1
|
Böttcher B, Kienast SD, Leufken J, Eggers C, Sharma P, Leufken CM, Morgner B, Drexler HCA, Schulz D, Allert S, Jacobsen ID, Vylkova S, Leidel SA, Brunke S. A highly conserved tRNA modification contributes to C. albicans filamentation and virulence. Microbiol Spectr 2024; 12:e0425522. [PMID: 38587411 PMCID: PMC11064501 DOI: 10.1128/spectrum.04255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/18/2024] [Indexed: 04/09/2024] Open
Abstract
tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker's yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. We found that two closely related fungal pathogens of humans, the highly pathogenic Candida albicans and its much less pathogenic sister species, Candida dubliniensis, differ in the function of a tRNA-modifying enzyme. This enzyme, Hma1, exhibits species-specific effects on the ability of the two fungi to grow in the hypha morphology, which is central to their virulence potential. We show that Hma1 has tRNA-threonylcarbamoyladenosine dehydratase activity, and its deletion alters ribosome occupancy, especially at 37°C-the body temperature of the human host. A C. albicans HMA1 deletion mutant also shows defects in adhesion to and invasion into human epithelial cells and shows reduced virulence in a fungal infection model. This links tRNA modifications to host-induced filamentation and virulence of one of the most important fungal pathogens of humans.IMPORTANCEFungal infections are on the rise worldwide, and their global burden on human life and health is frequently underestimated. Among them, the human commensal and opportunistic pathogen, Candida albicans, is one of the major causative agents of severe infections. Its virulence is closely linked to its ability to change morphologies from yeasts to hyphae. Here, this ability is linked-to our knowledge for the first time-to modifications of tRNA and translational efficiency. One tRNA-modifying enzyme, Hma1, plays a specific role in C. albicans and its ability to invade the host. This adds a so-far unknown layer of regulation to the fungal virulence program and offers new potential therapeutic targets to fight fungal infections.
Collapse
Affiliation(s)
- Bettina Böttcher
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Sandra D. Kienast
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Johannes Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Cristian Eggers
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Christine M. Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bianka Morgner
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Hannes C. A. Drexler
- Bioanalytical Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniela Schulz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Sebastian A. Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| |
Collapse
|
2
|
Garbe E, Thielemann N, Hohner S, Kumar A, Vylkova S, Kurzai O, Martin R. Functional analysis of the Candida albicans ECE1 Promoter. Microbiol Spectr 2023; 11:e0025323. [PMID: 36786567 PMCID: PMC10100963 DOI: 10.1128/spectrum.00253-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
The formation of hyphae is a key virulence attribute of Candida albicans as they are required for adhesion to and invasion of host cells, and ultimately deep-tissue dissemination. Hyphae also secrete the peptide toxin candidalysin, which is crucial for destruction of host cell membranes. The peptide is derived from a precursor protein encoded by the gene ECE1 which is strongly induced during hyphal growth. Previous studies revealed a very complex regulation of this gene involving several transcription factors. However, the promoter of the gene is still not characterized. Here, we present a functional analysis of the intergenic region upstream of the ECE1 gene. Rapid amplification of cDNA ends (RACE)-PCR was performed to identify the 5' untranslated region, which has a size of 49 bp regardless of the hyphae-inducing condition. By using green fluorescent protein (GFP) reporter constructs we further defined a minimal promoter length of 1,500 bp which was verified by RT-qPCR. Finally, we identified the TATA element required for the expression of the gene. It is located 106 to 109 bp upstream of the ECE1 start codon. Our results illustrate that despite a very short 5' UTR, a relatively long promoter is required to secure ECE1 transcription, indicating a complex regulatory machinery tightly controlling the expression of the gene. IMPORTANCE In recent years it was shown that secretion of the toxic peptide candidalysin from hyphae of the major human fungal pathogen Candida albicans contributes heavily to its virulence. The peptide is derived from a precursor protein which is encoded by the ECE1 gene whose transcription is known to be closely associated with formation of hyphae. Here, we used a GFP reporter system to determine the length of the ECE1 promoter and were able to show that it has a minimal size of 1,500 bp. Surprisingly, the gene has a very short 5' UTR of only 49 bp. In accordance with this, the TATA element required for transcription is located 106 to 109 bp upstream of the start codon. This indicates that ECE1 expression is controlled by a very long promoter allowing a complex network of transcription factors to contribute to the gene's regulation.
Collapse
Affiliation(s)
- Enrico Garbe
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Nadja Thielemann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Sina Hohner
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Animesh Kumar
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Ronny Martin
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Abstract
Of the many microbial species on earth, only a small number are able to thrive in humans and cause disease. Comparison of closely related pathogenic and nonpathogenic species can therefore be useful in identifying key features that contribute to virulence. We created interspecies hybrids between Candida albicans, a prevalent fungal pathogen of humans, and Candida dubliniensis, a close, but much less pathogenic, relative. By comparing genome-wide expression differences between the two genomes in the same cell, we surmised that since the two species diverged from a common ancestor, natural selection has acted upon the expression level of an ancient metabolic pathway, illustrating that pathogenicity traits can arise over evolutionary timescales through small expression changes in deeply conserved proteins. Candida albicans is the most common cause of systemic fungal infections in humans and is considerably more virulent than its closest known relative, Candida dubliniensis. To investigate this difference, we constructed interspecies hybrids and quantified mRNA levels produced from each genome in the hybrid. This approach systematically identified expression differences in orthologous genes arising from cis-regulatory sequence changes that accumulated since the two species last shared a common ancestor, some 10 million y ago. We documented many orthologous gene-expression differences between the two species, and we pursued one striking observation: All 15 genes coding for the enzymes of glycolysis showed higher expression from the C. albicans genome than the C. dubliniensis genome in the interspecies hybrid. This pattern requires evolutionary changes to have occurred at each gene; the fact that they all act in the same direction strongly indicates lineage-specific natural selection as the underlying cause. To test whether these expression differences contribute to virulence, we created a C. dubliniensis strain in which all 15 glycolysis genes were produced at modestly elevated levels and found that this strain had significantly increased virulence in the standard mouse model of systemic infection. These results indicate that small expression differences across a deeply conserved set of metabolism enzymes can play a significant role in the evolution of virulence in fungal pathogens.
