1
|
Abbas ZK, Al-Huqail AA, Abdel Kawy AH, Abdulhai RA, Albalawi DA, AlShaqhaa MA, Alsubeie MS, Darwish DBE, Abdelhameed AA, Soudy FA, Makki RM, Aljabri M, Al-Sulami N, Ali M, Zayed M. Harnessing de novo transcriptome sequencing to identify and characterize genes regulating carbohydrate biosynthesis pathways in Salvia guaranitica L. FRONTIERS IN PLANT SCIENCE 2024; 15:1467432. [PMID: 39391775 PMCID: PMC11464306 DOI: 10.3389/fpls.2024.1467432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024]
Abstract
Introduction Carbohydrate compounds serve multifaceted roles, from energy sources to stress protectants, found across diverse organisms including bacteria, fungi, and plants. Despite this broad importance, the molecular genetic framework underlying carbohydrate biosynthesis pathways, such as starch, sucrose, and glycolysis/gluconeogenesis in Salvia guaranitica, remains largely unexplored. Methods In this study, the Illumina-HiSeq 2500 platform was used to sequence the transcripts of S. guaranitica leaves, generating approximately 8.2 Gb of raw data. After filtering and removing adapter sequences, 38 million reads comprising 210 million high-quality nucleotide bases were obtained. De novo assembly resulted in 75,100 unigenes, which were annotated to establish a comprehensive database for investigating starch, sucrose, and glycolysis biosynthesis. Functional analyses of glucose-6-phosphate isomerase (SgGPI), trehalose-6-phosphate synthase/phosphatase (SgT6PS), and sucrose synthase (SgSUS) were performed using transgenic Arabidopsis thaliana. Results Among the unigenes, 410 were identified as putatively involved in these metabolic pathways, including 175 related to glycolysis/gluconeogenesis and 235 to starch and sucrose biosynthesis. Overexpression of SgGPI, SgT6PS, and SgSUS in transgenic A. thaliana enhanced leaf area, accelerated flower formation, and promoted overall growth compared to wild-type plants. Discussion These findings lay a foundation for understanding the roles of starch, sucrose, and glycolysis biosynthesis genes in S. guaranitica, offering insights into future metabolic engineering strategies for enhancing the production of valuable carbohydrate compounds in S. guaranitica or other plants.
Collapse
Affiliation(s)
- Zahid Khorshid Abbas
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Aesha H. Abdel Kawy
- Plant Ecophysiology Unit, Plant Ecology and Range Management Department, Desert Research Center, Cairo, Egypt
| | - Rabab A. Abdulhai
- Botany Department, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Doha A. Albalawi
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Moodi Saham Alsubeie
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | | - Ahmed Ali Abdelhameed
- Agricultural Botany Department (Genetics), Faculty of Agriculture, Al-Azhar University, Assuit, Egypt
| | - Fathia A. Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Rania M. Makki
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Maha Aljabri
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nadiah Al-Sulami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Muhammad Zayed
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
2
|
Singh VV, Naseer A, Sellamuthu G, Jakuš R. An Optimized and Cost-Effective RNA Extraction Method for Secondary Metabolite-Enriched Tissues of Norway Spruce ( Picea abies). PLANTS (BASEL, SWITZERLAND) 2024; 13:389. [PMID: 38337922 PMCID: PMC10857598 DOI: 10.3390/plants13030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Since the development of next-generation sequencing techniques and with the growing interest in transcriptomic studies, there is a demand for high-throughput RNA extraction techniques. General RNA extraction protocols are unreliable when it comes to the quality and quantity of isolated RNA obtained from different tissue types of different plant species. Despite Norway spruce (Picea abies) being one of the most significant and commercially valuable tree species in European forests, only limited genetic research is available. In this study, we developed a cetyltrimethylammonium bromide (CTAB) protocol by modifying the original method. We compared this CTAB protocol with other widely used methods for extracting RNA from different tissues (needle, phloem, and root) of Norway spruce, known for its richness in polyphenols, polysaccharides, and secondary metabolites. The modified CTAB method proves to be superior to the kit-based and TRIzol-based methods for extracting RNA from the metabolite-rich tissues of Norway spruce, resulting in high RNA quality and integrity values (RIN~7-9). The modified CTAB RNA extraction method is rapid, cost-effective, and relatively simple in yielding the desired RNA quality from Norway spruce tissues. It is optimal for RNA sequencing and other downstream molecular applications.
Collapse
Affiliation(s)
- Vivek Vikram Singh
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic; (A.N.); (G.S.); (R.J.)
| | - Aisha Naseer
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic; (A.N.); (G.S.); (R.J.)
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic; (A.N.); (G.S.); (R.J.)
| | - Rastislav Jakuš
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic; (A.N.); (G.S.); (R.J.)
- Institute of Forest Ecology, Slovak Academy of Sciences, Štúrova 2, 960 53 Zvolen, Slovakia
| |
Collapse
|
3
|
Patil Y, Ku X, Vasudev V. Pyrolysis Characteristics and Determination of Kinetic and Thermodynamic Parameters of Raw and Torrefied Chinese Fir. ACS OMEGA 2023; 8:34938-34947. [PMID: 37779928 PMCID: PMC10536841 DOI: 10.1021/acsomega.3c04328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Torrefaction influences the structural and physicochemical properties of biomass, thus further altering its thermal degradation behavior. In this study, the pyrolysis characteristics, reaction kinetics, and thermodynamic parameters of raw and torrefied Chinese fir (CF) were investigated. The torrefaction was conducted at 220 °C (mild) and 280 °C (severe), the pyrolysis was performed from ambient temperature to 600 °C, and four different heating rates (i.e., 5, 15, 25, and 35 °C/min) were adopted. The activation energy for pyrolysis was estimated by adopting three isoconversional methods. The master-plot method was employed to analyze the reaction mechanism. Furthermore, thermodynamic parameters, i.e., the enthalpy change (ΔH), Gibbs free energy change (ΔG), and entropy change (ΔS), were calculated. The average activation energy increased with the torrefaction temperature, whose values estimated by using different methods ranged from 88.57 to 97.70, from 121.04 to 126.35, and from 167.51 to 179.74 kJ/mol for raw, mildly, and severely torrefied CF samples, respectively. A compensation effect between the activation energy and pre-exponential factor was observed for all samples. The degradation process was characterized as endothermic, involving the formation of activated complexes and requiring extra energy for torrefied samples.
Collapse
Affiliation(s)
- Yogesh Patil
- Department
of Engineering Mechanics, Zhejiang University, 310027 Hangzhou, China
| | - Xiaoke Ku
- Department
of Engineering Mechanics, Zhejiang University, 310027 Hangzhou, China
- State
Key Laboratory of Clean Energy Utilization, Zhejiang University, 310027 Hangzhou, China
| | - Vikul Vasudev
- Department
of Engineering Mechanics, Zhejiang University, 310027 Hangzhou, China
| |
Collapse
|
4
|
Sasi S, Krishnan S, Kodackattumannil P, Shamisi AA, Aldarmaki M, Lekshmi G, Kottackal M, Amiri KMA. DNA-free high-quality RNA extraction from 39 difficult-to-extract plant species (representing seasonal tissues and tissue types) of 32 families, and its validation for downstream molecular applications. PLANT METHODS 2023; 19:84. [PMID: 37568159 PMCID: PMC10416385 DOI: 10.1186/s13007-023-01063-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND High-purity RNA serves as the basic requirement for downstream molecular analysis of plant species, especially the differential expression of genes to various biotic and abiotic stimuli. But, the extraction of high-quality RNA is usually difficult from plants rich in polysaccharides and polyphenols, and their presence usually interferes with the downstream applications. The aim of the study is to optimize the extraction of high-quality RNA from diverse plant species/tissues useful for downstream molecular applications. RESULTS Extraction of RNA using commercially available RNA extraction kits and routine hexadecyltrimethylammonium bromide (CTAB) methods did not yield good quality DNA-free RNA from Prosopis cineraria, Conocarpus erectus, and Phoenix dactylifera. A reliable protocol for the extraction of high-quality RNA from mature leaves of these difficult-to-extract trees was optimized after screening nine different methods. The DNase I-, and proteinase K treatment-free modified method, consisting of extraction with CTAB method followed by TRIzol, yielded high-quality DNA-free RNA with an A260/A280 and A260/A230 ratios > 2.0. Extraction of RNA from Conocarpus, the most difficult one, was successful by avoiding the heat incubation of ground tissue in a buffer at 65 oC. Pre-warming of the buffer for 5-10 min was sufficient to extract good-quality RNA. RNA integrity number of the extracted RNA samples ranged between 7 and 9.1, and the gel electrophoresis displayed intact bands of 28S and 18S RNA. A cDNA library constructed from the RNA of P. cineraria was used for the downstream applications. Real-time qPCR analysis using the cDNA from P. cineraria RNA confirmed the quality. The extraction of good quality RNA from samples of the desert-growing P. cineraria (> 20-years-old) collected in alternate months of the year 2021 (January to December covering winter, spring, autumn, and the very dry and hot summer) proved the efficacy of the protocol. The protocol's broad applicability was further validated by extracting good-quality RNA from 36 difficult-to-extract plant species, including tissues such as roots, flowers, floral organs, fruits, and seeds. CONCLUSIONS The modified DNase I and Proteinase K treatment-free protocol enables to extract DNA-free, high-quality, intact RNA from a total of 39 difficult-to-extract plant species belonging to 32 angiosperm families is useful to extract good-quality RNA from dicots and monocots irrespective of tissue types and growing seasons.
Collapse
Affiliation(s)
- Shina Sasi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Saranya Krishnan
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Preshobha Kodackattumannil
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Aysha Al Shamisi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Maitha Aldarmaki
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Geetha Lekshmi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Martin Kottackal
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| | - Khaled M A Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
5
|
Transcriptome analysis identifies differentially expressed genes involved in lignin biosynthesis in barley. Int J Biol Macromol 2023; 236:123940. [PMID: 36894063 DOI: 10.1016/j.ijbiomac.2023.123940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Lignin is an essential metabolite for plant growth but negatively affects the quality of forage barley. Genetic modification of quality traits to improve the forage digestibility requires an understanding of the molecular mechanism of lignin biosynthesis. RNA-Seq was used to quantify transcripts differentially expressed among leaf, stem and spike tissues from two barley genotypes. A total of 13,172 differentially expressed genes (DEGs) were identified, of which much more up-regulated DEGs were detected from the contrasting groups of leaf vs spike (L-S) and stem vs spike (S-S), and down-regulated DEGs were dominant in the group of stem vs leaf (S-L). 47 DEGs were successfully annotated to the monolignol pathway and six of them were candidate genes regulating the lignin biosynthesis. The qRT-PCR assay verified the expression profiles of the six candidate genes. Among them, four genes might positively regulate the lignin biosynthesis during forage barley development in terms of the consistency of their expression levels and changes of lignin content among the tissues, while the other two genes may have the reverse effects. These findings provide target genes for further investigations on molecular regulatory mechanisms of lignin biosynthesis and genetic resources for improvement of forage quality in barley molecular breeding programme.
Collapse
|
6
|
Ghissing U, Kutty NN, Bimolata W, Samanta T, Mitra A. Comparative transcriptome analysis reveals an insight into the candidate genes involved in anthocyanin and scent volatiles biosynthesis in colour changing flowers of Combretum indicum. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:85-95. [PMID: 36271596 DOI: 10.1111/plb.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Combretum indicum is a widely cultivated ornamental species displaying the distinct phenomenon of floral colour change. Flowers display a gradual colour change from white to red, attributed to increased cyanidin 3-O glucoside in petal tissues. The differently coloured flowers also emanate a complex blend of VOCs with trans-linalool oxide (furanoid) as the major compound in the emission profile. To understand molecular mechanisms regulating floral colour shifts and scent biosynthesis, we performed Illumina transcriptome sequencing, including de novo assembly and functional annotation, for the two stages of floral maturation (white and red). Homology analysis with functional classification identified 84 and 42 candidate genes associated with pigment and scent biosynthesis, respectively. Genes encoding transcription factors, such as MYB, ERF, WD40, WRKY, NAC, bHLH and bZIP, that play critical roles in regulating specialized metabolism were also identified in the transcriptome data. Differences in expression of genes were consistent with accumulation patterns of anthocyanins in the two different flower colours. A clear upregulation of flavonoid biosynthesis genes in red flower tissue is associated with increased pigment content. RT-qPCR-based expression analyses gave results consistent with the RNA-Seq data, suggesting the sequencing data are consistent and reliable. This study presents the first report of genetic information for C. indicum. Gene sequences generated from RNA-Seq, along with candidate genes identified by pathway mapping and their expression profiles, provide a valuable resource for subsequent studies towards molecular understanding of specialized metabolism in C. indicum flowers.
