergent cellulolytic systems in these two prominent fibrolytic rumen bacterial species, each of which reflects a distinct mechanistic model for efficient degradation of cellulosic biomass.
Collapse
|
41
|
Artzi L, Dassa B, Borovok I, Shamshoum M, Lamed R, Bayer EA. Cellulosomics of the cellulolytic thermophile Clostridium clariflavum. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:100. [PMID: 26413154 PMCID: PMC4582956 DOI: 10.1186/1754-6834-7-100] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/12/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Clostridium clariflavum is an anaerobic, thermophilic, Gram-positive bacterium, capable of growth on crystalline cellulose as a single carbon source. The genome of C. clariflavum has been sequenced to completion, and numerous cellulosomal genes were identified, including putative scaffoldin and enzyme subunits. RESULTS Bioinformatic analysis of the C. clariflavum genome revealed 49 cohesin modules distributed on 13 different scaffoldins and 79 dockerin-containing proteins, suggesting an abundance of putative cellulosome assemblies. The 13-scaffoldin system of C. clariflavum is highly reminiscent of the proposed cellulosome system of Acetivibrio cellulolyticus. Analysis of the C. clariflavum type I dockerin sequences indicated a very high level of conservation, wherein the putative recognition residues are remarkably similar to those of A. cellulolyticus. The numerous interactions among the cellulosomal components were elucidated using a standardized affinity ELISA-based fusion-protein system. The results revealed a rather simplistic recognition pattern of cohesin-dockerin interaction, whereby the type I and type II cohesins generally recognized the dockerins of the same type. The anticipated exception to this rule was the type I dockerin of the ScaB adaptor scaffoldin which bound selectively to the type I cohesins of ScaC and ScaJ. CONCLUSIONS The findings reveal an intricate picture of predicted cellulosome assemblies in C. clariflavum. The network of cohesin-dockerin pairs provides a thermophilic alternative to those of C. thermocellum and a basis for subsequent utilization of the C. clariflavum cellulosomal system for biotechnological application.
Collapse
Affiliation(s)
- Lior Artzi
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Melina Shamshoum
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Edward A Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MWW, Kelly RM. Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 2014; 38:393-448. [DOI: 10.1111/1574-6976.12044] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 11/28/2022] Open
|
43
|
Cameron K, Alves VD, Bule P, Ferreira LMA, Fontes CMGA, Najmudin S. Purification, crystallization and preliminary X-ray characterization of the third ScaB cohesin in complex with an ScaA X-dockerin from Acetivibrio cellulolyticus. Acta Crystallogr F Struct Biol Commun 2014; 70:656-8. [PMID: 24817731 PMCID: PMC4014340 DOI: 10.1107/s2053230x1400750x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/03/2014] [Indexed: 11/10/2022] Open
Abstract
Interactions between cohesin and dockerin modules are critical for the formation of the cellulosome, which is responsible for the efficient degradation of plant cell-wall carbohydrates by anaerobes. Type I dockerin modules found in modular enzymatic components interact with type I cohesins in primary scaffoldins, enabling the assembly of the multi-enzyme complex. In contrast, type II dockerins located in primary scaffoldins bind to type II cohesins in adaptor scaffoldins or anchoring scaffoldins located at the bacterial envelope, contributing to the cell-surface attachment of the entire complex. Acetivibrio cellulolyticus possesses an extremely complex cellulosome arrangement which is organized by a primary enzyme-binding scaffoldin (ScaA), two anchoring scaffoldins (ScaC and ScaD) and an unusual adaptor scaffoldin (ScaB). An ScaA X-dockerin mutated to inactivate one of the two putative cohesin-binding interfaces complexed with the third ScaB cohesin from A. cellulolyticus has been purified and crystallized and data were collected to a resolution of 2.41 Å.