Collapse
|
4
|
Wu J, Wu D, Zhao Y, Si Y, Mei L, Shao J, Wang T, Yan G, Wang C. Sodium New Houttuyfonate Inhibits Candida albicans Biofilm Formation by Inhibiting the Ras1-cAMP-Efg1 Pathway Revealed by RNA-seq. Front Microbiol 2020; 11:2075. [PMID: 32983053 PMCID: PMC7477049 DOI: 10.3389/fmicb.2020.02075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/06/2020] [Indexed: 12/23/2022] Open
Abstract
Here, we aim to investigate the antifungal effect and mechanism of action of sodium new houttuyfonate (SNH) against Candida albicans. Microdilution analysis results showed that SNH possesses potent inhibitory activity against C. albicans SC5314, with a MIC80 of 256 μg/mL. Furthermore, we found that SNH can effectively inhibit the initial adhesion of C. albicans. Inverted microscopy, crystal violet staining, scanning electron microscopy and confocal laser scanning microscopy results showed that morphological changes during the transition from yeast to hypha and the biofilm formation of C. albicans are repressed by SNH treatment. We also found that SNH can effectively inhibit the biofilm formation of clinical C. albicans strains (Z103, Z3044, Z1402, and Z1407) and SNH in combination with fluconazole, berberine chloride, caspofungin and itraconazole antifungal agents can synergistically inhibit the biofilm formation of C. albicans. Eukaryotic transcriptome sequencing and qRT-PCR results showed that SNH treatment resulted in significantly down-regulated expression in several biofilm formation related genes in the Ras1-cAMP-Efg1 pathway (ALS1, ALA1, ALS3, EAP1, RAS1, EFG1, HWP1, and TEC1) and significantly up-regulated expression in yeast form-associated genes (YWP1 and RHD1). We also found that SNH can effectively reduce the production of key messenger cAMP in the Ras1-cAMP-Efg1 pathway. Furthermore, using Galleria mellonella as an in vivo model we found that SNH can effectively treat C. albicans infection in vivo. Our presented results suggest that SNH exhibits potential antibiofilm effects related to inhibiting the Ras1-cAMP-Efg1 pathway in the biofilm formation of C. albicans.
Collapse
Affiliation(s)
- Jiadi Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Hefei, China
| | - Yeye Zhao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuanqing Si
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Longfei Mei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Hefei, China
| | - Tianming Wang
- Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Hefei, China
| | - Guiming Yan
- Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Chinese Herbal Compound Formula in Anhui Province, Hefei, China
| |
Collapse
|
5
|
Thomas G, Bain JM, Budge S, Brown AJP, Ames RM. Identifying Candida albicans Gene Networks Involved in Pathogenicity. Front Genet 2020; 11:375. [PMID: 32391057 PMCID: PMC7193023 DOI: 10.3389/fgene.2020.00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is a normal member of the human microbiome. It is also an opportunistic pathogen, which can cause life-threatening systemic infections in severely immunocompromized individuals. Despite the availability of antifungal drugs, mortality rates of systemic infections are high and new drugs are needed to overcome therapeutic challenges including the emergence of drug resistance. Targeting known disease pathways has been suggested as a promising avenue for the development of new antifungals. However, <30% of C. albicans genes are verified with experimental evidence of a gene product, and the full complement of genes involved in important disease processes is currently unknown. Tools to predict the function of partially or uncharacterized genes and generate testable hypotheses will, therefore, help to identify potential targets for new antifungal development. Here, we employ a network-extracted ontology to leverage publicly available transcriptomics data and identify potential candidate genes involved in disease processes. A subset of these genes has been phenotypically screened using available deletion strains and we present preliminary data that one candidate, PEP8, is involved in hyphal development and immune evasion. This work demonstrates the utility of network-extracted ontologies in predicting gene function to generate testable hypotheses that can be applied to pathogenic systems. This could represent a novel first step to identifying targets for new antifungal therapies.