Collapse
Affiliation(s)
- U Ghissing
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - N N Kutty
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
- School of Biology, Dr Vishwanath Karad MIT World Peace University, Pune, India
| | - W Bimolata
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - T Samanta
- BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - A Mitra
- Natural Product Biotechnology Group, Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
7
|
Xiong J, Tang X, Wei M, Yu W. Comparative full-length transcriptome analysis by Oxford Nanopore Technologies reveals genes involved in anthocyanin accumulation in storage roots of sweet potatoes ( Ipomoea batatas L.). PeerJ 2022; 10:e13688. [PMID: 35846886 PMCID: PMC9285475 DOI: 10.7717/peerj.13688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
Background Storage roots of sweet potatoes (Ipomoea batatas L.) with different colors vary in anthocyanin content, indicating different economically agronomic trait. As the newest DNA/RNA sequencing technology, Oxford Nanopore Technologies (ONT) have been applied in rapid transcriptome sequencing for investigation of genes related to nutrient metabolism. At present, few reports concern full-length transcriptome analysis based on ONT for study on the molecular mechanism of anthocyanin accumulation leading to color change of tuberous roots of sweet potato cultivars. Results The storage roots of purple-fleshed sweet potato (PFSP) and white-fleshed sweet potato (WFSP) at different developmental stages were subjected to anthocyanin content comparison by UV-visible spectroscopy as well as transcriptome analysis at ONT MinION platform. UV-visible spectrophotometric measurements demonstrated the anthocyanin content of PFSP was much higher than that of WFSP. ONT RNA-Seq results showed each sample generated average 2.75 GB clean data with Full-Length Percentage (FL%) over 70% and the length of N50 ranged from 1,192 to 1,395 bp, indicating reliable data for transcriptome analysis. Subsequent analysis illustrated intron retention was the most prominent splicing event present in the resulting transcripts. As compared PFSP with WFSP at the relative developmental stages with the highest (PH vs. WH) and the lowest (PL vs. WL) anthocyanin content, 282 and 216 genes were up-regulated and two and 11 genes were down-regulated respectively. The differential expression genes involved in flavonoid biosynthesis pathway include CCoAOMT, PpLDOX, DFR, Cytochrome P450, CHI, and CHS. The genes encoding oxygenase superfamily were significantly up-regulated when compared PFSP with WFSP at the relative developmental stages. Conclusions Comparative full-length transcriptome analysis based on ONT serves as an effective approach to detect the differences in anthocyanin accumulation in the storage roots of different sweet potato cultivars at transcript level, with noting that some key genes can now be closely related to flavonoids biosynthesis. This study helps to improve understanding of molecular mechanism for anthocyanin accumulation in sweet potatoes and also provides a theoretical basis for high-quality sweet potato breeding.
Collapse
Affiliation(s)
- Jun Xiong
- Agricultural College, Guangxi University, Nanning, China,Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiuhua Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Minzheng Wei
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjin Yu
- Agricultural College, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Hu XG, Zhuang H, Lin E, Borah P, Du M, Gao S, Wang T, Tong Z, Huang H. Full-Length Transcriptome Sequencing and Comparative Transcriptomic Analyses Provide Comprehensive Insight Into Molecular Mechanisms of Cellulose and Lignin Biosynthesis in Cunninghamia lanceolata. FRONTIERS IN PLANT SCIENCE 2022; 13:883720. [PMID: 35712576 PMCID: PMC9194830 DOI: 10.3389/fpls.2022.883720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/06/2022] [Indexed: 05/31/2023]
Abstract
Cunninghamia lanceolata is an essential timber species that provide 20%-30% raw materials for China's timber industry. Although a few transcriptomes have been published in C. lanceolata, full-length mRNA transcripts and regulatory mechanisms behind the cellulose and lignin biosynthesis have not been thoroughly investigated. Here, PacBio Iso-seq and RNA-seq analyses were adapted to identify the full-length and differentially expressed transcripts along a developmental gradient from apex to base of C. lanceolata shoots. A total of 48,846 high-quality full-length transcripts were obtained, of which 88.0% are completed transcriptome based on benchmarking universal single-copy orthologs (BUSCO) assessment. Along stem developmental gradient, 18,714 differentially expressed genes (DEGs) were detected. Further, 28 and 125 DEGs were identified as enzyme-coding genes of cellulose and lignin biosynthesis, respectively. Moreover, 57 transcription factors (TFs), including MYB and NAC, were identified to be involved in the regulatory network of cellulose and lignin biosynthesis through weighted gene co-expression network analysis (WGCNA). These TFs are composed of a comparable regulatory network of secondary cell wall formation in angiosperms, revealing a similar mechanism may exist in gymnosperms. Further, through qRT-PCR, we also investigated eight specific TFs involved in compression wood formation. Our findings provide a comprehensive and valuable source for molecular genetics breeding of C. lanceolata and will be beneficial for molecular-assisted selection.
Collapse
Affiliation(s)
- Xian-Ge Hu
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hebi Zhuang
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Erpei Lin
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Priyanka Borah
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Mingqiu Du
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shiya Gao
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Tongli Wang
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Zaikang Tong
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
9
|
Zhuang H, Chong SL, Priyanka B, Han X, Lin E, Tong Z, Huang H. Full-length transcriptomic identification of R2R3-MYB family genes related to secondary cell wall development in Cunninghamia lanceolata (Chinese fir). BMC PLANT BIOLOGY 2021; 21:581. [PMID: 34879821 PMCID: PMC8653563 DOI: 10.1186/s12870-021-03322-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND R2R3-MYB is a class of transcription factor crucial in regulating secondary cell wall development during wood formation. The regulation of wood formation in gymnosperm has been understudied due to its large genome size. Using Single-Molecule Real-Time sequencing, we obtained full-length transcriptomic libraries from the developmental stem of Cunninghamia lanceolata, a perennial conifer known as Chinese fir. The R2R3-MYB of C. lanceolata (hereafter named as ClMYB) associated with secondary wall development were identified based on phylogenetic analysis, expression studies and functional study on transgenic line. RESULTS The evolutionary relationship of 52 ClMYBs with those from Arabidopsis thaliana, Eucalyptus grandis, Populus trichocarpa, Oryza sativa, two gymnosperm species, Pinus taeda, and Picea glauca were established by neighbour-joining phylogenetic analysis. A large number of ClMYBs resided in the woody-expanded subgroups that predominated with the members from woody dicots. In contrast, the woody-preferential subgroup strictly carrying the members of woody dicots contained only one candidate. The results suggest that the woody-expanded subgroup emerges before the gymnosperm/angiosperm split, while most of the woody-preferential subgroups are likely lineage-specific to woody dicots. Nine candidates shared the same subgroups with the A. thaliana orthologs, with known function in regulating secondary wall development. Gene expression analysis inferred that ClMYB1/2/3/4/5/26/27/49/51 might participate in secondary wall development, among which ClMYB1/2/5/26/27/49 were significantly upregulated in the highly lignified compression wood region, reinforcing their regulatory role associated with secondary wall development. ClMYB1 was experimentally proven a transcriptional activator that localised in the nucleus. The overexpression of ClMYB1 in Nicotiana benthamiana resulted in an increased lignin deposition in the stems. The members of subgroup S4, ClMYB3/4/5 shared the ERF-associated amphiphilic repression motif with AtMYB4, which is known to repress the metabolism of phenylpropanoid derived compounds. They also carried a core motif specific to gymnosperm lineage, suggesting divergence of the regulatory process compared to the angiosperms. CONCLUSIONS This work will enrich the collection of full-length gymnosperm-specific R2R3-MYBs related to stem development and contribute to understanding their evolutionary relationship with angiosperm species.
Collapse
Affiliation(s)
- Hebi Zhuang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Sun-Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Borah Priyanka
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Erpei Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Huahong Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| |
Collapse
|
10
|
Sharma B, Seth R, Thakur S, Parmar R, Masand M, Devi A, Singh G, Dhyani P, Choudhary S, Sharma RK. Genome-wide transcriptional analysis unveils the molecular basis of organ-specific expression of isosteroidal alkaloids biosynthesis in critically endangered Fritillaria roylei Hook. PHYTOCHEMISTRY 2021; 187:112772. [PMID: 33873018 DOI: 10.1016/j.phytochem.2021.112772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Fritillaria roylei Hook. is a critically endangered high altitude Himalayan medicinal plant species with rich source of pharmaceutically active structurally diverse steroidal alkaloids. Nevertheless, except few marker compounds, the chemistry of the plant remains unexplored. Therefore, in the current study, transcriptome sequencing efforts were made to elucidate isosteroidal alkaloids biosynthesis by creating first organ-specific genomic resource using bulb, stem, and leaf tissues derived from natural populations of Indian Himalayan region. Overall, 349.9 million high quality paired-end reads obtained using NovaSeq 6000 platform were assembled (de novo) into 82,848 unigenes and 31,061 isoforms. Functional annotation and organ specific differential expression (DE) analysis identified 2488 significant DE transcripts, grouped into three potential sub-clusters (sub-cluster I: 728 transcripts; sub-cluster II: 446 transcripts and Sub-cluster III: 1314 transcripts). Subsequently, pathway enrichment (GO, KEGG) and protein-protein network analysis revealed significantly higher enrichment of phenyl-propanoid and steroid backbone including terpenoid, sesquiterpenoid and triterpenoid biosynthesis in bulb. Additionally, upregulated expression of cytochrome P450, UDP-dependent Glucuronosyltransferase families and key transcription factor families (FAR1, bHLH, GRAS, C2H2, TCP and MYB) suggests 'bulb' as a primary site of MVA mediated isosteroidal alkaloids biosynthesis. The comprehensive elucidation of molecular insights in this study is a first step towards the understanding of isosteroidal alkaloid biosynthesis pathway in F. roylei. Furthermore, key genes and regulators identified here can facilitate metabolic engineering of potential bioactive compounds at industrial scale.
Collapse
Affiliation(s)
- Balraj Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Romit Seth
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India.
