1
|
Hernandez-Caballero I, Hellgren O, Garcia-Longoria Batanete L. Genomic advances in the study of the mosquito vector during avian malaria infection. Parasitology 2023; 150:1330-1339. [PMID: 37614176 PMCID: PMC10941221 DOI: 10.1017/s0031182023000756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Invertebrate host–parasite associations are one of the keystones in order to understand vector-borne diseases. The study of these specific interactions provides information not only about how the vector is affected by the parasite at the gene-expression level, but might also reveal mosquito strategies for blocking the transmission of the parasites. A very well-known vector for human malaria is Anopheles gambiae. This mosquito species has been the main focus for genomics studies determining essential key genes and pathways over the course of a malaria infection. However, to-date there is an important knowledge gap concerning other non-mammophilic mosquito species, for example some species from the Culex genera which may transmit avian malaria but also zoonotic pathogens such as West Nile virus. From an evolutionary perspective, these 2 mosquito genera diverged 170 million years ago, hence allowing studies in both species determining evolutionary conserved genes essential during malaria infections, which in turn might help to find key genes for blocking malaria cycle inside the mosquito. Here, we extensively review the current knowledge on key genes and pathways expressed in Anopheles over the course of malaria infections and highlight the importance of conducting genomic investigations for detecting pathways in Culex mosquitoes linked to infection of avian malaria. By pooling this information, we underline the need to increase genomic studies in mosquito–parasite associations, such as the one in Culex–Plasmodium, that can provide a better understanding of the infection dynamics in wildlife and reduce the negative impact on ecosystems.
Collapse
Affiliation(s)
- Irene Hernandez-Caballero
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, E-06071 Badajoz, Spain
| | - Olof Hellgren
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-22362, Sweden
| | | |
Collapse
|
2
|
Kuang J, Michel K, Scoglio C. GeCoNet-Tool: a software package for gene co-expression network construction and analysis. BMC Bioinformatics 2023; 24:281. [PMID: 37434115 DOI: 10.1186/s12859-023-05382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Network analysis is a powerful tool for studying gene regulation and identifying biological processes associated with gene function. However, constructing gene co-expression networks can be a challenging task, particularly when dealing with a large number of missing values. RESULTS We introduce GeCoNet-Tool, an integrated gene co-expression network construction and analysis tool. The tool comprises two main parts: network construction and network analysis. In the network construction part, GeCoNet-Tool offers users various options for processing gene co-expression data derived from diverse technologies. The output of the tool is an edge list with the option of weights associated with each link. In network analysis part, the user can produce a table that includes several network properties such as communities, cores, and centrality measures. With GeCoNet-Tool, users can explore and gain insights into the complex interactions between genes.
Collapse
Affiliation(s)
- Junyao Kuang
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA.
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
3
|
Kuang J, Buchon N, Michel K, Scoglio C. A global [Formula: see text] gene co-expression network constructed from hundreds of experimental conditions with missing values. BMC Bioinformatics 2022; 23:170. [PMID: 35534830 PMCID: PMC9082846 DOI: 10.1186/s12859-022-04697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Gene co-expression networks (GCNs) can be used to determine gene regulation and attribute gene function to biological processes. Different high throughput technologies, including one and two-channel microarrays and RNA-sequencing, allow evaluating thousands of gene expression data simultaneously, but these methodologies provide results that cannot be directly compared. Thus, it is complex to analyze co-expression relations between genes, especially when there are missing values arising for experimental reasons. Networks are a helpful tool for studying gene co-expression, where nodes represent genes and edges represent co-expression of pairs of genes. RESULTS In this paper, we establish a method for constructing a gene co-expression network for the Anopheles gambiae transcriptome from 257 unique studies obtained with different methodologies and experimental designs. We introduce the sliding threshold approach to select node pairs with high Pearson correlation coefficients. The resulting network, which we name AgGCN1.0, is robust to random removal of conditions and has similar characteristics to small-world and scale-free networks. Analysis of network sub-graphs revealed that the core is largely comprised of genes that encode components of the mitochondrial respiratory chain and the ribosome, while different communities are enriched for genes involved in distinct biological processes. CONCLUSION Analysis of the network reveals that both the architecture of the core sub-network and the network communities are based on gene function, supporting the power of the proposed method for GCN construction. Application of network science methodology reveals that the overall network structure is driven to maximize the integration of essential cellular functions, possibly allowing the flexibility to add novel functions.
Collapse
Affiliation(s)
- Junyao Kuang
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506 USA
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853 USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
4
|
Chikungunya virus non-structural protein nsP3 interacts with Aedes aegypti DEAD-box helicase RM62F. Virusdisease 2021; 32:657-665. [PMID: 34901322 DOI: 10.1007/s13337-021-00734-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022] Open
Abstract
The non-structural proteins (nsPs) of the chikungunya virus (CHIKV) form the virus's replication complex. They are known to participate in several functions that allow efficient replication of the virus in diverse host systems. One such function is evading the host defense system such as RNA interference (RNAi). Two nsPs of CHIKV, namely, nsP2 and nsP3, were found to suppress the host/vector RNAi machinery and exhibit RNAi suppressor activity. The present study was undertaken to identify interacting partners of CHIKV-nsP3 in Aedes aegypti. We performed pull-down assays with the mass spectrometry approach and showed the interaction of CHIKV-nsP3 with several Aedes proteins. Further co-immunoprecipitation assays revealed that CHIKV-nsP3 interacts with RM62F, a DEAD-box containing RNA known to play roles in multiple gene regulatory processes such as alternative splicing, RNA release, and also is a component of Ago2-RISC complex. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00734-y.
