1
|
Liu X, Wang P, Yuan N, Zhai Y, Yang Y, Hao M, Zhang M, Zhou D, Liu W, Jin Y, Wang A. The (p)ppGpp synthetase Rsh promotes rifampicin tolerant persister cell formation in Brucella abortus by regulating the type II toxin-antitoxin module mbcTA. Front Microbiol 2024; 15:1395504. [PMID: 38841069 PMCID: PMC11150624 DOI: 10.3389/fmicb.2024.1395504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Persister cells are transiently tolerant to antibiotics and are associated with recalcitrant chronic infections due to recolonization of host cells after antibiotic removal. Brucella spp. are facultative pathogens that establish intracellular infection cycles in host cells which results in chronic persistent infections. Brucella abortus forms multi-drug persister cells which are promoted by the (p)ppGpp synthetase Rsh during rifampicin exposure. Here, we confirmed that Rsh promoted persister cells formation in B. abortus stationary phase treated with rifampicin and enrofloxacin. Deletion of the gene for Rsh decreased persister cells level in the presence of these drugs in different growth phases. However, persister cells formation by deletion strain varied in different growth phases in the presence of other antibiotics. Rsh also was involved in persister cells formation during rifampicin treatment under certain stress conditions, including acidic conditions, exposure to PBS, and heat stress. Moreover, Rsh impacted persister cell levels during rifampicin or enrofloxacin treatment in RAW264.7 macrophages. Certain typeIItoxin-antitoxin modules were upregulated under various stress conditions in B. abortus. We established that Rsh positively regulated the type II toxin-antitoxin mbcTA. Moreover, rifampicin-tolerant persister cells formation was elevated and ATP levels were decreased when mbcTA promoter was overexpressed in Rsh deletion background in stationary phase. Our results establish that (p)ppGpp synthetase Rsh plays a key role in B. abortus persistence and may serve as a potent novel target in combination with rifampicin in the development of new therapeutic approaches and prevention strategies to treat chronic infections of Brucella.
Collapse
Affiliation(s)
- Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Pingping Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Ningqiu Yuan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yuanhao Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Mingxing Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
| |
Collapse
|
2
|
Liu X, Wang P, Shi Y, Cui Y, Li S, Wu Dong G, Li J, Hao M, Zhai Y, Zhou D, Liu W, Wang A, Jin Y. (P)ppGpp synthetase Rsh participates in rifampicin tolerance of persister cells in Brucella abortus in vitro. Microb Pathog 2023; 183:106310. [PMID: 37604214 DOI: 10.1016/j.micpath.2023.106310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Brucella abortus is facultative intracellular pathogen that causes chronic persistent infections and results in abortion and infertility in food animals. Recurrent infections can be one of the results of persister cells formation that transiently displays phenotypic tolerance to high dose of antibiotics treatment. We examined persister cells formation of B. abortus strain A19 in stationary phase and investigated a potential role for the (p)ppGpp synthetase Rsh in this process. We found that B. abortus stationary phase cells can produce higher levels of multi-drugs tolerant persister cells in vitro under high dose of antibiotics (20 × MIC) exposure than do exponential phase cells. Persister cell formation was also induced with environmental stressors pH 4.5, 0.01 M PBS (pH7.0), 2% NaCl and 25 °C, upon exposure to ampicillin, enrofloxacin and rifampicin. Persister cells were not formed following exposure to 1 mM H2O2. The numbers of persister cells were significantly increased following uptake of B. abortus stationary phase cells by RAW264.7 macrophages in contrast with cultures in TSB liquid medium. Environmental stressors to B. abortus significantly increased expression of rsh mRNA level. The rsh null mutant (Δrsh) formed significantly fewer persister cells than the complemented (CΔrsh) and wildtype (WT) strains under high dose of rifampicin in vitro. These data for the first time demonstrate that B. abortus can produce multi-drug tolerant persister cells in stationary phase. The (p)ppGpp synthetase Rsh is necessary for persister cell formation in B. abortus in the presence of rifampicin. On this basis, a new understanding of the recurrent infections of Brucella was advanced, thus provided a new basis for revelation of pathogenic mechanism of the chronic persistent infection in Brucella.
Collapse
Affiliation(s)
- Xiaofang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Pingping Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Yong Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Yimeng Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Shengnan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Gaowa Wu Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China.