Collapse
Affiliation(s)
- Graham Thomas
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Susan Budge
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,MRC Centre for Medical Mycology at the University of Exeter, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ryan M Ames
- Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Vendele I, Willment JA, Silva LM, Palma AS, Chai W, Liu Y, Feizi T, Spyrou M, Stappers MHT, Brown GD, Gow NAR. Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLoS Pathog 2020; 16:e1007927. [PMID: 31999794 PMCID: PMC7012452 DOI: 10.1371/journal.ppat.1007927] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 02/11/2020] [Accepted: 12/22/2019] [Indexed: 01/09/2023] Open
Abstract
During the course of fungal infection, pathogen recognition by the innate immune system is critical to initiate efficient protective immune responses. The primary event that triggers immune responses is the binding of Pattern Recognition Receptors (PRRs), which are expressed at the surface of host immune cells, to Pathogen-Associated Molecular Patterns (PAMPs) located predominantly in the fungal cell wall. Most fungi have mannosylated PAMPs in their cell walls and these are recognized by a range of C-type lectin receptors (CTLs). However, the precise spatial distribution of the ligands that induce immune responses within the cell walls of fungi are not well defined. We used recombinant IgG Fc-CTLs fusions of three murine mannan detecting CTLs, including dectin-2, the mannose receptor (MR) carbohydrate recognition domains (CRDs) 4–7 (CRD4-7), and human DC-SIGN (hDC-SIGN) and of the β-1,3 glucan-binding lectin dectin-1 to map PRR ligands in the fungal cell wall of fungi grown in vitro in rich and minimal media. We show that epitopes of mannan-specific CTL receptors can be clustered or diffuse, superficial or buried in the inner cell wall. We demonstrate that PRR ligands do not correlate well with phylogenetic relationships between fungi, and that Fc-lectin binding discriminated between mannosides expressed on different cell morphologies of the same fungus. We also demonstrate CTL epitope differentiation during different phases of the growth cycle of Candida albicans and that MR and DC-SIGN labelled outer chain N-mannans whilst dectin-2 labelled core N-mannans displayed deeper in the cell wall. These immune receptor maps of fungal walls of in vitro grown cells therefore reveal remarkable spatial, temporal and chemical diversity, indicating that the triggering of immune recognition events originates from multiple physical origins at the fungal cell surface. Invasive fungal infections remain an important health problem in immunocompromised patients. Immune recognition of fungal pathogens involves binding of specific cell wall components by pathogen recognition receptors (PRRs) and subsequent activation of immune defences. Some cell wall components are conserved among fungal species while other components are species-specific and phenotypically diverse. The fungal cell wall is dynamic and capable of changing its composition and organization when adapting to different growth niches and environmental stresses. Differences in the composition of the cell wall lead to differential immune recognition by the host. Understanding how changes in the cell wall composition affect recognition by PRRs is likely to be of major diagnostic and clinical relevance. Here we address this fundamental question using four soluble immune receptor-probes which recognize mannans and β-glucan in the cell wall. We use this novel methodology to demonstrate that mannan epitopes are differentially distributed in the inner and outer layers of fungal cell wall in a clustered or diffuse manner. Immune reactivity of fungal cell surfaces was not correlated with relatedness of different fungal species, and mannan-detecting receptor-probes discriminated between cell surface mannans generated by the same fungus growing under different conditions. These studies demonstrate that mannan-epitopes on fungal cell surfaces are differentially distributed within and between the cell walls of fungal pathogens.
Collapse
Affiliation(s)
- Ingrida Vendele
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Janet A. Willment
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Lisete M. Silva
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Angelina S. Palma
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- UCIBIO, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, Portugal
| | - Wengang Chai
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Yan Liu
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Ten Feizi
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Maria Spyrou
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Gordon D. Brown
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Hosseinzadeh A, Stylianou M, Lopes JP, Müller DC, Häggman A, Holmberg S, Grumaz C, Johansson A, Sohn K, Dieterich C, Urban CF. Stable Redox-Cycling Nitroxide Tempol Has Antifungal and Immune-Modulatory Properties. Front Microbiol 2019; 10:1843. [PMID: 31481939 PMCID: PMC6710993 DOI: 10.3389/fmicb.2019.01843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/26/2019] [Indexed: 11/13/2022] Open
Abstract
Invasive mycoses remain underdiagnosed and difficult to treat. Hospitalized individuals with compromised immunity increase in number and constitute the main risk group for severe fungal infections. Current antifungal therapy is hampered by slow and insensitive diagnostics and frequent toxic side effects of standard antifungal drugs. Identification of new antifungal compounds with high efficacy and low toxicity is therefore urgently required. We investigated the antifungal activity of tempol, a cell-permeable nitroxide. To narrow down possible mode of action we used RNA-seq technology and metabolomics to probe for pathways specifically disrupted in the human fungal pathogen Candida albicans due to tempol administration. We found genes upregulated which are involved in iron homeostasis, mitochondrial stress, steroid synthesis, and amino acid metabolism. In an ex vivo whole blood infection, tempol treatment reduced C. albicans colony forming units and at the same time increased the release of pro-inflammatory cytokines, such as interleukin 8 (IL-8, monocyte chemoattractant protein-1, and macrophage migration inhibitory factor). In a systemic mouse model, tempol was partially protective with a significant reduction of fungal burden in the kidneys of infected animals during infection onset. The results obtained propose tempol as a promising new antifungal compound and open new opportunities for the future development of novel therapies.
Collapse
Affiliation(s)
- Ava Hosseinzadeh
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Marios Stylianou
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - José Pedro Lopes
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Daniel C Müller
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - André Häggman
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Sandra Holmberg
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Christian Grumaz
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Anders Johansson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Kai Sohn
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Christoph Dieterich
- Department of Internal Medicine III, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Constantin F Urban
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Rai LS, Singha R, Sanchez H, Chakraborty T, Chand B, Bachellier-Bassi S, Chowdhury S, d’Enfert C, Andes DR, Sanyal K. The Candida albicans biofilm gene circuit modulated at the chromatin level by a recent molecular histone innovation. PLoS Biol 2019; 17:e3000422. [PMID: 31398188 PMCID: PMC6703697 DOI: 10.1371/journal.pbio.3000422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/21/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Histone H3 and its variants regulate gene expression but the latter are absent in most ascomycetous fungi. Here, we report the identification of a variant histone H3, which we have designated H3VCTG because of its exclusive presence in the CTG clade of ascomycetes, including Candida albicans, a human pathogen. C. albicans grows both as single yeast cells and hyphal filaments in the planktonic mode of growth. It also forms a three-dimensional biofilm structure in the host as well as on human catheter materials under suitable conditions. H3VCTG null (hht1/hht1) cells of C. albicans are viable but produce more robust biofilms than wild-type cells in both in vitro and in vivo conditions. Indeed, a comparative transcriptome analysis of planktonic and biofilm cells reveals that the biofilm circuitry is significantly altered in H3VCTG null cells. H3VCTG binds more efficiently to the promoters of many biofilm-related genes in the planktonic cells than during biofilm growth, whereas the binding of the core canonical histone H3 on the corresponding promoters largely remains unchanged. Furthermore, biofilm defects associated with master regulators, namely, biofilm and cell wall regulator 1 (Bcr1), transposon enhancement control 1 (Tec1), and non-dityrosine 80 (Ndt80), are significantly rescued in cells lacking H3VCTG. The occupancy of the transcription factor Bcr1 at its cognate promoter binding sites was found to be enhanced in the absence of H3VCTG in the planktonic form of growth resulting in enhanced transcription of biofilm-specific genes. Further, we demonstrate that co-occurrence of valine and serine at the 31st and 32nd positions in H3VCTG, respectively, is essential for its function. Taken together, we show that even in a unicellular organism, differential gene expression patterns are modulated by the relative occupancy of the specific histone H3 type at the chromatin level. A variant histone H3 specific to the CTG clade of ascomycete fungi modulates the expression of the majority of the biofilm genes in the human pathogen Candida albicans by binding differentially to biofilm-relevant gene promoters.
