1
|
Cheng YS, Sun YD, Xing JY, Zhan L, Li XJ, Huang J, Zhao MH, Guo ZF. Transcriptomic and functional analyzes reveal that the brassinosteroid insensitive 1 receptor (OsBRI1) regulates cold tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108472. [PMID: 38442627 DOI: 10.1016/j.plaphy.2024.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Brassinosteroids (BR) play crucial roles in plant development and abiotic stresses in plants. Exogenous application of BR can significantly enhance cold tolerance in rice. However, the regulatory relationship between cold tolerance and the BR signaling pathway in rice remains largely unknown. Here, we characterized functions of the BR receptor OsBRI1 in response to cold tolerance in rice using its loss-of-function mutant (d61-1). Our results showed that mutant d61-1 was less tolerant to cold stress than wild-type (WT). Besides, d61-1 had lower levels than WT for some physiological parameters, including catalase activity (CAT), superoxide dismutase activity (SOD), peroxidase activity (POD), peroxidase activity (PRO), soluble protein, and soluble sugar content, while malondialdehyde content (MDA) and relative electrical conductivity (REC) levels in d61-1 were higher than those in WT plants. These results indicated that the loss of OsBRI1 function resulted in decreased cold tolerance in rice. In addition, we performed RNA sequencing (RNA-seq) of WT and d61-1 mutant under cold stress. Numerous common and unique differentially expressed genes (DEGs) with up- and down-regulation were observed in WT and d61-1 mutant. Some DEGs were expressed to various degrees, even opposite, between CK1 vs. T1 (WT) and CK2 vs. T2 (d61-1). Among these specific DEGs, some typical genes are involved in plant tolerance to cold stress. Through weighted correlation network analysis (WGCNA), 50 hub genes were screened in the turquoise and blue module. Many genes were involved in cold stress and plant hormone, such as Os01g0279800 (BRI1-associated receptor kinase 1 precursor), Os10g0513200 (Dwarf and tiller-enhancing 1, DTE1), Os02g0706400 (MYB-related transcription factor, OsRL3), etc. Differential expression levels of some genes were verified in WT and d61-1 under cold stress using qRT-PCR. These valuable findings and gene resources will be critical for understanding the regulatory relationships between cold stress tolerance and the BR signaling pathways in rice.
Collapse
Affiliation(s)
- Yi-Shan Cheng
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Ye-Dong Sun
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jia-Ying Xing
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Lu Zhan
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Xiu-Jie Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN, 47907, United States
| | - Ming-Hui Zhao
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, 110161, China.
| | - Zhi-Fu Guo
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
2
|
Xiao F, Zhao Y, Wang X, Jian X. Full-length transcriptome characterization and comparative analysis of Gleditsia sinensis. BMC Genomics 2023; 24:757. [PMID: 38066414 PMCID: PMC10709882 DOI: 10.1186/s12864-023-09843-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
As an economically important tree, Gleditsia sinensis Lam. is widely planted. A lack of background genetic information on G. sinensis hinders molecular breeding. Based on PacBio single-molecule real-time (SMRT) sequencing and analysis of G. sinensis, a total of 95,183 non-redundant transcript sequences were obtained, of which 93,668 contained complete open reading frames (ORFs), 2,858 were long non-coding RNAs (LncRNAs) and 18,855 alternative splicing (AS) events were identified. Genes orthologous to different Gleditsia species pairs were identified, stress-related genes had been positively selected during the evolution. AGA, AGG, and CCA were identified as the universal optimal codon in the genus of Gleditsia. EIF5A was selected as a suitable fluorescent quantitative reference gene. 315 Cytochrome P450 monooxygenases (CYP450s) and 147 uridine diphosphate (UDP)-glycosyltransferases (UGTs) were recognized through the PacBio SMRT transcriptome. Randomized selection of GsIAA14 for cloning verified the reliability of the PacBio SMRT transcriptome assembly sequence. In conclusion, the research data lay the foundation for further analysis of the evolutionary mechanism and molecular breeding of Gleditsia.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xueyan Jian
- School of Continuing Education, Yanbian University, Yanji, 133002, Jilin, China
| |
Collapse
|
3
|
Chen X, Chen H, Xu H, Li M, Luo Q, Wang T, Yang Z, Gan S. Effects of drought and rehydration on root gene expression in seedlings of Pinus massoniana Lamb. TREE PHYSIOLOGY 2023; 43:1619-1640. [PMID: 37166353 DOI: 10.1093/treephys/tpad063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
The mechanisms underlying plant response to drought involve the expression of numerous functional and regulatory genes. Transcriptome sequencing based on the second- and/or third-generation high-throughput sequencing platforms has proven to be powerful for investigating the transcriptional landscape under drought stress. However, the full-length transcriptomes related to drought responses in the important conifer genus Pinus L. remained to be delineated using the third-generation sequencing technology. With the objectives of identifying the candidate genes responsible for drought and/or rehydration and clarifying the expression profile of key genes involved in drought regulation, we combined the third- and second-generation sequencing techniques to perform transcriptome analysis on seedling roots under drought stress and rewatering in the drought-tolerant conifer Pinus massoniana Lamb. A sum of 294,114 unique full-length transcripts were produced with a mean length of 3217 bp and N50 estimate of 5075 bp, including 279,560 and 124,438 unique full-length transcripts being functionally annotated and Gene Ontology enriched, respectively. A total of 4076, 6295 and 18,093 differentially expressed genes (DEGs) were identified in three pair-wise comparisons of drought-treatment versus control transcriptomes, including 2703, 3576 and 8273 upregulated and 1373, 2719 and 9820 downregulated DEGs, respectively. Moreover, 157, 196 and 691 DEGs were identified as transcription factors in the three transcriptome comparisons and grouped into 26, 34 and 44 transcription factor families, respectively. Gene Ontology enrichment analysis revealed that a remarkable number of DEGs were enriched in soluble sugar-related and cell wall-related processes. A subset of 75, 68 and 97 DEGs were annotated to be associated with starch, sucrose and raffinose metabolism, respectively, while 32 and 70 DEGs were associated with suberin and lignin biosynthesis, respectively. Weighted gene co-expression network analysis revealed modules and hub genes closely related to drought and rehydration. This study provides novel insights into root transcriptomic changes in response to drought dynamics in Masson pine and serves as a fundamental work for further molecular investigation on drought tolerance in conifers.
Collapse
Affiliation(s)
- Xinhua Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Hu Chen
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Huilan Xu
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Mei Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
| | - Qunfeng Luo
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Ting Wang
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Zhangqi Yang
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
| |
Collapse
|
4
|
Teshome DT, Zharare GE, Ployet R, Naidoo S. Transcriptional reprogramming during recovery from drought stress in Eucalyptus grandis. TREE PHYSIOLOGY 2023; 43:979-994. [PMID: 36851855 DOI: 10.1093/treephys/tpad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/23/2023] [Indexed: 06/11/2023]
Abstract
The importance of drought as a constraint to agriculture and forestry is increasing with climate change. Genetic improvement of plants' resilience is one of the mitigation strategies to curb this threat. Although recovery from drought stress is important to long-term drought adaptation and has been considered as an indicator of dehydration tolerance in annual crops, this has not been well explored in forest trees. Thus, we aimed to investigate the physiological and transcriptional changes during drought stress and rewatering in Eucalyptus grandis W. Hill ex Maiden. We set up a greenhouse experiment where we imposed drought stress on 2-year-old seedlings and rewatered the recovery group after 17 days of drought. Our measurement of leaf stomatal conductance (gs) showed that, while gs was reduced by drought stress, it fully recovered after 5 days of rewatering. The RNA-seq analysis from stem samples revealed that genes related to known stress responses such as phytohormone and reactive oxygen species signaling were upregulated, while genes involved in metabolism and growth were downregulated due to drought stress. We observed reprogramming of signal transduction pathways and metabolic processes at 1 day of rewatering, indicating a quick response to rewatering. Our results suggest that recovery from drought stress may entail alterations in the jasmonic acid, salicylic acid, ethylene and brassinosteroid signaling pathways. Using co-expression network analysis, we identified hub genes, including the putative orthologs of ABI1, ABF2, ABF3, HAI2, BAM1, GolS2 and SIP1 during drought and CAT2, G6PD1, ADG1 and FD-1 during recovery. Taken together, by highlighting the molecular processes and identifying key genes, this study gives an overview of the mechanisms underlying the response of E. grandis to drought stress and recovery that trees may face repeatedly throughout their long life cycle. This provides a useful reference to the identification and further investigation of signaling pathways and target genes for future tree improvement.