| | - Sapna Thakur
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Rajni Parmar
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Mamta Masand
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Amna Devi
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Gopal Singh
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Praveen Dhyani
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Shruti Choudhary
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India
| | - Ram Kumar Sharma
- Biotechnology Department, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
11
|
Wang D, Hao Z, Long X, Wang Z, Zheng X, Ye D, Peng Y, Wu W, Hu X, Wang G, Zheng R, Shi J, Chen J. The Transcriptome of Cunninghamia lanceolata male/female cone reveal the association between MIKC MADS-box genes and reproductive organs development. BMC PLANT BIOLOGY 2020; 20:508. [PMID: 33153428 PMCID: PMC7643283 DOI: 10.1186/s12870-020-02634-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/30/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Cunninghamia lanceolata (Chinese fir), a member of the conifer family Cupressaceae, is one of the most popular cultivated trees for wood production in China. Continuous research is being performed to improve C. lanceolata breeding values. Given the high rate of seed abortion (one of the reasons being the failure of ovule and pollen development) in C. lanceolata, the proper formation of female/male cones could theoretically increase the number of offspring in future generations. MIKC MADS-box genes are well-known for their roles in the flower/cone development and comprise the typical/atypical floral development model for both angiosperms and gymnosperms. RESULTS We performed a transcriptomic analysis to find genes differentially expressed between female and male cones at a single, carefully determined developmental stage, focusing on the MIKC MADS-box genes. We finally obtained 47 unique MIKC MADS-box genes from C. lanceolata and divided these genes into separate branches. 27 out of the 47 MIKC MADS-box genes showed differential expression between female and male cones, and most of them were not expressed in leaves. Out of these 27 genes, most B-class genes (AP3/PI) were up-regulated in the male cone, while TM8 genes were up-regulated in the female cone. Then, with no obvious overall preference for AG (class C + D) genes in female/male cones, it seems likely that these genes are involved in the development of both cones. Finally, a small number of genes such as GGM7, SVP, AGL15, that were specifically expressed in female/male cones, making them candidate genes for sex-specific cone development. CONCLUSIONS Our study identified a number of MIKC MADS-box genes showing differential expression between female and male cones in C. lanceolata, illustrating a potential link of these genes with C. lanceolata cone development. On the basis of this, we postulated a possible cone development model for C. lanceolata. The gene expression library showing differential expression between female and male cones shown here, can be used to discover unknown regulatory networks related to sex-specific cone development in the future.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaodong Hao
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaofei Long
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei, 230601, China
| | - Xueyan Zheng
- National Germplasm Bank of Chinese fir at Fujian Yangkou Forest Farm, Shunchang, 353211, China
| | - Daiquan Ye
- National Germplasm Bank of Chinese fir at Fujian Yangkou Forest Farm, Shunchang, 353211, China
| | - Ye Peng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Weihuang Wu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Renhua Zheng
- Fujian Academy of Forestry, Fuzhou, 350012, China
| | - Jisen Shi
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
12
|
Meera SP, Augustine A. De novo transcriptome analysis of Rhizophora mucronata Lam. furnishes evidence for the existence of glyoxalase system correlated to glutathione metabolic enzymes and glutathione regulated transporter in salt tolerant mangroves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:683-696. [PMID: 32861035 DOI: 10.1016/j.plaphy.2020.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The accumulation of a metabolic by product - methylglyoxal above a minimal range can be highly toxic in all organisms. Stress induced elevation in methylglyoxal inactivates proteins and nucleic acids. Glutathione dependent glyoxalase enzymes like glyoxalase I and glyoxalase II together with glutathione independent glyoxalase III play inevitable role in methylglyoxal detoxification. Glyoxalase genes are generally conserved but with obvious exceptions. Mangroves being potent harsh land inhabitants, their internal organelles are constantly been exposed to elevated levels of methylglyoxal. First and foremost it is important to detect the presence of glyoxalases in mangroves. De novo transcriptome analysis of mangrove species Rhizophora mucronata Lam., identified eleven putative glyoxalase proteins (RmGLYI-1 to 5, RmGLYII-1 to 5 and RmGLYIII). Molecular characterization proposed PLN02300 or PLN02367 as the key domains of RmGLYI proteins. They possess molecular weight ranging from 26.45 to 32.53 kDa and may localize in cytosol or chloroplast. RmGLYII proteins of molecular weight 28.64-36 kDa, carrying PLN02398 or PLN02469 domains are expected to be localized in diverse cellular compartments. Cytosolic RmGLYIII with DJ-1/PfpI domain carries a molecular weight 26.4 kDa. Detailed structural analysis revealed monomeric nature of RmGLYI-1 and RmGLYII-1 whereas RmGLYIII is found to be homodimer. Molecular phylogenetic analysis and multiple sequence alignment specified conserved metal ion/substrate binding residues of RmGLY proteins. Estimation of relative expression of glyoxalases under salt stress indicated the prominence of RmGLYI and RmGLYII over RmGLYIII. The aforementioned prominence is supported by salt induced expression difference of glutathione metabolic enzymes and glutathione regulated transporter protein.
Collapse
Affiliation(s)
- S P Meera
- Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Palayad P.O., Kannur, 670661, Kerala, India
| | - Anu Augustine
- Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Palayad P.O., Kannur, 670661, Kerala, India.
| |
Collapse
|
13
|
Transcriptomic Profiling of Cryptomeria fortunei Hooibrenk Vascular Cambium Identifies Candidate Genes Involved in Phenylpropanoid Metabolism. FORESTS 2020. [DOI: 10.3390/f11070766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cryptomeria fortunei Hooibrenk (Chinese cedar) is a coniferous tree from southern China that has an important function in landscaping and timber production. Lignin is one of the key components of secondary cell walls, which have a crucial role in conducting water and providing mechanical support for the upward growth of plants. It is mainly biosynthesized via the phenylpropanoid metabolic pathway, of which the molecular mechanism remains so far unresolved in C. fortunei. In order to obtain further insight into this pathway, we performed transcriptome sequencing of the C. fortunei cambial zone at 5 successive growth stages. We generated 78,673 unigenes from transcriptome data, of which 45,214 (57.47%) were successfully annotated in the non-redundant protein database (NR). A total of 8975 unigenes were identified to be significantly differentially expressed between Sample_B and Sample_A after analyzing their expression profiles. Of the differentially expressed genes (DEGs), 6817 (75.96%) and 2158 (24.04%) were up- and down-regulated, respectively. 83 DEGs were involved in phenylpropanoid metabolism, 37 DEGs that encoded v-Myb avian myeloblastosis viral oncogene homolog (MYB) transcription factor (TF), and many candidates that encoded lignin synthesizing enzymes. These findings contribute to understanding the expression pattern of C. fortunei cambial zone transcriptome. Furthermore, our results provide additional insight towards understanding the molecular mechanisms of wood formation in C. fortunei.
Collapse
|
14
|
Liu L, Wang Z, Su Y, Wang T. Characterization and Analysis of the Full-Length Transcriptomes of Multiple Organs in Pseudotaxus chienii (W.C.Cheng) W.C.Cheng. Int J Mol Sci 2020; 21:ijms21124305. [PMID: 32560294 PMCID: PMC7352595 DOI: 10.3390/ijms21124305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/06/2023] Open
Abstract
Pseudotaxus chienii, a rare tertiary relict species with economic and ecological value, is a representative of the monotypic genus Pseudotaxus that is endemic to China. P. chienii can adapt well to habitat isolation and ecological heterogeneity under a variety of climate and soil conditions, and is able to survive in harsh environments. However, little is known about the molecular and genetic resources of this long-lived conifer. Herein, we sequenced the transcriptomes of four organs of P. chienii using the PacBio Isoform Sequencing and Illumina RNA Sequencing platforms. Based on the PacBio Iso-Seq data, we obtained 44,896, 58,082, 50,485, and 67,638 full-length unigenes from the root, stem, leaf, and strobilus, respectively, with a mean length of 2692 bp, and a mean N50 length of 3010.75 bp. We then comprehensively annotated these unigenes. The number of organ-specific expressed unigenes ranged from 4393 in leaf to 9124 in strobilus, suggesting their special roles in physiological processes, organ development, and adaptability in the different four organs. A total of 16,562 differentially expressed genes (DEGs) were identified among the four organs and clustered into six subclusters. The gene families related to biotic/abiotic factors, including the TPS, CYP450, and HSP families, were characterized. The expression levels of most DEGs in the phenylpropanoid biosynthesis pathway and plant–pathogen interactions were higher in the root than in the three other organs, suggesting that root constitutes the main organ of defensive compound synthesis and accumulation and has a stronger ability to respond to stress. The sequences were analyzed to predict transcription factors, long non-coding RNAs, and alternative splicing events. The expression levels of most DEGs of C2H2, C3H, bHLH, and bZIP families in the root and stem were higher than those in the leaf and strobilus, indicating that these TFs may play a crucial role in the survival of the root and stem. These results comprise the first comprehensive gene expression profiles obtained for different organs of P. chienii. Our findings will facilitate further studies on the functional genomics, adaptive evolution, and phylogeny of P. chienii, and lay the foundation for the development of conservation strategies for this endangered conifer.
Collapse
Affiliation(s)
- Li Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.L.); (Z.W.)
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.L.); (Z.W.)
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (L.L.); (Z.W.)
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China
- Correspondence: (Y.S.); (T.W.); Tel.: +86-020-84111939 (Y.S.); +86-020-85280185 (T.W.)
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.S.); (T.W.); Tel.: +86-020-84111939 (Y.S.); +86-020-85280185 (T.W.)
| |
Collapse
|
15
|
Shi Y, Zhang Z, Wen Y, Yu G, Zou J, Huang S, Wang J, Zhu J, Wang J, Chen L, Ma C, Liu X, Zhu R, Li Q, Li J, Guo M, Liu H, Zhu Y, Sun Z, Han L, Jiang H, Wu X, Wang N, Zhang W, Yin Z, Li C, Hu Z, Qi Z, Liu C, Chen Q, Xin D. RNA Sequencing-Associated Study Identifies GmDRR1 as Positively Regulating the Establishment of Symbiosis in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:798-807. [PMID: 32186464 DOI: 10.1094/mpmi-01-20-0017-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In soybean (Glycine max)-rhizobium interactions, the type III secretion system (T3SS) of rhizobium plays a key role in regulating host specificity. However, the lack of information on the role of T3SS in signaling networks limits our understanding of symbiosis. Here, we conducted an RNA sequencing analysis of three soybean chromosome segment substituted lines, one female parent and two derived lines with different chromosome-substituted segments of wild soybean and opposite nodulation patterns. By analyzing chromosome-linked differentially expressed genes in the substituted segments and quantitative trait loci (QTL)-assisted selection in the substituted-segment region, genes that may respond to type III effectors to mediate plant immunity-related signaling were identified. To narrow down the number of candidate genes, QTL assistant was used to identify the candidate region consistent with the substituted segments. Furthermore, one candidate gene, GmDRR1, was identified in the substituted segment. To investigate the role of GmDRR1 in symbiosis establishment, GmDRR1-overexpression and RNA interference soybean lines were constructed. The nodule number increased in the former compared with wild-type soybean. Additionally, the T3SS-regulated effectors appeared to interact with the GmDDR1 signaling pathway. This finding will allow the detection of T3SS-regulated effectors involved in legume-rhizobium interactions.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhanguo Zhang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yingnan Wen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Guolong Yu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jianan Zou
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Shiyu Huang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jinhui Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jingyi Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jieqi Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Lin Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chao Ma
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xueying Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Rongsheng Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Qingying Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jianyi Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Miaoxin Guo
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Hanxi Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongxu Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhijun Sun
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Lu Han
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongwei Jiang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, People's Republic of China
| | - Xiaoxia Wu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Nannan Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
- Jiamusi Branch of Heilongjiang Academy of Agricultural, Jiamusi, People's Republic of China
| | - Weiyao Zhang
- Suihua Branch of Heilongjiang Academy of Agricultural, Suihua, China, Crop Breeding Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Zhengong Yin
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
- Suihua Branch of Heilongjiang Academy of Agricultural, Suihua, China, Crop Breeding Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People's Republic of China
| | - Candong Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
- Jiamusi Branch of Heilongjiang Academy of Agricultural, Jiamusi, People's Republic of China
| | - Zhenbang Hu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Zhaoming Qi
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Chunyan Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| | - Dawei Xin
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
16
|
Lin E, Zhuang H, Yu J, Liu X, Huang H, Zhu M, Tong Z. Genome survey of Chinese fir (Cunninghamia lanceolata): Identification of genomic SSRs and demonstration of their utility in genetic diversity analysis. Sci Rep 2020; 10:4698. [PMID: 32170167 PMCID: PMC7070021 DOI: 10.1038/s41598-020-61611-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/27/2020] [Indexed: 12/22/2022] Open
Abstract
Chinese fir (Cunninghamia lanceolata) is an important coniferous species that accounts for 20–30% of the total commercial timber production in China. Though traditional breeding of Chinese fir has achieved remarkable success, molecular-assisted breeding has made little progress due to limited availability of genomic information. In this study, a survey of Chinese fir genome was performed using the Illumina HiSeq Xten sequencing platform. K-mer analysis indicated that Chinese fir has a large genome of approximately 11.6 Gb with 74.89% repetitive elements and is highly heterozygous. Meanwhile, its genome size was estimated to be 13.2 Gb using flow cytometry. A total of 778.02 Gb clean reads were assembled into 10,982,272 scaffolds with an N50 of 1.57 kb. In total, 362,193 SSR loci were detected with a frequency of 13.18 kb. Dinucleotide repeats were the most abundant (up to 73.6% of the total SSRs), followed by trinucleotide and tetranucleotide repeats. Forty-six polymorphic pairs were developed, and 298 alleles were successfully amplified from 199 Chinese fir clones. The average PIC value was 0.53, indicating that the identified genomic SSR (gSSR) markers have a high degree of polymorphism. In addition, these breeding resources were divided into three groups, and a limited gene flow existed among these inferred groups.