Collapse
|
5
|
Fu X, Liu P, Dimopoulos G, Zhu J. Dynamic miRNA-mRNA interactions coordinate gene expression in adult Anopheles gambiae. PLoS Genet 2020; 16:e1008765. [PMID: 32339167 PMCID: PMC7205314 DOI: 10.1371/journal.pgen.1008765] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/07/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
microRNAs (miRNAs) are increasingly recognized as important regulators of many biological processes in mosquitoes, vectors of numerous devastating infectious diseases. Identification of bona fide targets remains the bottleneck for functional studies of miRNAs. In this study, we used CLEAR-CLIP assays to systematically analyze miRNA-mRNA interactions in adult female Anopheles gambiae mosquitoes. Thousands of miRNA-target pairs were captured after direct ligation of the miRNA and its cognate target transcript in endogenous Argonaute–miRNA–mRNA complexes. Using two interactions detected in this manner, miR-309-SIX4 and let-7-kr-h1, we demonstrated the reliability of this experimental approach in identifying in vivo gene regulation by miRNAs. The miRNA-mRNA interaction dataset provided an invaluable opportunity to decipher targeting rules of mosquito miRNAs. Enriched motifs in the diverse targets of each miRNA indicated that the majority of mosquito miRNAs rely on seed-based canonical target recognition, while noncanonical miRNA binding sites are widespread and often contain motifs complementary to the central or 3’ ends of miRNAs. The time-lapse study of miRNA-target interactomes in adult female mosquitoes revealed dynamic miRNA regulation of gene expression in response to varying nutritional sources and physiological demands. Interestingly, some miRNAs exhibited flexibility to use distinct sequences at different stages for target recognition. Furthermore, many miRNA-mRNA interactions displayed stage-specific patterns, especially for those genes involved in metabolism, suggesting that miRNAs play critical roles in precise control of gene expression to cope with enormous physiological demands associated with egg production. The global mapping of miRNA-target interactions contributes to our understanding of miRNA targeting specificity in non-model organisms. It also provides a roadmap for additional studies focused on regulatory functions of miRNAs in Anopheles gambiae. Metazoan miRNAs typically bind to partially complementary sites in their target mRNAs. The interactions between miRNAs and target RNAs are generally stage-specific and context-dependent. Thus, identification of authentic miRNA targets remains a big challenge. Target identification is even more difficult in mosquitoes where miRNA-mRNA pairing rules are poorly characterized. Using an experimental approach, this study captures thousands of endogenous miRNA-target interactions in female mosquitoes at several critical stages during adult reproduction. Analyses of the target sequences reveal how individual miRNAs accomplish their target recognition in mosquitoes. Interestingly, many mosquito miRNAs exhibit flexibility to use distinct sequences at different stages to pair with their targets, greatly altering target selectivity and expanding target repertoire of miRNAs. Drastic changes in mRNA abundance have been previously reported when adult female mosquitoes attend to varying nutritional sources and physiological demands. The temporal patterns of miRNA-target interactions obtained in this study provide new insights into the roles of miRNAs in tightly controlled gene expression associated with blood-feeding and mosquito oogenesis.
Collapse
Affiliation(s)
- Xiaonan Fu
- The Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Pengcheng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
6
|
microRNA profiles and functions in mosquitoes. PLoS Negl Trop Dis 2018; 12:e0006463. [PMID: 29718912 PMCID: PMC5951587 DOI: 10.1371/journal.pntd.0006463] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/14/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022] Open
Abstract
Mosquitoes are incriminated as vectors for many crippling diseases, including malaria, West Nile fever, Dengue fever, and other neglected tropical diseases (NTDs). microRNAs (miRNAs) can interact with multiple target genes to elicit biological functions in the mosquitoes. However, characterization and function of individual miRNAs and their potential targets have not been fully determined to date. We conducted a systematic review of published literature following PRISMA guidelines. We summarize the information about miRNAs in mosquitoes to better understand their metabolism, development, and responses to microorganisms. Depending on the study, we found that miRNAs were dysregulated in a species-, sex-, stage-, and tissue/organ-specific manner. Aberrant miRNA expressions were observed in development, metabolism, host-pathogen interactions, and insecticide resistance. Of note, many miRNAs were down-regulated upon pathogen infection. The experimental studies have expanded the identification of miRNA target from the 3' untranslated regions (UTRs) of mRNAs of mosquitoes to the 5' UTRs of mRNAs of the virus. In addition, we discuss current trends in mosquito miRNA research and offer suggestions for future studies.
Collapse
|
7
|
Abstract
Koppel & Fainzilber review translatomics and proteomics methods for studying protein synthesis at subcellular resolution.
Collapse
Affiliation(s)
- Indrek Koppel
- Department of Biomolecular Sciences
- Weizmann Institute of Science
- 76100 Rehovot
- Israel
| | - Mike Fainzilber
- Department of Biomolecular Sciences
- Weizmann Institute of Science
- 76100 Rehovot
- Israel
| |
Collapse
|
8
|
Cao X, Gulati M, Jiang H. Serine protease-related proteins in the malaria mosquito, Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 88:48-62. [PMID: 28780069 PMCID: PMC5586530 DOI: 10.1016/j.ibmb.2017.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 05/27/2023]
Abstract
Insect serine proteases (SPs) and serine protease homologs (SPHs) participate in digestion, defense, development, and other physiological processes. In mosquitoes, some clip-domain SPs and SPHs (i.e. CLIPs) have been investigated for possible roles in antiparasitic responses. In a recent test aimed at improving quality of gene models in the Anopheles gambiae genome using RNA-seq data, we observed various discrepancies between gene models in AgamP4.5 and corresponding sequences selected from those modeled by Cufflinks, Trinity and Bridger. Here we report a comparative analysis of the 337 SP-related proteins in A. gambiae by examining their domain structures, sequence diversity, chromosomal locations, and expression patterns. One hundred and ten CLIPs contain 1 to 5 clip domains in addition to their protease domains (PDs) or non-catalytic, protease-like domains (PLDs). They are divided into five subgroups: CLIPAs (22) are clip1-5-PLD; CLIPBs (29), CLIPCs (12) and CLIPDs (14) are mainly clip-PD; most CLIPEs (33) have a domain structure of PD/PLD-PLD-clip-PLD0-1. While expression of the CLIP genes in group-1 is generally low and detected in various tissue- and stage-specific RNA-seq libraries, some putative GPs/GPHs (i.e. single domain gut SPs/SPHs) in group-2 are highly expressed in midgut, whole larva or whole adult libraries. In comparison, 46 SPs, 26 SPHs, and 37 multi-domain SPs/SPHs (i.e. PD/PLD-PLD≥1) in group-3 do not seem to be specifically expressed in digestive tract. There are 16 SPs and 2 SPH containing other types of putative regulatory domains (e.g. LDLa, CUB, Gd). Of the 337 SP and SPH genes, 159 were sorted into 46 groups (2-8 members/group) based on similar phylogenetic tree position, chromosomal location, and expression profile. This information and analysis, including improved gene models and protein sequences, constitute a solid foundation for functional analysis of the SP-related proteins in A. gambiae.