Collapse
Affiliation(s)
- Demissew Tesfaye Teshome
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa
| | - Godfrey Elijah Zharare
- Department of Agriculture, University of Zululand, 1 Main Road Vulindlela, KwaDlangezwa, 3886, South Africa
| | - Raphael Ployet
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa
| |
Collapse
|
5
|
Yang H, Liao H, Xu F, Zhang W, Xu B, Chen X, Zhu B, Pan W, Yang X. Integrated transcriptomic and gibberellin analyses reveal genes related to branch development in Eucalyptus urophylla. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:69-79. [PMID: 35661587 DOI: 10.1016/j.plaphy.2022.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Tree branches affect the planting density and basal scab, which act as important attributes in the yield and quality of trees. Eucalyptus urophylla is an important pioneer tree with characteristics of strong adaptability, fast growth, short rotation period, and low disease and pest pressures. In this study, we collected ZQUC14 and LDUD26 clones and compared their transcriptomes and metabolomes from mature xylem, phloem, and developing tissues to identify factors that may influence branch development. In total, 32,809 differentially expressed genes (DEGs) and 18 gibberellin (GA) hormones were detected in the five sampled tissues. Searches of the kyoto Encyclopedia of Genes and Genomes pathways identified mainly genes related to diterpenoid biosynthesis, plant MAPK signaling pathways, plant hormone signal transduction, glycerolipid metabolism, peroxisome, phenylpropanoid biosynthesis, ABC transporters, and brassinosteroid biosynthesis. Furthermore, gene expression trend analysis and weighted gene co-expression network analysis revealed 13 genes likely involved in diterpenoid biosynthesis, including five members of the 2OG-Fe(II) oxygenase superfamily, four cytochrome P450 genes, and four novel genes. In GA signal transduction pathways, 24 DEGs were found to positively regulate branch formation. These results provide a comprehensive analysis of branch development based on the transcriptome and metabolome, and help clarify the molecular mechanisms of E. urophylla.
Collapse
Affiliation(s)
- Huixiao Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Huanqin Liao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Fang Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Weihua Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Xinyu Chen
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Baozhu Zhu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Wen Pan
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China.
| | - Xiaohui Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
6
|
Zheng J, Zhang Z, Liang Y, Gong Z, Zhang N, Ditta A, Sang Z, Wang J, Li X. Whole Transcriptome Sequencing Reveals Drought Resistance-Related Genes in Upland Cotton. Genes (Basel) 2022; 13:genes13071159. [PMID: 35885942 PMCID: PMC9318479 DOI: 10.3390/genes13071159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
China, particularly the cotton-growing province of Xinjiang, is experiencing acute agricultural water shortages, stifling the expansion of the cotton sector. Discovering drought resistance genes in cotton and generating high-quality, drought-resistant cotton varieties through molecular breeding procedures are therefore critical to the cotton industry’s success. The drought-resistant cotton variety Xinluzhong No. 82 and the drought-sensitive cotton variety Kexin No. 1 were utilised in this study to uncover a batch of drought-resistant candidate genes using whole transcriptome sequencing. The following are the key research findings: A competing endogenous RNA network (ceRNA) was built using complete transcriptional sequencing to screen the core genes in the core pathway, and two drought-related candidate genes were discovered. It was found that γ-aminobutyric acid aminotransferase (GhGABA-T, Gohir.A11G156000) was upregulated at 0 h vs. 12 h and downregulated at 12 h vs. 24 h. L-Aspartate oxidase (GhAO, Gohir.A07G220600) was downregulated at 0 h vs. 12 h and upregulated at 12 h vs. 24 h. GABA-T is analogous to a pyridoxal phosphate-dependent transferase superfamily protein (POP2) in Arabidopsis thaliana and influences plant drought resistance by controlling γ-aminobutyric acid (GABA) concentration. The analogue of GhAO in A. thaliana is involved in the early steps of nicotinamide adenine dinucleotide (NAD) production as well as in plant antioxidant responses. This study revealed that gene expression regulatory networks can be used for rapid screening of reliable drought resistance genes and then utilised to validate gene function.
Collapse
Affiliation(s)
- Juyun Zheng
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Y.L.); (Z.G.); (J.W.)
| | - Zeliang Zhang
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Y.L.); (Z.G.); (J.W.)
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (N.Z.); (Z.S.)
| | - Yajun Liang
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Y.L.); (Z.G.); (J.W.)
| | - Zhaolong Gong
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Y.L.); (Z.G.); (J.W.)
| | - Nala Zhang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (N.Z.); (Z.S.)
| | - Allah Ditta
- Cotton Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan;
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Zhiwei Sang
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China; (N.Z.); (Z.S.)
| | - Junduo Wang
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Y.L.); (Z.G.); (J.W.)
| | - Xueyuan Li
- Cash Crops Research Institute of Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Y.L.); (Z.G.); (J.W.)
- Correspondence:
| |
Collapse
|
7
|
Thumma BR, Joyce KR, Jacobs A. Genomic studies with preselected markers reveal dominance effects influencing growth traits in Eucalyptus nitens. G3 GENES|GENOMES|GENETICS 2022; 12:6423988. [PMID: 34791210 PMCID: PMC8728041 DOI: 10.1093/g3journal/jkab363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
Genomic selection (GS) is being increasingly adopted by the tree breeding community. Most of the GS studies in trees are focused on estimating additive genetic effects. Exploiting the dominance effects offers additional opportunities to improve genetic gain. To detect dominance effects, trait-relevant markers may be important compared to nonselected markers. Here, we used preselected markers to study the dominance effects in a Eucalyptus nitens (E. nitens) breeding population consisting of open-pollinated (OP) and controlled-pollinated (CP) families. We used 8221 trees from six progeny trials in this study. Of these, 868 progeny and 255 parents were genotyped with the E. nitens marker panel. Three traits; diameter at breast height (DBH), wood basic density (DEN), and kraft pulp yield (KPY) were analyzed. Two types of genomic relationship matrices based on identity-by-state (IBS) and identity-by-descent (IBD) were tested. Performance of the genomic best linear unbiased prediction (GBLUP) models with IBS and IBD matrices were compared with pedigree-based additive best linear unbiased prediction (ABLUP) models with and without the pedigree reconstruction. Similarly, the performance of the single-step GBLUP (ssGBLUP) with IBS and IBD matrices were compared with ABLUP models using all 8221 trees. Significant dominance effects were observed with the GBLUP-AD model for DBH. The predictive ability of DBH is higher with the GBLUP-AD model compared to other models. Similarly, the prediction accuracy of genotypic values is higher with GBLUP-AD compared to the GBLUP-A model. Among the two GBLUP models (IBS and IBD), no differences were observed in predictive abilities and prediction accuracies. While the estimates of predictive ability with additive effects were similar among all four models, prediction accuracies of ABLUP were lower than the GBLUP models. The prediction accuracy of ssGBLUP-IBD is higher than the other three models while the theoretical accuracy of ssGBLUP-IBS is consistently higher than the other three models across all three groups tested (parents, genotyped, and nongenotyped). Significant inbreeding depression was observed for DBH and KPY. While there is a linear relationship between inbreeding and DBH, the relationship between inbreeding and KPY is nonlinear and quadratic. These results indicate that the inbreeding depression of DBH is mainly due to directional dominance while in KPY it may be due to epistasis. Inbreeding depression may be the main source of the observed dominance effects in DBH. The significant dominance effect observed for DBH may be used to select complementary parents to improve the genetic merit of the progeny in E. nitens.
Collapse
Affiliation(s)
- Bala R Thumma
- Gondwana Genomics Pty Ltd , Canberra, ACT 2600, Australia
| | | | | |
Collapse
|
8
|
Sobreiro MB, Collevatti RG, Dos Santos YLA, Bandeira LF, Lopes FJF, Novaes E. RNA-Seq reveals different responses to drought in Neotropical trees from savannas and seasonally dry forests. BMC PLANT BIOLOGY 2021; 21:463. [PMID: 34641780 PMCID: PMC8507309 DOI: 10.1186/s12870-021-03244-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/24/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Water is one of the main limiting factors for plant growth and crop productivity. Plants constantly monitor water availability and can rapidly adjust their metabolism by altering gene expression. This leads to phenotypic plasticity, which aids rapid adaptation to climate changes. Here, we address phenotypic plasticity under drought stress by analyzing differentially expressed genes (DEG) in four phylogenetically related neotropical Bignoniaceae tree species: two from savanna, Handroanthus ochraceus and Tabebuia aurea, and two from seasonally dry tropical forests (SDTF), Handroanthus impetiginosus and Handroanthus serratifolius. To the best of our knowledge, this is the first report of an RNA-Seq study comparing tree species from seasonally dry tropical forest and savanna ecosystems. RESULTS Using a completely randomized block design with 4 species × 2 treatments (drought and wet) × 3 blocks (24 plants) and an RNA-seq approach, we detected a higher number of DEGs between treatments for the SDTF species H. serratifolius (3153 up-regulated and 2821 down-regulated under drought) and H. impetiginosus (332 and 207), than for the savanna species. H. ochraceus showed the lowest number of DEGs, with only five up and nine down-regulated genes, while T. aurea exhibited 242 up- and 96 down-regulated genes. The number of shared DEGs among species was not related to habitat of origin or phylogenetic relationship, since both T. aurea and H impetiginosus shared a similar number of DEGs with H. serratifolius. All four species shared a low number of enriched gene ontology (GO) terms and, in general, exhibited different mechanisms of response to water deficit. We also found 175 down-regulated and 255 up-regulated transcription factors from several families, indicating the importance of these master regulators in drought response. CONCLUSION Our findings show that phylogenetically related species may respond differently at gene expression level to drought stress. Savanna species seem to be less responsive to drought at the transcriptional level, likely due to morphological and anatomical adaptations to seasonal drought. The species with the largest geographic range and widest edaphic-climatic niche, H. serratifolius, was the most responsive, exhibiting the highest number of DEG and up- and down-regulated transcription factors (TF).
