1
|
Cubas Pereira D, Pupin B, de Simone Borma L. Influence of sample preparation methods on FTIR spectra for taxonomic identification of tropical trees in the Atlantic forest. Heliyon 2024; 10:e27232. [PMID: 38455590 PMCID: PMC10918226 DOI: 10.1016/j.heliyon.2024.e27232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
The Atlantic forest is one of the world's major tropical biomes due to its rich biodiversity. Its vast diversity of plant species poses challenges in floristic surveys. Fourier transform infrared spectroscopy (FTIR) enables rapid and residue-free data collection, providing diverse applications in organic sample analysis. FTIR spectra quality depends on the sample preparation methodology. However, no research on FTIR spectroscopy methodology for taxonomy has been conducted with tropical tree species. Hence, this study addresses the sample preparation influence on FTIR spectra for the taxonomic classification of 12 tree species collected in the Serra do Mar State Park (PESM) - Cunha Nucleus - São Paulo State, Brazil. Spectra were obtained from intact fresh (FL), intact dried (DL), and heat-dried ground (GL) leaves. The spectra were evaluated through chemometrics using Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and Linear Discriminant Analysis (LDA) with validation by LDA-PCA. The results demonstrate that sample preparation directly influences tropical species FTIR spectra categorization capability. The best taxonomic classification result for all techniques, validated by LDA-PCA, was obtained from GL. FTIR spectra evaluation through PCA, HCA, and LDA allow for the observation of phylogenetic relationships among the species. FTIR spectroscopy proves to be a viable technique for taxonomic evaluation of tree species in floristic exploration of tropical biomes which can complement traditional tools used for taxonomic studies.
Collapse
Affiliation(s)
- Douglas Cubas Pereira
- National Institute for Space Research (INPE), São José dos Campos, 12227-010, Brazil
| | - Breno Pupin
- National Institute for Space Research (INPE), São José dos Campos, 12227-010, Brazil
| | - Laura de Simone Borma
- National Institute for Space Research (INPE), São José dos Campos, 12227-010, Brazil
| |
Collapse
|
2
|
Lu S. Transcriptome analysis and development of EST-SSR markers in Anoectochilus emeiensis (Orchidaceae). PLoS One 2022; 17:e0278551. [PMID: 36472967 PMCID: PMC9725121 DOI: 10.1371/journal.pone.0278551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Anoectochilus emeiensis K. Y. Lang, together with other Anoectochilus species, has long been used as the main source of many traditional Chinese medicines. Owing to the shortcomings of molecular markers, the study of the genetic diversity and medicinal component synthesis mechanism of the endemic Anoectochilus species has been delayed. In this study, I carried out a transcriptome analysis of A. emeiensis. A total of 78,381 unigenes were assembled from 64.2 million reads, and 47,541 (60.65%) unigenes were matched to known proteins in the public databases. Then, 9284 expressed sequence tag-derived simple sequence repeats (EST-SSRs) were identified, and the frequency of SSRs in the A. emeiensis transcriptome was 9.88%. Trinucleotide repeats (3699, 39.84%) were the most common type, followed by dinucleotide (3251, 35.02%) and mononucleotide (1750, 18.85%) repeats. Based on the SSR sequence, 6683 primer pairs were successfully designed, 40 primer pairs were randomly selected, and 10 primer pairs were identified as polymorphic loci from 186 individuals of A. emeiensis. The EST-SSR markers examined in this study will be informative for future population genetic studies of A. emeiensis.
Collapse
Affiliation(s)
- Song Lu
- Sichuan Natural Resources Academy, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
3
|
Rasheed A, Jie Y, Nawaz M, Jie H, Ma Y, Shah AN, Hassan MU, Gillani SFA, Batool M, Aslam MT, Naseem AR, Qari SH. Improving Drought Stress Tolerance in Ramie ( Boehmeria nivea L.) Using Molecular Techniques. FRONTIERS IN PLANT SCIENCE 2022; 13:911610. [PMID: 35845651 PMCID: PMC9280341 DOI: 10.3389/fpls.2022.911610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Ramie is one of the most significant fiber crops and contributes to good quality fiber. Drought stress (DS) is one of the most devastating abiotic factors which is accountable for a substantial loss in crop growth and production and disturbing sustainable crop production. DS impairs growth, plant water relation, and nutrient uptake. Ramie has evolved a series of defense responses to cope with DS. There are numerous genes regulating the drought tolerance (DT) mechanism in ramie. The morphological and physiological mechanism of DT is well-studied; however, modified methods would be more effective. The use of novel genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) is being used to edit the recessive genes in crops to modify their function. The transgenic approaches are used to develop several drought-tolerant varieties in ramie, and further identification of tolerant genes is needed for an effective breeding plan. Quantitative trait loci (QTLs) mapping, transcription factors (TFs) and speed breeding are highly studied techniques, and these would lead to the development of drought-resilient ramie cultivars. The use of hormones in enhancing crop growth and development under water scarcity circumstances is critical; however, using different concentrations and testing genotypes in changing environments would be helpful to sort the tolerant genotypes. Since plants use various ways to counter DS, investigating mechanisms of DT in plants will lead to improved DT in ramie. This critical review summarized the recent advancements on DT in ramie using novel molecular techniques. This information would help ramie breeders to conduct research studies and develop drought tolerant ramie cultivars.
Collapse
Affiliation(s)
- Adnan Rasheed
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | | | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Ahmad Raza Naseem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
Zeng Z, Zhu S, Wang Y, Bai X, Liu C, Chen J, Zhang T, Wei Y, Li F, Bao Z, Yan L, Wang H, Liu T. Resequencing of 301 ramie accessions identifies genetic loci and breeding selection for fibre yield traits. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:323-334. [PMID: 34558775 PMCID: PMC8753365 DOI: 10.1111/pbi.13714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/13/2021] [Indexed: 05/27/2023]
Abstract
Ramie is an important fibre-producing crop in China; however, the genetic basis of its agronomic traits remains poorly understood. We produced a comprehensive map of genomic variation in ramie based on resequencing of 301 landraces and cultivars. Genetic analysis produced 129 signals significantly associated with six fibre yield-related traits, and several genes were identified as candidate genes for respective traits. Furthermore, we found that natural variations in the promoter region of Bnt14G019616 were associated with extremely low fibre abundance, providing the first evidence for the role of pectin methylesterase in fibre growth of plants. Additionally, nucleotide diversity analysis revealed that breeding selection has been markedly focussed on chromosome 9 in which ~ 39.6% sequence underwent selection, where one gibberellin-signalling-repressed DELLA gene showed distinct selection signatures in the cultivars. This study provides insights into the genetic architecture and breeding history of fibre yield traits in ramie. Moreover, the identification of fibre yield-related genetic loci and large-scale genomic variation represent valuable resources for genomics-assisted breeding of this crop.
Collapse
Affiliation(s)
- Zheng Zeng
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Siyuan Zhu
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Yanzhou Wang
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Xuehua Bai
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Chan Liu
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Jianrong Chen
- College of Biological and Environmental EngineeringChangsha UniversityChangshaChina
| | - Ting Zhang
- Shanghai OE Biotech. Co., LtdShanghaiChina
| | - Yiping Wei
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Fu Li
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Zhigui Bao
- Shanghai OE Biotech. Co., LtdShanghaiChina
| | - Li Yan
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | | | - Touming Liu
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| |
Collapse
|
5
|
Verma SK, Mittal S, Gayacharan, Wankhede DP, Parida SK, Chattopadhyay D, Prasad G, Mishra DC, Joshi DC, Singh M, Singh K, Singh AK. Transcriptome Analysis Reveals Key Pathways and Candidate Genes Controlling Seed Development and Size in Ricebean ( Vigna umbellata). Front Genet 2022; 12:791355. [PMID: 35126460 PMCID: PMC8815620 DOI: 10.3389/fgene.2021.791355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
Ricebean (Vigna umbellata) is a lesser known pulse with well-recognized potential. Recently, it has emerged as a legume with endowed nutritional potential because of high concentration of quality protein and other vital nutrients in its seeds. However, the genes and pathways involved in regulating seed development and size are not understood in this crop. In our study, we analyzed the transcriptome of two genotypes with contrasting grain size (IC426787: large seeded and IC552985: small seeded) at two different time points, namely, 5 and 10 days post-anthesis (DPA). The bold seeded genotype across the time points (B5_B10) revealed 6,928 differentially expressed genes (DEGs), whereas the small seeded genotype across the time point (S5_S10) contributed to 14,544 DEGs. We have also identified several candidate genes for seed development-related traits like seed size and 100-seed weight. On the basis of similarity search and domain analysis, some candidate genes (PHO1, cytokinin dehydrogenase, A-type cytokinin, and ARR response negative regulator) related to 100-seed weight and seed size showed downregulation in the small seeded genotype. The MapMan and KEGG analysis confirmed that auxin and cytokinin pathways varied in both the contrasting genotypes and can therefore be the regulators of the seed size and other seed development-related traits in ricebeans. A total of 51 genes encoding SCF TIR1/AFB , Aux/IAA, ARFs, E3 ubiquitin transferase enzyme, and 26S proteasome showing distinct expression dynamics in bold and small genotypes were also identified. We have also validated randomly selected SSR markers in eight accessions of the Vigna species (V. umbellata: 6; Vigna radiata: 1; and Vigna mungo: 1). Cross-species transferability pattern of ricebean-derived SSR markers was higher in V. radiata (73.08%) than V. mungo (50%). To the best of our knowledge, this is the first transcriptomic study conducted in this crop to understand the molecular basis of any trait. It would provide us a comprehensive understanding of the complex transcriptome dynamics during the seed development and gene regulatory mechanism of the seed size determination in ricebeans.
Collapse
Affiliation(s)
| | - Shikha Mittal
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | | | - Geeta Prasad
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Mohar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
6
|
Feng T, Jiang Y, Jia Q, Han R, Wang D, Zhang X, Liang Z. Transcriptome Analysis of Different Sections of Rhizome in Polygonatum sibiricum Red. and Mining Putative Genes Participate in Polysaccharide Biosynthesis. Biochem Genet 2022; 60:1547-1566. [DOI: 10.1007/s10528-022-10183-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
|
7
|
SOD1 Gene Silencing Promotes Apoptosis and Suppresses Proliferation of Heat-Stressed Bovine Granulosa Cells via Induction of Oxidative Stress. Vet Sci 2021; 8:vetsci8120326. [PMID: 34941853 PMCID: PMC8708094 DOI: 10.3390/vetsci8120326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
Heat stress (HS) compromises dairy cattle reproduction by altering the follicular dynamics, oocyte maturation, and normal physiological function of ovarian granulosa cells (GCs), eventually resulting in oxidative damage and cell apoptosis. To protect the cells from oxidative damage, the Superoxide dismutase-1 (SOD1) degraded the hydrogen peroxide (H2O2) to oxygen (O2) and water. The objective of the current study was to investigate the impact of SOD1 silencing on intracellular ROS accumulation, cell viability, MMP, hormone synthesis (P4, E2), cell proliferation, and apoptosis in GCs under HS. The mechanistic role of SOD1 regulation in the heat-stressed GCs was explored. SOD1 gene was successfully silenced in GCs and confirmed at both transcriptional and translational levels. We found that silencing of SOD1 using siRNA under HS aggravated intracellular accumulation of reactive oxygen species, apoptosis, disrupted the mitochondrial membrane potential (MMP), altered transition of the cell cycle, and impaired synthesis of progesterone (P4) and estrogen (E2) in GCs. The associative apoptotic, steroidogenic, and cell cycle genes (BAX, Caspase-3, STAR, Cyp11A1, HSP70, PCNA, and CyclinB1) were used to confirm the results. These results identify a novel role of SOD1 in the modulation of bovine ovarian GC apoptosis, which provides a target for improving the fertility of heat-stressed dairy cows in summer.