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Coloma-Rivero RF, Flores-Concha M, Molina RE, Soto-Shara R, Cartes Á, Oñate ÁA. Brucella and Its Hidden Flagellar System. Microorganisms 2021; 10:83. [PMID: 35056531 PMCID: PMC8781033 DOI: 10.3390/microorganisms10010083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella, a Gram-negative bacterium with a high infective capacity and a wide spectrum of hosts in the animal world, is found in terrestrial and marine mammals, as well as amphibians. This broad spectrum of hosts is closely related to the non-classical virulence factors that allow this pathogen to establish its replicative niche, colonizing epithelial and immune system cells, evading the host's defenses and defensive response. While motility is the primary role of the flagellum in most bacteria, in Brucella, the flagellum is involved in virulence, infectivity, cell growth, and biofilm formation, all of which are very important facts in a bacterium that to date has been described as a non-motile organism. Evidence of the expression of these flagellar proteins that are present in Brucella makes it possible to hypothesize certain evolutionary aspects as to where a free-living bacterium eventually acquired genetic material from environmental microorganisms, including flagellar genes, conferring on it the ability to reach other hosts (mammals), and, under selective pressure from the environment, can express these genes, helping it to evade the immune response. This review summarizes relevant aspects of the presence of flagellar proteins and puts into context their relevance in certain functions associated with the infective process. The study of these flagellar genes gives the genus Brucella a very high infectious versatility, placing it among the main organisms in urgent need of study, as it is linked to human health by direct contact with farm animals and by eventual transmission to the general population, where flagellar genes and proteins are of great relevance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ángel A. Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Concepción 4030000, Chile; (R.F.C.-R.); (M.F.-C.); (R.E.M.); (R.S.-S.); (Á.C.)
| |
Collapse
|
4
|
de la Garza-García JA, Ouahrani-Bettache S, Lyonnais S, Ornelas-Eusebio E, Freddi L, Al Dahouk S, Occhialini A, Köhler S. Comparative Genome-Wide Transcriptome Analysis of Brucella suis and Brucella microti Under Acid Stress at pH 4.5: Cold Shock Protein CspA and Dps Are Associated With Acid Resistance of B. microti. Front Microbiol 2021; 12:794535. [PMID: 34966374 PMCID: PMC8710502 DOI: 10.3389/fmicb.2021.794535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Brucellae are facultative intracellular coccobacilli causing brucellosis, one of the most widespread bacterial zoonosis affecting wildlife animals, livestock and humans. The genus Brucella comprises classical and atypical species, such as Brucella suis and Brucella microti, respectively. The latter is characterized by increased metabolic activity, fast growth rates, and extreme acid resistance at pH 2.5, suggesting an advantage for environmental survival. In addition, B. microti is more acid-tolerant than B. suis at the intermediate pH of 4.5. This acid-resistant phenotype of B. microti may have major implications for fitness in soil, food products and macrophages. Our study focused on the identification and characterization of acid resistance determinants of B. suis and B. microti in Gerhardt's minimal medium at pH 4.5 and 7.0 for 20 min and 2 h by comparative RNA-Seq-based transcriptome analysis, validated by RT-qPCR. Results yielded a common core response in both species with a total of 150 differentially expressed genes, and acidic pH-dependent genes regulated specifically in each species. The identified core response mechanisms comprise proton neutralization or extrusion from the cytosol, participating in maintaining physiological intracellular pH values. Differential expression of 441 genes revealed species-specific mechanisms in B. microti with rapid physiological adaptation to acid stress, anticipating potential damage to cellular components and critical energy conditions. Acid stress-induced genes encoding cold shock protein CspA, pseudogene in B. suis, and stress protein Dps were associated with survival of B. microti at pH 4.5. B. suis response with 284 specifically regulated genes suggested increased acid stress-mediated protein misfolding or damaging, triggering the set-up of repair strategies countering the consequences rather than the origin of acid stress and leading to subsequent loss of viability. In conclusion, our work supports the hypothesis that increased acid stress resistance of B. microti is based on selective pressure for the maintenance of functionality of critical genes, and on specific differential gene expression, resulting in rapid adaptation.