Collapse
Affiliation(s)
- Laxmi Shanker Rai
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France
| | - Rima Singha
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tanmoy Chakraborty
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Bipin Chand
- Genotypic Technology Private Limited, Bangalore, India
| | | | - Shantanu Chowdhury
- GNR Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France
| | - David R. Andes
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- * E-mail:
| |
Collapse
|
9
|
Chong PP, Chin VK, Wong WF, Madhavan P, Yong VC, Looi CY. Transcriptomic and Genomic Approaches for Unravelling Candida albicans Biofilm Formation and Drug Resistance-An Update. Genes (Basel) 2018; 9:genes9110540. [PMID: 30405082 PMCID: PMC6266447 DOI: 10.3390/genes9110540] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is an opportunistic fungal pathogen, which causes a plethora of superficial, as well as invasive, infections in humans. The ability of this fungus in switching from commensalism to active infection is attributed to its many virulence traits. Biofilm formation is a key process, which allows the fungus to adhere to and proliferate on medically implanted devices as well as host tissue and cause serious life-threatening infections. Biofilms are complex communities of filamentous and yeast cells surrounded by an extracellular matrix that confers an enhanced degree of resistance to antifungal drugs. Moreover, the extensive plasticity of the C. albicans genome has given this versatile fungus the added advantage of microevolution and adaptation to thrive within the unique environmental niches within the host. To combat these challenges in dealing with C. albicans infections, it is imperative that we target specifically the molecular pathways involved in biofilm formation as well as drug resistance. With the advent of the -omics era and whole genome sequencing platforms, novel pathways and genes involved in the pathogenesis of the fungus have been unraveled. Researchers have used a myriad of strategies including transcriptome analysis for C. albicans cells grown in different environments, whole genome sequencing of different strains, functional genomics approaches to identify critical regulatory genes, as well as comparative genomics analysis between C. albicans and its closely related, much less virulent relative, C. dubliniensis, in the quest to increase our understanding of the mechanisms underlying the success of C. albicans as a major fungal pathogen. This review attempts to summarize the most recent advancements in the field of biofilm and antifungal resistance research and offers suggestions for future directions in therapeutics development.
Collapse
Affiliation(s)
- Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Voon Kin Chin
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Won Fen Wong
- Department of Microbiology, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Malaysia, Subang Jaya, 47500 Selangor, Malaysia.
| |
Collapse
|
10
|
Fukui K, Nakamura K, Kuwashima H, Majima T. White-to-opaque switching is involved in the phospholipase B production of Candida dubliniensis on Price's egg yolk agar. Odontology 2018; 107:174-185. [PMID: 30083973 DOI: 10.1007/s10266-018-0382-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/20/2018] [Indexed: 01/12/2023]
Abstract
Measuring the production of Candida dubliniensis (C. dubliniensis) phospholipase B (PLase B) by the Price's method has long been considered to be unattainable because the levels of PLase produced are undetectable. In this study, C. dubliniensis, C. glabrata, C. guilliermondii, C. krusei, C. parapsilosis and C. tropicalis were shown to produce PLase B and form clear white zones around their colonies when peptone, a component of the original Price's egg yolk (OP) agar, is replaced with a yeast nitrogen base (YNB). This new medium is named modified Price's (MP) agar. Based on this finding, we propose a new modified Price's (NMP) agar containing 0.75% peptone and 0.25% YNB, which enabled measurement of PLase B production by C. dubliniensis and C. albicans with results consistent with those obtained for C. albicans grown on OP agar. We strongly believe that the MP and NMP agars are very useful for screening PLase B production by C. dubliniensis and non-albicans Candida spp. Moreover, the addition of several bioactive agents (the proteinase inhibitors pepstatin A and saquinavir, the calcineurin inhibitors cyclosporine A and tacrolimus, the cell-permeable cAMP analog dBcAMP, and the quorum-sensing molecule farnesol) to the OP agar enhanced PLase B production by C. dubliniensis. During the course of our study to clarify the reason why PLase B was not produced, we found that C. dubliniensis cells grown on OP agar undergo a white-to-opaque transition, which may explain why they showed minimal production of PLase B on this medium.