Collapse
Affiliation(s)
- Kate Cameron
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Victor D. Alves
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Pedro Bule
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luís M. A. Ferreira
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Carlos M. G. A. Fontes
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Shabir Najmudin
- CIISA – Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
44
|
Yaniv O, Fichman G, Borovok I, Shoham Y, Bayer EA, Lamed R, Shimon LJW, Frolow F. Fine-structural variance of family 3 carbohydrate-binding modules as extracellular biomass-sensing components of Clostridium thermocellum anti-σI factors. ACTA ACUST UNITED AC 2014; 70:522-34. [PMID: 24531486 DOI: 10.1107/s139900471302926x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/23/2013] [Indexed: 11/11/2022]
Abstract
The anaerobic, thermophilic, cellulosome-producing bacterium Clostridium thermocellum relies on a variety of carbohydrate-active enzymes in order to efficiently break down complex carbohydrates into utilizable simple sugars. The regulation mechanism of the cellulosomal genes was unknown until recently, when genomic analysis revealed a set of putative operons in C. thermocellum that encode σI factors (i.e. alternative σ factors that control specialized regulon activation) and their cognate anti-σI factor (RsgI). These putative anti-σI-factor proteins have modules that are believed to be carbohydrate sensors. Three of these modules were crystallized and their three-dimensional structures were solved. The structures show a high overall degree of sequence and structural similarity to the cellulosomal family 3 carbohydrate-binding modules (CBM3s). The structures of the three carbohydrate sensors (RsgI-CBM3s) and a reference CBM3 are compared in the context of the structural determinants for the specificity of cellulose and complex carbohydrate binding. Fine structural variations among the RsgI-CBM3s appear to result in alternative substrate preferences for each of the sensors.
Collapse
Affiliation(s)
- Oren Yaniv
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Galit Fichman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Edward A Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
45
|
Vazana Y, Barak Y, Unger T, Peleg Y, Shamshoum M, Ben-Yehezkel T, Mazor Y, Shapiro E, Lamed R, Bayer EA. A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:182. [PMID: 24341331 PMCID: PMC3878649 DOI: 10.1186/1754-6834-6-182] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/27/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition, which provide flexibility to the complex and determine its overall architecture. RESULTS Using a synthetic biology approach, we systematically investigated the spatial organization of the scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero (no linkers), 5 (short linkers) and native linkers of 27-35 amino acids (long linkers). Of the 72 possible scaffoldins, 56 were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant 42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C. thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed for the three enzymes used in this study, indicating that they could be integrated at any position in the designer cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker scaffoldins. CONCLUSIONS The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a general basis for improved designer cellulosome systems as a platform for bioethanol production.
Collapse
Affiliation(s)
- Yael Vazana
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Barak
- Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tamar Unger
- Structural Proteomics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Peleg
- Structural Proteomics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Melina Shamshoum
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tuval Ben-Yehezkel
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yair Mazor
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ehud Shapiro
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Edward A Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
46
|
Borne R, Bayer EA, Pagès S, Perret S, Fierobe HP. Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity. FEBS J 2013; 280:5764-79. [PMID: 24033928 DOI: 10.1111/febs.12497] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/08/2013] [Accepted: 08/21/2013] [Indexed: 01/24/2023]
Abstract
Bacterial cellulosomes are generally believed to assemble at random, like those produced by Clostridium cellulolyticum. They are composed of one scaffolding protein bearing eight homologous type I cohesins that bind to any of the type I dockerins borne by the 62 cellulosomal subunits, thus generating highly heterogeneous complexes. In the present study, the heterogeneity and random assembly of the cellulosomes were evaluated with a simpler model: a miniscaffoldin containing three C. cellulolyticum cohesins and three cellulases of the same bacterium bearing the cognate dockerin (Cel5A, Cel48F, and Cel9G). Surprisingly, rather than the expected randomized integration of enzymes, the assembly of the minicellulosome generated only three distinct types of complex out of the 10 possible combinations, thus indicating preferential integration of enzymes upon binding to the scaffoldin. A hybrid scaffoldin that displays one cohesin from C. cellulolyticum and one from C. thermocellum, thus allowing sequential integration of enzymes, was exploited to further characterize this phenomenon. The initial binding of a given enzyme to the C. thermocellum cohesin was found to influence the type of enzyme that subsequently bound to the C. cellulolyticum cohesin. The preferential integration appears to be related to the length of the inter-cohesin linker. The data indicate that the binding of a cellulosomal enzyme to a cohesin has a direct influence on the dockerin-bearing proteins that will subsequently interact with adjacent cohesins. Thus, despite the general lack of specificity of the cohesin-dockerin interaction within a given species and type, bacterial cellulosomes are not necessarily assembled at random.