Collapse
|
8
|
Identification of proteins associated with bast fiber growth of ramie by differential proteomic analysis. BMC Genomics 2021; 22:865. [PMID: 34856929 PMCID: PMC8638140 DOI: 10.1186/s12864-021-08195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background Ramie is an important fiber-producing crop in China, and its fibers are widely used as textile materials. Fibers contain specialized secondary cellular walls that are mainly composed of cellulose, hemicelluloses, and lignin. Understanding the mechanism underlying the secondary wall biosynthesis of fibers will benefit the improvement of fiber yield and quality in ramie. Results Here, we performed a proteomic analysis of the bark from the top and middle parts of the stem, where fiber growth is at different stages. We identified 6971 non-redundant proteins from bast bark. Proteomic comparison revealed 983 proteins with differential expression between the two bark types. Of these 983 proteins, 46 were identified as the homolog of known secondary wall biosynthetic proteins of Arabidopsis, indicating that they were potentially associated with fiber growth. Then, we proposed a molecular model for the secondary wall biosynthesis of ramie fiber. Furthermore, interaction analysis of 46 candidate proteins revealed two interacting networks that consisted of eight cellulose biosynthetic enzymes and seven lignin biosynthetic proteins, respectively. Conclusion This study sheds light on the proteomic basis underlying bast fiber growth in ramie, and the identification of many candidates associated with fiber growth provides important basis for understanding the fiber growth in this crop. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08195-9.
Collapse
|
9
|
Zeng WY, Tan YR, Long SF, Sun ZD, Lai ZG, Yang SZ, Chen HZ, Qing XY. Methylome and transcriptome analyses of soybean response to bean pyralid larvae. BMC Genomics 2021; 22:836. [PMID: 34794392 PMCID: PMC8603512 DOI: 10.1186/s12864-021-08140-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bean pyralid is one of the major leaf-feeding insects that affect soybean crops. DNA methylation can control the networks of gene expressions, and it plays an important role in responses to biotic stress. However, at present the genome-wide DNA methylation profile of the soybean resistance to bean pyralid has not been reported so far. RESULTS Using whole-genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq), we analyzed the highly resistant material (Gantai-2-2, HRK) and highly susceptible material (Wan82-178, HSK), under bean pyralid larvae feeding 0 h and 48 h, to clarify the molecular mechanism of the soybean resistance and explore its insect-resistant genes. We identified 2194, 6872, 39,704 and 40,018 differentially methylated regions (DMRs), as well as 497, 1594, 9596 and 9554 differentially methylated genes (DMGs) in the HRK0/HRK48, HSK0/HSK48, HSK0/HRK0 and HSK48/HRK48 comparisons, respectively. Through the analysis of global methylation and transcription, 265 differentially expressed genes (DEGs) were negatively correlated with DMGs, there were 34, 49, 141 and 116 negatively correlated genes in the HRK0/HRK48, HSK0/HSK48, HSK0/HRK0 and HSK48/HRK48, respectively. The MapMan cluster analysis showed that 114 negatively correlated genes were clustered in 24 pathways, such as protein biosynthesis and modification; primary metabolism; secondary metabolism; cell cycle, cell structure and component; RNA biosynthesis and processing, and so on. Moreover, CRK40; CRK62; STK; MAPK9; L-type lectin-domain containing receptor kinase VIII.2; CesA; CSI1; fimbrin-1; KIN-14B; KIN-14 N; KIN-4A; cytochrome P450 81E8; BEE1; ERF; bHLH25; bHLH79; GATA26, were likely regulatory genes involved in the soybean responses to bean pyralid larvae. Finally, 5 DMRs were further validated that the genome-wide DNA data were reliable through PS-PCR and 5 DEGs were confirmed the relationship between DNA methylation and gene expression by qRT-PCR. The results showed an excellent agreement with deep sequencing. CONCLUSIONS Genome-wide DNA methylation profile of soybean response to bean pyralid was obtained for the first time. Several specific DMGs which participated in protein kinase, cell and organelle, flavonoid biosynthesis and transcription factor were further identified to be likely associated with soybean response to bean pyralid. Our data will provide better understanding of DNA methylation alteration and their potential role in soybean insect resistance.
Collapse
Affiliation(s)
- Wei-Ying Zeng
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Yu-Rong Tan
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Sheng-Feng Long
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Zu-Dong Sun
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Zhen-Guang Lai
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Shou-Zhen Yang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Huai-Zhu Chen
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| | - Xia-Yan Qing
- Guangxi Academy of Agricultural Sciences, Nanning, 530007 Guangxi China
| |
Collapse
|
10
|
Zeng Z, Li F, Huang R, Wang Y, Liu T. Phosphoproteome analysis reveals an extensive phosphorylation of proteins associated with bast fiber growth in ramie. BMC PLANT BIOLOGY 2021; 21:473. [PMID: 34656094 PMCID: PMC8520194 DOI: 10.1186/s12870-021-03252-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phosphorylation modification, one of the most common post-translational modifications of proteins, widely participates in the regulation of plant growth and development. Fibers extracted from the stem bark of ramie are important natural textile fibers; however, the role of phosphorylation modification in the growth of ramie fibers is largely unknown. RESULTS Here, we report a phosphoproteome analysis for the barks from the top and middle section of ramie stems, in which the fiber grows at different stages. A total of 10,320 phosphorylation sites from 9,170 unique phosphopeptides that were assigned to 3,506 proteins was identified, and 458 differentially phosphorylated sites from 323 proteins were detected in the fiber developmental barks. Twelve differentially phosphorylated proteins were the homologs of Arabidopsis fiber growth-related proteins. We further focused on the function of the differentially phosphorylated KNOX protein whole_GLEAN_10029667, and found that this protein dramatically repressed the fiber formation in Arabidopsis. Additionally, using a yeast two-hybridization assay, we identified a kinase and a phosphatase that interact with whole_GLEAN_10029667, indicating that they potentially target this KNOX protein to regulate its phosphorylation level. CONCLUSION The finding of this study provided insights into the involvement of phosphorylation modification in ramie fiber growth, and our functional characterization of whole_GLEAN_10029667 provide the first evidence to indicate the involvement of phosphorylation modification in the regulation of KNOX protein function in plants.
Collapse
Affiliation(s)
- Zheng Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Fu Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Renyan Huang
- Hunan Institute of Plant protection, Changsha, 410205, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
11
|
He Q, Zeng Z, Li F, Huang R, Wang Y, Liu T. Ubiquitylome analysis reveals the involvement of ubiquitination in the bast fiber growth of ramie. PLANTA 2021; 254:1. [PMID: 34081200 DOI: 10.1007/s00425-021-03652-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
A total of 249 sites from 197 proteins showed a differential ubiquitination level in the fiber development of ramie barks. The function of two differentially ubiquitinated proteins for fiber growth was demonstrated. Ubiquitination is one of the most common post-translational modifications of proteins, and it plays essential roles in plant growth and development. However, the involvement of ubiquitination in the growth of plant fibers remains largely unknown. We compared the ubiquitylome of the top and middle stems of ramie bark, with different fiber growth stages. We identified 249 differentially ubiquitinated sites in 197 proteins in fiber-developing barks in the stems and found that seven were homologs of Arabidopsis proteins associated with fiber growth. Overexpression of the differentially ubiquitinated proteins, RWA3 homolog whole_GLEAN_10024150 and MYB protein whole_GLEAN_10015497, significantly promoted fiber growth in transgenic Arabidopsis, indicating their involvement in this process. We also found that the abundance of these proteins decreased when their ubiquitination levels increased and vice versa in the fiber-developing bark. These results indicated that the abundance of these two proteins was adjusted through ubiquitin-dependent degradation. Collectively, our findings provide important insights into the involvement of ubiquitination in the growth of ramie fibers.
Collapse
Affiliation(s)
- Qiaoyun He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Zheng Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Fu Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Renyan Huang
- Hunan Institute of Plant Protection, Changsha, 410125, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
12
|
Qi Y, Fu S, He X, Wang B, Da L, Te R, Yuejun M, Suzhen S, Zhang W, Liu Y. Preliminary comparison of skin transcriptome from sheep with different wool fibre diameters. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an19311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Wool is one of the most important animal fibres for the textile industry, and its diameter directly affects its economic value. However, the molecular mechanisms underlying wool fibre diameter (FD) in sheep have not been fully elucidated.
Aims
The aims of the work were to make an initial comparison of skin transcriptomes from sheep with wool of high and low FD, and to identify key genes affecting FD.
Methods
High-throughput RNA-Seq technology was employed to explore the skin transcriptome, using three sheep with fine wool (FD <21.0 μm) and three sheep with coarse wool (FD >27.0 μm).
Key results
We obtained 28607228 bp of clean sequence data, 78.9% (±3.8%) of which uniquely aligned to the reference genome across the six samples. In total, 19914 mRNA transcripts were expressed (FPKM >0) in the six skin samples, among which were certain well-known genes involved in the skin–hair cycle, such as KRTAP7-1, KRT14, Wnt10b, Wnt2b, β-catenin and FGF5. Furthermore, 467 genes were significantly differentially expressed between the fine-wool and coarse-wool groups, including 21 genes with upregulated and 446 genes with downregulated expression in the sheep with lower FD. These differentially expressed genes were particularly enriched in the gene ontology processes related to lipid metabolism, skin development, differentiation and immune function (P < 0.05). The biological processes were involved in collagen catabolism, negative regulation of macromolecule metabolism, steroid hormone stimulation and lipid metabolism. A significant Kyoto Encyclopedia of Genes and Genomes pathway involving the metabolism of lipids and lipoproteins was also enriched, revealing that lipid metabolism might be one of the key factors affecting FD. The expression of these differentially expressed genes that were involved in the metabolism of lipids and lipoproteins pathway was verified by quantitative real-time PCR (qPCR). The correlation between the mRNA expression level from qPCR and RNA-Seq data was 0.999 (P < 0.001).
Conclusions
The 467 differentially expressed genes, especially those involved in lipid metabolism and immune function, may play key roles in wool follicle metabolism and the expression of wool FD.
Implications
This study provided valuable data for future studies aimed at elucidating the mechanisms that underlie wool follicle metabolism and wool FD. The work may also have implications for studies of the human hair follicle.
Collapse
|
13
|
Yu Y, Gao C, Wang T, Chen Y, Cheng Y, Li Z, Chen J, Guo L, Sun X, Xu J. Genome Sequence Resource for the Ramie Oomycete Pathogen Phytopythium vexans HF1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1270-1273. [PMID: 32997594 DOI: 10.1094/mpmi-04-20-0085-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oomycete Phytopythium vexans is a causative agent of patch canker, damping-off, and crown, stem, and root rot in many economically important plants. P. vexans HF1 was isolated in China, where it caused brown root rot of ramie, a fiber crop broadly cultivated in Asia. The genome of HF1 was sequenced by a combination of technologies producing short (Illumina HiSeq X) and long (PacBio RS) reads. The genome is 41.73 Mbp long, assembled into 44 contigs. It has a GC content of 58.17% and contains 13,051 predicted coding genes, including 1,461 putative virulence genes and 220 putative antimicrobial resistance genes. This genome sequence provides a resource for determining the molecular mechanisms of disease development in this pathosystem.