Collapse
Affiliation(s)
- Mariane B Sobreiro
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Rosane G Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Yuri L A Dos Santos
- Laboratório de Genética e Genômica de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Ludmila F Bandeira
- Laboratório de Genética e Genômica de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Francis J F Lopes
- Laboratório de Fisiologia Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Evandro Novaes
- Laboratório de Genética Molecular, Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200-900, Brazil.
| |
Collapse
|
9
|
Rodrigues AM, Miguel C, Chaves I, António C. Mass spectrometry-based forest tree metabolomics. MASS SPECTROMETRY REVIEWS 2021; 40:126-157. [PMID: 31498921 DOI: 10.1002/mas.21603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.
Collapse
Affiliation(s)
- Ana Margarida Rodrigues
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| | - Célia Miguel
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Inês Chaves
- Forest Genomics & Molecular Genetics Lab, BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157, Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, GreenIT-Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavie, Universidade Nova de Lisboa (ITQB NOVA) Avenida da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
10
|
Xiao Y, Li J, Zhang Y, Zhang X, Liu H, Qin Z, Chen B. Transcriptome analysis identifies genes involved in the somatic embryogenesis of Eucalyptus. BMC Genomics 2020; 21:803. [PMID: 33208105 PMCID: PMC7672952 DOI: 10.1186/s12864-020-07214-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/08/2020] [Indexed: 01/11/2023] Open
Abstract
Background Eucalyptus, a highly diverse genus of the Myrtaceae family, is the most widely planted hardwood in the world due to its increasing importance for fiber and energy. Somatic embryogenesis (SE) is one large-scale method to provide commercial use of the vegetative propagation of Eucalyptus and dedifferentiation is a key step for plant cells to become meristematic. However, little is known about the molecular changes during the Eucalyptus SE. Results We compared the transcriptome profiles of the differentiated and dedifferentiated tissues of two Eucalyptus species – E. camaldulensis (high embryogenetic potential) and E. grandis x urophylla (low embryogenetic potential). Initially, we identified 18,777 to 20,240 genes in all samples. Compared to the differentiated tissues, we identified 9229 and 8989 differentially expressed genes (DEGs) in the dedifferentiated tissues of E. camaldulensis and E. grandis x urophylla, respectively, and 2687 up-regulated and 2581 down-regulated genes shared. Next, we identified 2003 up-regulated and 1958 down-regulated genes only in E. camaldulensis, including 6 somatic embryogenesis receptor kinase, 17 ethylene, 12 auxin, 83 ribosomal protein, 28 zinc finger protein, 10 heat shock protein, 9 histone, 122 cell wall related and 98 transcription factor genes. Genes from other families like ABA, arabinogalactan protein and late embryogenesis abundant protein were also found to be specifically dysregulated in the dedifferentiation process of E. camaldulensis. Further, we identified 48,447 variants (SNPs and small indels) specific to E. camaldulensis, including 13,434 exonic variants from 4723 genes (e.g., annexin, GN, ARF and AP2-like ethylene-responsive transcription factor). qRT-PCR was used to confirm the gene expression patterns in both E. camaldulensis and E. grandis x urophylla. Conclusions This is the first time to study the somatic embryogenesis of Eucalyptus using transcriptome sequencing. It will improve our understanding of the molecular mechanisms of somatic embryogenesis and dedifferentiation in Eucalyptus. Our results provide a valuable resource for future studies in the field of Eucalyptus and will benefit the Eucalyptus breeding program. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07214-5.
Collapse
Affiliation(s)
- Yufei Xiao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Junji Li
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Ye Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Xiaoning Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Hailong Liu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Zihai Qin
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Bowen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China.
| |
Collapse
|
11
|
Genomic Studies Reveal Substantial Dominant Effects and Improved Genomic Predictions in an Open-Pollinated Breeding Population of Eucalyptus pellita. G3-GENES GENOMES GENETICS 2020; 10:3751-3763. [PMID: 32788286 PMCID: PMC7534421 DOI: 10.1534/g3.120.401601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most of the genomic studies in plants and animals have used additive models for studying genetic parameters and prediction accuracies. In this study, we used genomic models with additive and nonadditive effects to analyze the genetic architecture of growth and wood traits in an open-pollinated (OP) population of Eucalyptus pellita. We used two progeny trials consisting of 5742 trees from 244 OP families to estimate genetic parameters and to test genomic prediction accuracies of three growth traits (diameter at breast height - DBH, total height - Ht and tree volume - Vol) and kraft pulp yield (KPY). From 5742 trees, 468 trees from 28 families were genotyped with 2023 pre-selected markers from candidate genes. We used the pedigree-based additive best linear unbiased prediction (ABLUP) model and two marker-based models (single-step genomic BLUP – ssGBLUP and genomic BLUP – GBLUP) to estimate the genetic parameters and compare the prediction accuracies. Analyses with the two genomic models revealed large dominant effects influencing the growth traits but not KPY. Theoretical breeding value accuracies were higher with the dominance effect in ssGBLUP model for the three growth traits. Accuracies of cross-validation with random folding in the genotyped trees have ranged from 0.60 to 0.82 in different models. Accuracies of ABLUP were lower than the genomic models. Accuracies ranging from 0.50 to 0.76 were observed for within family cross-validation predictions with low relationships between training and validation populations indicating part of the functional variation is captured by the markers through short-range linkage disequilibrium (LD). Within-family phenotype predictive abilities and prediction accuracies of genetic values with dominance effects are higher than the additive models for growth traits indicating the importance of dominance effects in predicting phenotypes and genetic values. This study demonstrates the importance of genomic approaches in OP families to study nonadditive effects. To capture the LD between markers and the quantitative trait loci (QTL) it may be important to use informative markers from candidate genes.
Collapse
|
12
|
Proteomic analyses unraveling water stress response in two Eucalyptus species originating from contrasting environments for aridity. Mol Biol Rep 2020; 47:5191-5205. [PMID: 32564226 DOI: 10.1007/s11033-020-05594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
Eucalyptus are widely cultivated in several regions of the world due to their adaptability to different climatic conditions and amenable to tree breeding programs. With changes in environmental conditions pointing to an increase in aridity in many areas of the globe, the demand for genetic materials that adapt to this situation is required. Therefore, the aim of this work was to identify contrasting differences between two Eucalyptus species under water stress through the identification of differentially abundant proteins. For this, total protein extraction was proceeded from leaves of both species maintained at 40 and 80% of field capacity (FC). The 80% FC water regime was considered as the control and the 40% FC, severe water stress. The proteins were separated by 2-DE with subsequent identification of those differentially abundant by liquid nanocromatography coupled to high resolution MS (Q-Exactive). Comparative proteomics allowed to identify four proteins (ATP synthase gamma and alpha, glutamine synthetase and a vacuolar protein) that were more abundant in drought-tolerant species and simultaneously less abundant or unchanged in the drought- sensitive species, an uncharacterized protein found exclusively in plants under drought stress and also 10 proteins (plastid-lipid, ruBisCO activase, ruBisCO, protease ClpA, transketolase, isoflavone reductase, ferredoxin-NADP reductase, malate dehydrogenase, aminobutyrate transaminase and sedoheptulose-1-bisphosphatase) induced exclusively in the drought-tolerant species in response to water stress. These results suggest that such proteins may play a crucial role as potential markers of water stress tolerance through the identification of species-specific proteins, and future targets for genetic engineering.
Collapse
|
13
|
Pradhan SK, Pandit E, Nayak DK, Behera L, Mohapatra T. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. BMC PLANT BIOLOGY 2019; 19:352. [PMID: 31412781 PMCID: PMC6694648 DOI: 10.1186/s12870-019-1922-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/03/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rice plants show yellowing, stunting, withering, reduced tillering and utimately low productivity in susceptible varieties under low temperature stress. Comparative transcriptome analysis was performed to identify novel transcripts, gain new insights into different gene expression and pathways involved in cold tolerance in rice. RESULTS Comparative transcriptome analyses of 5 treatments based on chilling stress exposure revealed more down regulated genes in susceptible and higher up regulated genes in tolerant genotypes. A total of 13930 and 10599 differentially expressed genes (DEGs) were detected in cold susceptible variety (CSV) and cold tolerant variety (CTV), respectively. A continuous increase in DEGs at 6, 12, 24 and 48 h exposure of cold stress was detected in both the genotypes. Gene ontology (GO) analysis revealed 18 CSV and 28 CTV term significantly involved in molecular function, cellular component and biological process. GO classification showed a significant role of transcription regulation, oxygen, lipid binding, catalytic and hydrolase activity for tolerance response. Absence of photosynthesis related genes, storage products like starch and synthesis of other classes of molecules like fatty acids and terpenes during the stress were noticed in susceptible genotype. However, biological regulations, generation of precursor metabolites, signal transduction, photosynthesis, regulation of cellular process, energy and carbohydrate metabolism were seen in tolerant genotype during the stress. KEGG pathway annotation revealed more number of genes regulating different pathways resulting in more tolerant. During early response phase, 24 and 11 DEGs were enriched in CTV and CSV, respectively in energy metabolism pathways. Among the 1583 DEG transcription factors (TF) genes, 69 WRKY, 46 bZIP, 41 NAC, 40 ERF, 31/14 MYB/MYB-related, 22 bHLH, 17 Nin-like 7 HSF and 4C3H were involved during early response phase. Late response phase showed 30 bHLH, 65 NAC, 30 ERF, 26/20 MYB/MYB-related, 11 C3H, 12 HSF, 86 Nin-like, 41 AP2/ERF, 55 bZIP and 98 WRKY members TF genes. The recovery phase included 18 bHLH, 50 NAC, 31 ERF, 24/13 MYB/MYB-related, 4 C3H, 4 HSF, 14 Nin-like, 31 bZIP and 114 WRKY TF genes. CONCLUSIONS Transcriptome analysis of contrasting genotypes for cold tolerance detected the genes, pathways and transcription factors involved in the stress tolerance.