Collapse
Affiliation(s)
- Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mansi Gulati
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
9
|
Association of microRNAs with Argonaute proteins in the malaria mosquito Anopheles gambiae after blood ingestion. Sci Rep 2017; 7:6493. [PMID: 28747726 PMCID: PMC5529372 DOI: 10.1038/s41598-017-07013-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Abstract
Drastic changes in gene expression occur after adult female mosquitoes take a blood meal and use the nutrients for egg maturation. A growing body of evidence indicates that microRNAs (miRNAs) contribute to this tightly controlled tissue- and stage-specific gene expression. To investigate the role of miRNAs, we monitored miRNA expression in the mosquito Anopheles gambiae during the 72-h period immediately after blood feeding. We also measured the association of miRNAs with Argonaute 1 (Ago1) and Argonaute 2 (Ago2) to assess the functional status of individual miRNA species. Overall, 173 mature miRNAs were precipitated with Ago1 and Ago2, including 12 new miRNAs, the orthologs of which are found thus far only in other Anopheles species. Ago1 is the predominant carrier of miRNAs in Anopheles gambiae. The abundance and Ago loading of most of the mature miRNAs were relatively stable after blood ingestion. However, miRNAs of the miR-309/286/2944 cluster were considerably upregulated after blood feeding. Injection of the specific antagomir for miR-309 resulted in smaller developing oocytes and ultimately fewer eggs. In addition, the Ago association of some miRNAs was not proportional to their cellular abundance, suggesting that integration of miRNAs into the Ago complexes is regulated by additional mechanisms.
Collapse
|
10
|
Solute carriers affect Anopheles stephensi survival and Plasmodium berghei infection in the salivary glands. Sci Rep 2017; 7:6141. [PMID: 28733628 PMCID: PMC5522484 DOI: 10.1038/s41598-017-06317-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Malaria is caused by mosquito-borne Plasmodium spp. parasites that must infect and survive within mosquito salivary glands (SGs) prior to host transmission. Recent advances in transcriptomics and the complete genome sequencing of mosquito vectors have increased our knowledge of the SG genes and proteins involved in pathogen infection and transmission. Membrane solute carriers are key proteins involved in drug transport and are useful in the development of new interventions for transmission blocking. Herein, we applied transcriptomics analysis to compare SGs mRNA levels in Anopheles stephensi fed on non-infected and P. berghei-infected mice. The A. stephensi solute carriers prestinA and NDAE1 were up-regulated in response to infection. These molecules are predicted to interact with each other, and are reportedly involved in the maintenance of cell homeostasis. To further evaluate their functions in mosquito survival and parasite infection, these genes were knocked down by RNA interference. Knockdown of prestinA and NDAE1 resulted in reduction of the number of sporozoites in mosquito SGs. Moreover, NDAE1 knockdown strongly impacted mosquito survival, resulting in the death of half of the treated mosquitoes. Overall, our findings indicate the importance of prestinA and NDAE1 in interactions between mosquito SGs and Plasmodium, and suggest the need for further research.
Collapse
|
11
|
Lampe L, Levashina EA. The role of microRNAs inAnophelesbiology-an emerging research field. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Affiliation(s)
- L. Lampe
- Vector Biology Unit; Max Planck Institute for Infection Biology; Berlin Germany
| | - E. A. Levashina
- Vector Biology Unit; Max Planck Institute for Infection Biology; Berlin Germany
| |
Collapse
|
12
|
Su J, Li C, Zhang Y, Yan T, Zhu X, Zhao M, Xing D, Dong Y, Guo X, Zhao T. Identification of microRNAs expressed in the midgut of Aedes albopictus during dengue infection. Parasit Vectors 2017; 10:63. [PMID: 28159012 PMCID: PMC5292000 DOI: 10.1186/s13071-017-1966-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/02/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The midgut is the first barrier to dengue virus (DENV) infections of mosquitoes and therefore is a major bottleneck for the subsequent development of vector competence. However, the molecular mechanisms responsible for this barrier are unknown. RESULTS We constructed three small RNA libraries from the midguts of adult Aedes albopictus females that had been fed on either sugar solution, an uninfected blood meal, or a blood meal infected with DENV-2, and112 conserved microRNAs represented by 173 miRNA sequences were identified, with 34 novel microRNAs predicted by Mireap, RNAfold and Sfold software. In addition, the expression of aal-miR-1174, aal-miR-2951 and aal-miR-956 was confirmed via stem-loop quantitative real-time PCR (qRT-PCR). Compared with microRNA expression profiles of mosquitoes that had ingested a regular blood meal, 43 microRNAs were upregulated and 4were downregulated in mosquitoes that had ingested a DENV-2-infected blood meal. Among the differentially expressed microRNAs, miR-1767, miR-276-3p, miR-4448 and miR-4728-5p were verified via stem-loop qRT-PCR. CONCLUSIONS Analyses indicated that the changing patterns in miRNA expression during DENV-2 infection were significant and varied at different time points post infection. Most miRNA were upregulated at 24 h but were downregulated at 48 h post DENV-2 intake. The aal-miR-4728-5p was chosen for an in vitro transient transfection assay, and the results show that this miRNA enhances DENV replication in C6/36 cells. This study provides the first information on microRNAs expressed in the midgut of Ae. albopictus and describes species-specific changes in their expression levels following infection by DENV-2.
Collapse
Affiliation(s)
- Jianxin Su
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 People’s Republic of China
- Center for Disease Control and Prevention of Guangzhou Military Region, Guangzhou, 510507 People’s Republic of China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 People’s Republic of China
| | - Yingmei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 People’s Republic of China
| | - Ting Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 People’s Republic of China
| | - Xiaojuan Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 People’s Republic of China
| | - Minghui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 People’s Republic of China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 People’s Republic of China
| | - Yande Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 People’s Republic of China
| | - Xiaoxia Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 People’s Republic of China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 People’s Republic of China
| |
Collapse
|
13
|
Insect and plant-derived miRNAs in greenbug (Schizaphis graminum) and yellow sugarcane aphid (Sipha flava) revealed by deep sequencing. Gene 2017; 599:68-77. [DOI: 10.1016/j.gene.2016.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
|
14
|
Khan MB, Liew JWK, Leong CS, Lau YL. Role of NF-kβ factor Rel2 during Plasmodium falciparum and bacterial infection in Anopheles dirus. Parasit Vectors 2016; 9:525. [PMID: 27688040 PMCID: PMC5041562 DOI: 10.1186/s13071-016-1810-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Anopheles mosquitoes transmit malaria which is one of the world's most threatening diseases. Anopheles dirus (sensu stricto) is among the main vectors of malaria in South East Asia. The mosquito innate immune response is the first line of defence against malaria parasites during its development. The immune deficiency (IMD) pathway, a conserved immune signaling pathway, influences anti-Plasmodium falciparum activity in Anopheles gambiae, An. stephensi and An. albimanus. The aim of the study was to determine the role of Rel2, an IMD pathway-controlled NF-kappaβ transcription factor, in An. dirus. METHODS RACE (Rapid amplification of cDNA ends) was performed on the Rel2 gene. Double-stranded Rel2 was constructed and injected into the thorax of female mosquitoes. The injected mosquitoes were fed on a P. falciparum gametocyte culture and dissected on day 7-9 post-feeding in order to count the oocysts. A survival analysis was conducted by exposing the dsRNA injected mosquitoes to Gram-positive and Gram-negative bacteria. RESULTS This study demonstrated that the Rel2 gene in An. dirus has two isoforms, short length and full length. RNA interference-mediated gene silencing of Rel2 showed that the latter is involved in protection against P. falciparum, Gram-positive bacteria (Micrococcus luteus) with Lys-type peptidoglycan and Gram-negative bacteria (Escherichia coli) with DAP-type peptidoglycan. CONCLUSION This study suggested that there are similarities in the splicing events and functionality of the Rel2 gene, between the Anopheles species. Among all the important anophelines, the immunity of only a few has been thoroughly investigated. In order to develop novel vector-based control strategies and restrict malaria transmission, the immune pathways of these important vectors should be thoroughly investigated.