Collapse
Affiliation(s)
- Erpei Lin
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Hebi Zhuang
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jinjian Yu
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Xueyu Liu
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Huahong Huang
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| | - Muyuan Zhu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zaikang Tong
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A & F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
17
|
Ghafari H, Hassanpour H, Jafari M, Besharat S. Physiological, biochemical and gene-expressional responses to water deficit in apple subjected to partial root-zone drying (PRD). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:333-346. [PMID: 32004917 DOI: 10.1016/j.plaphy.2020.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Water scarcity is one of the major factors limiting apple production. Partial root-zone drying (PRD) is a water-saving irrigation technique necessary to improve the efficiency of irrigation techniques to optimize the amount of fruit produced with the volume of water used. The apple trees cv. Red Delicious were exposed to four treatments, including (1) control with 100% of the crop evapotranspiration (ETc) needs; (2) alternate partial root-zone drying with 75% of the ETc needs (APRD75); (3) fixed partial root-zone drying with 75% of the ETc needs (FPRD75); (4) fixed partial root-zone irrigation with 50% of the ETc needs (FPRD50) in a semiarid region of Iran. Results showed that leaf water potential (Ψ leaf), and chlorophyll were significantly decreased in FPRD50 compared to control and other PRD treatments. APRD75 and FPRD75 treatments significantly enhanced (+) -catechin (+C), epicatechin (EC), chlorogenic acid (CGA), caffeic acid (CA) as well as increased water use efficiency (WUE) (by 30-40% compared to control) without significant reduction of yield. PRD reduced gibberellic acid (GA3) and kinetin, while, increased the abscisic acid (ABA) and salicylic acid (SA) levels. The abiotic stress-responsive transcription factors (TFs) MdoMYB121, MdoMYB155, MdbZIP2, and MdbZIP48 were highly expressed in all PRD treatments. Our results demonstrated that APRD75 and FPRD75 have the potential to stimulate antioxidant defense mechanisms, hormonal signaling pathways, and expression of drought-tolerance TFs to improve WUE while maintaining crop yield. Therefore, APRD75andFPRD75 with water savings as compared to full irrigation might be a suitable strategy for irrigation apple trees under water scarcity.
Collapse
Affiliation(s)
- Hajar Ghafari
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran
| | - Hamid Hassanpour
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran.
| | - Morad Jafari
- Department of Plant Breeding and Biotechnology, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran
| | - Sina Besharat
- Department of Water Engineering, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
18
|
De La Torre AR, Piot A, Liu B, Wilhite B, Weiss M, Porth I. Functional and morphological evolution in gymnosperms: A portrait of implicated gene families. Evol Appl 2020; 13:210-227. [PMID: 31892953 PMCID: PMC6935586 DOI: 10.1111/eva.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. Morphological and functional divergence between the two major seed plant clades involved significant changes in their reproductive biology, water-conducting systems, secondary metabolism, stress defense mechanisms, and small RNA-mediated epigenetic silencing. The relatively recent sequencing of several gymnosperm genomes and the development of new genomic resources have enabled whole-genome comparisons within gymnosperms, and between angiosperms and gymnosperms. In this paper, we aim to understand how genes and gene families have contributed to the major functional and morphological differences in gymnosperms, and how this information can be used for applied breeding and biotechnology. In addition, we have analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resistance (PDR) gene family with a wide range of functionalities in plants' interaction with their environment including defense mechanisms. Some of the genes reviewed here are newly studied members of gene families that hold potential for biotechnological applications related to commercial and pharmacological value. Some members of conifer gene families can also be exploited for their potential in phytoremediation applications.
Collapse
Affiliation(s)
| | - Anthony Piot
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| | - Bobin Liu
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
- College of ForestryFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | | | - Matthew Weiss
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
| | - Ilga Porth
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| |
Collapse
|
19
|
De novo transcriptome sequencing of radish (Raphanus sativus L.) fleshy roots: analysis of major genes involved in the anthocyanin synthesis pathway. BMC Mol Cell Biol 2019; 20:45. [PMID: 31646986 PMCID: PMC6813128 DOI: 10.1186/s12860-019-0228-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
Background The HongXin radish (Raphanus sativus L.), which contains the natural red pigment (red radish pigment), is grown in the Fuling district of Chongqing City. However, the molecular mechanisms underlying anthocyanin synthesis for the formation of natural red pigment in the fleshy roots of HongXin radish are not well studied. Results De novo transcriptome of HX-1 radish, as well as that of the advanced inbred lines HX-2 and HX-3 were characterized using next generation sequencing (NGS) technology. In total, approximately 66.22 million paired-end reads comprising 34, 927 unigenes (N50 = 1, 621 bp) were obtained. Based on sequence similarity search with known proteins, total of 30, 127 (about 86.26%) unigenes were identified. Additionally, functional annotation and classification of these unigenes indicated that most of the unigenes were predominantly enriched in the metabolic process-related terms, especially for the biosynthetic pathways of secondary metabolites. Moreover, majority of the anthocyanin biosynthesis-related genes (ABRGs) involved in the regulation of anthocyanin biosynthesis were identified by targeted search for their annotation. Subsequently, the expression of 15 putative ABRGs involved in the anthocyanin synthesis-related pathways were validated using quantitative real-time polymerase chain reaction (qRT-PCR). Of those, RsPAL2, RsCHS-B2, RsDFR1, RsDFR2, RsFLS, RsMT3 and RsUFGT73B2-like were identified significantly associated with anthocyanin biosynthesis. Especially for RsDFR1, RsDFR2 and RsFLS, of those, RsDFR1 and RsDFR2 were highest enriched in the HX-3 and WG-3, but RsFLS were down-regulated in HX-3 and WG-3. We proposed that the transcripts of RsDFR1, RsDFR2 and RsFLS might be act as key regulators in anthocyanin biosynthesis pathway. Conclusions The assembled radish transcript sequences were analysed to identify the key ABRGs involved in the regulation of anthocyanin biosynthesis. Additionally, the expression patterns of candidate ABRGs involved in the anthocyanin biosynthetic pathway were validated by qRT-PCR. We proposed that the transcripts of RsDFR1, RsDFR2 and RsFLS might be acted as key regulators in anthocyanin biosynthesis pathway. This study will enhance our understanding of the biosynthesis and metabolism of anthocyanin in radish.
Collapse
|
20
|
Effects of Sucrose, Boric Acid, pH, and Incubation Time on in Vitro Germination of Pollen and Tube Growth of Chinese fir (Cunnighamial lanceolata L.). FORESTS 2019. [DOI: 10.3390/f10020102] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In vitro pollen germination provides a novel approach and strategy to accelerate genetic improvement of tree breeding. Studies about pollen germination and tube growth of Chinese fir are limited. Therefore, this study aimed to investigate the effects of sucrose, boric acid, pH, and time of incubation on pollen germination and tube growth. Pollen from 9 clones were selected. In vitro germination was performed in basic media as control, and in different concentrations of sucrose (0, 10 and 15%), boric acid (0.01, 0.1 and 0.2%), and pH levels (4.5, 5 and 7). Pollen germination rates and tube growth were recorded periodically at 1, 12, 24, and 48 h. The results showed that sucrose imposes significant effects on pollen germination and tube growth. The effects are most obvious at concentration of 15%. Boric acid significantly promoted germination and tube growth. The promotion was most notable in lower concentration of 0.01%. The media adjusted to pH 7.0 boosted the germination and pollen tube growth. The optimum time of incubation was 24 and 48 h for pollen germination and tube growth, respectively. Sucrose, pH, and time of incubation were positively correlated, whereas boric acid negatively correlated with pollen germination and tube growth. This study provided experimental evidences for selecting viable pollens for Chinese fir breeding.
Collapse
|
21
|
Li C, Xuan L, He Y, Wang J, Zhang H, Ying Y, Wu A, Bacic A, Zeng W, Song L. Molecular Mechanism of Xylogenesis in Moso Bamboo ( Phyllostachys edulis) Shoots during Cold Storage. Polymers (Basel) 2018; 11:E38. [PMID: 30960022 PMCID: PMC6401726 DOI: 10.3390/polym11010038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 01/27/2023] Open
Abstract
A bamboo shoot is the immature stem of the woody grass and a nutritious and popular vegetable in East Asia. However, it undergoes a rapid xylogenesis process right after harvest, even being stored in a cold chamber. To investigate the molecular regulation mechanisms of xylogenesis in Moso bamboo (Phyllostachys edulis) shoots (MBSes) during cold storage, the measurement of cell wall polymers (cellulose, hemicellulose, and lignin) and related enzyme activities (phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), peroxidase (POD), and xylan xylosyltransferase (XylT)) and transcriptomic analysis were performed during cold storage. It was noticed that cellulose and lignin contents increased, while hemicellulose content exhibited a downward trend. PAL, CAD, and POD activity presented an upward trend generally in MBS when stored at 4 °C for 16 days. XylT activity showed a descending trend during the stages of storage, but slightly increased during the 8th to 12th days after harvest at 4 °C. Transcriptomic analysis identified 72, 28, 44, and 31 functional unigenes encoding lignin, cellulose, xylan biosynthesis enzymes, and transcription factors (TFs), respectively. Many of these secondary cell wall (SCW)-related genes showed higher expression levels in the later period of cold storage. Quantitative RT-PCR analysis of the selected genes conformed to the expression pattern. Our study provides a comprehensive analysis of MBS secondary wall biosynthesis at the molecular level during the cold storage process. The results give insight into the xylogenesis process of this economically important vegetable and shed light on solving this problem of the post-harvest industry.
Collapse
Affiliation(s)
- Changtao Li
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| | - Lingling Xuan
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| | - Yuming He
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| | - Jie Wang
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| | - Hui Zhang
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| | - Yeqing Ying
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry, South China Agricultural University, Guangzhou 510642, China.
| | - Antony Bacic
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
- ARC Center of Excellence in Plant Cell Walls, School of BioSciences, the University of Melbourne, Parkville VIC 3010, Australia.
- La Trobe Institute of Food and Agriculture, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Wei Zeng
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
- ARC Center of Excellence in Plant Cell Walls, School of BioSciences, the University of Melbourne, Parkville VIC 3010, Australia.
| | - Lili Song
- Sino-Australia Plant Cell Wall Research Centre, The State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, China.
| |
Collapse
|
22
|
Ali M, Hussain RM, Rehman NU, She G, Li P, Wan X, Guo L, Zhao J. De novo transcriptome sequencing and metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis in Blue Anise Sage (Salvia guaranitica L.). DNA Res 2018; 25:597-617. [PMID: 30188980 PMCID: PMC6289780 DOI: 10.1093/dnares/dsy028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/25/2018] [Indexed: 02/04/2023] Open
Abstract
Many terpenoid compounds have been extracted from different tissues of Salvia guaranitica. However, the molecular genetic basis of terpene biosynthesis pathways is virtually unknown. In this study, approximately 4 Gb of raw data were generated from the transcriptome of S. guaranitica leaves using Illumina HiSeq 2000 sequencing. After filtering and removing the adapter sequences from the raw data, the number of reads reached 32 million, comprising 186 million of high-quality nucleotide bases. A total of 61,400 unigenes were assembled de novo and annotated for establishing a valid database for studying terpenoid biosynthesis. We identified 267 unigenes that are putatively involved in terpenoid metabolism (including, 198 mevalonate and methyl-erythritol phosphate (MEP) pathways, terpenoid backbone biosynthesis genes and 69 terpene synthases genes). Moreover, three terpene synthase genes were studied for their functions in terpenoid biosynthesis by using transgenic Arabidopsis; most transgenic Arabidopsis plants expressing these terpene synthetic genes produced increased amounts of terpenoids compared with wild-type control. The combined data analyses from the transcriptome and metabolome provide new insights into our understanding of the complex metabolic genes in terpenoid-rich blue anise sage, and our study paves the way for the future metabolic engineering of the biosynthesis of useful terpene compounds in S. guaranitica.
Collapse
Affiliation(s)
- Mohammed Ali
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Egyptian Deserts Gene Bank, North Sinai Research Station, Department of Plant Genetic Resources, Desert Research Center, Egypt
| | - Reem M Hussain
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Naveed Ur Rehman
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guangbiao She
- State Key Laboratories of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratories of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratories of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- State Key Laboratories of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
23
|
Vikashini B, Shanthi A, Ghosh Dasgupta M. Identification and expression profiling of genes governing lignin biosynthesis in Casuarina equisetifolia L. Gene 2018; 676:37-46. [PMID: 30201104 DOI: 10.1016/j.gene.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022]
Abstract
Casuarina equisetifolia L. is an important multi-purpose, fast growing and widely planted tree species native to tropical and subtropical coastlines of Australia, Southeast Asia, Malaysia, Melanesia, Polynesia and New Caledonia. It is a nitrogen-fixing tree mainly used for charcoal making, construction poles, landscaping, timber, pulp, firewood, windbreaks, shelterbelts, soil erosion and sand dune stabilization. Casuarina wood is presently used for paper and pulp production. Raw material with reduced lignin is highly preferred to increase the pulp yield. Hence, understanding the molecular regulation of wood formation in this tree species is vital for selecting industrially suitable phenotypes for breeding programs. The lignin biosynthetic pathway has been extensively studied in tree species like Eucalypts, poplars, pines, Picea, Betula and Acacia sp. However, studies on wood formation at molecular level is presently lacking in casuarinas. Hence, in the present study, the transcriptome of the developing secondary tissues of 15 years old Casuarina equiseitfolia subsp. equisetifolia was sequenced, de novo assembled, annotated and mapped to functional pathways. Transcriptome sequencing generated a total of 26,985 transcripts mapped to 31 pathways. Mining of the annotated data identified nine genes involved in lignin biosynthesis pathway and relative expression of the transcripts in four tissues including scale-like leaves, needle-like brachlets, wood and root were documented. The expression of CeCCR1 and CeF5H were found to be significantly high in wood tissues, while maximum expression of CeHCT was documented in stem. Additionally, CeTUBA and CeH2A were identified as the most stable reference transcript for normalization of qRT-PCR data in C. equisetifolia. The present study is the first wood genomic resource in C. equisetifolia, which will be valuable for functional genomics research in this genus.