Collapse
Affiliation(s)
- Sharat Kumar Pradhan
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha India
| | - Elssa Pandit
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha India
| | - Deepak Kumar Nayak
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha India
| | - Lambodar Behera
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha India
| | | |
Collapse
|
14
|
Pradhan SK, Pandit E, Nayak DK, Behera L, Mohapatra T. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. BMC PLANT BIOLOGY 2019; 19:352. [PMID: 31412781 DOI: 10.1186/s12870-12019-11922-12878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/03/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Rice plants show yellowing, stunting, withering, reduced tillering and utimately low productivity in susceptible varieties under low temperature stress. Comparative transcriptome analysis was performed to identify novel transcripts, gain new insights into different gene expression and pathways involved in cold tolerance in rice. RESULTS Comparative transcriptome analyses of 5 treatments based on chilling stress exposure revealed more down regulated genes in susceptible and higher up regulated genes in tolerant genotypes. A total of 13930 and 10599 differentially expressed genes (DEGs) were detected in cold susceptible variety (CSV) and cold tolerant variety (CTV), respectively. A continuous increase in DEGs at 6, 12, 24 and 48 h exposure of cold stress was detected in both the genotypes. Gene ontology (GO) analysis revealed 18 CSV and 28 CTV term significantly involved in molecular function, cellular component and biological process. GO classification showed a significant role of transcription regulation, oxygen, lipid binding, catalytic and hydrolase activity for tolerance response. Absence of photosynthesis related genes, storage products like starch and synthesis of other classes of molecules like fatty acids and terpenes during the stress were noticed in susceptible genotype. However, biological regulations, generation of precursor metabolites, signal transduction, photosynthesis, regulation of cellular process, energy and carbohydrate metabolism were seen in tolerant genotype during the stress. KEGG pathway annotation revealed more number of genes regulating different pathways resulting in more tolerant. During early response phase, 24 and 11 DEGs were enriched in CTV and CSV, respectively in energy metabolism pathways. Among the 1583 DEG transcription factors (TF) genes, 69 WRKY, 46 bZIP, 41 NAC, 40 ERF, 31/14 MYB/MYB-related, 22 bHLH, 17 Nin-like 7 HSF and 4C3H were involved during early response phase. Late response phase showed 30 bHLH, 65 NAC, 30 ERF, 26/20 MYB/MYB-related, 11 C3H, 12 HSF, 86 Nin-like, 41 AP2/ERF, 55 bZIP and 98 WRKY members TF genes. The recovery phase included 18 bHLH, 50 NAC, 31 ERF, 24/13 MYB/MYB-related, 4 C3H, 4 HSF, 14 Nin-like, 31 bZIP and 114 WRKY TF genes. CONCLUSIONS Transcriptome analysis of contrasting genotypes for cold tolerance detected the genes, pathways and transcription factors involved in the stress tolerance.
Collapse
Affiliation(s)
- Sharat Kumar Pradhan
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha, India.
| | - Elssa Pandit
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha, India.
| | - Deepak Kumar Nayak
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha, India
| | - Lambodar Behera
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha, India
| | | |
Collapse
|
15
|
Cruz-Valderrama JE, Gómez-Maqueo X, Salazar-Iribe A, Zúñiga-Sánchez E, Hernández-Barrera A, Quezada-Rodríguez E, Gamboa-deBuen A. Overview of the Role of Cell Wall DUF642 Proteins in Plant Development. Int J Mol Sci 2019; 20:E3333. [PMID: 31284602 PMCID: PMC6651502 DOI: 10.3390/ijms20133333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
The DUF642 protein family is found exclusively in spermatophytes and is represented by 10 genes in Arabidopsis and in most of the 24 plant species analyzed to date. Even though the primary structure of DUF642 proteins is highly conserved in different spermatophyte species, studies of their expression patterns in Arabidopsis have shown that the spatial-temporal expression pattern for each gene is specific and consistent with the phenotypes of the mutant plants studied so far. Additionally, the regulation of DUF642 gene expression by hormones and environmental stimuli was specific for each gene, showing both up- and down-regulation depending of the analyzed tissue and the intensity or duration of the stimuli. These expression patterns suggest that the DUF642 genes are involved throughout the development and growth of plants. In general, changes in the expression patterns of DUF642 genes can be related to changes in pectin methyl esterase activity and/or to changes in the degree of methyl-esterified homogalacturonans during plant development in different cell types. Thus, the regulation of pectin methyl esterases mediated by DUF642 genes could contribute to the regulation of the cell wall properties during plant growth.
Collapse
Affiliation(s)
| | - Ximena Gómez-Maqueo
- Instituto de Ecología, Universidad Nacional Autónoma de México. Mexico City 04510, Mexico
| | - Alexis Salazar-Iribe
- Instituto de Ecología, Universidad Nacional Autónoma de México. Mexico City 04510, Mexico
| | - Esther Zúñiga-Sánchez
- Instituto de Ecología, Universidad Nacional Autónoma de México. Mexico City 04510, Mexico
| | | | - Elsa Quezada-Rodríguez
- Instituto de Ecología, Universidad Nacional Autónoma de México. Mexico City 04510, Mexico
| | | |
Collapse
|
16
|
Favreau B, Denis M, Ployet R, Mounet F, Peireira da Silva H, Franceschini L, Laclau JP, Labate C, Carrer H. Distinct leaf transcriptomic response of water deficient Eucalyptus grandis submitted to potassium and sodium fertilization. PLoS One 2019; 14:e0218528. [PMID: 31220144 PMCID: PMC6586347 DOI: 10.1371/journal.pone.0218528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/04/2019] [Indexed: 01/06/2023] Open
Abstract
While potassium fertilization increases growth yield in Brazilian eucalyptus plantations, it could also increase water requirements, making trees more vulnerable to drought. Sodium fertilization, which has been shown to promote eucalyptus growth compared to K-deficient trees, could partially mitigate this adverse effect of potassium. However, little is known about the influence of K and Na fertilization on the tree metabolic response to water deficit. The aim of the present study was thus to analyze the transcriptome of leaves sampled from Eucalyptus grandis trees subjected to 37% rainfall reduction, and fertilized with potassium (K), sodium (Na), compared to control trees (C). The multifactorial experiment was set up in a field with a throughfall exclusion system. Transcriptomic analysis was performed on leaves from two-year-old trees, and data analyzed using multifactorial statistical analysis and weighted gene co-expression network analysis (WGCNA). Significant sets of genes were seen to respond to rainfall reduction, in interaction with K or Na fertilization, or to fertilization only (regardless of the water supply regime). The genes were involved in stress signaling, primary and secondary metabolism, secondary cell wall formation and photosynthetic activity. Our focus on key genes related to cation transporters and aquaporins highlighted specific regulation of ion homeostasis, and plant adjustment to water deficit. While water availability significantly affects the transcriptomic response of eucalyptus species, this study points out that the transcriptomic response is highly dependent on the fertilization regime. Our study is based on the first large-scale field trial in a tropical region, specifically designed to study the interaction between water availability and nutrition in eucalyptus. To our knowledge, this is the first global transcriptomic analysis to compare the influence of K and Na fertilization on tree adaptive traits in water deficit conditions.