Collapse
Affiliation(s)
- Mohammad Behram Khan
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Cherng Shii Leong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Smith RC, King JG, Tao D, Zeleznik OA, Brando C, Thallinger GG, Dinglasan RR. Molecular Profiling of Phagocytic Immune Cells in Anopheles gambiae Reveals Integral Roles for Hemocytes in Mosquito Innate Immunity. Mol Cell Proteomics 2016; 15:3373-3387. [PMID: 27624304 DOI: 10.1074/mcp.m116.060723] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 11/06/2022] Open
Abstract
The innate immune response is highly conserved across all eukaryotes and has been studied in great detail in several model organisms. Hemocytes, the primary immune cell population in mosquitoes, are important components of the mosquito innate immune response, yet critical aspects of their biology have remained uncharacterized. Using a novel method of enrichment, we isolated phagocytic granulocytes and quantified their proteomes by mass spectrometry. The data demonstrate that phagocytosis, blood-feeding, and Plasmodium falciparum infection promote dramatic shifts in the proteomic profiles of An. gambiae granulocyte populations. Of interest, large numbers of immune proteins were induced in response to blood feeding alone, suggesting that granulocytes have an integral role in priming the mosquito immune system for pathogen challenge. In addition, we identify several granulocyte proteins with putative roles as membrane receptors, cell signaling, or immune components that when silenced, have either positive or negative effects on malaria parasite survival. Integrating existing hemocyte transcriptional profiles, we also compare differences in hemocyte transcript and protein expression to provide new insight into hemocyte gene regulation and discuss the potential that post-transcriptional regulation may be an important component of hemocyte gene expression. These data represent a significant advancement in mosquito hemocyte biology, providing the first comprehensive proteomic profiling of mosquito phagocytic granulocytes during homeostasis blood-feeding, and pathogen challenge. Together, these findings extend current knowledge to further illustrate the importance of hemocytes in shaping mosquito innate immunity and their principal role in defining malaria parasite survival in the mosquito host.
Collapse
Affiliation(s)
- Ryan C Smith
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205.,**Department of Entomology, Iowa State University, Ames, Iowa 50011
| | - Jonas G King
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205.,‡‡Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi 39762
| | - Dingyin Tao
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205.,§§Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Oana A Zeleznik
- §Bioinformatics, Institute for Knowledge Discovery, Graz University of Technology, 8010 Graz, Austria.,¶Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria.,‖BioTechMed OMICS Center Graz, 8010 Graz, Austria
| | - Clara Brando
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205
| | - Gerhard G Thallinger
- §Bioinformatics, Institute for Knowledge Discovery, Graz University of Technology, 8010 Graz, Austria.,¶Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria.,‖BioTechMed OMICS Center Graz, 8010 Graz, Austria
| | - Rhoel R Dinglasan
- From the ‡W. Harry Feinstone Department of Molecular Microbiology and Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland 21205; .,¶¶Emerging Pathogens Institute, Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
16
|
Pinheiro-Silva R, Borges L, Coelho LP, Cabezas-Cruz A, Valdés JJ, do Rosário V, de la Fuente J, Domingos A. Gene expression changes in the salivary glands of Anopheles coluzzii elicited by Plasmodium berghei infection. Parasit Vectors 2015; 8:485. [PMID: 26395987 PMCID: PMC4580310 DOI: 10.1186/s13071-015-1079-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is a devastating infectious disease caused by Plasmodium parasites transmitted through the bites of infected Anopheles mosquitoes. Salivary glands are the only mosquito tissue invaded by Plasmodium sporozoites, being a key stage for the effective parasite transmission, making the study of Anopheles sialome highly relevant. Methods RNA-sequencing was used to compare differential gene expression in salivary glands of uninfected and Plasmodium berghei-infected Anopheles coluzzii mosquitoes. RNA-seq results were validated by quantitative RT-PCR. The transmembrane glucose transporter gene AGAP007752 was selected for functional analysis by RNA interference. The effect of gene silencing on infection level was evaluated. The putative function and tertiary structure of the protein was assessed. Results RNA-seq data showed that 2588 genes were differentially expressed in mosquitoes salivary glands in response to P. berghei infection, being 1578 upregulated and 1010 downregulated. Metabolism, Immunity, Replication/Transcription/Translation, Proteolysis and Transport were the mosquito gene functional classes more affected by parasite infection. Endopeptidase coding genes were the most abundant within the differentially expressed genes in infected salivary glands (P < 0.001). Based on its putative function and expression level, the transmembrane glucose transporter gene, AGAP007752, was selected for functional analysis by RNA interference. The results demonstrated that the number of sporozoites was 44.3 % lower in mosquitoes fed on infected mice after AGAPP007752 gene knockdown when compared to control (P < 0.01). Conclusions Our hypothesis is that the protein encoded by the gene AGAPP007752 may play a role on An. coluzzii salivary glands infection by Plasmodium parasite, working as a sporozoite receptor and/or promoting a favorable environment for the capacity of sporozoites. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1079-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lara Borges
- Instituto de Higiene e Medicina Tropical (IHMT), Lisbon, Portugal. .,Global Health and Tropical Medicine (GHMT), Instituto de Higiene e Medicina Tropical (IHMT), Lisbon, Portugal.