Collapse
Affiliation(s)
- Yongting Yu
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Tuhong Wang
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Yikun Chen
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Jia Chen
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Litao Guo
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Xiangping Sun
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center for Southern Economic Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
- Department of Biology, McMaster University, Hamilton, L8S 4K1, Canada
| |
Collapse
|
14
|
Xiao M, Huang T, Xu Y, Peng Z, Liu Z, Guan Q, Xie M, Xiong T. Metatranscriptomics reveals the gene functions and metabolic properties of the major microbial community during Chinese Sichuan Paocai fermentation. Food Microbiol 2020; 98:103573. [PMID: 33875193 DOI: 10.1016/j.fm.2020.103573] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/01/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023]
Abstract
Chinese Sichuan Paocai (CSP) is one of the world's best-known fermented vegetables with a large presence in the Chinese market. The dynamic microbial community is the main contributor to Paocai fermentation. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the Paocai fermentation process. Enterobacter, Leuconostoc, and Lactobacillus dominated the three-fermentation stages (Pre-, Mid- and Lat-), respectively. Carbon metabolism was the most abundant pathway. GH (glycoside hydrolase) and GT (lycosyl transferase) were the two most highly expressed carbohydrate-active enzymes. The most highly differentially expressed genes were grouped in the biosynthesis of amino acids, followed by glycolysis. Meta-pathways in the Sichuan Paocai fermentation ecosystem were reconstructed, Lactobacillaceae and Enterobacteriaceae were the two most important metabolic contributors. In addition, the nrfA and nirB were two genes referred to distinct nitrite reductase enzymes and 9 specialized genes, such as eclo, ron and ent were expressed to produce autoinducer 2 (AI-2) kinase in response to population density. The present study revealed functional enzymes and meta-pathways of the active microbial communities, which provide a deeper understanding of their contribution to CSP products.
Collapse
Affiliation(s)
- Muyan Xiao
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Huang
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Yazhou Xu
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Zhen Peng
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Zhanggen Liu
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Qianqian Guan
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science & Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science & Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
| |
Collapse
|
15
|
An X, Jin G, Luo X, Chen C, Li W, Zhu G. Transcriptome analysis and transcription factors responsive to drought stress in Hibiscus cannabinus. PeerJ 2020; 8:e8470. [PMID: 32140299 PMCID: PMC7047868 DOI: 10.7717/peerj.8470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/27/2019] [Indexed: 11/20/2022] Open
Abstract
Kenaf is an annual bast fiber crop. Drought stress influences the growth of kenaf stems and causes a marked decrease in fiber yield and quality. Research on the drought resistance of kenaf is therefore important, but limited information is available on the response mechanism of kenaf to drought stress. In this study, a transcriptome analysis of genes associated with the drought stress response in kenaf was performed. About 264,244,210 bp high-quality reads were obtained after strict quality inspection and data cleaning. Compared with the control group, 4,281 genes were differentially expressed in plants treated with drought stress for 7 d (the drought stress group). Compared with the control group, 605 genes showed differential expression in plants subjected to drought stress for 6 d and then watered for 1 d (the rewatering group). Compared with the rewatering group, 5,004 genes were differentially expressed in the drought stress group. In the comparisons between the drought stress and control groups, and between the drought stress and rewatering groups, the pathway that showed the most highly significant enrichment was plant hormone signal transduction. In the comparison between the rewatering and control groups, the pathways that showed the most highly significant enrichment were starch and sucrose metabolism. Eight transcription factors belonging to the AP2/ERF, MYB, NAC, and WRKY families (two transcription factors per family) detected in the leaf transcriptome were associated with the drought stress response. The identified transcription factors provide a basis for further investigation of the response mechanism of kenaf to drought stress.
Collapse
Affiliation(s)
- Xia An
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guanrong Jin
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiahong Luo
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Changli Chen
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenlue Li
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guanlin Zhu
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
16
|
Khan A, Dou J, Wang Y, Jiang X, Khan MZ, Luo H, Usman T, Zhu H. Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells. J Anim Sci Biotechnol 2020; 11:25. [PMID: 32095238 PMCID: PMC7027041 DOI: 10.1186/s40104-019-0408-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Background Heat stress is known to affect follicular dynamics, oocyte maturation, and fertilization by impairing steroidogenic ability and viability of bovine granulosa cell (bGCs). The present study explored the physiological and molecular response of bGCs to different heat stress intensities in-vitro. We exposed the primary bGCs to heat stress (HS) at 39 °C, 40 °C and 41 °C along with control samples (38 °C) for 2 h. To evaluate the impact of heat stress on bGCs, several in vitro cellular parameters including cell apoptosis, intracellular reactive oxygen species (ROS) accumulation and HSP70 kinetics were assessed by flow cytometry, florescence microscopy and western blot, respectively. Furthermore, the ELISA was performed to confirm the 17β-estradiol (E2) and progesterone (P4) levels. In addition, the RNA sequencing (RNA-Seq) method was used to get the molecular based response of bGCs to different heat treatments. Results Our findings revealed that the HS significantly decreased the cell viability, E2 and P4 levels in bGCs, whereas, increased the cellular apoptosis and ROS. Moreover, the RNA-Seq experiments showed that all the treatments (39 °C, 40 °C and 41 °C) significantly regulated many differentially expressed genes (DEGs) i.e. BCL2L1, STAR, CYP11A1, CASP3, SOD2, HSPA13, and MAPK8IP1 and pathways associated with heat stress, apoptosis, steroidogenesis, and oxidative stress. Conclusively, our data demonstrated that the impact of 40 °C treatment was comparatively detrimental for cell viability, apoptosis and ROS accumulation. Notably, a similar trend of gene expression was reported by RT-qPCR for RNA-seq data. Conclusions Our study presented a worthy strategy for the first time to characterize the cellular and transcriptomic adaptation of bGCs to heat stress (39, 40 and 41 °C) in-vitro. The results infer that these genes and pathways reported in present study could be useful candidates/indicators for heat stress research in dairy cattle. Moreover, the established model of bGCs to heat stress in the current study provides an appropriate platform to understand the mechanism of how heat-stressed bGCs can affect the quality of oocytes and developing embryo.
Collapse
Affiliation(s)
- Adnan Khan
- 1Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Jinhuan Dou
- 1Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yachun Wang
- 1Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Xiaolong Jiang
- 2Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Zahoor Khan
- 1Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Hanpeng Luo
- 1Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Tahir Usman
- 3College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, 23200 Pakistan
| | - Huabin Zhu
- 2Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Liu F, Tang Y, Guo Q, Chen J. Identification and characterization of microRNAs in phloem and xylem from ramie (Boehmeria nivea). Mol Biol Rep 2019; 47:1013-1020. [PMID: 31820312 DOI: 10.1007/s11033-019-05193-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
Abstract
Ramie (Boehmeria nivea) is a widely cropped species in southern China due to its high economic value of natural fiber for industry. Development of phloem and xylem is key evidence for generating fiber. However, the MicroRNA (miRNA) profiles of phloem and xylem in ramie have not been reported yet. miRNA belong to a small RNA family which has been recognized as an important regulator for various biological processes. In the present study, we aimed to identify differently expressed miRNAs between phloem and xylem in adult ramie. The results showed that 137 and 122 unique conserved miRNAs were identified from phloem and xylem libraries, respectively. Meanwhile, 4 novel miRNAs were identified from ramie by miRDeep2. Of these miRNAs, 77 conserved miRNAs in ramie were differentially expressed. Among the differentially expressed miRNAs, 44 miRNAs and 33 miRNAs were up-regulated and down-regulated in phloem compared to that in xylem, respectively. The functions of differentially expressed miRNAs were associated with regulating the development and differentiation of phloem and xylem. The present study provides a glance of miRNA profiles for further understanding of miRNA role in ramie development.
Collapse
Affiliation(s)
- Fang Liu
- Department of Biotechnology and Environmental Science, Changsha University, Hongshan Road 98#, Changsha, 410003, Hunan, China
| | - Yinghong Tang
- Department of Biotechnology and Environmental Science, Changsha University, Hongshan Road 98#, Changsha, 410003, Hunan, China
| | - Qingquan Guo
- Department of Biotechnology and Environmental Science, Changsha University, Hongshan Road 98#, Changsha, 410003, Hunan, China
| | - Jianrong Chen
- Department of Biotechnology and Environmental Science, Changsha University, Hongshan Road 98#, Changsha, 410003, Hunan, China.
| |
Collapse
|
18
|
Li FD, Tong W, Xia EH, Wei CL. Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species. BMC Bioinformatics 2019; 20:553. [PMID: 31694521 PMCID: PMC6836513 DOI: 10.1186/s12859-019-3166-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Tea is the oldest and among the world’s most popular non-alcoholic beverages, which has important economic, health and cultural values. Tea is commonly produced from the leaves of tea plants (Camellia sinensis), which belong to the genus Camellia of family Theaceae. In the last decade, many studies have generated the transcriptomes of tea plants at different developmental stages or under abiotic and/or biotic stresses to investigate the genetic basis of secondary metabolites that determine tea quality. However, these results exhibited large differences, particularly in the total number of reconstructed transcripts and the quality of the assembled transcriptomes. These differences largely result from limited knowledge regarding the optimized sequencing depth and assembler for transcriptome assembly of structurally complex plant species genomes. Results We employed different amounts of RNA-sequencing data, ranging from 4 to 84 Gb, to assemble the tea plant transcriptome using five well-known and representative transcript assemblers. Although the total number of assembled transcripts increased with increasing sequencing data, the proportion of unassembled transcripts became saturated as revealed by plant BUSCO datasets. Among the five representative assemblers, the Bridger package shows the best performance in both assembly completeness and accuracy as evaluated by the BUSCO datasets and genome alignment. In addition, we showed that Bridger and BinPacker harbored the shortest runtimes followed by SOAPdenovo and Trans-ABySS. Conclusions The present study compares the performance of five representative transcript assemblers and investigates the key factors that affect the assembly quality of the transcriptome of the tea plants. This study will be of significance in helping the tea research community obtain better sequencing and assembly of tea plant transcriptomes under conditions of interest and may thus help to answer major biological questions currently facing the tea industry.
Collapse
Affiliation(s)
- Fang-Dong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.,School of Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - En-Hua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
19
|
Chen J, Rao J, Wang Y, Zeng Z, Liu F, Tang Y, Chen X, Liu C, Liu T. Integration of Quantitative Trait Loci Mapping and Expression Profiling Analysis to Identify Genes Potentially Involved in Ramie Fiber Lignin Biosynthesis. Genes (Basel) 2019; 10:genes10110842. [PMID: 31653111 PMCID: PMC6896145 DOI: 10.3390/genes10110842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
Ramie fibers, one of the most important natural fibers in China, are mainly composed of lignin, cellulose, and hemicellulose. As the high lignin content in the fibers results in a prickly texture, the lignin content is deemed to be an important trait of the fiber quality. In this study, the genetic basis of the fiber lignin content was evaluated, resulting in the identification of five quantitative trait loci (QTLs). Three genes, whole_GLEAN_10021050, whole_GLEAN_10026962, and whole_GLEAN_10009464 that were identified on the QTL regions of qLC7, qLC10, and qLC13, respectively, were found to be homologs of the Arabidopsis lignin biosynthetic genes. Moreover, all three genes displayed differential expression in the barks located in the top and middle parts of the stem, where lignin was not being synthesized and where it was being biosynthesized, respectively. Sequence comparison found that these three genes had wide variations in their coding sequences (CDSs) and putative promoter regions between the two parents, especially the MYB gene whole_GLEAN_10021050, whose protein had insertions/deletions of five amino acids and substitutions of two amino acids in the conserved domain. This evidence indicates that these three genes are potentially involved in lignin biosynthesis in ramie fibers. The QTLs identified from this study provide a basis for the improvement of lignin content and fiber quality in ramie breeding. The characterization of the three candidate genes here will be helpful for the future clarification of their functions in ramie.