Collapse
Affiliation(s)
- Kayoko Fukui
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Kenjirou Nakamura
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.
| | - Haruhiro Kuwashima
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Toshiro Majima
- Department of Pharmacology, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| |
Collapse
|
11
|
Granger BL. Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans. PLoS One 2018; 13:e0191194. [PMID: 29329339 PMCID: PMC5766240 DOI: 10.1371/journal.pone.0191194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/30/2017] [Indexed: 02/06/2023] Open
Abstract
Yeast wall protein 1 (Ywp1) is an abundant glycoprotein of the cell wall of the yeast form of Candida albicans, the most prevalent fungal pathogen of humans. Antibodies that bind to the polypeptide backbone of isolated Ywp1 show little binding to intact yeast cells, presumably because the Ywp1 epitopes are masked by the polysaccharides of the mannoproteins that form the outer layer of the cell wall. Rare cells do exhibit much greater anti-Ywp1 binding, however, and one of these was isolated and characterized. No differences were seen in its Ywp1, but it exhibited greater adhesiveness, sensitivity to wall perturbing agents, and exposure of its underlying β-1,3-glucan layer to external antibodies. The molecular basis for this greater epitope accessibility has not been determined, but has facilitated exploration of how these properties change as a function of cell growth and morphology. In addition, previously engineered strains with reduced quantities of Ywp1 in their cell walls were also found to have greater β-1,3-glucan exposure, indicating that Ywp1 itself contributes to the masking of wall epitopes, which may be important for understanding the anti-adhesive effect of Ywp1. Ectopic production of Ywp1 by hyphae, which reduces the adhesivity of these filamentous forms of C. albicans, was similarly found to reduce exposure of the β-1,3-glucan in their walls. To monitor Ywp1 in the cell wall irrespective of its accessibility, green fluorescent protein (Gfp) was genetically inserted into wall-anchored Ywp1 using a bifunctional cassette that also allowed production from a single transfection of a soluble, anchor-free version. The wall-anchored Ywp1-Gfp-Ywp1 accumulated in the wall of the yeast forms but not hyphae, and appeared to have properties similar to native Ywp1, including its adhesion-inhibiting effect. Some pseudohyphal walls also detectably accumulated this probe. Strains of C. albicans with tandem hemagglutinin (HA) epitopes inserted into wall-anchored Ywp1 were previously created by others, and were further explored here. As above, rare cells with much greater accessibility of the HA epitopes were isolated, and also found to exhibit greater exposure of Ywp1 and β-1,3-glucan. The placement of the HA cassette inhibited the normal N-glycosylation and propeptide cleavage of Ywp1, but the wall-anchored Ywp1-HA-Ywp1 still accumulated in the cell wall of yeast forms. Bifunctional transformation cassettes were used to additionally tag these molecules with Gfp, generating soluble Ywp1-HA-Gfp and wall-anchored Ywp1-HA-Gfp-Ywp1 molecules. The former revealed unexpected electrophoretic properties caused by the HA insertion, while the latter further highlighted differences between the presence of a tagged Ywp1 molecule (as revealed by Gfp fluorescence) and its accessibility in the cell wall to externally applied antibodies specific for HA, Gfp and Ywp1, with accessibility being greatest in the rapidly expanding walls of budding daughter cells. These strains and results increase our understanding of cell wall properties and how C. albicans masks itself from recognition by the human immune system.
Collapse
Affiliation(s)
- Bruce L. Granger
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
12
|
Mailänder-Sánchez D, Braunsdorf C, Grumaz C, Müller C, Lorenz S, Stevens P, Wagener J, Hebecker B, Hube B, Bracher F, Sohn K, Schaller M. Antifungal defense of probiotic Lactobacillus rhamnosus GG is mediated by blocking adhesion and nutrient depletion. PLoS One 2017; 12:e0184438. [PMID: 29023454 PMCID: PMC5638248 DOI: 10.1371/journal.pone.0184438] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023] Open
Abstract
Candida albicans is an inhabitant of mucosal surfaces in healthy individuals but also the most common cause of fungal nosocomial blood stream infections, associated with high morbidity and mortality. As such life-threatening infections often disseminate from superficial mucosal infections we aimed to study the use of probiotic Lactobacillus rhamnosus GG (LGG) in prevention of mucosal C. albicans infections. Here, we demonstrate that LGG protects oral epithelial tissue from damage caused by C. albicans in our in vitro model of oral candidiasis. Furthermore, we provide insights into the mechanisms behind this protection and dissect direct and indirect effects of LGG on C. albicans pathogenicity. C. albicans viability was not affected by LGG. Instead, transcriptional profiling using RNA-Seq indicated dramatic metabolic reprogramming of C. albicans. Additionally, LGG had a significant impact on major virulence attributes, including adhesion, invasion, and hyphal extension, whose reduction, consequently, prevented epithelial damage. This was accompanied by glucose depletion and repression of ergosterol synthesis, caused by LGG, but also due to blocked adhesion sites. Therefore, LGG protects oral epithelia against C. albicans infection by preventing fungal adhesion, invasion and damage, driven, at least in parts, by metabolic reprogramming due to nutrient limitation caused by LGG.