Collapse
Affiliation(s)
- Romain Borne
- Aix-Marseille Université-CNRS, LCB UMR7283, IMM, Marseille, France
| | | | | | | | | |
Collapse
|
47
|
Smith SP, Bayer EA. Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr Opin Struct Biol 2013; 23:686-94. [PMID: 24080387 DOI: 10.1016/j.sbi.2013.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 11/23/2022]
Abstract
Cellulosomes are multi-enzyme complexes produced by anaerobic bacteria for the efficient deconstruction of plant cell wall polysaccharides. The assembly of enzymatic subunits onto a central non-catalytic scaffoldin subunit is mediated by a highly specific interaction between the enzyme-bearing dockerin modules and the resident cohesin modules of the scaffoldin, which affords their catalytic activities to work synergistically. The scaffoldin also imparts substrate-binding and bacterial-anchoring properties, the latter of which involves a second cohesin-dockerin interaction. Recent structure-function studies reveal an ever-growing array of unique and increasingly complex cohesin-dockerin complexes and cellulosomal enzymes with novel activities. A 'build' approach involving multimodular cellulosomal segments has provided a structural model of an organized yet conformationally dynamic supramolecular assembly with the potential to form higher order structures.
Collapse
Affiliation(s)
- Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | | |
Collapse
|
48
|
Slutzki M, Jobby MK, Chitayat S, Karpol A, Dassa B, Barak Y, Lamed R, Smith SP, Bayer EA. Intramolecular clasp of the cellulosomal Ruminococcus flavefaciens ScaA dockerin module confers structural stability. FEBS Open Bio 2013; 3:398-405. [PMID: 24251102 PMCID: PMC3821032 DOI: 10.1016/j.fob.2013.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 09/20/2013] [Accepted: 09/20/2013] [Indexed: 12/02/2022] Open
Abstract
The cellulosome is a large extracellular multi-enzyme complex that facilitates the efficient hydrolysis and degradation of crystalline cellulosic substrates. During the course of our studies on the cellulosome of the rumen bacterium Ruminococcus flavefaciens, we focused on the critical ScaA dockerin (ScaADoc), the unique dockerin that incorporates the primary enzyme-integrating ScaA scaffoldin into the cohesin-bearing ScaB adaptor scaffoldin. In the absence of a high-resolution structure of the ScaADoc module, we generated a computational model, and, upon its analysis, we were surprised to discover a putative stacking interaction between an N-terminal Trp and a C-terminal Pro, which we termed intramolecular clasp. In order to verify the existence of such an interaction, these residues were mutated to alanine. Circular dichroism spectroscopy, intrinsic tryptophan and ANS fluorescence, and NMR spectroscopy indicated that mutation of these residues has a destabilizing effect on the functional integrity of the Ca2+-bound form of ScaADoc. Analysis of recently determined dockerin structures from other species revealed the presence of other well-defined intramolecular clasps, which consist of different types of interactions between selected residues at the dockerin termini. We propose that this thematic interaction may represent a major distinctive structural feature of the dockerin module. A structural model for the Ruminococcus flavefaciens ScaA dockerin is proposed. A stacking interaction between N- and C-terminal residues was derived from the model. Mutations of putative interacting residues resulted in reduced stability and binding. Similar intramodular “clasp” interactions were observed in other dockerin structures.
Collapse
Key Words
- ANS, 8-anilino-1-naphthalenesulfonate
- CBM, carbohydrate-binding module family 3a from C. thermocellum
- Cc, Clostridium cellulolyticum
- Coh, cohesin
- Cohesin
- Ct, Clostridium thermocellum
- Doc, dockerin
- HBS, hepes-buffered saline
- IPTG, isopropyl-1-thio-β-d-galactoside
- Protein stability
- Scaffoldin
- Stacking interaction
- TMB, 3,3′,5,5′-tetramethylbenzidine
- Xyn, xylanase T6 from Geobacillus stearothemophilus
- cELISA, competitive enzyme-linked interaction assay
Collapse
Affiliation(s)
- Michal Slutzki
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|