Collapse
Affiliation(s)
| | - Arunachalam Shanthi
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore 641002, Tamil Nadu, India
| | - Modhumita Ghosh Dasgupta
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore 641002, Tamil Nadu, India.
| |
Collapse
|
24
|
Cai M, Huang H, Ni F, Tong Z, Lin E, Zhu M. RNA-Seq analysis of differential gene expression in Betula luminifera xylem during the early stages of tension wood formation. PeerJ 2018; 6:e5427. [PMID: 30155351 PMCID: PMC6108316 DOI: 10.7717/peerj.5427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Background Betula luminifera H. Winkler, which is widely distributed in southern China, is an economically important broadleaf tree species. However, little genomic information of B. luminifera is available, and little is known about the molecular mechanisms of wood formation in this species. Meanwhile, few efforts have focused on investigating the early transcriptional changes during tension wood formation in woody plants. Results A reference transcriptome dataset was first generated containing 45,700 Unigenes, and 35,135 (76.9%) Unigenes were annotated by a BLAST similarity search against four public databases. Then, based on an anatomical investigation, the global gene expression changes during the early stages of tension wood formation were analyzed. Gene expression profiling showed that a total of 13,273 Unigenes were differentially regulated during the early stages of tension wood formation. Most genes involved in cellulose and lignin biosynthesis were highlighted to reveal their biological importance in tension wood formation. In addition, the transcription levels of many genes involved in the auxin response pathway were significantly changed during the early stages of tension wood formation. Furthermore, 18 TFs co-expressed with key enzymes of cellulose synthesis were identified. Conclusions Our results revealed the transcriptional changes associated with TW formation and identified potential key genes in the regulation of this process. These results will help to dissect the molecular mechanism of wood formation and provide key candidate genes for marker-assisted selection in B. luminifera.
Collapse
Affiliation(s)
- Miaomiao Cai
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Fei Ni
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Zaikang Tong
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Erpei Lin
- The State Key Laboratory of Subtropical Silviculture, Institute of Biotechnology, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Muyuan Zhu
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Transcriptome analysis provides insights into xylogenesis formation in Moso bamboo (Phyllostachys edulis) shoot. Sci Rep 2018; 8:3951. [PMID: 29500441 PMCID: PMC5834459 DOI: 10.1038/s41598-018-21766-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/07/2018] [Indexed: 01/21/2023] Open
Abstract
Maturation-related changes in cell wall composition and the molecular mechanisms underlying cell wall changes were investigated from the apical, middle and basal segments in moso bamboo shoot (MBS). With maturation extent from apical to basal regions in MBS, lignin and cellulose content increased, whereas heteroxylan exhibited a decreasing trend. Activities of phenylalanine amonnialyase (PAL), cinnamyl alcohol dehydrogenase (CAD) and cinnamate-4-hydroxylase (C4H), which are involved in lignin biosynthesis, increased rapidly from the apex to the base sections. The comparative transcriptomic analysis was carried out to identify some key genes involved in secondary cell walls (SCW) formation underlying the cell wall compositions changes including 63, 8, 18, and 31 functional unigenes encoding biosynthesis of lignin, cellulose, xylan and NAC-MYB-based transcription factors, respectively. Genes related to secondary cell wall formation and lignin biosynthesis had higher expression levels in the middle and basal segments compared to those in the apical segments. Furthermore, the expression profile of PePAL gene showed positive relationships with cellulose-related gene PeCESA4, xylan-related genes PeIRX9 and PeIRX10. Our results indicated that lignification occurred in the more mature middle and basal segments in MBS at harvest while lignification of MBS were correlated with higher expression levels of PeCESA4, PeIRX9 and PeIRX10 genes.
Collapse
|
26
|
Zhou X, Zheng R, Liu G, Xu Y, Zhou Y, Laux T, Zhen Y, Harding SA, Shi J, Chen J. Desiccation Treatment and Endogenous IAA Levels Are Key Factors Influencing High Frequency Somatic Embryogenesis in Cunninghamia lanceolata (Lamb.) Hook. FRONTIERS IN PLANT SCIENCE 2017; 8:2054. [PMID: 29259612 PMCID: PMC5723420 DOI: 10.3389/fpls.2017.02054] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/16/2017] [Indexed: 05/12/2023]
Abstract
Cunninghamia lanceolata (Lamb.) Hook (Chinese fir) is an important tree, commercially and ecologically, in southern China. The traditional regenerating methods are based on organogenesis and cutting propagation. Here, we report the development of a high-frequency somatic embryogenesis (SE) regeneration system synchronized via a liquid culture from immature zygotic embryos. Following synchronization, PEM II cell aggregates were developmentally equivalent in appearance to cleaved zygotic embryos. Embryo and suspensor growth and subsequent occurrence of the apical and then the cotyledonary meristems were similar for zygotic and SE embryo development. However, SE proembryos exhibited a more reddish coloration than zygotic proembryos, and SE embryos were smaller than zygotic embryos. Mature somatic embryos gave rise to plantlets on hormone-free medium. For juvenile explants, low concentrations of endogenous indole-3-acetic acid in initial explants correlated with improved proembryogenic mass formation, and high SE competency. Analysis of karyotypes and microsatellites detected no major genetic variation in the plants regenerated via SE, and suggest a potential in the further development of this system as a reliable methodology for true-to-type seedling production. Treatment with polyethylene glycol (PEG) and abscisic acid (ABA) were of great importance to proembryo formation and complemented each other. ABA assisted the growth of embryonal masses, whereas PEG facilitated the organization of the proembryo-like structures. SOMATIC EMBRYOGENESIS RECEPTOR KINASE SERK) and the WUSCHEL homeobox (WOX) transcription factor served as molecular markers during early embryogenesis. Our results show that ClSERKs are conserved and redundantly expressed during SE. SERK and WOX transcript levels were highest during development of the proembryos and lowest in developed embryos. ClWOX13 expression correlates with the critical transition from proembryogenic masses to proembryos. Both SERK and WOX expression reveal their applicability in Chinese fir as markers of early embryogenesis. Overall, the findings provided evidence for the potential of this system in high fidelity Chinese fir seedlings production. Also, SE modification strategies were demonstrated and could be applied in other conifer species on the basis of our hormonal, morphological and molecular analyses.
Collapse
Affiliation(s)
- Xiaohong Zhou
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Renhua Zheng
- The Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, State Forestry Administration Engineering Research Center of Chinese Fir, Fujian Academy of Forestry, Fuzhou, China
| | - Guangxin Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yang Xu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Yanwei Zhou
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Thomas Laux
- Centre for Biological Signaling Studies, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Yan Zhen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Scott A. Harding
- School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
27
|
Ali M, Li P, She G, Chen D, Wan X, Zhao J. Transcriptome and metabolite analyses reveal the complex metabolic genes involved in volatile terpenoid biosynthesis in garden sage (Salvia officinalis). Sci Rep 2017; 7:16074. [PMID: 29167468 PMCID: PMC5700130 DOI: 10.1038/s41598-017-15478-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022] Open
Abstract
A large number of terpenoid compounds have been extracted from different tissues of S. officinalis. However, the molecular genetic basis of terpene biosynthesis pathways is virtually unknown. In this study, approximately 6.6 Gb of raw data were generated from the transcriptome of S. officinalis leaves using Illumina HiSeq 2000 sequencing. After filtering and removing the adapter sequences from the raw data, the number of reads reached 21 million, comprising 98 million of high-quality nucleotide bases. 48,671 unigenes were assembled de novo and annotated for establishing a valid database for studying terpenoid biosynthesis. We identified 135 unigenes that are putatively involved in terpenoid metabolism, including 70 mevalonate and methyl-erythritol phosphate pathways, terpenoid backbone biosynthesis genes, and 65 terpene synthase genes. Moreover, five terpene synthase genes were studied for their functions in terpenoid biosynthesis by using transgenic tobacco; most transgenic tobacco plants expressing these terpene synthetic genes produced increased amounts of terpenoids compared with wild-type control. The combined data analyses from the transcriptome and metabolome provide new insights into our understanding of the complex metabolic genes in terpenoid-rich sage, and our study paves the way for the future metabolic engineering of the biosynthesis of useful terpene compounds in S. officinalis.
Collapse
Affiliation(s)
- Mohammed Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Penghui Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Daofu Chen
- Wuhan Doublehelix Biology Science and Technology Co. Ltd, Wuhan, 430070, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
28
|
Transcriptome Characterization of the Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook.) and Expression Analysis of Candidate Phosphate Transporter Genes. FORESTS 2017. [DOI: 10.3390/f8110420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing. Mol Genet Genomics 2017; 292:1151-1163. [PMID: 28667404 DOI: 10.1007/s00438-017-1338-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 06/19/2017] [Indexed: 01/23/2023]
Abstract
Radish is an important root vegetable crop with high nutritional, economic, and medicinal value. Lignin is an important secondary metabolite possessing a great effect on plant growth and product quality. To date, lignin biosynthesis-related genes have been identified in some important plant species. However, little information on characterization of critical genes involved in plant lignin biosynthesis is available in radish. In this study, a total of 71,148 transcripts sequences were obtained from radish root, of which 66 assembled unigenes and ten candidate genes were identified to be involved in lignin monolignol biosynthesis. Full-length cDNA sequences of seven randomly selected genes were isolated and sequenced from radish root, and the assembled unigenes covered more than 80% of their corresponding cDNA sequences. Moreover, the lignin content gradually accumulated in leaf during the developmental stages, and it increased from pre-cortex to cortex splitting stage, followed by a decrease at thickening stage and then increased at mature stage in root. RT-qPCR analysis revealed that all these genes except RsF5H exhibited relatively low expression level in root at thickening stage. The expression profiles of Rs4CL5, RsCCoAOMT1, and RsCOMT genes were consistent with the changes of root lignin content, implying that these candidate genes may play important roles in lignin formation in radish root. These findings would provide valuable information for identification of lignin biosynthesis-related genes and facilitate dissection of molecular mechanism underlying lignin biosynthesis in radish and other root vegetable crops.
Collapse
|
30
|
Yu J, Yan L, Chen Z, Li H, Ying S, Zhu H, Shi Z. Investigating right ovary degeneration in chick embryos by transcriptome sequencing. J Reprod Dev 2017; 63:295-303. [PMID: 28413176 PMCID: PMC5481632 DOI: 10.1262/jrd.2016-134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In asymmetric chick gonads, the left and right female gonads undergo distinct programs during development, generating a functional ovary on the left side only. Despite some progress being made in recent years, the mechanisms of molecular regulation remain incompletely understood, and little genomic information is available regarding the degeneration of the right ovary in the chick embryo testis. In this study, we performed transcriptome sequencing to investigate differentially expressed genes in the left and right ovaries and gene functions at two critical time points; embryonic days 6 (E6) and 10 (E10). Using high-throughput RNA-sequencing technologies, 539 and 1046 genes were identified as being significantly differentially expressed between 6R-VS-6L and 10R-VS-10L. Gene ontology analysis of the differentially expressed genes revealed enrichment in functional pathways. Among these, candidate genes associated with degeneration of the right ovary in the chick embryo were identified. Identification of a pathway involved in ovarian degeneration provides an important resource for the further study of its molecular mechanisms and functions.