Collapse
Affiliation(s)
| | | | | | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | | | - Philip Stevens
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
- IGVP, University of Stuttgart, Stuttgart, Germany
| | - Jeanette Wagener
- Department of Dermatology, University Hospital Tübingen, Germany
| | - Betty Hebecker
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute Jena (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute Jena (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Kai Sohn
- Fraunhofer IGB, Stuttgart, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, Germany
- * E-mail:
| |
Collapse
|
13
|
Niemiec MJ, Grumaz C, Ermert D, Desel C, Shankar M, Lopes JP, Mills IG, Stevens P, Sohn K, Urban CF. Dual transcriptome of the immediate neutrophil and Candida albicans interplay. BMC Genomics 2017; 18:696. [PMID: 28874114 PMCID: PMC5585943 DOI: 10.1186/s12864-017-4097-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/30/2017] [Indexed: 12/23/2022] Open
Abstract
Background Neutrophils are traditionally considered transcriptionally inactive. Compared to other immune cells, little is known about their transcriptional profile during interaction with pathogens. Methods We analyzed the meta-transcriptome of the neutrophil-Candida albicans interplay and the transcriptome of C. albicans challenged with neutrophil extracellular traps (NETs) by RNA-Seq, considering yeast and hypha individually in each approach. Results The neutrophil response to C. albicans yeast and hyphae was dominated by a morphotype-independent core response. However, 11 % of all differentially expressed genes were regulated in a specific manner when neutrophils encountered the hyphal form of C. albicans. While involving genes for transcriptional regulators, receptors, and cytokines, the neutrophil core response lacked typical antimicrobial effectors genes. Genes of the NOD-like receptor pathway, including NLRP3, were enriched. Neutrophil- and NET-provoked responses in C. albicans differed. At the same time, the Candida transcriptome upon neutrophil encounter and upon NET challenge included genes from various metabolic processes and indicate a mutual role of the regulators Tup1p, Efg1p, Hap43p, and Cap1p. Upon challenge with neutrophils and NETs, the overall Candida response was partially morphotype-specific. Yet again, actual oppositional regulation in yeasts and hyphae was only detected for the arginine metabolism in neutrophil-infecting C. albicans. Conclusions Taken together, our study provides a comprehensive and quantitative transcript profile of the neutrophil–C. albicans interaction. By considering the two major appearances of both, neutrophils and C. albicans, our study reveals yet undescribed insights into this medically relevant encounter. Hence, our findings will facilitate future research and potentially inspire novel therapy developments. Electronic supplementary material The online version of this article (10.1186/s12864-017-4097-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria J Niemiec
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden.,Present Address: Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany & Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Christian Grumaz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - David Ermert
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden.,Present Address: Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Christiane Desel
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Present Address: The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Madhu Shankar
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - José Pedro Lopes
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - Ian G Mills
- Prostate Cancer Research Group, Center of Molecular Medicine Norway (NCMM), Oslo, Norway.,Department of Molecular Oncology, Institute of Cancer Research, Radium Hospital, Oslo, Norway.,PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - Philip Stevens
- University of Stuttgart IGVP, Stuttgart, Germany.,Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Constantin F Urban
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden.
| |
Collapse
|
14
|
Grumaz C, Kirstahler P, Sohn K. The Molecular Blueprint of a Fungus by Next-Generation Sequencing (NGS). Methods Mol Biol 2017; 1508:361-383. [PMID: 27837516 DOI: 10.1007/978-1-4939-6515-1_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sequencing the whole genome of an organism is invaluable for its comprehensive molecular characterization and has been drastically facilitated by the advent of high-throughput sequencing techniques. Especially in clinical microbiology the impact of sequenced strains increases as resistance and virulence markers can easily be detected. Here, we describe a combined approach for sequencing a fungal genome and transcriptome from initial nucleic acid isolation through the generation of ready-to-load DNA libraries for the Illumina platform and the final step of genome assembly with subsequent gene annotation.
Collapse
Affiliation(s)
- Christian Grumaz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Philipp Kirstahler
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany.
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
15
|
Wu Y, Li YH, Yu SB, Li WG, Liu XS, Zhao L, Lu JX. A Genome-Wide Transcriptional Analysis of Yeast-Hyphal Transition in Candida tropicalis by RNA-Seq. PLoS One 2016; 11:e0166645. [PMID: 27851809 PMCID: PMC5112795 DOI: 10.1371/journal.pone.0166645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022] Open
Abstract
Candida tropicalis is considered as the leading pathogen in nosocomial fungemia and hepatosplenic fungal infections in patients with cancer, particularly in leukemia. The yeast-filament transition is required for virulent infection by Candida. Several studies have explored the genome-wide transcription profile of Candida, however, no report on the transcriptional profile of C. tropicalis under yeast-filament transition has been published. In this study, the transcriptomes of three C. tropicalis isolates with different adhesion and biofilm formation abilities, identified in our previous studies, were analyzed in both the yeast and filament states using RNA-Seq. Differentially expressed genes were found for each isolate during the transition. A total of 115 genes were up- or down- regulated in the two hyphal-producing isolates (ZRCT 4 and ZRCT 45). Among these differentially expressed genes, only two were down-regulated during the yeast-filament transition. Furthermore, six filament-associated genes were up-regulated in the hyphae-producing isolates. According to Candida Hypha Growth Database established in this study, 331 hyphae- related genes were discovered in C. tropicalis. ALS1 and ALS3 were down-regulated and up-regulated, respectively, during filamentous growth of C. tropicalis. These findings proved a better understanding of gene expression dynamics during the yeast-filament transition in C. tropicalis.