Collapse
Affiliation(s)
- Jianrong Chen
- College of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Jing Rao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Zheng Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Fang Liu
- College of Biological and Environmental Engineering, Changsha University, Changsha 410003, China.
| | - Yinghong Tang
- College of biological and environmental sciences, Hunan University of Arts and Science, Changde 410128, China.
| | - Xiaorong Chen
- Laboratory of ramie, Yichun Institute of Agricultural Sciences, Yichun 336000, China.
| | - Chan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
20
|
Wang Y, Zeng Z, Li F, Yang X, Gao X, Ma Y, Rao J, Wang H, Liu T. A genomic resource derived from the integration of genome sequences, expressed transcripts and genetic markers in ramie. BMC Genomics 2019; 20:476. [PMID: 31185891 PMCID: PMC6558782 DOI: 10.1186/s12864-019-5878-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background The redundancy of genomic resources, including transcript and molecular markers, and their uncertain position in the genome have dramatically hindered the study of traits in ramie, an important natural fiber crop. Results We obtained a high-quality transcriptome consisting of 30,591 non-redundant transcripts using single-molecule long-read sequencing and proposed it as a universal ramie transcriptome. Additionally, 55,882 single nucleotide polymorphisms (SNPs) were identified and a high-density genetic map was developed. Based on this genetic map, 181.7 Mb ramie genome sequences were assembled into 14 chromosomes. For the convenient use of these resources, 29,286 (~ 95.7%) of the transcripts and all 55,882 SNPs, along with 1827 previously reported sequence repeat markers (SSRs), were mapped into the ramie genome, and 22,343 (~ 73.0%) transcripts, 50,154 (~ 89.7%) SNPs, and 1466 (~ 80.3%) SSRs were assigned to a specific location in the corresponding chromosome. Conclusion This is the first study to characterize the ramie transcriptome by long-read sequencing, and the substantial number of transcripts of significant length obtained will accelerate our understanding of ramie growth and development. This integration of genome sequences, expressed transcripts, and genetic markers will provide an extremely useful resource for genetic, molecular, and breeding studies of ramie. Electronic supplementary material The online version of this article (10.1186/s12864-019-5878-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanzhou Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zheng Zeng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Fu Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | | | - Xinyue Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yonghong Ma
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jing Rao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | | | - Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| |
Collapse
|
21
|
Ma Y, Reddy VR, Devi MJ, Song L, Cao B. De novo characterization of the Goji berry (Lycium barbarium L.) fruit transcriptome and analysis of candidate genes involved in sugar metabolism under different CO2 concentrations. TREE PHYSIOLOGY 2019; 39:1032-1045. [PMID: 30824924 DOI: 10.1093/treephys/tpz014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/05/2018] [Indexed: 05/09/2023]
Abstract
Goji berry (Lycium barbarum L.) is one of the important economic crops due to its exceptional nutritional value and medicinal benefits. Although reduced sugar levels in goji berry exposed to long-term elevated carbon dioxide (CO2) have been documented, the underlying molecular mechanisms remain unknown. The objective of this study was to explore the transcriptome of goji berry fruit under ambient and elevated CO2 concentrations and further to screen the differentially expressed genes (DEGs) for functions related to sugar metabolism. Fruit samples from goji berry exposed to ambient (400 μmol mol-1) and elevated (700 μmol mol-1) levels of CO2 for 120 days were analyzed for total sugar, carotenoid and flavone analysis. In this study, a reduction in total sugar and carotenoid levels in the fruits grown under elevated CO2 levels were observed. Fruit samples were also used to construct cDNA libraries using a HiSeqTM2500 platform. Consequently, 81,100 unigenes were assembled, of which 35,111 (43.3%) were annotated using various databases. Through DEGs analysis, it was found that 55 genes were upregulated and 18 were down-regulated in response to elevated CO2 treatment. Genes involved in the sugar metabolism and the related pathways were identified by Gene Ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Furthermore, three genes, LBGAE (Lycium barbarum UDP-glucuronate 4-epimerase), LBGALA (Lycium barbarum alpha-galactosidase) and LBMS (Lycium barbarum malate synthase), associated with sugar metabolism were identified and discussed with respect to the reduction in the total sugar levels along with the enzymes acid invertase (AI), sucrose synthase (SS) and sucrose phosphate synthase (SPS) of the sucrose metabolism. This study can provide gene sources for elucidating the molecular mechanisms of sugar metabolism in the fruit of goji berry under elevated CO2.
Collapse
Affiliation(s)
- Yaping Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- USDA-ARS-NEA, Adaptive Cropping Systems Laboratory, 10300 BARC, Beltsville, MD 20705, USA
| | - Vangimalla R Reddy
- USDA-ARS-NEA, Adaptive Cropping Systems Laboratory, 10300 BARC, Beltsville, MD 20705, USA
| | - Mura Jyostna Devi
- USDA-ARS-NEA, Adaptive Cropping Systems Laboratory, 10300 BARC, Beltsville, MD 20705, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Lihua Song
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- USDA-ARS-NEA, Adaptive Cropping Systems Laboratory, 10300 BARC, Beltsville, MD 20705, USA
| | - Bing Cao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
22
|
Han C, Li Q, Chen Q, Zhou G, Huang J, Zhang Y. Transcriptome analysis of the spleen provides insight into the immunoregulation of Mastacembelus armatus under Aeromonas veronii infection. FISH & SHELLFISH IMMUNOLOGY 2019; 88:272-283. [PMID: 30772397 DOI: 10.1016/j.fsi.2019.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Mastacembelus armatus, also known as the zigzag eel, is an economically important species of freshwater fish that is very popular with consumers as a high-grade table fish in China. Recently, the wild population of this fish has declined gradually due to overfishing and various types of ecological imbalance. Meanwhile, the aquaculture of this spiny eel has flourished in southern China. To understand the immune response of zigzag eel to Aeromonas veronii, we carried out transcriptome sequencing of zigzag eel spleens after artificial bacterial infection. After assembly, 110,328 unigenes were obtained with 44.42% GC content. A total of 27,098 unigenes were successfully annotated by four public protein databases, namely, Nr, UniProt, KEGG and KOG. Differential expression analysis revealed the existence of 1278 significantly differentially expressed unigenes at 24 h post infection, with 767 unigenes upregulated and 511 unigenes downregulated. After GO and KEGG enrichment analyses, many immune-related GO categories and pathways were significantly enriched. The typical significantly enriched pathways included toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and TNF signaling pathway. In addition, 40,027 microsatellites (SSRs) and 52,716 candidate single nucleotide polymorphisms (SNPs) were identified from the infection and control transcriptome libraries. Overall, this transcriptomic analysis provided valuable information for studying the immune response of zigzag eels against bacterial infection.
Collapse
Affiliation(s)
- Chong Han
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Qiang Li
- School of Life Sciences, Guangzhou University, Guangzhou, PR China
| | - Qinghua Chen
- South China Institute of Environmental Science, MEP, Guangzhou, PR China
| | - Guofeng Zhou
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Jianrong Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China.
| |
Collapse
|
23
|
Huang X, Xiao M, Xi J, He C, Zheng J, Chen H, Gao J, Zhang S, Wu W, Liang Y, Xie L, Yi K. De Novo Transcriptome Assembly of Agave H11648 by Illumina Sequencing and Identification of Cellulose Synthase Genes in Agave Species. Genes (Basel) 2019; 10:genes10020103. [PMID: 30704153 PMCID: PMC6409920 DOI: 10.3390/genes10020103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Agave plants are important crassulacean acid metabolism (CAM) plants with multiple agricultural uses, such as being used in tequila and fiber production. Agave hybrid H11648 ((A. amaniensis Trel. and Nowell × A. angustifolia Haw.) × A. amaniensis) is the main cultivated Agave species for fiber production in large tropical areas around the world. In this study, we conducted a transcriptome analysis of A. H11648. About 49.25 million clean reads were obtained by Illumina paired-end sequencing. De novo assembly produced 148,046 unigenes with more than 40% annotated in public databases, or matched homologs in model plants. More homologous gene pairs were found in Asparagus genome than in Arabidopsis or rice, which indicated a close evolutionary relationship between Asparagus and A. H11648. CAM-related gene families were also characterized as previously reported in A. americana. We further identified 12 cellulose synthase genes (CesA) in Asparagus genome and 38 CesA sequences from A. H11648, A. americana, A. deserti and A. tequilana. The full-length CesA genes were used as references for the cloning and assembly of their homologs in other Agave species. As a result, we obtained CesA1/3/4/5/7 genes with full-length coding region in the four Agave species. Phylogenetic and expression analysis revealed a conserved evolutionary pattern, which could not explain the distinct fiber traits in different Agave species. We inferred that transcriptional regulation might be responsible for Agave fiber development. This study represents the transcriptome of A. H11648, which would expand the number of Agave genes and benefit relevant studies of Agave fiber development.
Collapse
Affiliation(s)
- Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Mei Xiao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jingen Xi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Chunping He
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jinlong Zheng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Helong Chen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jianming Gao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shiqing Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Weihuai Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yanqiong Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Li Xie
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China.
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
24
|
Guo XW, Zhang Y, Li LL, Guan XY, Guo J, Wu DG, Chen YF, Xiao DG. Improved xylose tolerance and 2,3-butanediol production of Klebsiella pneumoniae by directed evolution of rpoD and the mechanisms revealed by transcriptomics. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:307. [PMID: 30455736 PMCID: PMC6225576 DOI: 10.1186/s13068-018-1312-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The biological production of 2,3-butanediol from xylose-rich raw materials from Klebsiella pneumoniae is a low-cost process. RpoD, an encoding gene of the sigma factor, is the key element in global transcription machinery engineering and has been successfully used to improve the fermentation with Escherichia coli. However, whether it can regulate the tolerance in K. pneumoniae remains unclear. RESULTS In this study, the kpC mutant strain was constructed by altering the expression quantity and genotype of the rpoD gene, and this exhibited high xylose tolerance and 2,3-butanediol production. The xylose tolerance of kpC strain was increased from 75 to 125 g/L, and the yield of 2,3-butanediol increased by 228.5% compared with the parent strain kpG, reaching 38.6 g/L at 62 h. The RNA sequencing results showed an upregulated expression level of 500 genes and downregulated expression level of 174 genes in the kpC mutant strain. The pathway analysis further showed that the differentially expressed genes were mainly related to signal transduction, membrane transport, carbohydrate metabolism, and energy metabolism. The nine most-promising genes were selected based on transcriptome sequencing, and were evaluated for their effects on xylose tolerance. The overexpression of the tktA encoding transketolase, pntA encoding NAD(P) transhydrogenase subunit alpha, and nuoF encoding NADH dehydrogenase subunit F conferred increased xylose consumption and increased 2,3-butanediol production to K. pneumoniae. CONCLUSIONS These results suggest that the xylose tolerance and 2,3-butanediol production of K. pneumoniae can be greatly improved by the directed evolution of rpoD. By applying transcriptomic analysis, the upregulation of tktA, pntA, and nuoF that were coded are essential for the xylose consumption and 2,3-butanediol production. This study will provide reference for further research on improving the fermentation abilities by means of other organisms.
Collapse
Affiliation(s)
- Xue-Wu Guo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| | - Yu Zhang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| | - Lu-Lu Li
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| | - Xiang-Yu Guan
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| | - Jian Guo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| | - De-Guang Wu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, 300457 China
| | - Ye-Fu Chen
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| |
Collapse
|
25
|
Liu C, Zeng L, Zhu S, Wu L, Wang Y, Tang S, Wang H, Zheng X, Zhao J, Chen X, Dai Q, Liu T. Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud). DNA Res 2018; 25:173-181. [PMID: 29149285 PMCID: PMC5909428 DOI: 10.1093/dnares/dsx047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/01/2017] [Indexed: 12/26/2022] Open
Abstract
Plentiful bast fiber, a high crude protein content, and vigorous vegetative growth make ramie a popular fiber and forage crop. Here, we report the draft genome of ramie, along with a genomic comparison and evolutionary analysis. The draft genome contained a sequence of approximately 335.6 Mb with 42,463 predicted genes. A high-density genetic map with 4,338 single nucleotide polymorphisms (SNPs) was developed and used to anchor the genome sequence, thus, creating an integrated genetic and physical map containing a 58.2-Mb genome sequence and 4,304 molecular markers. A genomic comparison identified 1,075 unique gene families in ramie, containing 4,082 genes. Among these unique genes, five were cellulose synthase genes that were specifically expressed in stem bark, and 3 encoded a WAT1-related protein, suggesting that they are probably related to high bast fiber yield. An evolutionary analysis detected 106 positively selected genes, 22 of which were related to nitrogen metabolism, indicating that they are probably responsible for the crude protein content and vegetative growth of domesticated varieties. This study is the first to characterize the genome and develop a high-density genetic map of ramie and provides a basis for the genetic and molecular study of this crop.