| | - Luís Pedro Coelho
- Unidade de Biofísica e Expressão Genética, Instituto de Medicina Molecular (IMM), Lisbon, Portugal.
| | - Alejandro Cabezas-Cruz
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Lille, France. .,SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.
| | - James J Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
| | | | - José de la Fuente
- SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain. .,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, USA.
| | - Ana Domingos
- Instituto de Higiene e Medicina Tropical (IHMT), Lisbon, Portugal. .,Global Health and Tropical Medicine (GHMT), Instituto de Higiene e Medicina Tropical (IHMT), Lisbon, Portugal.
| |
Collapse
|
17
|
Wang B, Pakpour N, Napoli E, Drexler A, Glennon EKK, Surachetpong W, Cheung K, Aguirre A, Klyver JM, Lewis EE, Eigenheer R, Phinney BS, Giulivi C, Luckhart S. Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during Plasmodium falciparum infection. Parasit Vectors 2015; 8:424. [PMID: 26283222 PMCID: PMC4539710 DOI: 10.1186/s13071-015-1016-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/21/2015] [Indexed: 01/30/2023] Open
Abstract
Background Fruit flies and mammals protect themselves against infection by mounting immune and metabolic responses that must be balanced against the metabolic needs of the pathogens. In this context, p38 mitogen-activated protein kinase (MAPK)-dependent signaling is critical to regulating both innate immunity and metabolism during infection. Accordingly, we asked to what extent the Asian malaria mosquito Anopheles stephensi utilizes p38 MAPK signaling during infection with the human malaria parasite Plasmodium falciparum. Methods A. stephensi p38 MAPK (AsP38 MAPK) was identified and patterns of signaling in vitro and in vivo (midgut) were analyzed using phospho-specific antibodies and small molecule inhibitors. Functional effects of AsP38 MAPK inhibition were assessed using P. falciparum infection, quantitative real-time PCR, assays for reactive oxygen species and survivorship under oxidative stress, proteomics, and biochemical analyses. Results The genome of A. stephensi encodes a single p38 MAPK that is activated in the midgut in response to parasite infection. Inhibition of AsP38 MAPK signaling significantly reduced P. falciparum sporogonic development. This phenotype was associated with AsP38 MAPK regulation of mitochondrial physiology and stress responses in the midgut epithelium, a tissue critical for parasite development. Specifically, inhibition of AsP38 MAPK resulted in reduction in mosquito protein synthesis machinery, a shift in glucose metabolism, reduced mitochondrial metabolism, enhanced production of mitochondrial reactive oxygen species, induction of an array of anti-parasite effector genes, and decreased resistance to oxidative stress-mediated damage. Hence, P. falciparum-induced activation of AsP38 MAPK in the midgut facilitates parasite infection through a combination of reduced anti-parasite immune defenses and enhanced host protein synthesis and bioenergetics to minimize the impact of infection on the host and to maximize parasite survival, and ultimately, transmission. Conclusions These observations suggest that, as in mammals, innate immunity and mitochondrial responses are integrated in mosquitoes and that AsP38 MAPK-dependent signaling facilitates mosquito survival during parasite infection, a fact that may attest to the relatively longer evolutionary relationship of these parasites with their invertebrate compared to their vertebrate hosts. On a practical level, improved understanding of the balances and trade-offs between resistance and metabolism could be leveraged to generate fit, resistant mosquitoes for malaria control. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1016-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Wang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Anna Drexler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Elizabeth K K Glennon
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Win Surachetpong
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Kong Cheung
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Alejandro Aguirre
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - John M Klyver
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Edwin E Lewis
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA.
| | - Richard Eigenheer
- Genome and Biomedical Sciences Center, University of California Davis, Davis, CA, USA.
| | - Brett S Phinney
- Genome and Biomedical Sciences Center, University of California Davis, Davis, CA, USA.
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA. .,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Davis, CA, USA.
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
18
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|
19
|
Zhang G, Niu G, Franca CM, Dong Y, Wang X, Butler NS, Dimopoulos G, Li J. Anopheles Midgut FREP1 Mediates Plasmodium Invasion. J Biol Chem 2015; 290:16490-501. [PMID: 25991725 DOI: 10.1074/jbc.m114.623165] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Indexed: 01/17/2023] Open
Abstract
Malaria transmission depends on sexual stage Plasmodium parasites successfully invading Anopheline mosquito midguts following a blood meal. However, the molecular mechanisms of Plasmodium invasion of mosquito midguts have not been fully elucidated. Previously, we showed that genetic polymorphisms in the fibrinogen-related protein 1 (FREP1) gene are significantly associated with Plasmodium falciparum infection in Anopheles gambiae, and FREP1 is important for Plasmodium berghei infection of mosquitoes. Here we identify that the FREP1 protein is secreted from the mosquito midgut epithelium and integrated as tetramers into the peritrophic matrix, a chitinous matrix formed inside the midgut lumen after a blood meal feeding. Moreover, we show that the FREP1 can directly bind Plasmodia sexual stage gametocytes and ookinetes. Notably, ablating FREP1 expression or targeting FREP1 with antibodies significantly decreases P. falciparum infection in mosquito midguts. Our data support that the mosquito-expressed FREP1 mediates mosquito midgut invasion by multiple species of Plasmodium parasites via anchoring ookinetes to the peritrophic matrix and enabling parasites to penetrate the peritrophic matrix and the epithelium. Thus, targeting FREP1 can limit malaria transmission.
Collapse
Affiliation(s)
- Genwei Zhang
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Guodong Niu
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Caio M Franca
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Yuemei Dong
- the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Xiaohong Wang
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Noah S Butler
- the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - George Dimopoulos
- the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Jun Li
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019,
| |
Collapse
|
20
|
Bernabò P, Lunelli L, Quattrone A, Jousson O, Lencioni V, Viero G. Studying translational control in non-model stressed organisms by polysomal profiling. JOURNAL OF INSECT PHYSIOLOGY 2015; 76:30-35. [PMID: 25796968 DOI: 10.1016/j.jinsphys.2015.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/30/2015] [Accepted: 03/15/2015] [Indexed: 06/04/2023]
Abstract
In stressed organisms, strategic proteins are selectively translated even if the global process of protein synthesis is compromised. The determination of protein concentrations in tissues of non-model organisms (thus with limited genomic information) is challenging due to the absence of specific antibodies. Moreover, estimating protein levels quantifying transcriptional responses may be misleading, because translational control mechanisms uncouple protein and mRNAs abundances. Translational control is increasingly recognized as a hub where regulation of gene expression converges to shape proteomes, but it is almost completely overlooked in molecular ecology studies. An interesting approach to study translation and its control mechanisms is the analysis of variations of gene-specific translational efficiencies by quantifying mRNAs associated to ribosomes. In this paper, we propose a robust and streamlined pipeline for purifying ribosome-associated mRNAs and calculating global and gene-specific translation efficiencies from non-model insect's species. This method might found applications in molecular ecology to study responses to environmental stressors in non-model organisms.