Collapse
Affiliation(s)
- Jianning Yu
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Leyan Yan
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhe Chen
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hui Li
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shijia Ying
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhendan Shi
- Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
31
|
Khan S, Upadhyay S, Khan F, Tandon S, Shukla RK, Ghosh S, Gupta V, Banerjee S, Ur Rahman L. Comparative transcriptome analysis reveals candidate genes for the biosynthesis of natural insecticide in Tanacetum cinerariifolium. BMC Genomics 2017; 18:54. [PMID: 28068903 PMCID: PMC5220608 DOI: 10.1186/s12864-016-3409-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/10/2016] [Indexed: 11/26/2022] Open
Abstract
Background Pyrethrins are monoterpenoids and consist of either a chrysanthemic acid or pyrethric acid with a rethrolone moiety. Natural pyrethrins are safe and eco-friendly while possessing strong insecticidal properties. Despite such advantages of commercial value coming with the eco-friendly tag, most enzymes/genes involved in the pyrethrin biosynthesis pathway remain unidentified and uncharacterized. Since the flowers of Tanacetum cinerariifolium are rich in major pyrethrins, next generation transcriptome sequencing was undertaken to compare the flowers and the leaves of the plant de novo to identify differentially expressed transcripts and ascertain which among them might be involved in and responsible for the differential accumulation of pyrethrins in T. cinerariifolium flowers. Results In this first tissue specific transcriptome analysis of the non-model plant T. cinerariifolium, a total of 23,200,000 and 28,500,110 high quality Illumina next generation sequence reads, with a length of 101 bp, were generated for the flower and leaf tissue respectively. After functional enrichment analysis and GO based annotation using public protein databases such as UniRef, PFAM, SMART, KEGG and NR, 4443 and 8901 unigenes were identified in the flower and leaf tissue respectively. These could be assigned to 13344 KEGG pathways and the pyrethrin biosynthesis contextualized. The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway was involved in the biosynthesis of acid moiety of pyrethrin and this pathway predominated in the flowers as compared to the leaves. However, enzymes related to oxylipin biosynthesis were found predominantly in the leaf tissue, which suggested that major steps of pyrethrin biosynthesis occurred in the flowers. Conclusions Transcriptome comparison between the flower and leaf tissue of T. cinerariifolium provided an elaborate list of tissue specific transcripts that was useful in elucidating the differences in the expression of the biosynthetic pathways leading to differential presence of pyrethrin in the flowers. The information generated on genes, pathways and markers related to pyrethrin biosynthesis in this study will be helpful in enhancing the production of these useful compounds for value added breeding programs. Related proteome comparison to overlay our transcriptome comparison can generate more relevant information to better understand flower specific accumulation of secondary metabolites in general and pyrethrin accumulation in particular. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3409-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sana Khan
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | - Swati Upadhyay
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | - Feroz Khan
- Metabolic and Structural Biology Department, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | - Sudeep Tandon
- Process Chemistry and Chemical Engineering Department, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | - Rakesh Kumar Shukla
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | - Vikrant Gupta
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | - Suchitra Banerjee
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | - Laiq Ur Rahman
- Plant Biotechnology Division, Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India.
| |
Collapse
|
32
|
Wu S, Lei J, Chen G, Chen H, Cao B, Chen C. De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissues. FRONTIERS IN PLANT SCIENCE 2017; 8:92. [PMID: 28228764 PMCID: PMC5296335 DOI: 10.3389/fpls.2017.00092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 01/16/2017] [Indexed: 05/18/2023]
Abstract
Chinese kale, a vegetable of the cruciferous family, is a popular crop in southern China and Southeast Asia due to its high glucosinolate content and nutritional qualities. However, there is little research on the molecular genetics and genes involved in glucosinolate metabolism and its regulation in Chinese kale. In this study, we sequenced and characterized the transcriptomes and expression profiles of genes expressed in 11 tissues of Chinese kale. A total of 216 million 150-bp clean reads were generated using RNA-sequencing technology. From the sequences, 98,180 unigenes were assembled for the whole plant, and 49,582~98,423 unigenes were assembled for each tissue. Blast analysis indicated that a total of 80,688 (82.18%) unigenes exhibited similarity to known proteins. The functional annotation and classification tools used in this study suggested that genes principally expressed in Chinese kale, were mostly involved in fundamental processes, such as cellular and molecular functions, the signal transduction, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in various tissues of Chinese kale. A large number of candidate genes involved in glucosinolate metabolism and its regulation were identified, and the expression patterns of these genes were analyzed. We found that most of the genes involved in glucosinolate biosynthesis were highly expressed in the root, petiole, and in senescent leaves. The expression patterns of ten glucosinolate biosynthetic genes from RNA-seq were validated by quantitative RT-PCR in different tissues. These results provided an initial and global overview of Chinese kale gene functions and expression activities in different tissues.
Collapse
Affiliation(s)
- Shuanghua Wu
- Department of Vegetable Science, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Jianjun Lei
- Department of Vegetable Science, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Guoju Chen
- Department of Vegetable Science, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Hancai Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Bihao Cao
- Department of Vegetable Science, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- *Correspondence: Bihao Cao
| | - Changming Chen
- Department of Vegetable Science, College of Horticulture, South China Agricultural UniversityGuangzhou, China
- Changming Chen
| |
Collapse
|
33
|
Hao C, Xia Z, Fan R, Tan L, Hu L, Wu B, Wu H. De novo transcriptome sequencing of black pepper (Piper nigrum L.) and an analysis of genes involved in phenylpropanoid metabolism in response to Phytophthora capsici. BMC Genomics 2016; 17:822. [PMID: 27769171 PMCID: PMC5075214 DOI: 10.1186/s12864-016-3155-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Piper nigrum L., or "black pepper", is an economically important spice crop in tropical regions. Black pepper production is markedly affected by foot rot disease caused by Phytophthora capsici, and genetic improvement of black pepper is essential for combating foot rot diseases. However, little is known about the mechanism of anti- P. capsici in black pepper. The molecular mechanisms underlying foot rot susceptibility were studied by comparing transcriptome analysis between resistant (Piper flaviflorum) and susceptible (Piper nigrum cv. Reyin-1) black pepper species. RESULTS 116,432 unigenes were acquired from six libraries (three replicates of resistant and susceptible black pepper samples), which were integrated by applying BLAST similarity searches and noted by adopting Kyoto Encyclopaedia of Genes and Gene Ontology (GO) genome orthology identifiers. The reference transcriptome was mapped using two sets of digital gene expression data. Using GO enrichment analysis for the differentially expressed genes, the majority of the genes associated with the phenylpropanoid biosynthesis pathway were identified in P. flaviflorum. In addition, the expression of genes revealed that after susceptible and resistant species were inoculated with P. capsici, the majority of genes incorporated in the phenylpropanoid metabolism pathway were up-regulated in both species. Among various treatments and organs, all the genes were up-regulated to a relatively high degree in resistant species. Phenylalanine ammonia lyase and peroxidase enzyme activity increased in susceptible and resistant species after inoculation with P. capsici, and the resistant species increased faster. The resistant plants retain their vascular structure in lignin revealed by histochemical analysis. CONCLUSIONS Our data provide critical information regarding target genes and a technological basis for future studies of black pepper genetic improvements, including transgenic breeding.
Collapse
Affiliation(s)
- Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533 China
| | - Zhiqiang Xia
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101 China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533 China
| | - Lehe Tan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533 China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533 China
| | - Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533 China
| | - Baoduo Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533 China
| | - Huasong Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, Hainan 571533 China
- Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533 China
- Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, Hainan 571533 China
| |
Collapse
|
34
|
Xu X, Yin Z, Chen J, Wang X, Peng D, Shangguan X. De Novo Transcriptome Assembly and Annotation of the Leaves and Callus of Cyclocarya Paliurus (Bata1) Iljinskaja. PLoS One 2016; 11:e0160279. [PMID: 27483006 PMCID: PMC4970709 DOI: 10.1371/journal.pone.0160279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022] Open
Abstract
Cyclocarya Paliurus (Bata1) Iljinskaja contains various bioactive secondary metabolites especially in leaves, such as triterpenes, flavonoids, polysaccharides and alkaloids, and its leaves are widely used as an hyperglycemic tea in China. In the present paper, we sequenced the transcriptome of the leaves and callus of Cyclocarya Paliurus using Illumina Hiseq 4000 platform. After sequencing and de novo assembly, a total of 65,654 unigenes were generated with an N50 length of 1,244bp. Among them, 35,041 (53.37%) unigenes were annotated in NCBI Non-Redundant database, 19,453 (29.63%) unigenes were classified into Gene Ontology (GO) database, and 7,259 (11.06%) unigenes were assigned to Clusters of Orthologous Group (COG) categories. Furthermore, 11,697 (17.81%) unigenes were mapped onto 335 pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG), among which 1,312 unigenes were identified to be involved in biosynthesis of secondary metabolites. In addition, a total of 11,247 putative simple sequence repeats (SSRs) were detected. This transcriptome dataset provides a comprehensive sequence resource for gene expression profiling, genetic diversity, evolution and further molecular genetics research on Cyclocarya Paliurus.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food; Jiangxi Agricultural University, Nanchang 330045, China
- College of Food Science and engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Food; Jiangxi Agricultural University, Nanchang 330045, China
- College of Food Science and engineering, Jiangxi Agricultural University, Nanchang 330045, China
- * E-mail:
| | - Jiguang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food; Jiangxi Agricultural University, Nanchang 330045, China
- College of Food Science and engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoqiang Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Dayong Peng
- Jiangxi Key Laboratory of Natural Products and Functional Food; Jiangxi Agricultural University, Nanchang 330045, China
| | - Xinchen Shangguan
- Jiangxi Key Laboratory of Natural Products and Functional Food; Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
35
|
Bao W, Qu Y, Shan X, Wan Y. Screening and Validation of Housekeeping Genes of the Root and Cotyledon of Cunninghamia lanceolata under Abiotic Stresses by Using Quantitative Real-Time PCR. Int J Mol Sci 2016; 17:ijms17081198. [PMID: 27483238 PMCID: PMC5000596 DOI: 10.3390/ijms17081198] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/10/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
Cunninghamia lanceolata (Chinese fir) is a fast-growing and commercially important conifer of the Cupressaceae family. Due to the unavailability of complete genome sequences and relatively poor genetic background information of the Chinese fir, it is necessary to identify and analyze the expression levels of suitable housekeeping genes (HKGs) as internal reference for precise analysis. Based on the results of database analysis and transcriptome sequencing, we have chosen five candidate HKGs (Actin, GAPDH, EF1a, 18S rRNA, and UBQ) with conservative sequences in the Chinese fir and related species for quantitative analysis. The expression levels of these HKGs in roots and cotyledons under five different abiotic stresses in different time intervals were measured by qRT-PCR. The data were statistically analyzed using the following algorithms: NormFinder, BestKeeper, and geNorm. Finally, RankAggreg was applied to merge the sequences generated from three programs and rank these according to consensus sequences. The expression levels of these HKGs showed variable stabilities under different abiotic stresses. Among these, Actin was the most stable internal control in root, and GAPDH was the most stable housekeeping gene in cotyledon. We have also described an experimental procedure for selecting HKGs based on the de novo sequencing database of other non-model plants.
Collapse
Affiliation(s)
- Wenlong Bao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Yanli Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Xiaoyi Shan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
36
|
Zhang Y, Han X, Sang J, He X, Liu M, Qiao G, Zhuo R, He G, Hu J. Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases. PeerJ 2016; 4:e2097. [PMID: 27330860 PMCID: PMC4906661 DOI: 10.7717/peerj.2097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Background.Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] is one of the most important native tree species for timber production in southern China. An understanding of overall fast growing stage, stem growth stage and senescence stage cambium transcriptome variation is lacking. We used transcriptome sequencing to identify the repertoire of genes expressed during development of xylem tissue in Chinese fir, aiming to delineate the molecular mechanisms of wood formation. Results. We carried out transcriptome sequencing at three different cultivation ages (7Y, 15Y and 21Y) generating 68.71 million reads (13.88 Gbp). A total of 140,486 unigenes with a mean size of 568.64 base pairs (bp) were obtained via de novo assembly. Of these, 27,427 unigenes (19.52%) were further annotated by comparison to public protein databases. A total of 5,331 (3.79%) unigenes were mapped into 118 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Differentially expressed genes (DEG) analysis identified 3, 16 and 5,899 DEGs from the comparison of 7Y vs. 15Y, 7Y vs. 21Y and 15Y vs. 21Y, respectively, in the immature xylem tissues, including 2,638 significantly up-regulated and 3,280 significantly down-regulated genes. Besides, five NAC transcription factors, 190 MYB transcription factors, and 34 WRKY transcription factors were identified respectively from Chinese fir transcriptome. Conclusion. Our results revealed the active transcriptional pathways and identified the DEGs at different cultivation phases of Chinese fir wood formation. This transcriptome dataset will aid in understanding and carrying out future studies on the molecular basis of Chinese fir wood formation and contribute to future artificial production and applications.