Collapse
Affiliation(s)
- Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China
| | - Yin-hu Li
- Microbial Research Department, BGI-Shenzhen, Main building, Beishan Industry Zone, Yantian District, Shenzhen, China
| | - Shuan-bao Yu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China
| | - Wen-ge Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China
| | - Xiao-shu Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, United States of America
| | - Jin-xing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang bai Road 155, Chang ping District, Beijing, China
- * E-mail:
| |
Collapse
|
16
|
Böhm L, Muralidhara P, Pérez JC. ACandida albicansregulator of disseminated infection operates primarily as a repressor and governs cell surface remodeling. Mol Microbiol 2016; 100:328-44. [DOI: 10.1111/mmi.13320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Lena Böhm
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg; Würzburg Germany
- Institute for Molecular Infection Biology, University of Würzburg; Würzburg Germany
| | | | - J. Christian Pérez
- Interdisciplinary Center for Clinical Research, University Hospital Würzburg; Würzburg Germany
- Institute for Molecular Infection Biology, University of Würzburg; Würzburg Germany
| |
Collapse
|
17
|
Caplice N, Moran GP. Candida albicans exhibits enhanced alkaline and temperature induction of Efg1-regulated transcripts relative to Candida dubliniensis. GENOMICS DATA 2015; 6:130-5. [PMID: 26697354 PMCID: PMC4664712 DOI: 10.1016/j.gdata.2015.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/27/2015] [Indexed: 11/18/2022]
Abstract
Filamentous growth is an important virulence trait of the human pathogenic fungi within the genus Candida, and the greater propensity of C. albicans to form hyphae has been proposed to account for the greater virulence of this species relative to the less pathogenic species C. dubliniensis. In this meta-analysis, we compare the transcriptional response of C. dubliniensis and C. albicans to the individual environmental stimuli that shape the gene expression profiles during filamentation in 10% serum, namely alkaline pH, 37 °C and reduced cell density. We could identify conserved core temperature and pH responses, however many signature Efg1-regulated, hypha-induced transcripts (e.g. ECE1, HWP1) exhibited reduced or lack of induction in C. dubliniensis. Comparison of the activity of the HWP1 and ECE1 promoters in both species using GFP fusions showed a lag in serum induced fluorescence in C. dubliniensis relative to C. albicans and nutrient depletion was required for maximal expression of these Efg1-regulated transcripts in C. dubliniensis.
Collapse
|
18
|
Han Y, Gao S, Muegge K, Zhang W, Zhou B. Advanced Applications of RNA Sequencing and Challenges. Bioinform Biol Insights 2015; 9:29-46. [PMID: 26609224 PMCID: PMC4648566 DOI: 10.4137/bbi.s28991] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Next-generation sequencing technologies have revolutionarily advanced sequence-based research with the advantages of high-throughput, high-sensitivity, and high-speed. RNA-seq is now being used widely for uncovering multiple facets of transcriptome to facilitate the biological applications. However, the large-scale data analyses associated with RNA-seq harbors challenges. In this study, we present a detailed overview of the applications of this technology and the challenges that need to be addressed, including data preprocessing, differential gene expression analysis, alternative splicing analysis, variants detection and allele-specific expression, pathway analysis, co-expression network analysis, and applications combining various experimental procedures beyond the achievements that have been made. Specifically, we discuss essential principles of computational methods that are required to meet the key challenges of the RNA-seq data analyses, development of various bioinformatics tools, challenges associated with the RNA-seq applications, and examples that represent the advances made so far in the characterization of the transcriptome.
Collapse
Affiliation(s)
- Yixing Han
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Shouguo Gao
- Bioinformatics and Systems Biology Core, National Heart Lung Blood Institute, National Institutes of Health, Rockville Pike, Bethesda, MD, USA
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA. ; Leidos Biomedical Research, Inc., Basic Science Program, Frederick National Laboratory, Frederick, MD, USA
| | - Wei Zhang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bing Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Dutton LC, Paszkiewicz KH, Silverman RJ, Splatt PR, Shaw S, Nobbs AH, Lamont RJ, Jenkinson HF, Ramsdale M. Transcriptional landscape of trans-kingdom communication between Candida albicans and Streptococcus gordonii. Mol Oral Microbiol 2015; 31:136-61. [PMID: 26042999 DOI: 10.1111/omi.12111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2015] [Indexed: 11/29/2022]
Abstract
Recent studies have shown that the transcriptional landscape of the pleiomorphic fungus Candida albicans is highly dependent upon growth conditions. Here using a dual RNA-seq approach we identified 299 C. albicans and 72 Streptococcus gordonii genes that were either upregulated or downregulated specifically as a result of co-culturing these human oral cavity microorganisms. Seventy-five C. albicans genes involved in responses to chemical stimuli, regulation, homeostasis, protein modification and cell cycle were significantly (P ≤ 0.05) upregulated, whereas 36 genes mainly involved in transport and translation were downregulated. Upregulation of filamentation-associated TEC1 and FGR42 genes, and of ALS1 adhesin gene, concurred with previous evidence that the C. albicans yeast to hypha transition is promoted by S. gordonii. Increased expression of genes required for arginine biosynthesis in C. albicans was potentially indicative of a novel oxidative stress response. The transcriptional response of S. gordonii to C. albicans was less dramatic, with only eight S. gordonii genes significantly (P ≤ 0.05) upregulated at least two-fold (glpK, rplO, celB, rplN, rplB, rpsE, ciaR and gat). The expression patterns suggest that signals from S. gordonii cause a positive filamentation response in C. albicans, whereas S. gordonii appears to be transcriptionally less influenced by C. albicans.
Collapse
Affiliation(s)
- L C Dutton
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - K H Paszkiewicz
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - R J Silverman
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - P R Splatt
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - S Shaw
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - A H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - R J Lamont
- University of Louisville School of Dentistry, Louisville, KY, USA
| | - H F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | - M Ramsdale
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
20
|
The transcriptomic profile of Pseudozyma aphidis during production of mannosylerythritol lipids. Appl Microbiol Biotechnol 2015; 99:1375-88. [PMID: 25586580 DOI: 10.1007/s00253-014-6359-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/15/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
Abstract
The basidiomycetous fungus Pseudozyma aphidis is able to convert vegetable oils to abundant amounts of the biosurfactant mannosylerythritol lipid (MEL) with a unique product pattern of MEL-A, MEL-B, MEL-C, and MEL-D. To investigate the metabolism of MEL production, we analyzed the transcriptome of P. aphidis DSM 70725 under MEL-inducing and non-inducing conditions using deep sequencing. Following manual curation of the previously described in silico gene models based on RNA-Seq data, we were able to generate an experimentally verified gene annotation containing 6347 genes. Using this database, our expression analysis revealed that only four of the five cluster genes required for MEL synthesis were clearly induced by the presence of soybean oil. The acetyltransferase encoding gene PaGMAT1 was expressed on a much lower level, which may explain the secretion of MEL with different degrees of acetylation in P. aphidis. In parallel to MEL synthesis, microscopic observations showed morphological changes accompanied by expression of genes responsible for cell development, indicative of a coregulation between MEL synthesis and cell morphology. In addition a set of transcription factors was identified which may be responsible for regulation of MEL synthesis and cell development. The upregulation of genes required for nitrogen metabolism and other assimilation processes indicate additional metabolic pathways required under the MEL-inducing conditions used. We also searched for a conserved gene cluster for cellobiose lipids (CL) but only found seven genes with limited homology distributed over the genome. However, we detected characteristic TLC spots in fermentations using P. aphidis DSM 70725, indicative of CL secretion.