Collapse
Affiliation(s)
- Paola Bernabò
- Institute of Biophysics, CNR Unit at Trento, Italy; Centre for Integrative Biology, Mattarello, Trento, Italy; Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Trento, Italy
| | - Lorenzo Lunelli
- Laboratory of Biomolecular Sequence and Structure Analysis for Health, Fondazione Bruno Kessler, Trento, Italy
| | | | | | - Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Trento, Italy
| | | |
Collapse
|
21
|
Cohen A, Combes V, Grau GER. MicroRNAs and Malaria - A Dynamic Interaction Still Incompletely Understood. JOURNAL OF NEUROINFECTIOUS DISEASES 2015; 6:165. [PMID: 26005686 PMCID: PMC4441219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Malaria is a mosquito-borne infectious disease caused by parasitic protozoa of the genus Plasmodium. It remains a major problem affecting humans today, especially children. However, the pathogenesis of malaria, especially severe malaria, remains incompletely understood, hindering our ability to treat this disease. Of recent interest is the role that small, non-coding RNAs play in the progression, pathogenesis of, and resistance to, malaria. Independent studies have now revealed the presence of microRNA (miRNA) in the malaria parasite, vector, and host, though these studies are relatively few. Here, we review these studies, focusing on the roles specific miRNA have in the disease, and how they may be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Georges ER Grau
- Corresponding author: Grau GER, Medical Foundation Building (K25), 92-94 Parramatta Rd, Camperdown NSW 2050, Australia, Tel: +61 2 9036 3260;
| |
Collapse
|
22
|
Dennison NJ, BenMarzouk-Hidalgo OJ, Dimopoulos G. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:170-8. [PMID: 25445902 PMCID: PMC4447300 DOI: 10.1016/j.dci.2014.10.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 05/03/2023]
Abstract
Invasion of the malaria vector Anopheles gambiae midgut by Plasmodium parasites triggers transcriptional changes of immune genes that mediate the antiparasitic defense. This response is largely regulated by the Toll and Immune deficiency (IMD) pathways. To determine whether A. gambiae microRNAs (miRNAs) are involved in regulating the anti-Plasmodium defense, we showed that suppression of miRNA biogenesis results in increased resistance to Plasmodium falciparum infection. In silico analysis of A. gambiae immune effector genes identified multiple transcripts with miRNA binding sites. A comparative miRNA microarray abundance analysis of P. falciparum infected and naïve mosquito midgut tissues showed elevated abundance of miRNAs aga-miR-989 and aga-miR-305 in infected midguts. Antagomir inhibition of aga-miR-305 increased resistance to P. falciparum infection and suppressed the midgut microbiota. Conversely, treatment of mosquitoes with an artificial aga-miR-305 mimic increased susceptibility to P. falciparum infection and resulted in expansion of midgut microbiota, suggesting that aga-miR-305 acts as a P. falciparum and gut microbiota agonist by negatively regulating the mosquito immune response. In silico prediction of aga-miR-305 target genes identified several anti-Plasmodium effectors. Our study shows that A. gambiae aga-miR-305 regulates the anti-Plasmodium response and midgut microbiota, likely through post-transcriptional modification of immune effector genes.
Collapse
Affiliation(s)
- Nathan J Dennison
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Omar J BenMarzouk-Hidalgo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Castellano L, Rizzi E, Krell J, Di Cristina M, Galizi R, Mori A, Tam J, De Bellis G, Stebbing J, Crisanti A, Nolan T. The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs. BMC Genomics 2015; 16:100. [PMID: 25766668 PMCID: PMC4345017 DOI: 10.1186/s12864-015-1257-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/19/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Small RNAs include different classes essential for endogenous gene regulation and cellular defence against genomic parasites. However, a comprehensive analysis of the small RNA pathways in the germline of the mosquito Anopheles gambiae has never been performed despite their potential relevance to reproductive capacity in this malaria vector. RESULTS We performed small RNA deep sequencing during larval and adult gonadogenesis and find that they predominantly express four classes of regulatory small RNAs. We identified 45 novel miRNA precursors some of which were sex-biased and gonad-enriched , nearly doubling the number of previously known miRNA loci. We also determine multiple genomic clusters of 24-30 nt Piwi-interacting RNAs (piRNAs) that map to transposable elements (TEs) and 3'UTR of protein coding genes. Unusually, many TEs and the 3'UTR of some endogenous genes produce an abundant peak of 29-nt small RNAs with piRNA-like characteristics. Moreover, both sense and antisense piRNAs from TEs in both Anopheles gambiae and Drosophila melanogaster reveal novel features of piRNA sequence bias. We also discovered endogenous small interfering RNAs (endo-siRNAs) that map to overlapping transcripts and TEs. CONCLUSIONS This is the first description of the germline miRNome in a mosquito species and should prove a valuable resource for understanding gene regulation that underlies gametogenesis and reproductive capacity. We also provide the first evidence of a piRNA pathway that is active against transposons in the germline and our findings suggest novel piRNA sequence bias. The contribution of small RNA pathways to germline TE regulation and genome defence in general is an important finding for approaches aimed at manipulating mosquito populations through the use of selfish genetic elements.
Collapse
Affiliation(s)
- Leandro Castellano
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, London, UK.
| | - Ermanno Rizzi
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate, Milan, Italy.
| | - Jonathan Krell
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, London, UK.
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| | - Roberto Galizi
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Ayako Mori
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Janis Tam
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Gianluca De Bellis
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate, Milan, Italy.
| | - Justin Stebbing
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College, London, UK.
| | - Andrea Crisanti
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom.