Collapse
Affiliation(s)
- Chan Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Liangbin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Lingqing Wu
- Novogene Bioinformatics Institute, Beijing, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Shouwei Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Hongwu Wang
- Xianning Agriculture Academy of sciences, Hubei, China
| | - Xia Zheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jian Zhao
- Novogene Bioinformatics Institute, Beijing, China
| | - Xiaorong Chen
- Yichun Institute of Agricultural Sciences, Jiangxi, China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
26
|
An X, Jin G, Zhang J, Luo X, Chen C, Li W, Ma G, Jin L, Dai L, Shi X, Wei W, Zhu G. Protein responses in kenaf plants exposed to drought conditions determined using iTRAQ technology. FEBS Open Bio 2018; 8:1572-1583. [PMID: 30338209 PMCID: PMC6168693 DOI: 10.1002/2211-5463.12507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/31/2018] [Accepted: 07/28/2018] [Indexed: 12/27/2022] Open
Abstract
The molecular mechanisms that underlie drought stress responses in kenaf, an important crop for the production of natural fibers, are poorly understood. To address this issue, we describe here the first iTRAQ‐based comparative proteomic analysis of kenaf seedlings. Plants were divided into the following three treatment groups: Group A, watered normally (control); Group B, not watered for 6 days (drought treatment); and Group C, not watered for 5 days and then rewatered for 1 day (recovery treatment). A total of 5014 proteins were detected, including 4932 (i.e., 98.36%) that were matched to known proteins in a BLAST search. We detected 218, 107, and 348 proteins that were upregulated in Group B compared with Group A, Group C compared with Group A, and Group B compared with Group C, respectively. Additionally, 306, 145, and 231 downregulated proteins were detected during the same comparisons. Seventy differentially expressed proteins were analyzed and classified into 10 categories: photosynthesis, sulfur metabolism, amino sugar and nucleotide sugar metabolism, oxidative phosphorylation, ribosome, fatty acid elongation, thiamine metabolism, tryptophan metabolism, plant–pathogen interaction, and propanoate. Kenaf adapted to stress mainly by improving the metabolism of ATP, regulating photosynthesis according to light intensity, promoting the synthesis of osmoregulators, strengthening ion transport signal transmission, and promoting metabolism and cell stability. This is the first study to examine changes in protein expression in kenaf plants exposed to drought stress. Our results identified key drought‐responsive genes and proteins and may provide useful genetic information for improving kenaf stress resistance.
Collapse
Affiliation(s)
- Xia An
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops Flower Research and Development Centre Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Guanrong Jin
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops Flower Research and Development Centre Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Jingyu Zhang
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River Ministry of Agriculture Wuhan China.,College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Xiahong Luo
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops Flower Research and Development Centre Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Changli Chen
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops Flower Research and Development Centre Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Wenlue Li
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops Flower Research and Development Centre Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - GuangYing Ma
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops Flower Research and Development Centre Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Liang Jin
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops Flower Research and Development Centre Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Lunjin Dai
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River Ministry of Agriculture Wuhan China.,College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Xiaohua Shi
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops Flower Research and Development Centre Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Wei Wei
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River Ministry of Agriculture Wuhan China.,College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Guanlin Zhu
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops Flower Research and Development Centre Zhejiang Academy of Agricultural Sciences Hangzhou China
| |
Collapse
|
27
|
Chen JH, Zhang DZ, Zhang C, Xu ML, Yin WL. Physiological characterization, transcriptomic profiling, and microsatellite marker mining of Lycium ruthenicum. J Zhejiang Univ Sci B 2018; 18:1002-1021. [PMID: 29119738 DOI: 10.1631/jzus.b1700135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lycium ruthenicum is a perennial shrub species that has attracted considerable interest in recent years owing to its nutritional value and ability to thrive in a harsh environment. However, only extremely limited transcriptomic and genomic data related to this species can be found in public databases, thereby limiting breeding research and molecular function analysis. In this study, we characterized the physiological and biochemical responses to saline-alkaline mixed stress by measuring photochemical efficiency, chlorophyll content, and protective enzyme activity. We performed global transcriptomic profiling analysis using the Illumina platform. After optimizing the assembly, a total of 68 063 unique transcript sequences with an average length of 877 bp were obtained. Among these sequences, 4096 unigenes were upregulated and 4381 unigenes were down-regulated after saline-alkaline mixed treatment. The most abundant transcripts and over-represented items were assigned to gene ontology (GO) terms or Kyoto Encyclopedia of Genes and the Genomes (KEGG) categories for overall unigenes, and differentially expressed unigenes were analyzed in detail. Based on this set of RNA-sequencing data, a total of 9216 perfect potential simple sequence repeats (SSRs) were identified within 7940 unigenes with a frequency of 1/6.48 kb. A total of 77 primer pairs were synthesized and examined in wet-laboratory experiments, of which 68 loci (88.3%) were successfully amplified with specific products. Eleven pairs of polymorphic primers were verified in 225 individuals from nine populations. The inbreeding coefficient and the polymorphism information content value ranged from 0.011 to 0.179 and from 0.1112 to 0.6750, respectively. The observed and expected heterozygosities ranged from 0.064 to 0.840 and from 0.115 to 0.726, respectively. Nine populations were clustered into three groups based on a genetic diversity study using these novel markers. Our data will be useful for functional genomic investigations of L. ruthenicum and could be used as a basis for further research on the genetic diversity, genetic differentiation, and gene flow of L. ruthenicum and other closely related species.
Collapse
Affiliation(s)
- Jin-Huan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Dong-Zhi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Chong Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Mei-Long Xu
- State Key Laboratory of Seedling Bioengineering, Yinchuan750004, China
| | - Wei-Lun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
28
|
Zhu S, Wang Y, Xu X, Liu T, Wu D, Zheng X, Tang S, Dai Q. Potential use of high-throughput sequencing of soil microbial communities for estimating the adverse effects of continuous cropping on ramie (Boehmeria nivea L. Gaud). PLoS One 2018; 13:e0197095. [PMID: 29750808 PMCID: PMC5947917 DOI: 10.1371/journal.pone.0197095] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/26/2018] [Indexed: 01/09/2023] Open
Abstract
Ramie (Boehmeria nivea L. Gaud) fiber, one of the most important natural fibers, is extracted from stem bark. Continuous cropping is the main obstacle to ramie stem growth and a major cause of reduced yields. Root-associated microbes play crucial roles in plant growth and health. In this study, we investigated differences between microbial communities in the soil of healthy and continuously cropped ramie plants, and sought to identify potential mechanisms whereby these communities could counteract the problems posed by continuous cropping. Paired-end Illumina MiSeq analysis of 16S rRNA and ITS gene amplicons was employed to study bacterial and fungal communities. Long-term monoculture of ramie significantly decreased fiber yields and altered soil microbial communities. Our findings revealed how microbial communities and functional diversity varied according to the planting year and plant health status. Soil bacterial diversity increased with the period of ramie monoculture, whereas no significant differences were observed for fungi. Sequence analyses revealed that Firmicutes, Proteobacteria, and Acidobacteria were the most abundant bacterial phyla. Firmicutes abundance decreased with the period of ramie monoculture and correlated positively with the stem length, stem diameter, and fiber yield. The Actinobacteria, Chloroflexi, and Zygomycota phyla exhibited a significant (P < 0.05) negative correlation with yields during continuous cultivation. Some Actinobacteria members showed reduced microbial diversity, which prevented continuous ramie cropping. Ascomycota, Zygomycota, and Basidiomycota were the main fungal phyla. The relatively high abundance of Bacillus observed in healthy ramie may contribute to disease suppression, thereby promoting ramie growth. In summary, soil weakness and increased disease in ramie plants after long-term continuous cropping can be attributed to changes in soil microbes, a reduction in beneficial microbes, and an accumulation of harmful microbes.
Collapse
Affiliation(s)
- Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
- * E-mail: (SZ); (QD)
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
| | - Xiaomin Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
| | - Duanqing Wu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
| | - Xia Zheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
| | - Shouwei Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, P.R. China
- * E-mail: (SZ); (QD)
| |
Collapse
|
29
|
Molecular Cloning, Recombinant Expression and Antifungal Activity of BnCPI, a Cystatin in Ramie (Boehmeria nivea L.). Genes (Basel) 2017; 8:genes8100265. [PMID: 29019965 PMCID: PMC5664115 DOI: 10.3390/genes8100265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 11/24/2022] Open
Abstract
Phytocystatins play multiple roles in plant growth, development and resistance to pests and other environmental stresses. A ramie (Boehmeria nivea L.) phytocystatin gene, designated as BnCPI, was isolated from a ramie cDNA library and its full-length cDNA was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA sequence (691 bp) consisted of a 303 bp open reading frame (ORF) encoding a protein of 100 amino acids with deduced molecular mass of 11.06 kDa and a theoretical isoelectric point (pI) of 6.0. The alignment of genome DNA (accession No. MF153097) and cDNA sequences of BnCPI showed that an intron (~104 bp) exists in the coding region. The BnCPI protein contains most of the highly conserved blocks including Gly5-Gly6 at the N-terminal, the reactive site motif QxVxG (Q49V50V51S52G53), the L79-W80 block and the [LVI]-[AGT]-[RKE]-[FY]-[AS]-[VI]-x-[EDQV]-[HYFQ]-N (L22G23R24 F25A26V27 D28D29H30 N31) block that is common among plant cystatins. BLAST analysis indicated that BnCPI is similar to cystatins from Glycine max (77%), Glycine soja (76%), Hevea brasiliensis (75%) and Ricinus communis (75%). The BnCPI was subcloned into expression vector pSmart-I and then overexpressed in Escherichia coli BL21 (DE3) as a His-tagged recombinant protein. The purified reBnCPI has a molecular mass of 11.4 kDa determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). Purified reBnCPI can efficiently inhibit the protease activity of papain and ficin toward BANA (Nα-benzoyl-L-arginine-2-naphthyamide), as well as the mycelium growth of some important plant pathogenic fungi. The data further contribute to our understanding of the molecular functions of BnCPI.
Collapse
|
30
|
Han C, Li Q, Li X, Zhang Z, Huang J. De novo assembly, characterization and annotation for the transcriptome of Sphaeroma terebrans and microsatellite marker discovery. Genes Genomics 2017; 40:167-176. [PMID: 29892920 DOI: 10.1007/s13258-017-0618-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022]
Abstract
Sphaeroma terebrans, an economically and ecologically important marine wood-boring isopod, is mainly distributed in tropical and subtropical mangroves. Nevertheless, available genomic and transcriptomic information for this isopod is extremely deficient. Here, we first performed the assembly of S. terebrans transcriptome by Illumina sequencing. A total of 51,092 high-quality unigenes with an average length of 641 bp were obtained and 19,915 unigenes were successfully annotated in four public databases. Only 9932 out of 19915 unigenes were commonly annotated by all four databases. In addition, 9609 unigenes were categorized into 54 function categories of Gene Ontology (GO), and 14,512 unigenes were successfully grouped into 25 functional categories of the EuKaryotic Orthologous Groups (KOG) database. Moreover, 11,507 unigenes were assigned to 228 pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG). Out of 51,092 unigenes, a total of 4257 different microsatellites with motifs range from di- to hexa-nucleotide were identified from 3324 unigene sequences. Among 64 primer pairs selected for validation, 35 were successful in PCR amplification and 13 exhibited obvious repeat polymorphisms in the wild population of S. terebrans in Dongzhaigang (Hainan Island). The transcriptome dataset and the identified microsatellite markers (SSRs) will provide abundant information for researches on the discovery of new genes, metabolic mechanism and genetic diversity of S. terebrans.