Collapse
Affiliation(s)
- Bénédicte Favreau
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marie Denis
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Raphael Ployet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Hana Peireira da Silva
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Livia Franceschini
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Labate
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Nascimento LC, Salazar MM, Lepikson-Neto J, Camargo ELO, Parreiras LS, Pereira GAG, Carazzolle MF. EUCANEXT: an integrated database for the exploration of genomic and transcriptomic data from Eucalyptus species. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2017:4564812. [PMID: 29220468 PMCID: PMC5737058 DOI: 10.1093/database/bax079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/29/2017] [Indexed: 12/05/2022]
Abstract
Tree species of the genus Eucalyptus are the most valuable and widely planted hardwoods in the world. Given the economic importance of Eucalyptus trees, much effort has been made towards the generation of specimens with superior forestry properties that can deliver high-quality feedstocks, customized to the industrýs needs for both cellulosic (paper) and lignocellulosic biomass production. In line with these efforts, large sets of molecular data have been generated by several scientific groups, providing invaluable information that can be applied in the development of improved specimens. In order to fully explore the potential of available datasets, the development of a public database that provides integrated access to genomic and transcriptomic data from Eucalyptus is needed. EUCANEXT is a database that analyses and integrates publicly available Eucalyptus molecular data, such as the E. grandis genome assembly and predicted genes, ESTs from several species and digital gene expression from 26 RNA-Seq libraries. The database has been implemented in a Fedora Linux machine running MySQL and Apache, while Perl CGI was used for the web interfaces. EUCANEXT provides a user-friendly web interface for easy access and analysis of publicly available molecular data from Eucalyptus species. This integrated database allows for complex searches by gene name, keyword or sequence similarity and is publicly accessible at http://www.lge.ibi.unicamp.br/eucalyptusdb. Through EUCANEXT, users can perform complex analysis to identify genes related traits of interest using RNA-Seq libraries and tools for differential expression analysis. Moreover, all the bioinformatics pipeline here described, including the database schema and PERL scripts, are readily available and can be applied to any genomic and transcriptomic project, regardless of the organism. Database URL:http://www.lge.ibi.unicamp.br/eucalyptusdb
Collapse
Affiliation(s)
- Leandro Costa Nascimento
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Laboratório Central de Tecnologias de Alto Desempenho (LaCTAD), Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Marcela Mendes Salazar
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Jorge Lepikson-Neto
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Eduardo Leal Oliveira Camargo
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Lucas Salera Parreiras
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Gonçalo Amarante Guimarães Pereira
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil.,Centro Nacional de Processamento de Alto Desempenho em São Paulo (CENAPAD), Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
18
|
Ghosh Dasgupta M, Dharanishanthi V. Identification of PEG-induced water stress responsive transcripts using co-expression network in Eucalyptus grandis. Gene 2017; 627:393-407. [DOI: 10.1016/j.gene.2017.06.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/12/2017] [Accepted: 06/28/2017] [Indexed: 12/23/2022]
|
19
|
Muthusamy M, Uma S, Backiyarani S, Saraswathi MS, Chandrasekar A. Transcriptomic Changes of Drought-Tolerant and Sensitive Banana Cultivars Exposed to Drought Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1609. [PMID: 27867388 PMCID: PMC5095140 DOI: 10.3389/fpls.2016.01609] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/12/2016] [Indexed: 05/23/2023]
Abstract
In banana, drought responsive gene expression profiles of drought-tolerant and sensitive genotypes remain largely unexplored. In this research, the transcriptome of drought-tolerant banana cultivar (Saba, ABB genome) and sensitive cultivar (Grand Naine, AAA genome) was monitored using mRNA-Seq under control and drought stress condition. A total of 162.36 million reads from tolerant and 126.58 million reads from sensitive libraries were produced and mapped onto the Musa acuminata genome sequence and assembled into 23,096 and 23,079 unigenes. Differential gene expression between two conditions (control and drought) showed that at least 2268 and 2963 statistically significant, functionally known, non-redundant differentially expressed genes (DEGs) from tolerant and sensitive libraries. Drought has up-regulated 991 and 1378 DEGs and down-regulated 1104 and 1585 DEGs respectively in tolerant and sensitive libraries. Among DEGs, 15.9% are coding for transcription factors (TFs) comprising 46 families and 9.5% of DEGs are constituted by protein kinases from 82 families. Most enriched DEGs are mainly involved in protein modifications, lipid metabolism, alkaloid biosynthesis, carbohydrate degradation, glycan metabolism, and biosynthesis of amino acid, cofactor, nucleotide-sugar, hormone, terpenoids and other secondary metabolites. Several, specific genotype-dependent gene expression pattern was observed for drought stress in both cultivars. A subset of 9 DEGs was confirmed using quantitative reverse transcription-PCR. These results will provide necessary information for developing drought-resilient banana plants.
Collapse
Affiliation(s)
| | - Subbaraya Uma
- *Correspondence: Subbaraya Uma, Muthusamy Muthusamy,
| | | | | | | |
Collapse
|
20
|
Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Funct Integr Genomics 2016; 17:1-25. [PMID: 27709374 DOI: 10.1007/s10142-016-0523-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023]
Abstract
De novo assembly of reads produced by next-generation sequencing (NGS) technologies offers a rapid approach to obtain expressed gene sequences for non-model organisms. Senna (Cassia angustifolia Vahl.) is a drought-tolerant annual undershrub of Caesalpiniaceae, a subfamily of Fabaceae. There are insufficient transcriptomic and genomic data in public databases for understanding the molecular mechanism underlying the drought tolerance of senna. Therefore, the main purpose of this study was to know the transcriptome profile of senna, with special reference to drought stress. RNA from two different stages of leaf development was extracted and sequenced separately using the Illumina technology. A total of 200 million reads were generated, and a de novo assembly of processed reads in the pooled transcriptome using Trinity yielded 43,413 transcripts which were further annotated using NCBI BLAST with "green plant database (txid 33090)," Swiss Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG), and Gene Ontology (GO). Out of the total transcripts, 42,280 (95.0 %) were annotated by BLASTX against the green plant database of NCBI. Senna transcriptome showed the highest similarity to Glycine max (41 %), followed by Phaseolus vulgaris (16 %), Cicer arietinum (15 %), and Medicago trancatula (5 %). The highest number of GO terms were enriched for the molecular functions category; of these "catalytic activity" (GO: 0003824) (25.10 %) and "binding activity" (GO: 0005488) (20.10 %) were most abundantly represented. We used InterProscan to see protein similarity at domain level; a total of 33,256 transcripts were annotated against the Pfam domains. The transcripts were assigned with various KEGG pathways. Coding DNA sequences (CDS) encoding various drought stress-regulated pathways such as signaling factors, protein-modifying/degrading enzymes, biosynthesis of phytohormone, phytohormone signaling, osmotically active compounds, free radical scavengers, chlorophyll metabolism, leaf cuticular wax, polyamines, and protective proteins were identified through BLASTX search. The lucine-rich repeat kinase family was the most abundantly found group of protein kinases. Orphan, bHLH, and bZIP family TFs were the most abundantly found in senna. Six genes encoding MYC2 transcription factor, 9-cis-epoxycarotenoid dioxygenase (NCED), l -ascorbate peroxidase (APX), aminocyclopropane carboxylate oxidase (ACO), abscisic acid 8'-hydroxylase (ABA), and WRKY transcription factor were confirmed through reverse transcriptase-PCR (RT-PCR) and Sanger sequencing for the first time in senna. The potential drought stress-related transcripts identified in this study provide a good start for further investigation into the drought adaptation in senna. Additionally, our transcriptome sequences are the valuable resource for accelerated genomics-assisted genetic improvement programs and facilitate manipulation of biochemical pathways for developing drought-tolerant genotypes of crop plants.
Collapse
|
21
|
Zhang Y, Han X, Sang J, He X, Liu M, Qiao G, Zhuo R, He G, Hu J. Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases. PeerJ 2016; 4:e2097. [PMID: 27330860 PMCID: PMC4906661 DOI: 10.7717/peerj.2097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Background.Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] is one of the most important native tree species for timber production in southern China. An understanding of overall fast growing stage, stem growth stage and senescence stage cambium transcriptome variation is lacking. We used transcriptome sequencing to identify the repertoire of genes expressed during development of xylem tissue in Chinese fir, aiming to delineate the molecular mechanisms of wood formation. Results. We carried out transcriptome sequencing at three different cultivation ages (7Y, 15Y and 21Y) generating 68.71 million reads (13.88 Gbp). A total of 140,486 unigenes with a mean size of 568.64 base pairs (bp) were obtained via de novo assembly. Of these, 27,427 unigenes (19.52%) were further annotated by comparison to public protein databases. A total of 5,331 (3.79%) unigenes were mapped into 118 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Differentially expressed genes (DEG) analysis identified 3, 16 and 5,899 DEGs from the comparison of 7Y vs. 15Y, 7Y vs. 21Y and 15Y vs. 21Y, respectively, in the immature xylem tissues, including 2,638 significantly up-regulated and 3,280 significantly down-regulated genes. Besides, five NAC transcription factors, 190 MYB transcription factors, and 34 WRKY transcription factors were identified respectively from Chinese fir transcriptome. Conclusion. Our results revealed the active transcriptional pathways and identified the DEGs at different cultivation phases of Chinese fir wood formation. This transcriptome dataset will aid in understanding and carrying out future studies on the molecular basis of Chinese fir wood formation and contribute to future artificial production and applications.