- Dipartimento di Medicina Sperimentale Via Gambuli, Centro di Genomica Funzionale, University of Perugia, 06132, Perugia, Italy.
| | - Tony Nolan
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
24
|
Li MWM, Wang J, Zhao YO, Fikrig E. Innexin AGAP001476 is critical for mediating anti-Plasmodium responses in Anopheles mosquitoes. J Biol Chem 2014; 289:24885-97. [PMID: 25035430 DOI: 10.1074/jbc.m114.554519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Toll and IMD pathways are known to be induced upon Plasmodium berghei and Plasmodium falciparum infection, respectively. It is unclear how Plasmodium or other pathogens in the blood meal and their invasion of the midgut epithelium would trigger the innate immune responses in immune cells, in particular hemocytes. Gap junctions, which can mediate both cell-to-cell and cell-to-extracellular communication, may participate in this signal transduction. This study examined whether innexins, gap junction proteins in insects, are involved in anti-Plasmodium responses in Anopheles gambiae. Inhibitor studies using carbenoxolone indicated that blocking innexons resulted in an increase in Plasmodium oocyst number and infection prevalence. This was accompanied by a decline in TEP1 levels in carbenoxolone-treated mosquitoes. Innexin AGAP001476 mRNA levels in midguts were induced during Plasmodium infection and a knockdown of AGAP001476, but not AGAP006241, caused an induction in oocyst number. Silencing AGAP001476 caused a concurrent increase in vitellogenin levels, a TEP1 inhibitor, in addition to a reduced level of TEP1-LRIM1-APL1C complex in hemolymph. Both vitellogenin and TEP1 are regulated by Cactus under the Toll pathway. Simultaneous knockdown of cactus and AGAP001476 failed to reverse the near refractoriness induced by the knockdown of cactus, suggesting that the AGAP001476-mediated anti-Plasmodium response is Cactus-dependent. These data demonstrate a critical role for innexin AGAP001476 in mediating innate immune responses against Plasmodium through Toll pathway in mosquitoes.
Collapse
Affiliation(s)
- Michelle W M Li
- From the Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520 and the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Jiuling Wang
- From the Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Yang O Zhao
- From the Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520 and the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Erol Fikrig
- From the Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520 and the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
25
|
Biryukova I, Ye T, Levashina E. Transcriptome-wide analysis of microRNA expression in the malaria mosquito Anopheles gambiae. BMC Genomics 2014; 15:557. [PMID: 24997592 PMCID: PMC4112208 DOI: 10.1186/1471-2164-15-557] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/25/2014] [Indexed: 12/29/2022] Open
Abstract
Background microRNAs (miRNAs) are a highly abundant class of small noncoding regulatory RNAs that post-transcriptionally regulate gene expression in multicellular organisms. miRNAs are involved in a wide range of biological and physiological processes, including the regulation of host immune responses to microbial infections. Small-scale studies of miRNA expression in the malaria mosquito Anopheles gambiae have been reported, however no comprehensive analysis of miRNAs has been performed so far. Results Using small RNA sequencing, we characterized de novo A. gambiae miRNA repertoire expressed in adult sugar- and blood-fed females. We provided transcriptional evidences for 123 miRNAs, including 58 newly identified miRNAs. Out of the newly described miRNAs, 19 miRNAs are homologs to known miRNAs in other insect species and 17 miRNAs share sequence similarity restricted to the seed sequence. The remaining 21 novel miRNAs displayed no obvious sequence homology with known miRNAs. Detailed bioinformatics analysis of the mature miRNAs revealed a sequence variation occurring at their 5’-end and leading to functional seed shifting in more than 5% of miRNAs. We also detected significant sequence heterogeneity at the 3’-ends of the mature miRNAs, mostly due to imprecise processing and post-transcriptional modifications. Comparative analysis of arm-switching events revealed the existence of species-specific production of dominant mature miRNAs induced by blood feeding in mosquitoes. We also identified new conserved and fragmented miRNA clusters and A. gambiae-specific miRNA gene duplication. Using miRNA expression profiling, we identified the differentially expressed miRNAs at an early time point after regular blood feeding and after infection with the rodent malaria parasite Plasmodium berghei. Significant changes were detected in the expression levels of 4 miRNAs in blood-fed mosquitoes, whereas 6 miRNAs were significantly upregulated after P. berghei infection. Conclusions In the current study, we performed the first systematic analysis of miRNAs in A. gambiae. We provided new insights on mature miRNA sequence diversity and functional shifts in the mosquito miRNA evolution. We identified a set of the differentially expressed miRNAs that respond to normal and infectious blood meals. The extended set of Anopheles miRNAs and their isoforms provides a basis for further experimental studies of miRNA expression patterns and biological functions in A. gambiae. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-557) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inna Biryukova
- Department of Vector Biology, Max Planck Institute for Infection Biology, Berlin 10117, Germany.
| | | | | |
Collapse
|
26
|
Han H, Peng J, Han Y, Zhang M, Hong Y, Fu Z, Yang J, Tao J, Lin J. Differential expression of microRNAs in the non-permissive schistosome host Microtus fortis under schistosome infection. PLoS One 2013; 8:e85080. [PMID: 24391986 PMCID: PMC3877346 DOI: 10.1371/journal.pone.0085080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
The reed vole Microtus fortis is the only mammal known in China in which the growth, development and maturation of schistosomes (Schistosoma japonicum) is prevented. It might be that the anti-schistosomiasis mechanisms of M. fortis associate with microRNA-mediated gene expression, given that the latter has been found to be involved in gene regulation in eukaryotes. In the present study, the difference between pathological changes in tissues of M. fortis and of mice (Mus musculus) post-schistosome infection were observed by using hematoxylin-eosin staining. In addition, microarray technique was applied to identify differentially expressed miRNAs in the same tissues before and post-infection to analyze the potential roles of miRNAs in schistosome infection in these two different types of host. Histological analyses showed that S. japonicum infection in M. fortis resulted in a more intensive inflammatory response and pathological change than in mice. The microarray analysis revealed that 162 miRNAs were expressed in both species, with 12 in liver, 32 in spleen and 34 in lung being differentially expressed in M. fortis. The functions of the differentially expressed miRNAs were mainly revolved in nutrient metabolism, immune regulation, etc. Further analysis revealed that important signaling pathways were triggered after infection by S. japonicum in M. fortis but not in the mice. These results provide new insights into the general mechanisms of regulation in the non-permissive schistosome host M. fortis that exploits potential miRNA regulatory networks. Such information will help improve current understanding of schistosome development and host-parasite interactions.