Collapse
Affiliation(s)
- Chong Han
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qiang Li
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xiufeng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhipeng Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianrong Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
31
|
Qiao H, Fu H, Xiong Y, Jiang S, Zhang W, Sun S, Jin S, Gong Y, Wang Y, Shan D, Li F, Wu Y. Molecular insights into reproduction regulation of female Oriental River prawns Macrobrachium nipponense through comparative transcriptomic analysis. Sci Rep 2017; 7:12161. [PMID: 28939826 PMCID: PMC5610250 DOI: 10.1038/s41598-017-10439-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
The oriental river prawn, Macrobrachium nipponense, is an important commercial aquaculture resource in China. During breeding season, short ovary maturation cycles of female prawns cause multi-generation reunions in ponds and affect the growth of females representing individual miniaturization (known as autumn -propagation). These reproductive characteristics pose problems for in large - scale farming. To date, the molecular mechanisms of reproduction regulation of M. nipponense remain unclear. To address this issue, we performed transcriptome sequencing and gene expression analyses of eyestalk and cerebral ganglia of female M. nipponense during breeding and non-breeding seasons. Differentially expressed gene enrichment analysis results revealed several important reproduction related terms and signaling pathways, such as "photoreceptor activity", "structural constituent of cuticle" and "G-protein coupled receptor activity". The following six key genes from the transcriptome were predicted to mediate environmental factors regulating reproduction of M. nipponense: neuroparsin, neuropeptide F II, orcokinin II, crustacean cardioactive peptide, pigment-dispersing hormone 3 and tachykinin. These results will contribute to a better understanding of the molecular mechanisms of reproduction of oriental river prawns. Further detailed functional analyses of the candidate reproduction regulation related neuropeptides are needed to shed light on the mechanisms of reproduction of crustacean.
Collapse
Affiliation(s)
- Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yabing Wang
- Wuxi Fishery College Nanjing Agricultural University, Wuxi, 214081, China
| | - Dongyan Shan
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Fei Li
- Wuxi Fishery College Nanjing Agricultural University, Wuxi, 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| |
Collapse
|
32
|
Song Z, Du H, Zhang Y, Xu Y. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing. Front Microbiol 2017; 8:1294. [PMID: 28769888 PMCID: PMC5509801 DOI: 10.3389/fmicb.2017.01294] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/27/2017] [Indexed: 11/24/2022] Open
Abstract
Fermentation microbiota is specific microorganisms that generate different types of metabolites in many productions. In traditional solid-state fermentation, the structural composition and functional capacity of the core microbiota determine the quality and quantity of products. As a typical example of food fermentation, Chinese Maotai-flavor liquor production involves a complex of various microorganisms and a wide variety of metabolites. However, the microbial succession and functional shift of the core microbiota in this traditional food fermentation remain unclear. Here, high-throughput amplicons (16S rRNA gene amplicon sequencing and internal transcribed space amplicon sequencing) and metatranscriptomics sequencing technologies were combined to reveal the structure and function of the core microbiota in Chinese soy sauce aroma type liquor production. In addition, ultra-performance liquid chromatography and headspace-solid phase microextraction-gas chromatography-mass spectrometry were employed to provide qualitative and quantitative analysis of the major flavor metabolites. A total of 10 fungal and 11 bacterial genera were identified as the core microbiota. In addition, metatranscriptomic analysis revealed pyruvate metabolism in yeasts (genera Pichia, Schizosaccharomyces, Saccharomyces, and Zygosaccharomyces) and lactic acid bacteria (genus Lactobacillus) classified into two stages in the production of flavor components. Stage I involved high-level alcohol (ethanol) production, with the genus Schizosaccharomyces serving as the core functional microorganism. Stage II involved high-level acid (lactic acid and acetic acid) production, with the genus Lactobacillus serving as the core functional microorganism. The functional shift from the genus Schizosaccharomyces to the genus Lactobacillus drives flavor component conversion from alcohol (ethanol) to acid (lactic acid and acetic acid) in Chinese Maotai-flavor liquor production. Our findings provide insight into the effects of the core functional microbiota in soy sauce aroma type liquor production and the characteristics of the fermentation microbiota under different environmental conditions.
Collapse
Affiliation(s)
- Zhewei Song
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan UniversityWuxi, China
| | - Hai Du
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan UniversityWuxi, China
| | - Yan Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology - Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, School of Biotechnology, Jiangnan UniversityWuxi, China
| |
Collapse
|
33
|
An X, Zhang J, Liao Y, Liu L, Peng D, Wang B. Senescence is delayed when ramie ( Boehmeria nivea L.) is transformed with the isopentyl transferase ( ipt) gene under control of the SAG12 promoter. FEBS Open Bio 2017; 7:636-644. [PMID: 28469976 PMCID: PMC5407899 DOI: 10.1002/2211-5463.12191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/05/2016] [Accepted: 12/23/2016] [Indexed: 11/29/2022] Open
Abstract
Ramie is an economically important industrial fiber crop widely planted in China, India, and other Southeast Asian and Pacific Rim countries. It plays an important role in China's economy, where ramie farming, industry, and trade provide livelihood support to about five million people. However, poor fiber production resulting from leaf senescence and leaf abscission is a significant problem. In this study, we report the successful production of transgenic ramie plants which delayed leaf senescence and enhanced biomass. Transgenic ramie plants were obtained via transformation with the Agrobacterium tumefaciens strain harboring the binary vector pSG529 containing the isopentyl transferase (ipt) gene under control of the SAG12 promoter (PSAG12‐ipt construct). Agrobacterium tumefaciens strain EHA105 was used for the midrib explant transformation. The transformation frequency was 28.29%. Southern blot confirmed the integration of 1–4 copies of the NPTII gene into the ramie genome in the tested lines. At the fiber maturation stage, the transgenic plants had higher photosynthesis rates, chlorophyll content (SPAD values), and stronger resistance to exogenous ethylene compared with wild‐type plants.
Collapse
Affiliation(s)
- Xia An
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River Ministry of Agriculture, College of Plant Science and Technology Huazhong Agricultural University Wuhan China.,Flower Research and Development Centre Zhejiang Academy of Agricultural Sciences Hangzhou China
| | - Jingyu Zhang
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River Ministry of Agriculture, College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Yiwen Liao
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River Ministry of Agriculture, College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Lijun Liu
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River Ministry of Agriculture, College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Dingxiang Peng
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River Ministry of Agriculture, College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Bo Wang
- Key Laboratory of Crop Ecophysiology and Farming Systems in the Middle Reaches of the Yangtze River Ministry of Agriculture, College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| |
Collapse
|
34
|
Tang Q, Zang G, Cheng C, Luan M, Dai Z, Xu Y, Yang Z, Zhao L, Su J. Diplosporous development in Boehmeria tricuspis: Insights from de novo transcriptome assembly and comprehensive expression profiling. Sci Rep 2017; 7:46043. [PMID: 28382950 PMCID: PMC5382578 DOI: 10.1038/srep46043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/07/2017] [Indexed: 01/05/2023] Open
Abstract
Boehmeria tricuspis includes sexually reproducing diploid and apomictic triploid individuals. Previously, we established that triploid B. tricuspis reproduces through obligate diplospory. To understand the molecular basis of apomictic development in B. tricuspis, we sequenced and compared transcriptomic profiles of the flowers of sexual and apomictic plants at four key developmental stages. A total of 283,341 unique transcripts were obtained from 1,463 million high-quality paired-end reads. In total, 18,899 unigenes were differentially expressed between the reproductive types at the four stages. By classifying the transcripts into gene ontology categories of differentially expressed genes, we showed that differential plant hormone signal transduction, cell cycle regulation, and transcription factor regulation are possibly involved in apomictic development and/or a polyploidization response in B. tricuspis. Furthermore, we suggest that specific gene families are possibly related to apomixis and might have important effects on diplosporous floral development. These results make a notable contribution to our understanding of the molecular basis of diplosporous development in B. tricuspis.
Collapse
Affiliation(s)
- Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Gonggu Zang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Lining Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| |
Collapse
|
35
|
Li H, Li D, Chen A, Tang H, Li J, Huang S. RNA-seq for comparative transcript profiling of kenaf under salinity stress. JOURNAL OF PLANT RESEARCH 2017; 130:365-372. [PMID: 27999968 PMCID: PMC5318473 DOI: 10.1007/s10265-016-0898-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/14/2016] [Indexed: 06/01/2023]
Abstract
Kenaf (Hibiscus cannabinus L.) is an economically important global natural fiber crop. As a consequence of the increased demand for food crops and the reduction of available arable land, kenaf cultivation has increasingly shifted to saline and alkaline land. To investigate the molecular mechanism of salinity tolerance in kenaf, we performed Illumina high-throughput RNA sequencing on shoot tips of kenaf and identified 71,318 unigenes, which were annotated using four different protein databases. In total, 2,384 differentially expressed genes (DEGs) were identified between the salt-stressed and the control plants, 1,702 of these transcripts were up-regulated and 683 transcripts were down-regulated. Thirty-seven transcripts belonging to 15 transcription-factor families that respond to salt stress were identified. Gene ontology function enrichment analysis revealed that the genes encoding antioxidant enzymes were up-regulated. The amino acid metabolism and carbohydrate metabolism pathways were highly enriched among these DEGs under salt stress conditions. In order to confirm the RNA-seq data, we randomly selected 20 unigenes for analysis using a quntitative real-time polymerase chain reaction. Our study not only provided the large-scale assessment of transcriptome resources of kenaf but also guidelines for understanding the mechanism underlying salt stress responses in kenaf.
Collapse
Affiliation(s)
- Hui Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, 410205, China
| | - Defang Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, 410205, China.
| | - Anguo Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, 410205, China
| | - Huijuan Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, 410205, China
| | - Jianjun Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, 410205, China
| | - Siqi Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, No. 348 West Xianjiahu Road, Changsha, 410205, China
| |
Collapse
|
36
|
Zhu S, Tang S, Tan Z, Yu Y, Dai Q, Liu T. Comparative transcriptomics provide insight into the morphogenesis and evolution of fistular leaves in Allium. BMC Genomics 2017; 18:60. [PMID: 28068920 PMCID: PMC5223570 DOI: 10.1186/s12864-016-3474-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 12/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fistular leaves frequently appear in Allium species, and previous developmental studies have proposed that the process of fistular leaf formation involves programmed cell death. However, molecular evidence for the role of programmed cell death in the formation of fistular leaf cavities has yet to be reported. RESULTS In this study, we characterized the leaf transcriptomes of nine Allium species, including six fistular- and three solid-leaved species. In addition, we identified orthologous genes and estimated their Ka and Ks values, in order to ascertain their selective pattern. Phylogenetic analysis based on the transcriptomes revealed that A. tuberosum was the most ancestral among the nine species, and analysis of orthologous genes between A. tuberosum and the other eight species indicated that 149 genes were subject to positive selection; whereas >3000 had undergone purifying selection in each species. CONCLUSIONS We found that many genes that are potentially related to programmed cell death either exhibited rapid diversification in fistular-leaved species, or were conserved in solid-leaved species in evolutionary history. These genes potentially involved in programmed cell death might play important roles in the formation of fistular leaf cavities in Allium, and the differing selection patterns in fistular- and solid-leaved species may be responsible for the evolution of fistular leaves.