Collapse
|
21
|
Linde J, Duggan S, Weber M, Horn F, Sieber P, Hellwig D, Riege K, Marz M, Martin R, Guthke R, Kurzai O. Defining the transcriptomic landscape of Candida glabrata by RNA-Seq. Nucleic Acids Res 2015; 43:1392-406. [PMID: 25586221 PMCID: PMC4330350 DOI: 10.1093/nar/gku1357] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Candida glabrata is the second most common pathogenic Candida species and has emerged as a leading cause of nosocomial fungal infections. Its reduced susceptibility to antifungal drugs and its close relationship to Saccharomyces cerevisiae make it an interesting research focus. Although its genome sequence was published in 2004, little is known about its transcriptional dynamics. Here, we provide a detailed RNA-Seq-based analysis of the transcriptomic landscape of C. glabrata in nutrient-rich media, as well as under nitrosative stress and during pH shift. Using RNA-Seq data together with state-of-the-art gene prediction tools, we refined the annotation of the C. glabrata genome and predicted 49 novel protein-coding genes. Of these novel genes, 14 have homologs in S. cerevisiae and six are shared with other Candida species. We experimentally validated four novel protein-coding genes of which two are differentially regulated during pH shift and interaction with human neutrophils, indicating a potential role in host–pathogen interaction. Furthermore, we identified 58 novel non-protein-coding genes, 38 new introns and condition-specific alternative splicing. Finally, our data suggest different patterns of adaptation to pH shift and nitrosative stress in C. glabrata, Candida albicans and S. cerevisiae and thus further underline a distinct evolution of virulence in yeast.
Collapse
Affiliation(s)
- Jörg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Seána Duggan
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Michael Weber
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Fabian Horn
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Patricia Sieber
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany Department of Bioinformatics, Faculty of Biology and Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Daniela Hellwig
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Konstantin Riege
- Research Group Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Sciences, Friedrich Schiller University, Jena, Germany
| | - Manja Marz
- Research Group Bioinformatics and High Throughput Analysis, Faculty of Mathematics and Computer Sciences, Friedrich Schiller University, Jena, Germany
| | - Ronny Martin
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany National Reference Center for Invasive Mycoses, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| |
Collapse
|
22
|
Abstract
Candida species are the most common causes of fungal infection. Approximately 90% of infections are caused by five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine and not leucine. C. albicans remains the most commonly isolated but is decreasing relative to the other species. The increasing incidence of C. glabrata is related to its reduced susceptibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated with expansion of gene families, particularly of cell wall genes. Similar independent processes took place in the C. glabrata species group. Gene loss and expansion in an ancestor of C. glabrata may have resulted in preadaptations that enabled pathogenicity.
Collapse
Affiliation(s)
- Siobhán A Turner
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
23
|
Khamooshi K, Sikorski P, Sun N, Calderone R, Li D. The Rbf1, Hfl1 and Dbp4 of Candida albicans regulate common as well as transcription factor-specific mitochondrial and other cell activities. BMC Genomics 2014; 15:56. [PMID: 24450762 PMCID: PMC3904162 DOI: 10.1186/1471-2164-15-56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/17/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Our interest in Candida albicans mitochondria began with the identification of GOA1. We demonstrated its role in cell energy production, cross-talk among mitochondria and peroxisomes, non-glucose energy metabolism, maintenance of stationary phase growth, and prevention of premature apoptosis. Its absence results in avirulence. However, what regulated transcription of GOA1 was unknown. RESULTS To identify transcriptional regulators (TRs) of GOA1, we screened a C. albicans TF knockout library (TRKO) and identified Rbf1p, Hfl1p, and Dpb4p as positive TRs of GOA1. The phenotypes of each mutant (reduced respiration, inability to grow on glycerol, reduced ETC CI and CIV activities) are reasonable evidence for their required roles especially in mitochondrial functions. While the integration of mitochondria with cell metabolic activities is presumed to occur, there is minimal information on this subject at the genome level. Therefore, microarray analysis was used to provide this information for each TR mutant. Transcriptional profiles of Rbf1p and Hfl1p are more similar than that of Dpn4p. Our data demonstrate common and also gene-specific regulatory functions for each TR. We establish their roles in carbon metabolism, stress adaptation, cell wall synthesis, transporter efflux, peroxisomal metabolism, phospholipid synthesis, rRNA processing, and nuclear/mtDNA replication. CONCLUSIONS The TRs regulate a number of common genes but each also regulates specific gene transcription. These data for the first time create a genome roadmap that can be used to integrate mitochondria with other cell processes. Of interest, the TRs are fungal-specific, warranting consideration as antifungal drug targets.
Collapse
Affiliation(s)
| | | | | | | | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC 20057, USA.
| |
Collapse
|
24
|
|