Collapse
Affiliation(s)
- Yunxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- Institute of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jian Sang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xuelian He
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guiping He
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
22
|
Li S, Fan C, Li Y, Zhang J, Sun J, Chen Y, Tian C, Su X, Lu M, Liang C, Hu Z. Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. BMC Genomics 2016; 17:200. [PMID: 26951633 PMCID: PMC4782325 DOI: 10.1186/s12864-016-2562-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/29/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Drought and soil salinity are major abiotic stresses. The mechanisms of stress tolerance have been studied extensively in model plants. Caragana korshinskii is characterized by high drought and salt tolerance in northwestern China; unique patterns of gene expression allow it to tolerate the stress imposed by dehydration and semi-desert saline soil. There have, however, been no reports on the differences between C. korshinskii and model plants in the mechanisms underlying their drought and salt tolerance and regulation of gene expression. RESULTS Three sequencing libraries from drought and salt-treated whole-seedling- plants and the control were sequenced to investigate changes in the C. korshinskii transcriptome in response to drought and salt stresses. Of the 129,451 contigs, 70,662 (54.12 %) were annotated with gene descriptions, gene ontology (GO) terms, and metabolic pathways, with a cut-off E-value of 10(-5). These annotations included 56 GO terms, 148 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 25 Clusters of Orthologous Groups (COG). On comparison of the transcriptomes of the control, drought- and salt-treated plants, 1630 and 1521 contigs showed significant differences in transcript abundance under drought and salt stresses. Compared to the differentially expressed genes (DEGs) in drought- or salt-treated Arabidopsis in the database, 542 DEGs in drought-treated C. korshinskii and 529 DEGs in salt-treated samples were presumably unique to C. korshinskii. The transcription profiles revealed that genes related to transcription factors, protein kinases, and antioxidant enzymes are relevant to the tolerance of drought and salt stress in this species. The expression patterns of 38 randomly selected DEGs were confirmed by quantitative real-time PCR and were essentially consistent with the changes in transcript abundance identified by RNA-seq. CONCLUSIONS The present study identified potential genes involved in drought and salt tolerance in C. korshinskii, as well as many DEGs uniquely expressed in drought- or salt-treated C. korshinskii samples compared to Arabidopsis. To our knowledge, this study is the first exploration of the C. korshinskii transcriptome under drought and salt conditions, and these results will facilitate the discovery of specific stress-resistance-related genes in C. korshinskii, possibly leading to the development of novel plant cultivars through genetic engineering.
Collapse
Affiliation(s)
- Shaofeng Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 100023, P. R. China
| | - Chengming Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yan Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Jianhui Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Jingshuang Sun
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 100023, P. R. China
| | - Yuhong Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Changyan Tian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, P. R. China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, P. R. China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, P. R. China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
23
|
Sapeta H, Lourenço T, Lorenz S, Grumaz C, Kirstahler P, Barros PM, Costa JM, Sohn K, Oliveira MM. Transcriptomics and physiological analyses reveal co-ordinated alteration of metabolic pathways in Jatropha curcas drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:845-60. [PMID: 26602946 DOI: 10.1093/jxb/erv499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Jatropha curcas, a multipurpose plant attracting a great deal of attention due to its high oil content and quality for biofuel, is recognized as a drought-tolerant species. However, this drought tolerance is still poorly characterized. This study aims to contribute to uncover the molecular background of this tolerance, using a combined approach of transcriptional profiling and morphophysiological characterization during a period of water-withholding (49 d) followed by rewatering (7 d). Morphophysiological measurements showed that J. curcas plants present different adaptation strategies to withstand moderate and severe drought. Therefore, RNA sequencing was performed for samples collected under moderate and severe stress followed by rewatering, for both roots and leaves. Jatropha curcas transcriptomic analysis revealed shoot- and root-specific adaptations across all investigated conditions, except under severe stress, when the dramatic transcriptomic reorganization at the root and shoot level surpassed organ specificity. These changes in gene expression were clearly shown by the down-regulation of genes involved in growth and water uptake, and up-regulation of genes related to osmotic adjustments and cellular homeostasis. However, organ-specific gene variations were also detected, such as strong up-regulation of abscisic acid synthesis in roots under moderate stress and of chlorophyll metabolism in leaves under severe stress. Functional validation further corroborated the differential expression of genes coding for enzymes involved in chlorophyll metabolism, which correlates with the metabolite content of this pathway.
Collapse
Affiliation(s)
- Helena Sapeta
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal
| | - Tiago Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal
| | - Stefan Lorenz
- Fraunhofer IGB, Functional Genomics Lab, Nobelstr. 12, D-70569, Stuttgart, Germany
| | - Christian Grumaz
- Fraunhofer IGB, Functional Genomics Lab, Nobelstr. 12, D-70569, Stuttgart, Germany
| | - Philipp Kirstahler
- Fraunhofer IGB, Functional Genomics Lab, Nobelstr. 12, D-70569, Stuttgart, Germany
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal
| | - Joaquim Miguel Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Plant Molecular Ecophysiology Lab, Av. da República, 2780-157 Oeiras, Portugal
| | - Kai Sohn
- Fraunhofer IGB, Functional Genomics Lab, Nobelstr. 12, D-70569, Stuttgart, Germany
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal iBET, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
24
|
Budzinski IGF, Moon DH, Lindén P, Moritz T, Labate CA. Seasonal Variation of Carbon Metabolism in the Cambial Zone of Eucalyptus grandis. FRONTIERS IN PLANT SCIENCE 2016; 7:932. [PMID: 27446160 PMCID: PMC4923158 DOI: 10.3389/fpls.2016.00932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/11/2016] [Indexed: 05/09/2023]
Abstract
Eucalyptus species are the most widely hardwood planted in the world. It is one of the successful examples of commercial forestry plantation in Brazil and other tropical and subtropical countries. The tree is valued for its rapid growth, adaptability and wood quality. Wood formation is the result of cumulative annual activity of the vascular cambium. This cambial activity is generally related to the alternation of cold and warm, and/or dry and rainy seasons. Efforts have focused on analysis of cambial zone in response to seasonal variations in trees from temperate zones. However, little is known about the molecular changes triggered by seasonal variations in trees from tropical countries. In this work we attempted to establish a global view of seasonal alterations in the cambial zone of Eucalyptus grandis Hill ex Maiden, emphasizing changes occurring in the carbon metabolism. Using transcripts, proteomics and metabolomics we analyzed the tissues harvested in summer-wet and winter-dry seasons. Based on proteomics analysis, 70 proteins that changed in abundance were successfully identified. Transcripts for some of these proteins were analyzed and similar expression patterns were observed. We identified 19 metabolites differentially abundant. Our results suggest a differential reconfiguration of carbon partioning in E. grandis cambial zone. During summer, pyruvate is primarily metabolized via ethanolic fermentation, possibly to regenerate NAD(+) for glycolytic ATP production and cellular maintenance. However, in winter there seems to be a metabolic change and we found that some sugars were highly abundant. Our results revealed a dynamic change in E. grandis cambial zone due to seasonality and highlight the importance of glycolysis and ethanolic fermentation for energy generation and maintenance in Eucalyptus, a fast growing tree.
Collapse
Affiliation(s)
- Ilara G. F. Budzinski
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloPiracicaba, Brazil
| | - David H. Moon
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloPiracicaba, Brazil
| | - Pernilla Lindén
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural SciencesUmeå, Sweden
| | - Thomas Moritz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural SciencesUmeå, Sweden
| | - Carlos A. Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloPiracicaba, Brazil
- *Correspondence: Carlos A. Labate
| |
Collapse
|
25
|
Hornoy B, Pavy N, Gérardi S, Beaulieu J, Bousquet J. Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes. Genome Biol Evol 2015; 7:3269-85. [PMID: 26560341 PMCID: PMC4700950 DOI: 10.1093/gbe/evv218] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Understanding the genetic basis of adaptation to climate is of paramount importance for preserving and managing genetic diversity in plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding knowledge to nonmodel species with contrasting life histories, such as forest trees, appears necessary. To uncover the genetic basis of adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the transcriptome. Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of them were related to temperature. Small to moderate shifts in allele frequencies were observed. Genes involved encompassed a wide variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and functions with angiosperm homologs. Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for the conservation of genetic resources.
Collapse
Affiliation(s)
- Benjamin Hornoy
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec City, QC, Canada
| | - Nathalie Pavy
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec City, QC, Canada
| | - Sébastien Gérardi
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec City, QC, Canada
| | - Jean Beaulieu
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec City, QC, Canada Natural Resources Canada, Canadian Wood Fibre Centre, Québec City, QC, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec City, QC, Canada
| |
Collapse
|
26
|
|
27
|
Integrating omics analysis of salt stress-responsive genes in rice. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Alcântara BKD, Pizzaia D, Piotto FA, Borgo L, Brondani GE, Azevedo RA. Temporal dynamics of the response to Al stress in Eucalyptus grandis × Eucalyptus camaldulensis. ACTA ACUST UNITED AC 2015; 87:1063-70. [DOI: 10.1590/0001-3765201520140322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/06/2014] [Indexed: 11/21/2022]
Abstract
Lipid peroxidation and root elongation of Eucalyptus grandis × Eucalyptus camaldulensis were studied under stress conditions in response to aluminum (Al), a metal known to limit agricultural productivity in acidic soils primarily due to reduced root elongation. In Brazil, the Grancam 1277 hybrid (E. grandis × E. camaldulensis) has been planted in the "Cerrado", a region of the country with a wide occurrence of acidic soils. The present study demonstrated that the hybrid exhibited root growth reduction and increased levels of lipid peroxidation after 24h of treatment with 100 µM of Al, which was followed by a reduction in lipid peroxidation levels and the recovery of root elongation after 48h of Al exposure, suggesting a rapid response to the early stressful conditions induced by Al. The understanding of the temporal dynamics of Al tolerance may be useful for selecting more tolerant genotypes and for identifying genes of interest for applications in bioengineering.