Collapse
Affiliation(s)
- Siyuan Zhu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Shouwei Tang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yongting Yu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China.
| |
Collapse
|
37
|
Padvitski TA, Galinousky DV, Anisimova NV, Baer GY, Pirko YV, Yemets AI, Khotyleva LV, Blume YB, Kilchevsky AV. Analysis of cellulose synthase gene expression strategies in higher plants using RNA-sequencing data. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717010121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Zhou YJ, Zhu S, Yang DH, Zhao DD, Li JJ, Liu SL. Characterization of Klebsiella sp. strain S1: a bacterial producer of secoisolariciresinol through biotransformation. Can J Microbiol 2016; 63:1-10. [PMID: 27819481 DOI: 10.1139/cjm-2016-0266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Secoisolariciresinol (SECO) is a lignan of potential therapeutic value for diseases such as cancer, but its use has been limited by the lack of ideal production methods, even though its precursors are abundant in plants, such as flaxseeds. Here, we report the characterization of a bacterial strain, S1, isolated from the human intestinal flora, which could produce secoisolariciresinol by biotransformation of precursors in defatted flaxseeds. This bacterium was a Gram-negative and facultatively anaerobic straight rod without capsules. Biochemical assays showed that it was negative for production of oxidase, lysine decarboxylase, ornithine decarboxylase, arginine dihydrolase, and β-glucolase. The G + C content of genomic DNA was 57.37 mol%. Phylogenetic analysis by 16S rRNA and rpoB gene sequences demonstrated S1's close relatedness to Klebsiella. No homologues were found for wzb or wzc (capsular genes), which may explain why Klebsiella sp. strain S1 does not have the capsule and was isolated from a healthy human individual. Based on the percentages of homologous genes with identical nucleotide sequences between the bacteria in comparison, we found that clear-cut genetic boundaries had been formed between S1 and any other Klebsiella strains compared, dividing them into distinct phylogenetic lineages. This work demonstrates that the intestinal Klebsiella, well known as important opportunistic pathogens prevalent in potentially fatal nosocomial infections, may contain lineages that are particularly beneficial to the human health.
Collapse
Affiliation(s)
- Yu-Jie Zhou
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, People's Republic of China.,b HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, People's Republic of China
| | - Songling Zhu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, People's Republic of China.,b HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, People's Republic of China
| | - Dong-Hui Yang
- c Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Dan-Dan Zhao
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, People's Republic of China.,b HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, People's Republic of China
| | - Jia-Jing Li
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, People's Republic of China.,b HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, People's Republic of China
| | - Shu-Lin Liu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, People's Republic of China.,b HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, People's Republic of China.,d Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
39
|
Zheng X, Tang S, Zhu S, Dai Q, Liu T. Identification of an NAC Transcription Factor Family by Deep Transcriptome Sequencing in Onion (Allium cepa L.). PLoS One 2016; 11:e0157871. [PMID: 27331904 PMCID: PMC4917099 DOI: 10.1371/journal.pone.0157871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/06/2016] [Indexed: 01/29/2023] Open
Abstract
Although onion has been used extensively in the past for cytogenetic studies, molecular analysis has been lacking because the availability of genetic resources is limited. NAM, ATAF, and CUC (NAC) transcription factors (TFs) are plant-specific proteins, and they play key roles in plant growth, development, and stress tolerance. However, none of the onion NAC (CepNAC) genes had been identified thus far. In this study, the transcriptome of onion leaves was analyzed by Illumina paired-end sequencing. Approximately 102.9 million clean sequence reads were produced and used for de novo assembly, which generated 117,189 non-redundant transcripts. Of these transcripts, 39,472 were annotated for their function. In order to mine the CepNAC TFs, CepNAC genes were searched from the transcripts assembled, resulting in the identification of all 39 CepNAC genes. These 39 CepNAC proteins were subjected to phylogenetic analysis together with 47 NAC proteins of known function that were previously identified in other species. The results showed that they can be divided into five groups (NAC-I–V). Interestingly, the NAC-IV and -V groups were found to be likely related to the processes of secondary wall synthesis and stress response, respectively. The transcriptome analysis generated a substantial amount of transcripts, which will aid immensely in identifying important genes and accelerating our understanding of onion growth and development. Moreover, the discovery of 39 CepNAC TFs and the identification of the sequence conservation between them and NAC proteins published will provide a basis for further characterization and validation of their functions in the future.
Collapse
Affiliation(s)
- Xia Zheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Shouwei Tang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- * E-mail:
| |
Collapse
|
40
|
Zhang J, Zhang Y, Li J, Liu M, Liu Z. Midgut Transcriptome of the Cockroach Periplaneta americana and Its Microbiota: Digestion, Detoxification and Oxidative Stress Response. PLoS One 2016; 11:e0155254. [PMID: 27153200 PMCID: PMC4859610 DOI: 10.1371/journal.pone.0155254] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/26/2016] [Indexed: 02/01/2023] Open
Abstract
The cockroach, Periplaneta americana, is an obnoxious and notorious pest of the world, with a strong ability to adapt to a variety of complex environments. However, the molecular mechanism of this adaptability is mostly unknown. In this study, the genes and microbiota composition associated with the adaptation mechanism were studied by analyzing the transcriptome and 16S rDNA pyrosequencing of the P. americana midgut, respectively. Midgut transcriptome analysis identified 82,905 unigenes, among which 64 genes putatively involved in digestion (11 genes), detoxification (37 genes) and oxidative stress response (16 genes) were found. Evaluation of gene expression following treatment with cycloxaprid further revealed that the selected genes (CYP6J1, CYP4C1, CYP6K1, Delta GST, alpha-amylase, beta-glucosidase and aminopeptidase) were upregulated at least 2.0-fold at the transcriptional level, and four genes were upregulated more than 10.0-fold. An interesting finding was that three digestive enzymes positively responded to cycloxaprid application. Tissue expression profiles further showed that most of the selected genes were midgut-biased, with the exception of CYP6K1. The midgut microbiota composition was obtained via 16S rDNA pyrosequencing and was found to be mainly dominated by organisms from the Firmicutes phylum, among which Clostridiales, Lactobacillales and Burkholderiales were the main orders which might assist the host in the food digestion or detoxification of noxious compounds. The preponderant species, Clostridium cellulovorans, was previously reported to degrade lignocellulose efficiently in insects. The abundance of genes involved in digestion, detoxification and response to oxidative stress, and the diversity of microbiota in the midgut might provide P. americana high capacity to adapt to complex environments.
Collapse
Affiliation(s)
- Jianhua Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meiling Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
41
|
Song X, Liu G, Huang Z, Duan W, Tan H, Li Y, Hou X. Temperature expression patterns of genes and their coexpression with LncRNAs revealed by RNA-Seq in non-heading Chinese cabbage. BMC Genomics 2016; 17:297. [PMID: 27103267 PMCID: PMC4840866 DOI: 10.1186/s12864-016-2625-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 04/16/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Non-heading Chinese cabbage (NHCC, Brassica rapa ssp. chinensis) is an important leaf vegetable grown worldwide. However, little is known about the molecular mechanisms underlying tolerance for extreme temperature in NHCC. The limited availability of NHCC genomic information has greatly hindered functional analysis and molecular breeding. RESULTS Here, we conduct comprehensive analyses of cold and heat treatments in NHCC using RNA-seq. Approximately 790 million paired-end reads representing 136,189 unigenes with N50 length of 1705 bp were obtained. Totally, 14,329 differentially expressed genes (DEGs) were detected. Among which, 10 DEGs were detected in all treatments, including 7 up-regulated and 3 down-regulated. The enrichment analyses showed 25 and 33 genes were enriched under cold and heat treatments, respectively. Additionally, 10,001 LncRNAs were identified, and 9,687 belonged to novel LncRNAs. The expression of miRNAs were more than that of pri-miRNAs and LncRNAs. Furthermore, we constructed a coexpression network for LncRNAs and miRNAs. It showed 67 and 192 genes were regulated by LncRNAs under cold and heat treatments, respectively. We constructed the flowchart for identifying LncRNAs of NHCC using transcriptome. Except conducting the de novo transcriptome analyses, we also compared these unigenes with the Chinese cabbage proteins. We identified several most important genes, and discussed their regulatory networks and crosstalk in cold and heat stresses. CONCLUSIONS We presented the first comprehensive characterization for NHCC crops and constructed the flowchart for identifying LncRNAs using transcriptome. Therefore, this study represents a fully characterized NHCC transcriptome, and provides a valuable resource for genetic and genomic studies under abiotic stress.
Collapse
Affiliation(s)
- Xiaoming Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Center of Genomics and Computational Biology, College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, 063000, China
| | - Gaofeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhinan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huawei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
42
|
Liu J, Zhou Y, Luo C, Xiang Y, An L. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes. Genes (Basel) 2016; 7:genes7040012. [PMID: 27023614 PMCID: PMC4846842 DOI: 10.3390/genes7040012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/13/2016] [Accepted: 03/18/2016] [Indexed: 12/02/2022] Open
Abstract
Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS) technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq) reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS). We further identified 1663 differentially-expressed genes (DEGs) between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO), using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including “oxidation reduction”, “transcription factor activity”, and “ion channel transporter”. Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress.
Collapse
Affiliation(s)
- Jiangtao Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yuelong Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Changxin Luo
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
43
|
Li H, Li D, Chen A, Tang H, Li J, Huang S. Characterization of the Kenaf (Hibiscus cannabinus) Global Transcriptome Using Illumina Paired-End Sequencing and Development of EST-SSR Markers. PLoS One 2016; 11:e0150548. [PMID: 26960153 PMCID: PMC4784950 DOI: 10.1371/journal.pone.0150548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/15/2016] [Indexed: 11/30/2022] Open
Abstract
Kenaf (Hibiscus cannabinus L.) is an economically important natural fiber crop grown worldwide. However, only 20 expressed tag sequences (ESTs) for kenaf are available in public databases. The aim of this study was to develop large-scale simple sequence repeat (SSR) markers to lay a solid foundation for the construction of genetic linkage maps and marker-assisted breeding in kenaf. We used Illumina paired-end sequencing technology to generate new EST-simple sequences and MISA software to mine SSR markers. We identified 71,318 unigenes with an average length of 1143 nt and annotated these unigenes using four different protein databases. Overall, 9324 complementary pairs were designated as EST-SSR markers, and their quality was validated using 100 randomly selected SSR markers. In total, 72 primer pairs reproducibly amplified target amplicons, and 61 of these primer pairs detected significant polymorphism among 28 kenaf accessions. Thus, in this study, we have developed large-scale SSR markers for kenaf, and this new resource will facilitate construction of genetic linkage maps, investigation of fiber growth and development in kenaf, and also be of value to novel gene discovery and functional genomic studies.