Collapse
Affiliation(s)
- Yunxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
- Institute of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jian Sang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Xuelian He
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Guiping He
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
37
|
Li SW, Shi RF, Leng Y, Zhou Y. Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings. BMC Genomics 2016; 17:43. [PMID: 26755210 PMCID: PMC4709940 DOI: 10.1186/s12864-016-2372-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known. RESULTS The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1, stage 2, and between stage 1 and stage 2, respectively, suggesting that IBA treatment increased the number of DEGs. A total of 143 DEGs specifically involved in plant hormone signaling and 345 transcription factor (TF) genes were also regulated by IBA. qRT-PCR validation of the 36 genes with known functions indicated a strong correlation with the RNA-Seq data. CONCLUSIONS The changes in GO functional categories, KEGG pathways, and global DEG profiling during adventitious rooting induced by IBA were analyzed. These results provide valuable information about the molecular traits of IBA regulation of adventitious rooting.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P. R. China.
| | - Rui-Fang Shi
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| | - Yan Leng
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| | - Yuan Zhou
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| |
Collapse
|
38
|
Honaas LA, Wafula EK, Wickett NJ, Der JP, Zhang Y, Edger PP, Altman NS, Pires JC, Leebens-Mack JH, dePamphilis CW. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome. PLoS One 2016; 11:e0146062. [PMID: 26731733 PMCID: PMC4701411 DOI: 10.1371/journal.pone.0146062] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/11/2015] [Indexed: 12/29/2022] Open
Abstract
Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and Oryza sativa transcriptomes provide new insights into the strengths and limitations of transcriptome assembly strategies. We find that the leading assemblers generate reassuringly accurate assemblies for the majority of transcripts. At the same time, we find a propensity for assemblers to fail to fully assemble highly expressed genes. Surprisingly, the instance of true chimeric assemblies is very low for all assemblers. Normalized libraries are reduced in highly abundant transcripts, but they also lack 1000s of low abundance transcripts. We conclude that the quality of de novo transcriptome assemblies is best assessed through consideration of a combination of metrics: 1) proportion of reads mapping to an assembly 2) recovery of conserved, widely expressed genes, 3) N50 length statistics, and 4) the total number of unigenes. We provide benchmark Illumina transcriptome data and introduce SCERNA, a broadly applicable modular protocol for de novo assembly improvement. Finally, our de novo assembly of the Arabidopsis leaf transcriptome revealed ~20 putative Arabidopsis genes lacking in the current annotation.
Collapse
Affiliation(s)
- Loren A Honaas
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Eric K Wafula
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Norman J Wickett
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Joshua P Der
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Yeting Zhang
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Patrick P Edger
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Naomi S Altman
- Department of Statistics, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - James H Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Claude W dePamphilis
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| |
Collapse
|
39
|
Guo R, Huang Z, Deng Y, Chen X, XuHan X, Lai Z. Comparative Transcriptome Analyses Reveal a Special Glucosinolate Metabolism Mechanism in Brassica alboglabra Sprouts. FRONTIERS IN PLANT SCIENCE 2016; 7:1497. [PMID: 27757119 PMCID: PMC5047911 DOI: 10.3389/fpls.2016.01497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/20/2016] [Indexed: 05/20/2023]
Abstract
Brassica sprouts contain abundant phytochemicals, especially glucosinolates (GSs). Various methods have been used to enhance GS content in sprouts. However, the molecular basis of GS metabolism in sprouts remains an open question. Here we employed RNA-seq analysis to compare the transcriptomes of high-GS (JL-08) and low-GS (JL-09) Brassica alboglabra sprouts. Paired-end Illumina RNA-seq reads were generated and mapped to the Brassica oleracea reference genome. The differentially expressed genes were analyzed between JL-08 and JL-09. Among these, 1477 genes were up-regulated and 1239 down-regulated in JL-09 compared with JL-08. Enrichment analysis of these differentially expressed genes showed that the GS biosynthesis had the smallest enrichment factor and the highest Q-value of all metabolic pathways in Kyoto Encyclopedia of Genes and Genomes database, indicating the main metabolic difference between JL-08 and JL-09 is the GS biosynthetic pathway. Thirty-seven genes of the sequenced data were annotated as putatively involved in GS biosynthesis, degradation, and regulation, of which 11 were differentially expressed in JL-08 and JL-09. The expression level of GS degradation enzyme myrosinase in high-GS JL-08 was lower compared with low-GS JL-09. Surprisingly, in high-GS JL-08, the expression levels of GS biosynthesis genes were also lower than those in low-GS JL-09. As the GS contents in sprouts are determined by dynamic equilibrium of seed stored GS mobilization, de novo synthesis, degradation, and extra transport, the result of this study leads us to suggest that efforts to increase GS content should focus on either raising GS content in seeds or decreasing myrosinase activity, rather than improving the expression level of GS biosynthesis genes in sprouts.
Collapse
Affiliation(s)
- Rongfang Guo
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhongkai Huang
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yanping Deng
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xiaodong Chen
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xu XuHan
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institut de la Recherche Interdisciplinaire de ToulouseToulouse, France
- *Correspondence: Xu XuHan
| | - Zhongxiong Lai
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
- Zhongxiong Lai
| |
Collapse
|
40
|
Serra AA, Couée I, Heijnen D, Michon-Coudouel S, Sulmon C, Gouesbet G. Genome-Wide Transcriptional Profiling and Metabolic Analysis Uncover Multiple Molecular Responses of the Grass Species Lolium perenne Under Low-Intensity Xenobiotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1124. [PMID: 26734031 PMCID: PMC4681785 DOI: 10.3389/fpls.2015.01124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/27/2015] [Indexed: 05/26/2023]
Abstract
Lolium perenne, which is a major component of pastures, lawns, and grass strips, can be exposed to xenobiotic stresses due to diffuse and residual contaminations of soil. L. perenne was recently shown to undergo metabolic adjustments in response to sub-toxic levels of xenobiotics. To gain insight in such chemical stress responses, a de novo transcriptome analysis was carried out on leaves from plants subjected at the root level to low levels of xenobiotics, glyphosate, tebuconazole, and a combination of the two, leading to no adverse physiological effect. Chemical treatments influenced significantly the relative proportions of functional categories and of transcripts related to carbohydrate processes, to signaling, to protein-kinase cascades, such as Serine/Threonine-protein kinases, to transcriptional regulations, to responses to abiotic or biotic stimuli and to responses to phytohormones. Transcriptomics-based expressions of genes encoding different types of SNF1 (sucrose non-fermenting 1)-related kinases involved in sugar and stress signaling or encoding key metabolic enzymes were in line with specific qRT-PCR analysis or with the important metabolic and regulatory changes revealed by metabolomic analysis. The effects of pesticide treatments on metabolites and gene expression strongly suggest that pesticides at low levels, as single molecule or as mixture, affect cell signaling and functioning even in the absence of major physiological impact. This global analysis of L. perenne therefore highlighted the interactions between molecular regulation of responses to xenobiotics, and also carbohydrate dynamics, energy dysfunction, phytohormones and calcium signaling.
Collapse
Affiliation(s)
- Anne-Antonella Serra
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIORennes, France
| | - Ivan Couée
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIORennes, France
| | - David Heijnen
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIORennes, France
| | - Sophie Michon-Coudouel
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMS 3343 OSURRennes, France
| | - Cécile Sulmon
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIORennes, France
| | - Gwenola Gouesbet
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIORennes, France
| |
Collapse
|
41
|
Revealing crosstalk of plant and fungi in the symbiotic roots of sewage-cleaning Eichhornia crassipes using direct de novo metatranscriptomic analysis. Sci Rep 2015; 5:15407. [PMID: 26472343 PMCID: PMC4607945 DOI: 10.1038/srep15407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023] Open
Abstract
Cultivation and environmental changes can induce development of novel phenotypes in plants. For example, the root morphology of cultivated purple root Eichhornia crassipes differs remarkably from normal Eichhornia crassipes and also shows an enhanced ability to absorb heavy metal from groundwater. However, the changes in gene expression associated with these processes are unknown because of the lack of information on its large and unsequenced genome and its complex plant-rhizosphere symbiotic system. To investigate these gene expression changes, we applied a new strategy, direct de novo metatranscriptome analysis. Using this approach, we assembled the metatranscriptome of the entire rhizosphere and identified species-specific differentially expressed genes (DEGs) via hyper-accurate algorithms, showing a polarized plant/fungus distribution: the plant genes were responsible for morphological changes to the root system, offering a greater volume and surface area that hosts more fungi; while genes associated with heavy metal response in the fungus Fusarium were upregulated more than 3600-fold. These results suggested a distinct and synergistic functional response by the plant and fungal transcriptomes, indicating significant plant/fungal crosstalk during environmental changes. This study demonstrates that the metatranscriptomic approach adopted here offers a cost-efficient strategy to study symbiosis systems without the need for a priori genomic knowledge.
Collapse
|
42
|
Xu Y, Li X, Lin J, Wang Z, Yang Q, Chang Y. Transcriptome sequencing and analysis of major genes involved in calcium signaling pathways in pear plants (Pyrus calleryana Decne.). BMC Genomics 2015; 16:738. [PMID: 26424153 PMCID: PMC4590731 DOI: 10.1186/s12864-015-1887-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/28/2015] [Indexed: 11/17/2022] Open
Abstract
Background Pears (Pyrus spp. L.) are an important genus of trees that produce one of the world’s oldest fruit crops. Salinity stress is a common limiting factor for plant productivity that significantly affects the flavor and nutritional quality of pear fruits. Much research has shown that calcium signaling pathways, mediated by Calcineurin B-like proteins (CBLs) and their interacting kinases (CIPKs), are closely associated with responses to stresses, including salt. However, little is known about the molecular mechanisms that govern the relationship between salt stress and calcium signaling pathways in pear plants. The available genomic information for pears has promoted much functional genomic analysis and molecular breeding of the genus. This provided an ample foundation for characterizing the transcriptome of pear under salt stress. Results A high-throughput Illumina RNA-seq technology was used to identify a total of 78,695 unigenes that were successfully annotated by BLASTX analysis, using the publicly available protein database. Additionally, 2,855 novel transcripts, 218,167 SNPs, 23,248 indels and 18,322 alternative splicing events occurred. Assembled unique sequences were annotated and classified with Gene Ontology (GO), Clusters of Orthologous Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, which revealed that the main activated genes in pear are predominately involved in functions such as basic physiological processes, metabolic pathways, operation of cellular components, signal transduction mechanisms, and other molecular activities. Through targeted searches of the annotations, the majority of the genes involved in calcium signaling pathways were identified, among which, four genes were validated by molecular cloning, while 11 were validated by RT-qPCR expression profiles under salt stress treatment. Conclusions These results facilitate a better understanding of the molecular genetics and functional genomic mechanisms of salt stress in pear plants. Furthermore, they provide a valuable foundation for additional research on the molecular biology and functional genomics of pear and related species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1887-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Nanjing, 210014, People's Republic of China
| | - Xiaogang Li
- Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Nanjing, 210014, People's Republic of China
| | - Jing Lin
- Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Nanjing, 210014, People's Republic of China.
| | - Zhonghua Wang
- Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Nanjing, 210014, People's Republic of China
| | - Qingsong Yang
- Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Nanjing, 210014, People's Republic of China
| | - Youhong Chang
- Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Horticulture, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
43
|
Li SW, Shi RF, Leng Y. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq. PLoS One 2015; 10:e0132969. [PMID: 26177103 PMCID: PMC4503682 DOI: 10.1371/journal.pone.0132969] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/19/2015] [Indexed: 12/24/2022] Open
Abstract
Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77%) were annotated using BLASTx. Among them, 28,225 (35.75%) and 28,119 (35.62%) unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr) databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2) during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3%) with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles reveal molecular traits for root induction and initiation. This study provides a platform for functional genomic research with this species.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Chemical and Biological Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China
| | - Rui-Fang Shi
- School of Chemical and Biological Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China
| | - Yan Leng
- School of Chemical and Biological Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China
| |
Collapse
|
44
|
Zhou Z, Ma H, Lin K, Zhao Y, Chen Y, Xiong Z, Wang L, Tian B. RNA-seq Reveals Complicated Transcriptomic Responses to Drought Stress in a Nonmodel Tropic Plant, Bombax ceiba L. Evol Bioinform Online 2015; 11:27-37. [PMID: 26157330 PMCID: PMC4479181 DOI: 10.4137/ebo.s20620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 11/05/2022] Open
Abstract
High-throughput transcriptome provides an unbiased approach for understanding the genetic basis and gene functions in response to different conditions. Here we sequenced RNA-seq libraries derived from a Bombax ceiba L. system under a controlled experiment. As a known medicinal and ornamental plant, B. ceiba grows mainly in hot-dry monsoon rainforests in Southeast Asia and Australia. Due to the specific growth environment, it has evolved a unique system that enables a physiologic response to drought stress. To date, few studies have characterized the genome-wide features of drought endurance in B. ceiba. In this study, we first attempted to characterize and identify the most differentially expressed genes and associated functional pathways under drought treatment and normal condition. Using RNA-seq technology, we generated the first transcriptome of B. ceiba and identified 59 differentially expressed genes with greater than 1,000-fold changes under two conditions. The set of upregulated genes implicates interplay among various pathways: plants growth, ubiquitin-mediated proteolysis, polysaccharides hydrolyzation, oxidative phosphorylation and photosynthesis, etc. In contrast, genes associated with stem growth, cell division, fruit ripening senescence, disease resistance, and proline synthesis are repressed. Notably, key genes of high RPKM levels in drought are AUX1, JAZ, and psbS, which are known to regulate the growth of plants, the resistance against abiotic stress, and the photosynthesis process. Furthermore, 16,656 microsatellite markers and 3,071 single-nucleotide polymorphisms (SNPs) were predicted by in silico methods. The identification and functional annotation of differentially expressed genes, microsatellites, and SNPs represent a major step forward and would serve as a valuable resource for understanding the complexity underlying drought endurance and adaptation in B. ceiba.