Collapse
Affiliation(s)
- Hongxiao Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jinbiao Peng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanhui Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (JT); (JL)
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (JT); (JL)
| |
Collapse
|
27
|
Overexpression of phosphatase and tensin homolog improves fitness and decreases Plasmodium falciparum development in Anopheles stephensi. Microbes Infect 2013; 15:775-87. [PMID: 23774695 DOI: 10.1016/j.micinf.2013.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 11/22/2022]
Abstract
The insulin/insulin-like growth factor signaling (IIS) cascade is highly conserved and regulates diverse physiological processes such as metabolism, lifespan, reproduction and immunity. Transgenic overexpression of Akt, a critical regulator of IIS, was previously shown to shorten mosquito lifespan and increase resistance to the human malaria parasite Plasmodium falciparum. To further understand how IIS controls mosquito physiology and resistance to malaria parasite infection, we overexpressed an inhibitor of IIS, phosphatase and tensin homolog (PTEN), in the Anopheles stephensi midgut. PTEN overexpression inhibited phosphorylation of the IIS protein FOXO, an expected target for PTEN, in the midgut of A. stephensi. Further, PTEN overexpression extended mosquito lifespan and increased resistance to P. falciparum development. The reduction in parasite development did not appear to be due to alterations in an innate immune response, but rather was associated with increased expression of genes regulating autophagy and stem cell maintenance in the midgut and with enhanced midgut barrier integrity. In light of previous success in genetically targeting the IIS pathway to alter mosquito lifespan and malaria parasite transmission, these data confirm that multiple strategies to genetically manipulate IIS can be leveraged to generate fit, resistant mosquitoes for malaria control.
Collapse
|
28
|
Lucas KJ, Myles KM, Raikhel AS. Small RNAs: a new frontier in mosquito biology. Trends Parasitol 2013; 29:295-303. [PMID: 23680188 DOI: 10.1016/j.pt.2013.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 12/23/2022]
Abstract
The discovery of small non-coding RNAs has revolutionized our understanding of regulatory networks governing multiple functions in animals and plants. However, our knowledge of mosquito small RNAs is limited. We discuss here the state of current knowledge regarding the roles of small RNAs and their targets in mosquitoes, and describe the ongoing efforts to understand the role of the RNA interference (RNAi) pathway in mosquito antiviral immunity and transposon silencing. Providing a clear picture into the role of small RNAs in mosquito vectors will pave the way to the utilization of these small molecules in developing novel control approaches that target mosquito immunity and/or reproductive events. Elucidation of the functions of small RNAs represents a new frontier in mosquito biology.
Collapse
Affiliation(s)
- Keira J Lucas
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|
29
|
Han H, Peng J, Hong Y, Zhang M, Han Y, Fu Z, Shi Y, Xu J, Tao J, Lin J. Comparison of the differential expression miRNAs in Wistar rats before and 10 days after S.japonicum infection. Parasit Vectors 2013; 6:120. [PMID: 23617945 PMCID: PMC3640946 DOI: 10.1186/1756-3305-6-120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/18/2013] [Indexed: 01/07/2023] Open
Abstract
Background When compared to the murine permissive host of Schistosoma japonicum, Wistar rats are less susceptible to Schistosoma japonicum infection, and are considered to provide a less suitable microenvironment for parasite growth and development. MicroRNAs (miRNAs), are a class of endogenous, non-coding small RNAs, that impose an additional, highly significant, level of gene regulation within eukaryotes. Methods To investigate the regulatory mechanisms provided by miRNA in the schistosome-infected rat model, we utilized a miRNA microarray to compare the progression of miRNA expression within different host tissues both before and 10 days after cercarial infection, in order to identify potential miRNAs with roles in responding to a schistosome infection. Results Among the analysed miRNAs, 16 within the liver, 61 within the spleen and 10 within the lung, were differentially expressed in infected Wistar rats. Further analysis of the differentially expressed miRNAs revealed that many important signal pathways are triggered after infection with S. japonicum in Wistar rats. These include the signal transduction mechanisms associated with the Wnt and MAPK signaling pathways, cellular differentiation, with a particular emphasis on adipocyte and erythroid differentiation. Conclusions The results presented here include the identification of specific differentially expressed miRNAs within the liver, lungs and spleen of Wistar rats. These results highlighted the function of host miRNA regulation during an active schistosome infection. Our study provides a better understanding of the regulatory role of miRNA in schistosome infection, and host–parasite interactions in a non-permissive host environment.
Collapse
Affiliation(s)
- Hongxiao Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, 518 Ziyue Road, Minhang, Shanghai, 200241, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Asgari S. MicroRNA functions in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:388-97. [PMID: 23103375 DOI: 10.1016/j.ibmb.2012.10.005] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 05/14/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are generated in all eukaryotes and viruses. Their role as master regulators of gene expression in various biological processes has only been fully appreciated over the last decade. Accumulating evidence suggests that alterations in the expression of miRNAs may lead to disorders, including developmental defects, diseases and cancer. Here, I review what is currently known about miRNA functions in insects to provide an insight into their diverse roles in insect biology.
Collapse
Affiliation(s)
- Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, St Lucia, QLD 4072, Australia.
| |
Collapse
|
31
|
Totten DC, Vuong M, Litvinova OV, Jinwal UK, Gulia-Nuss M, Harrell RA, Beneš H. Targeting gene expression to the female larval fat body of transgenic Aedes aegypti mosquitoes. INSECT MOLECULAR BIOLOGY 2013; 22:18-30. [PMID: 23241066 PMCID: PMC4101173 DOI: 10.1111/imb.12005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As the fat body is a critical tissue for mosquito development, metamorphosis, immune and reproductive system function, the characterization of regulatory modules targeting gene expression to the female mosquito fat body at distinct life stages is much needed for multiple, varied strategies for controlling vector-borne diseases such as dengue and malaria. The hexameric storage protein, Hexamerin-1.2, of the mosquito Aedes atropalpus is female-specific and uniquely expressed in the fat body of fourth instar larvae and young adults. We have identified in the Hex-1.2 gene, a short regulatory module that directs female-, tissue-, and stage-specific lacZ reporter gene expression using a heterologous promoter in transgenic lines of the dengue vector Aedes aegypti. Male transgenic larvae and pupae of one line expressed no Escherichia coli β-galactosidase or transgene product; in two other lines reporter gene activity was highly female-biased. All transgenic lines expressed the reporter only in the fat body; however, lacZ mRNA levels were no different in males and females at any stage examined, suggesting that the gene regulatory module drives female-specific expression by post-transcriptional regulation in the heterologous mosquito. This regulatory element from the Hex-1.2 gene thus provides a new molecular tool for transgenic mosquito control as well as functional genetic analysis in aedine mosquitoes.
Collapse
Affiliation(s)
- D C Totten
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|