Collapse
|
29
|
Dillon S, McEvoy R, Baldwin DS, Southerton S, Campbell C, Parsons Y, Rees GN. Genetic diversity ofEucalyptus camaldulensis Dehnh. following population decline in response to drought and altered hydrological regime. AUSTRAL ECOL 2015. [DOI: 10.1111/aec.12223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shannon Dillon
- CSIRO Agriculture Flagship; Acton Australian Capital Territory 2600 Australia
| | - Rachel McEvoy
- Department of Genetics; La Trobe University; Bundoora Victoria Australia
| | - Darren S. Baldwin
- Murray-Darling Freshwater Research Centre; Wodonga Victoria Australia
- CSIRO Land and Water Flagship; Wodonga Victoria Australia
| | - Simon Southerton
- CSIRO Agriculture Flagship; Acton Australian Capital Territory 2600 Australia
| | - Cherie Campbell
- Murray-Darling Freshwater Research Centre; Wodonga Victoria Australia
- CSIRO Land and Water Flagship; Wodonga Victoria Australia
| | - Yvonne Parsons
- Department of Genetics; La Trobe University; Bundoora Victoria Australia
| | - Gavin N. Rees
- Murray-Darling Freshwater Research Centre; Wodonga Victoria Australia
| |
Collapse
|
30
|
Dasgupta MG, Dharanishanthi V, Agarwal I, Krutovsky KV. Development of genetic markers in Eucalyptus species by target enrichment and exome sequencing. PLoS One 2015; 10:e0116528. [PMID: 25602379 PMCID: PMC4300219 DOI: 10.1371/journal.pone.0116528] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/08/2014] [Indexed: 02/02/2023] Open
Abstract
The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus.
Collapse
Affiliation(s)
- Modhumita Ghosh Dasgupta
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, R.S. Puram, Coimbatore–641002, India
- * E-mail:
| | - Veeramuthu Dharanishanthi
- Division of Plant Biotechnology, Institute of Forest Genetics and Tree Breeding, P.B. No. 1061, R.S. Puram, Coimbatore–641002, India
| | - Ishangi Agarwal
- Genotypic Technology Private Limited, #2/13, Balaji Complex, Poojari Layout, 80, Feet Road, R. M. V. 2nd Stage, Bangalore-560094, India
| | - Konstantin V. Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Büsgen Institute, Georg August University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
- Department of Ecosystem Science and Management, Texas A&M University, 2138 TAMU, College Station, TX 77843-2138, United States of America
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119333, Russia
- Genome Research and Education Center, Siberian Federal University, 50a/2 Akademgorodok, Krasnoyarsk 660036, Russia
| |
Collapse
|
31
|
Transcriptome and proteome analysis of Eucalyptus infected with Calonectria pseudoreteaudii. J Proteomics 2014; 115:117-31. [PMID: 25540935 DOI: 10.1016/j.jprot.2014.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 12/04/2014] [Accepted: 12/12/2014] [Indexed: 11/22/2022]
Abstract
UNLABELLED Cylindrocladium leaf blight is one of the most severe diseases in Eucalyptus plantations and nurseries. There are Eucalyptus cultivars with resistance to the disease. However, little is known about the defense mechanism of resistant cultivars. Here, we investigated the transcriptome and proteome of Eucalyptus leaves (E. urophylla×E. tereticornis M1), infected or not with Calonectria pseudoreteaudii. A total of 8585 differentially expressed genes (|log2 ratio| ≥1, FDR ≤0.001) at 12 and 24hours post-inoculation were detected using RNA-seq. Transcriptional changes for five genes were further confirmed by qRT-PCR. A total of 3680 proteins at the two time points were identified using iTRAQ technique.The combined transcriptome and proteome analysis revealed that the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway (jasmonic acid and sugar) were activated. The data also showed that some proteins (WRKY33 and PR proteins) which have been reported to involve in plant defense response were up-regulated. However, photosynthesis, nucleic acid metabolism and protein metabolism were impaired by the infection of C. pseudoreteaudii. This work will facilitate the identification of defense related genes and provide insights into Eucalyptus defense responses to Cylindrocladium leaf blight. BIOLOGICAL SIGNIFICANCE In this study, a total of 130 proteins and genes involved in the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway, cell transport, carbohydrate and energy metabolism, nucleic acid metabolism and protein metabolism in Eucalyptus leaves after infected with C. pseudoreteaudii were identified. This is the first report of a comprehensive transcriptomic and proteomic analysis of Eucalyptus in response to Calonectria sp.
Collapse
|
32
|
Dillon S, McEvoy R, Baldwin DS, Rees GN, Parsons Y, Southerton S. Characterisation of adaptive genetic diversity in environmentally contrasted populations of Eucalyptus camaldulensis Dehnh. (river red gum). PLoS One 2014; 9:e103515. [PMID: 25093589 PMCID: PMC4122390 DOI: 10.1371/journal.pone.0103515] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/30/2014] [Indexed: 12/02/2022] Open
Abstract
As an increasing number of ecosystems face departures from long standing environmental conditions under climate change, our understanding of the capacity of species to adapt will become important for directing conservation and management of biodiversity. Insights into the potential for genetic adaptation might be gained by assessing genomic signatures of adaptation to historic or prevailing environmental conditions. The river red gum (Eucalyptus camaldulensis Dehnh.) is a widespread Australian eucalypt inhabiting riverine and floodplain habitats which spans strong environmental gradients. We investigated the effects of adaptation to environment on population level genetic diversity of E. camaldulensis, examining SNP variation in candidate gene loci sampled across 20 climatically diverse populations approximating the species natural distribution. Genetic differentiation among populations was high (F(ST) = 17%), exceeding previous estimates based on neutral markers. Complementary statistical approaches identified 6 SNP loci in four genes (COMT, Dehydrin, ERECTA and PIP2) which, after accounting for demographic effects, exhibited higher than expected levels of genetic differentiation among populations and whose allelic variation was associated with local environment. While this study employs but a small proportion of available diversity in the eucalyptus genome, it draws our attention to the potential for application of wide spread eucalypt species to test adaptive hypotheses.
Collapse
Affiliation(s)
| | - Rachel McEvoy
- Department of Genetics, La Trobe University, Bundoora, VIC, Australia
| | - Darren S. Baldwin
- Murray Darling Freshwater Research Centre, Wodonga, VIC, Australia
- CSIRO Land and Water Flagship, Wodonga, VIC, Australia
| | - Gavin N. Rees
- Murray Darling Freshwater Research Centre, Wodonga, VIC, Australia
- CSIRO Land and Water Flagship, Wodonga, VIC, Australia
| | - Yvonne Parsons
- Department of Genetics, La Trobe University, Bundoora, VIC, Australia
| | | |
Collapse
|
33
|
Thavamanikumar S, Southerton S, Thumma B. RNA-Seq using two populations reveals genes and alleles controlling wood traits and growth in Eucalyptus nitens. PLoS One 2014; 9:e101104. [PMID: 24967893 PMCID: PMC4072731 DOI: 10.1371/journal.pone.0101104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/02/2014] [Indexed: 11/17/2022] Open
Abstract
Eucalyptus nitens is a perennial forest tree species grown mainly for kraft pulp production in many parts of the world. Kraft pulp yield (KPY) is a key determinant of plantation profitability and increasing the KPY of trees grown in plantations is a major breeding objective. To speed up the breeding process, molecular markers that can predict KPY are desirable. To achieve this goal, we carried out RNA-Seq studies on trees at extremes of KPY in two different trials to identify genes and alleles whose expression correlated with KPY. KPY is positively correlated with growth measured as diameter at breast height (DBH) in both trials. In total, six RNA bulks from two treatments were sequenced on an Illumina HiSeq platform. At 5% false discovery rate level, 3953 transcripts showed differential expression in the same direction in both trials; 2551 (65%) were down-regulated and 1402 (35%) were up-regulated in low KPY samples. The genes up-regulated in low KPY trees were largely involved in biotic and abiotic stress response reflecting the low growth among low KPY trees. Genes down-regulated in low KPY trees mainly belonged to gene categories involved in wood formation and growth. Differential allelic expression was observed in 2103 SNPs (in 1068 genes) and of these 640 SNPs (30%) occurred in 313 unique genes that were also differentially expressed. These SNPs may represent the cis-acting regulatory variants that influence total gene expression. In addition we also identified 196 genes which had Ka/Ks ratios greater than 1.5, suggesting that these genes are under positive selection. Candidate genes and alleles identified in this study will provide a valuable resource for future association studies aimed at identifying molecular markers for KPY and growth.
Collapse
Affiliation(s)
- Saravanan Thavamanikumar
- Department of Forest and Ecosystem Science, University of Melbourne, Creswick, Victoria, Australia
| | | | - Bala Thumma
- CSIRO Plant Industry, Acton, ACT, Australia
- * E-mail:
| |
Collapse
|
34
|
Goettel W, Xia E, Upchurch R, Wang ML, Chen P, An YQC. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content. BMC Genomics 2014; 15:299. [PMID: 24755115 PMCID: PMC4023607 DOI: 10.1186/1471-2164-15-299] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/07/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. RESULTS In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. CONCLUSIONS As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.