Collapse
Affiliation(s)
- Hui Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Defang Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Anguo Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Huijuan Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Jianjun Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Siqi Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|
44
|
Li M, Liang Z, Zeng Y, Jing Y, Wu K, Liang J, He S, Wang G, Mo Z, Tan F, Li S, Wang L. De novo analysis of transcriptome reveals genes associated with leaf abscission in sugarcane (Saccharum officinarum L.). BMC Genomics 2016; 17:195. [PMID: 26946183 PMCID: PMC4779555 DOI: 10.1186/s12864-016-2552-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/28/2016] [Indexed: 01/01/2023] Open
Abstract
Background Sugarcane (Saccharum officinarum L.) is an important sugar crop which belongs to the grass family and can be used for fuel ethanol production. The growing demands for sugar and biofuel is asking for breeding a sugarcane variety that can shed their leaves during the maturity time due to the increasing cost on sugarcane harvest. Results To determine leaf abscission related genes in sugarcane, we generated 524,328,950 paired reads with RNA-Seq and profiled the transcriptome of new born leaves of leaf abscission sugarcane varieties (Q1 and T) and leaf packaging sugarcane varieties (Q2 and B). Initially, 275,018 transcripts were assembled with N50 of 1,177 bp. Next, the transcriptome was annotated by mapping them to NR, UniProtKB/Swiss-Prot, Gene Ontology and KEGG pathway databases. Further, we used TransDecoder and Trinotate to obtain the likely proteins and annotate them in terms of known proteins, protein domains, signal peptides, transmembrane regions and rRNA transcripts. Different expression analysis showed 1,202 transcripts were up regulated in leaf abscission sugarcane varieties, relatively to the leaf packaging sugarcane varieties. Functional analysis told us 62, 38 and 10 upregulated transcripts were involved in plant-pathogen interaction, response to stress and abscisic acid associated pathways, respectively. The upregulation of transcripts encoding 4 disease resistance proteins (RPM1, RPP13, RGA2, and RGA4), 6 ABC transporter G family members and 16 transcription factors including WRK33 and heat stress transcription factors indicate they may be used as candidate genes for sugarcane breeding. The expression levels of transcripts were validated by qRT-PCR. In addition, we characterized 3,722 SNPs between leaf abscission and leaf packaging sugarcane plants. Conclusion Our results showed leaf abscission associated genes in sugarcane during the maturity period. The output of this study provides a valuable resource for future genetic and genomic studies in sugarcane. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2552-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China.
| | - Zhaoxu Liang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China.
| | - Yuan Zeng
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China.
| | - Yan Jing
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China.
| | - Kaichao Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China.
| | - Jun Liang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China.
| | - Shanshan He
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China.
| | - Guanyu Wang
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China.
| | - Zhanghong Mo
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China.
| | - Fang Tan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China.
| | - Song Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China.
| | - Lunwang Wang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China.
| |
Collapse
|
45
|
Transcriptome Analysis of Ramie (Boehmeria nivea L. Gaud.) in Response to Ramie Moth (Cocytodes coerulea Guenée) Infestation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3702789. [PMID: 27034936 PMCID: PMC4789370 DOI: 10.1155/2016/3702789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/13/2015] [Accepted: 02/01/2016] [Indexed: 11/27/2022]
Abstract
The ramie moth Cocytodes coerulea Guenée (RM) is an economically important pest that seriously impairs the yield of ramie, an important natural fiber crop. The molecular mechanisms that underlie the ramie-pest interactions are unclear up to date. Therefore, a transcriptome profiling analysis would aid in understanding the ramie defense mechanisms against RM. In this study, we first constructed two cDNA libraries derived from RM-challenged (CH) and unchallenged (CK) ramie leaves. The subsequent sequencing of the CH and CK libraries yielded 40.2 and 62.8 million reads, respectively. Furthermore, de novo assembling of these reads generated 26,759 and 29,988 unigenes, respectively. An integrated assembly of data from these two libraries resulted in 46,533 unigenes, with an average length of 845 bp per unigene. Among these genes, 24,327 (52.28%) were functionally annotated by predicted protein function. A comparative analysis of the CK and CH transcriptome profiles revealed 1,980 differentially expressed genes (DEGs), of which 750 were upregulated and 1,230 were downregulated. A quantitative real-time PCR (qRT-PCR) analysis of 13 random selected genes confirmed the gene expression patterns that were determined by Illumina sequencing. Among the DEGs, the expression patterns of transcription factors, protease inhibitors, and antioxidant enzymes were studied. Overall, these results provide useful insights into the defense mechanism of ramie against RM.
Collapse
|
46
|
Li H, Li D, Chen A, Tang H, Li J, Huang S. Characterization of the Kenaf (Hibiscus cannabinus) Global Transcriptome Using Illumina Paired-End Sequencing and Development of EST-SSR Markers. PLoS One 2016. [PMID: 26960153 DOI: 10.1371/journal.pone0150548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Kenaf (Hibiscus cannabinus L.) is an economically important natural fiber crop grown worldwide. However, only 20 expressed tag sequences (ESTs) for kenaf are available in public databases. The aim of this study was to develop large-scale simple sequence repeat (SSR) markers to lay a solid foundation for the construction of genetic linkage maps and marker-assisted breeding in kenaf. We used Illumina paired-end sequencing technology to generate new EST-simple sequences and MISA software to mine SSR markers. We identified 71,318 unigenes with an average length of 1143 nt and annotated these unigenes using four different protein databases. Overall, 9324 complementary pairs were designated as EST-SSR markers, and their quality was validated using 100 randomly selected SSR markers. In total, 72 primer pairs reproducibly amplified target amplicons, and 61 of these primer pairs detected significant polymorphism among 28 kenaf accessions. Thus, in this study, we have developed large-scale SSR markers for kenaf, and this new resource will facilitate construction of genetic linkage maps, investigation of fiber growth and development in kenaf, and also be of value to novel gene discovery and functional genomic studies.
Collapse
Affiliation(s)
- Hui Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Defang Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Anguo Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Huijuan Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Jianjun Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Siqi Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|
47
|
Zhang L, Ming R, Zhang J, Tao A, Fang P, Qi J. De novo transcriptome sequence and identification of major bast-related genes involved in cellulose biosynthesis in jute (Corchorus capsularis L.). BMC Genomics 2015; 16:1062. [PMID: 26666317 PMCID: PMC4678609 DOI: 10.1186/s12864-015-2256-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/30/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Jute fiber, extracted from stem bast, is called golden fiber. It is essential for fiber improvement to discover the genes associated with jute development at the vegetative growth stage. However, only 858 EST sequences of jute were deposited in the GenBank database. Obviously, the public available data is far from sufficient to understand the molecular mechanism of the fiber biosynthesis. It is imperative to conduct transcriptomic sequence for jute, which can be used for the discovery of a number of new genes, especially genes involved in cellulose biosynthesis. RESULTS A total of 79,754,600 clean reads (7.98 Gb) were generated using Illumina paired-end sequencing. De novo assembly yielded 48,914 unigenes with an average length of 903 bp. By sequence similarity searching for known proteins, 27,962 (57.16 %) unigenes were annotated for their function. Out of these annotated unigenes, 21,856 and 11,190 unigenes were assigned to gene ontology (GO) and euKaryotic Ortholog Groups (KOG), respectively. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) indicated that 14,216 unigenes were mapped to 268 KEGG pathways. Moreover, 5 Susy, 3 UGPase, 9 CesA, 18 CSL, 2 Kor (Korrigan), and 12 Cobra unigenes involving in cellulose biosynthesis were identified. Among these unigenes, the unigenes of comp11264_c0 (SuSy), comp24568_c0 (UGPase), comp11363_c0 (CesA), comp11363_c1 (CesA), comp24217_c0 (CesA), and comp23531_c0 (CesA), displayed relatively high expression level in stem bast using FPKM and RT-qPCR, indicating that they may have potential value of dissecting mechanism on cellulose biosynthesis in jute. In addition, a total of 12,518 putative gene-associate SNPs were called from these assembled uingenes. CONCLUSION We characterized the transcriptome of jute, discovered a broad survey of unigenes associated with vegetative growth and development, developed large-scale SNPs, and analyzed the expression patterns of genes involved in cellulose biosynthesis for bast fiber. All these provides a valuable genomics resource, which will accelerate the understanding of the mechanism of fiber development in jute.
Collapse
Affiliation(s)
- Liwu Zhang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education / College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Department of Plant Biology, University of Illlinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Ray Ming
- Department of Plant Biology, University of Illlinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Aifen Tao
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education / College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Pingping Fang
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education / College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jianmin Qi
- Key Laboratory for Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education / College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
48
|
Sun XD, Yu XH, Zhou SM, Liu SQ. De novo assembly and characterization of the Welsh onion (Allium fistulosum L.) transcriptome using Illumina technology. Mol Genet Genomics 2015; 291:647-59. [DOI: 10.1007/s00438-015-1131-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 10/09/2015] [Indexed: 12/24/2022]
|
49
|
De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes. Mol Genet Genomics 2015; 291:575-86. [PMID: 26475609 DOI: 10.1007/s00438-015-1127-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/30/2015] [Indexed: 01/15/2023]
Abstract
Maple (Acer palmatum) is an important species for landscape planting worldwide. Salt stress affects the normal growth of the Maple leaf directly, leading to loss of esthetic value. However, the limited availability of Maple genomic information has hindered research on the mechanisms underlying this tolerance. In this study, we performed comprehensive analyses of the salt tolerance in two genotypes of Maple using RNA-seq. Approximately 146.4 million paired-end reads, representing 181,769 unigenes, were obtained. The N50 length of the unigenes was 738 bp, and their total length over 102.66 Mb. 14,090 simple sequence repeats and over 500,000 single nucleotide polymorphisms were identified, which represent useful resources for marker development. Importantly, 181,769 genes were detected in at least one library, and 303 differentially expressed genes (DEGs) were identified between salt-sensitive and salt-tolerant genotypes. Among these DEGs, 125 were upregulated and 178 were downregulated genes. Two MYB-related proteins and one LEA protein were detected among the first 10 most downregulated genes. Moreover, a methyltransferase-related gene was detected among the first 10 most upregulated genes. The three most significantly enriched pathways were plant hormone signal transduction, arginine and proline metabolism, and photosynthesis. The transcriptome analysis provided a rich genetic resource for gene discovery related to salt tolerance in Maple, and in closely related species. The data will serve as an important public information platform to further our understanding of the molecular mechanisms involved in salt tolerance in Maple.
Collapse
|
50
|
Muriira NG, Xu W, Muchugi A, Xu J, Liu A. De novo sequencing and assembly analysis of transcriptome in the Sodom apple (Calotropis gigantea). BMC Genomics 2015; 16:723. [PMID: 26395839 PMCID: PMC4580217 DOI: 10.1186/s12864-015-1908-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/09/2015] [Indexed: 11/18/2022] Open
Abstract
Background The Sodom apple (Calotropis gigantea), a member of the Asclepiadaceae family, is a large evergreen shrub native to continental Asia and northern Africa. As an important medicinal shrub and a fiber resource plant, there is an urgent need for developing molecular markers to facilitate breeding and genetic improvement of varieties. Results In this study, using the Illumina high throughput sequencing technique we obtained about 45 million paired end sequencing reads, De novo assembled and generated a total of 133,634 transcripts with a mean of 1837.47 bp in length. Based on protein homology searches against available databases, a total of 21,851 unigenes were functionally annotated. In particular, many transcripts that encode for putative proteins involved in fiber and secondary metabolite biosynthesis were identified and analyzed. Key fiber genes identified were validated experimentally through Real-Time PCR technique. Various transcription factors involved in regulating plant response to abiotic stress were also identified. In addition, based on the unigene sequences assembled, 11,623 microsatellites loci were detected, which provide very useful resources for developing microsatellite molecular markers. Conclusion This study is the first report on transcriptome information in the Calotropis species and provides rich gene transcript resources for conducting further studies on understanding the molecular basis of fiber and secondary metabolite biosynthesis, serving the genetic improvement and resource utilization in Calotropis plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1908-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nkatha G Muriira
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,World Agroforestry Centre, East and Central Asia Office, 132 Lanhei Road, Kunming, 650201, China. .,World Agroforestry Centre (ICRAF), P.O. Box 30677-00100, Nairobi, Kenya.
| | - Wei Xu
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Alice Muchugi
- World Agroforestry Centre (ICRAF), P.O. Box 30677-00100, Nairobi, Kenya.
| | - Jianchu Xu
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China. .,World Agroforestry Centre, East and Central Asia Office, 132 Lanhei Road, Kunming, 650201, China.
| | - Aizhong Liu
- Key Laboratory for Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Heilongtan, Kunming, 650201, Yunnan, China.
| |
Collapse
|