Collapse
Affiliation(s)
- Zhili Zhou
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, China
| | - Huancheng Ma
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Kevin Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Youjie Zhao
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Yuan Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Zhi Xiong
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Bin Tian
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
45
|
Ma Z, Huang B, Xu S, Chen Y, Li S, Lin S. Isolation of High-Quality Total RNA from Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook). PLoS One 2015; 10:e0130234. [PMID: 26083257 PMCID: PMC4470689 DOI: 10.1371/journal.pone.0130234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/17/2015] [Indexed: 01/13/2023] Open
Abstract
RNA isolation with RNA in a high quantity is a basic analytical method in plant genetics, molecular biology and related physiological investigations. To understand the genetic and molecular biology of Chinese fir, sufficient high-quality total RNA must be obtained for cDNA library construction and other downstream molecular applications. However, extracting RNA from Chinese fir is difficult and often requires the modification of existing protocols. Chinese fir tissues containing large amounts of polysaccharides and polyphenol compounds and are one of the most difficult plant tissues for RNA isolation. Therefore, we developed a simple method for extracting high-quality RNA from Chinese fir tissues. RNA isolations were performed within two hours, RNA quality was measured for yield and purity. Total RNA obtained from this procedure was successfully used for cDNA library construction, RT-PCR and transcriptome sequencing. It was proven that extracted RNA was intact and suitable for downstream molecular applications, including RT-PCR and qPCR, and other downstream molecular applications. Thus, this protocol represents a simple, efficient, and low-cost method.
Collapse
Affiliation(s)
- Zhihui Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, China
| | - Binlong Huang
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Shanshan Xu
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Yu Chen
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Shubin Li
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Sizu Lin
- State Forestry Administration Engineering Research Center of Chinese Fir, Fuzhou, China
- College of Forestry, Fujian Agricultural and Forestry University, Fuzhou, China
- * E-mail:
| |
Collapse
|
46
|
De Novo Transcriptome Sequencing of Low Temperature-Treated Phlox subulata and Analysis of the Genes Involved in Cold Stress. Int J Mol Sci 2015; 16:9732-48. [PMID: 25938968 PMCID: PMC4463614 DOI: 10.3390/ijms16059732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 11/18/2022] Open
Abstract
Phlox subulata, a perennial herbaceous flower, can survive during the winter of northeast China, where the temperature can drop to −30 °C, suggesting that P. subulata is an ideal model for studying the molecular mechanisms of cold acclimation in plants. However, little is known about the gene expression profile of P. subulata under cold stress. Here, we examined changes in cold stress-related genes in P. subulata. We sequenced three cold-treated (CT) and control (CK) samples of P. subulata. After denovo assembly and quantitative assessment of the obtained reads, 99,174 unigenes were generated. Based on similarity searches with known proteins in public protein databases, 59,994 unigenes were functionally annotated. Among all differentially expressed genes (DEGs), 8302, 10,638 and 11,021 up-regulated genes and 9898, 17,876, and 12,358 down-regulated genes were identified after treatment at 4, 0, and −10 °C, respectively. Furthermore, 3417 up-regulated unigenes were expressed only in CT samples. Twenty major cold-related genes, including transcription factors, antioxidant enzymes, osmoregulation proteins, and Ca2+ and ABA signaling components, were identified, and their expression levels were estimated. Overall, this is the first transcriptome sequencing of this plant species under cold stress. Studies of DEGs involved in cold-related metabolic pathways may facilitate the discovery of cold-resistance genes.
Collapse
|
47
|
Zhang S, Shi Y, Cheng N, Du H, Fan W, Wang C. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy. PLoS One 2015; 10:e0122170. [PMID: 25799491 PMCID: PMC4370819 DOI: 10.1371/journal.pone.0122170] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/08/2015] [Indexed: 12/03/2022] Open
Abstract
Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide. Fall dormancy is an adaptive character related to the biomass production and winter survival in alfalfa. The physiological, biochemical and molecular mechanisms causing fall dormancy and the related genes have not been well studied. In this study, we sequenced two standard varieties of alfalfa (dormant and non-dormant) at two time points and generated approximately 160 million high quality paired-end sequence reads using sequencing by synthesis (SBS) technology. The de novo transcriptome assembly generated a set of 192,875 transcripts with an average length of 856 bp representing about 165.1 Mb of the alfalfa leaf transcriptome. After assembly, 111,062 (57.6%) transcripts were annotated against the NCBI non-redundant database. A total of 30,165 (15.6%) transcripts were mapped to 323 Kyoto Encyclopedia of Genes and Genomes pathways. We also identified 41,973 simple sequence repeats, which can be used to generate markers for alfalfa, and 1,541 transcription factors were identified across 1,350 transcripts. Gene expression between dormant and non-dormant alfalfa at different time points were performed, and we identified several differentially expressed genes potentially related to fall dormancy. The Gene Ontology and pathways information were also identified. We sequenced and assembled the leaf transcriptome of alfalfa related to fall dormancy, and also identified some genes of interest involved in the fall dormancy mechanism. Thus, our research focused on studying fall dormancy in alfalfa through transcriptome sequencing. The sequencing and gene expression data generated in this study may be used further to elucidate the complete mechanisms governing fall dormancy in alfalfa.
Collapse
Affiliation(s)
- Senhao Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yinghua Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Ningning Cheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Hongqi Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Wenna Fan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Chengzhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
- * E-mail:
| |
Collapse
|
48
|
Wang G, Du X, Ji J, Guan C, Li Z, Josine TL. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Gene 2014; 555:458-63. [PMID: 25445268 DOI: 10.1016/j.gene.2014.10.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/14/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022]
Abstract
Lycium chinense Mill. (Chinese wolfberry), enriching in carotenoids, is an important Chinese herbal medicine. However, studies on the functional genomics research, especially the carotenoid biosynthesis and accumulation, are limited because of insufficiently available datasets. RNA-Seq was performed by the Illumina sequencing platform. Approximately 26 million clean reads were generated after filtering. Clean reads were assembled by SOAPdenovo and subsequently annotated. Among all 61,595 unigenes, 37,816 (61.39%), 25,266 (41.02%), and 17,598 (28.57%) unigenes were annotated in NCBI non-redundant protein, Swiss-Prot, and Kyoto Encyclopedia of Genes and Genomes (KEGG) database, respectively. A total of 16,073 and 11,394 unigenes were assigned to Gene Ontology and Cluster of Orthologous Group, respectively. Furthermore, the majority of genes encoding the enzymes in the carotenoid biosynthesis pathway were identified in the unigene datasets. We first found several genes related to L. chinense carotenoid biosynthesis. The expression levels and the biological functions of these genes involved in carotenoid biosynthesis in the leaf and the green ripening fruit were further confirmed by qPCR and high performance liquid chromatography (HPLC). In the present study, we first characterized the transcriptome of L. chinense leaf, which may provide useful data for functional genomics investigations in L. chinense in the future. And essential genes involved in the carotenoid biosynthesis pathway may contribute to elucidate the expression patterns in different stages of development and fruit ripening and the specific mechanisms of carotenoid biosynthesis/accumulation in L. chinense.
Collapse
Affiliation(s)
- Gang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, People's Republic of China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Xilong Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, People's Republic of China.
| | - Jing Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, People's Republic of China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Zhaodi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, People's Republic of China.
| | - Tchouopou Lontchi Josine
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
49
|
Dong S, Liu Y, Niu J, Ning Y, Lin S, Zhang Z. De novo transcriptome analysis of the Siberian apricot (Prunus sibirica L.) and search for potential SSR markers by 454 pyrosequencing. Gene 2014; 544:220-7. [PMID: 24746601 DOI: 10.1016/j.gene.2014.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 11/29/2022]
Abstract
The Siberian apricot, an economically and ecologically important plant in China, contains seeds high in oil and can grow on marginal land. Although this species has multiple purposes and may be a feedstock of biofuel in China, transcriptome information and molecular research on this species remain limited. RNA-Seq technology has been widely applied to transcriptomics, genomics and the development of molecular markers, and functional gene studies. In this study, we obtained 1,243,067 high-quality reads with a mean size of 425 bp in a single run, totaling 528.4 Mb of sequence data using 454 GS FLX Titanium sequencing. All reads were assembled de novo into 46,940 unigenes with a mean size of 651 bp (range: 45-5566 bp). Assembled unigenes were annotated in multiple public databases based on similarity alignments to genes and proteins. 191 unigenes involving in lipid biosynthesis and metabolism were found, among them, expression patterns of two desaturase enzymes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), based on six tissues from Siberian apricot, the seeds had the highest expression. 7304 simple sequence repeats (SSR) were identified from 6509 unigenes, a total of 9930 primer pairs were designed, 50 primer pairs were randomly selected to validate of the usefulness, and 24 (48%) primer pairs produced bands of the expected size. These data provide a base of sequence information to improve agronomic characters and molecular marker-assisted breeding to alter the composition of fatty acids in seeds from this plant, and hence, facilitate its utilization as a future biodiesel feedstock.
Collapse
Affiliation(s)
- Shubin Dong
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yulin Liu
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jun Niu
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yu Ning
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shanzhi Lin
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zhixiang Zhang
- Lab of Systematic Evolution and Biogeography of Woody Plants, College of Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
50
|
Wang Y, Pan Y, Liu Z, Zhu X, Zhai L, Xu L, Yu R, Gong Y, Liu L. De novo transcriptome sequencing of radish (Raphanus sativus L.) and analysis of major genes involved in glucosinolate metabolism. BMC Genomics 2013; 14:836. [PMID: 24279309 PMCID: PMC4046679 DOI: 10.1186/1471-2164-14-836] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022] Open
Abstract
Background Radish (Raphanus sativus L.), is an important root vegetable crop worldwide. Glucosinolates in the fleshy taproot significantly affect the flavor and nutritional quality of radish. However, little is known about the molecular mechanisms underlying glucosinolate metabolism in radish taproots. The limited availability of radish genomic information has greatly hindered functional genomic analysis and molecular breeding in radish. Results In this study, a high-throughput, large-scale RNA sequencing technology was employed to characterize the de novo transcriptome of radish roots at different stages of development. Approximately 66.11 million paired-end reads representing 73,084 unigenes with a N50 length of 1,095 bp, and a total length of 55.73 Mb were obtained. Comparison with the publicly available protein database indicates that a total of 67,305 (about 92.09% of the assembled unigenes) unigenes exhibit similarity (e –value ≤ 1.0e-5) to known proteins. The functional annotation and classification including Gene Ontology (GO), Clusters of Orthologous Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the main activated genes in radish taproots are predominately involved in basic physiological and metabolic processes, biosynthesis of secondary metabolite pathways, signal transduction mechanisms and other cellular components and molecular function related terms. The majority of the genes encoding enzymes involved in glucosinolate (GS) metabolism and regulation pathways were identified in the unigene dataset by targeted searches of their annotations. A number of candidate radish genes in the glucosinolate metabolism related pathways were also discovered, from which, eight genes were validated by T-A cloning and sequencing while four were validated by quantitative RT-PCR expression profiling. Conclusions The ensuing transcriptome dataset provides a comprehensive sequence resource for molecular genetics research in radish. It will serve as an important public information platform to further understanding of the molecular mechanisms involved in biosynthesis and metabolism of the related nutritional and flavor components during taproot formation in radish. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-836) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P,R, China.
| | | | | | | | | | | | | | | | | |
Collapse
|