Collapse
Affiliation(s)
- Wolfgang Goettel
- USDA-ARS, Midwest Area, Plant Genetics Research Unit at Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO 63132, USA
| | - Eric Xia
- 508 East Stoughton Street, Champaign, IL 61820, USA
| | - Robert Upchurch
- USDA-ARS, Soybean and Nitrogen Fixation Research, 2417 Gardner Hall, Raleigh, NC 27695, USA
| | - Ming-Li Wang
- USDA-ARS, Plant Genetic Resources Conservation Unit, 1109 Experiment St., Griffin, GA 30223, USA
| | - Pengyin Chen
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yong-Qiang Charles An
- USDA-ARS, Midwest Area, Plant Genetics Research Unit at Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO 63132, USA
| |
Collapse
|
35
|
Xu J, Yuan Y, Xu Y, Zhang G, Guo X, Wu F, Wang Q, Rong T, Pan G, Cao M, Tang Q, Gao S, Liu Y, Wang J, Lan H, Lu Y. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC PLANT BIOLOGY 2014; 14:83. [PMID: 24684805 PMCID: PMC4021222 DOI: 10.1186/1471-2229-14-83] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/17/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Drought stress is one of the major limiting factors for maize production. With the availability of maize B73 reference genome and whole-genome resequencing of 15 maize inbreds, common variants (CV) and clustering analyses were applied to identify non-synonymous SNPs (nsSNPs) and corresponding candidate genes for drought tolerance. RESULTS A total of 524 nsSNPs that were associated with 271 candidate genes involved in plant hormone regulation, carbohydrate and sugar metabolism, signaling molecules regulation, redox reaction and acclimation of photosynthesis to environment were detected by CV and cluster analyses. Most of the nsSNPs identified were clustered in bin 1.07 region that harbored six previously reported QTL with relatively high phenotypic variation explained for drought tolerance. Genes Ontology (GO) analysis of candidate genes revealed that there were 35 GO terms related to biotic stimulus and membrane-bounded organelle, showing significant differences between the candidate genes and the reference B73 background. Changes of expression level in these candidate genes for drought tolerance were detected using RNA sequencing for fertilized ovary, basal leaf meristem tissue and roots collected under drought stressed and well-watered conditions. The results indicated that 70% of candidate genes showed significantly expression changes under two water treatments and our strategies for mining candidate genes are feasible and relatively efficient. CONCLUSIONS Our results successfully revealed candidate nsSNPs and associated genes for drought tolerance by comparative sequence analysis of 16 maize inbred lines. Both methods we applied were proved to be efficient for identifying candidate genes for complex traits through the next-generation sequencing technologies (NGS). These selected genes will not only facilitate understanding of genetic basis of drought stress response, but also accelerate genetic improvement through marker-assisted selection in maize.
Collapse
Affiliation(s)
- Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang 611130 Sichuan, China
| | - Yibing Yuan
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang 611130 Sichuan, China
| | - Yunbi Xu
- Institute of Crop Science, the National Key Facilities for Crop Genetic Resources and Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), El Batan 56130 Texcoco, Mexico
| | | | | | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang 611130 Sichuan, China
| | - Qi Wang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang 611130 Sichuan, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang 611130 Sichuan, China
| | - Guangtang Pan
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang 611130 Sichuan, China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang 611130 Sichuan, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang 611130 Sichuan, China
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang 611130 Sichuan, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang 611130 Sichuan, China
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang 611130 Sichuan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130 Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang 611130 Sichuan, China
| |
Collapse
|
36
|
Konczal M, Koteja P, Stuglik MT, Radwan J, Babik W. Accuracy of allele frequency estimation using pooled RNA-Seq. Mol Ecol Resour 2013; 14:381-92. [PMID: 24119300 DOI: 10.1111/1755-0998.12186] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/30/2013] [Accepted: 10/06/2013] [Indexed: 11/28/2022]
Abstract
For nonmodel organisms, genome-wide information that describes functionally relevant variation may be obtained by RNA-Seq following de novo transcriptome assembly. While sequencing has become relatively inexpensive, the preparation of a large number of sequencing libraries remains prohibitively expensive for population genetic analyses of nonmodel species. Pooling samples may be then an attractive alternative. To test whether pooled RNA-Seq accurately predicts true allele frequencies, we analysed the liver transcriptomes of 10 bank voles. Each sample was sequenced both as an individually barcoded library and as a part of a pool. Equal amounts of total RNA from each vole were pooled prior to mRNA selection and library construction. Reads were mapped onto the de novo assembled reference transcriptome. High-quality genotypes for individual voles, determined for 23,682 SNPs, provided information on 'true' allele frequencies; allele frequencies estimated from the pool were then compared with these values. 'True' frequencies and those estimated from the pool were highly correlated. Mean relative estimation error was 21% and did not depend on expression level. However, we also observed a minor effect of interindividual variation in gene expression and allele-specific gene expression influencing allele frequency estimation accuracy. Moreover, we observed strong negative relationship between minor allele frequency and relative estimation error. Our results indicate that pooled RNA-Seq exhibits accuracy comparable with pooled genome resequencing, but variation in expression level between individuals should be assessed and accounted for. This should help in taking account the difference in accuracy between conservatively expressed transcripts and these which are variable in expression level.
Collapse
Affiliation(s)
- M Konczal
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | | | | | | | | |
Collapse
|
37
|
Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics 2013; 14:662. [PMID: 24074255 PMCID: PMC3849779 DOI: 10.1186/1471-2164-14-662] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 09/25/2013] [Indexed: 12/15/2022] Open
Abstract
Background Chrysanthemum is one of the most important ornamental crops in the world and drought stress seriously limits its production and distribution. In order to generate a functional genomics resource and obtain a deeper understanding of the molecular mechanisms regarding chrysanthemum responses to dehydration stress, we performed large-scale transcriptome sequencing of chrysanthemum plants under dehydration stress using the Illumina sequencing technology. Results Two cDNA libraries constructed from mRNAs of control and dehydration-treated seedlings were sequenced by Illumina technology. A total of more than 100 million reads were generated and de novo assembled into 98,180 unique transcripts which were further extensively annotated by comparing their sequencing to different protein databases. Biochemical pathways were predicted from these transcript sequences. Furthermore, we performed gene expression profiling analysis upon dehydration treatment in chrysanthemum and identified 8,558 dehydration-responsive unique transcripts, including 307 transcription factors and 229 protein kinases and many well-known stress responsive genes. Gene ontology (GO) term enrichment and biochemical pathway analyses showed that dehydration stress caused changes in hormone response, secondary and amino acid metabolism, and light and photoperiod response. These findings suggest that drought tolerance of chrysanthemum plants may be related to the regulation of hormone biosynthesis and signaling, reduction of oxidative damage, stabilization of cell proteins and structures, and maintenance of energy and carbon supply. Conclusions Our transcriptome sequences can provide a valuable resource for chrysanthemum breeding and research and novel insights into chrysanthemum responses to dehydration stress and offer candidate genes or markers that can be used to guide future studies attempting to breed drought tolerant chrysanthemum cultivars.
Collapse
Affiliation(s)
- Yanjie Xu
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Neale DB, Langley CH, Salzberg SL, Wegrzyn JL. Open access to tree genomes: the path to a better forest. Genome Biol 2013; 14:120. [PMID: 23796049 PMCID: PMC3706761 DOI: 10.1186/gb-2013-14-6-120] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
An open-access culture and a well-developed comparative-genomics infrastructure must be developed in forest trees to derive the full potential of genome sequencing in this diverse group of plants that are the dominant species in much of the earth's terrestrial ecosystems.
Collapse
|
39
|
Valdés AE, Irar S, Majada JP, Rodríguez A, Fernández B, Pagès M. Drought tolerance acquisition in Eucalyptus globulus (Labill.): A research on plant morphology, physiology and proteomics. J Proteomics 2013; 79:263-76. [DOI: 10.1016/j.jprot.2012.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/22/2012] [Accepted: 12/29/2012] [Indexed: 10/27/2022]
|
40
|
Sun J, Wang M, Wang H, Zhang H, Zhang X, Thiyagarajan V, Qian PY, Qiu JW. De novo
assembly of the transcriptome of an invasive snail and its multiple ecological applications. Mol Ecol Resour 2012; 12:1133-44. [PMID: 22994926 DOI: 10.1111/1755-0998.12014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 11/28/2022]
Affiliation(s)
- J. Sun
- Department of Biology Hong Kong Baptist University Waterloo Road Hong Kong China
| | - M. Wang
- Department of Biology Hong Kong Baptist University Waterloo Road Hong Kong China
| | - H. Wang
- Division of Life Science Section of Marine Ecology and Biotechnology, Clear Water Bay Road The Hong Kong University of Science and Technology Hong Kong China
| | - H. Zhang
- Department of Biology Hong Kong Baptist University Waterloo Road Hong Kong China
| | - X. Zhang
- Laboratory of Disease Genomics and Individualized Medicine Beijing Institute of Genomics Chinese Academy of Sciences 7 Beitucheng West Road, Beijing 100029 China
| | - V. Thiyagarajan
- School of Biological Sciences and Swire Marine Institute The University of Hong Kong Pok Fu Lam Road Hong Kong China
| | - P. Y. Qian
- Division of Life Science Section of Marine Ecology and Biotechnology, Clear Water Bay Road The Hong Kong University of Science and Technology Hong Kong China
| | - J. W. Qiu
- Department of Biology Hong Kong Baptist University Waterloo Road Hong Kong China
| |
Collapse
|