Collapse
Affiliation(s)
- Jorge A de la Garza-García
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | - Safia Ouahrani-Bettache
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | | | - Erika Ornelas-Eusebio
- Unité des Zoonoses Bactériennes and Unité d'Epidémiologie, Laboratoire de Santé Animale, ANSES, University Paris-Est, Maisons-Alfort, France
| | - Luca Freddi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | | | - Alessandra Occhialini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | - Stephan Köhler
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| |
Collapse
|
5
|
Oliveira KC, Brancaglion GA, Santos NCM, Araújo LP, Novaes E, Santos RDL, Oliveira SC, Corsetti PP, de Almeida LA. Epitope-Based Vaccine of a Brucella abortus Putative Small RNA Target Induces Protection and Less Tissue Damage in Mice. Front Immunol 2021; 12:778475. [PMID: 34992597 PMCID: PMC8724193 DOI: 10.3389/fimmu.2021.778475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in humans and animals. Currently available live attenuated vaccines against brucellosis still have drawbacks. Therefore, subunit vaccines, produced using epitope-based antigens, have the advantage of being safe, cost-effective and efficacious. Here, we identified B. abortus small RNAs expressed during early infection with bone marrow-derived macrophages (BMDMs) and an apolipoprotein N-acyltransferase (Int) was identified as the putative target of the greatest expressed small RNA. Decreased expression of Int was observed during BMDM infection and the protein sequence was evaluated to rationally select a putative immunogenic epitope by immunoinformatic, which was explored as a vaccinal candidate. C57BL/6 mice were immunized and challenged with B. abortus, showing lower recovery in the number of viable bacteria in the liver, spleen, and axillary lymph node and greater production of IgG and fractions when compared to non-vaccinated mice. The vaccinated and infected mice showed the increased expression of TNF-α, IFN-γ, and IL-6 following expression of the anti-inflammatory genes IL-10 and TGF-β in the liver, justifying the reduction in the number and size of the observed granulomas. BMDMs stimulated with splenocyte supernatants from vaccinated and infected mice increase the CD86+ marker, as well as expressing greater amounts of iNOS and the consequent increase in NO production, suggesting an increase in the phagocytic and microbicidal capacity of these cells to eliminate the bacteria.
Collapse
Affiliation(s)
- Karen Cristina Oliveira
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | | | - Natália C. M. Santos
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Leonardo P. Araújo
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Evandro Novaes
- Department of Biology, Federal University of Lavras, Lavras, Brazil
| | - Renato de Lima Santos
- Department of Clinic and Veterinary Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia Paiva Corsetti
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
- *Correspondence: Leonardo Augusto de Almeida, ; Patrícia Paiva Corsetti,
| | - Leonardo Augusto de Almeida
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
- *Correspondence: Leonardo Augusto de Almeida, ; Patrícia Paiva Corsetti,
| |
Collapse
|
6
|
Jaboulay C, Godeux AS, Doublet P, Vianney A. Regulatory Networks of the T4SS Control: From Host Cell Sensing to the Biogenesis and the Activity during the Infection. J Mol Biol 2021; 433:166892. [PMID: 33636165 DOI: 10.1016/j.jmb.2021.166892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Delivery of effectors, DNA or proteins, that hijack host cell processes to the benefit of bacteria is a mechanism widely used by bacterial pathogens. It is achieved by complex effector injection devices, the secretion systems, among which Type 4 Secretion Systems (T4SSs) play a key role in bacterial virulence of numerous animal and plant pathogens. Considerable progress has recently been made in the structure-function analyses of T4SSs. Nevertheless, the signals and processes that trigger machine assembly and activity during infection, as well as those involved in substrate recognition and transfer, are complex and still poorly understood. In this review, we aim at summarizing the last updates of the knowledge on signaling pathways that regulate the biogenesis and the activity of T4SSs in important bacterial pathogens.
Collapse
Affiliation(s)
- C Jaboulay
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France.
| | - A S Godeux
- CIRI, Centre International de Recherche en Infectiologie, (Team: Horigene), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - P Doublet
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - A Vianney
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| |
Collapse
|
7
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
8
|
Zn 2+ Intoxication of Mycobacterium marinum during Dictyostelium discoideum Infection Is Counteracted by Induction of the Pathogen Zn 2+ Exporter CtpC. mBio 2021; 12:mBio.01313-20. [PMID: 33531393 PMCID: PMC7858047 DOI: 10.1128/mbio.01313-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microelements are essential for the function of the innate immune system. A deficiency in zinc or copper results in an increased susceptibility to bacterial infections. Macrophages use diverse strategies to restrict intracellular pathogens, including either depriving the bacteria of (micro)nutrients such as transition metals or intoxicating them via metal accumulation. Little is known about the chemical warfare between Mycobacterium marinum, a close relative of Mycobacterium tuberculosis (Mtb), and its hosts. We use the professional phagocyte Dictyostelium discoideum to investigate the role of Zn2+ during M. marinum infection. We show that M. marinum senses toxic levels of Zn2+ and responds by upregulating one of its isoforms of the Zn2+ efflux transporter CtpC. Deletion of ctpC (MMAR_1271) leads to growth inhibition in broth supplemented with Zn2+ as well as reduced intracellular growth. Both phenotypes were fully rescued by constitutive ectopic expression of the Mtb CtpC orthologue demonstrating that MMAR_1271 is the functional CtpC Zn2+ efflux transporter in M. marinum. Infection leads to the accumulation of Zn2+ inside the Mycobacterium-containing vacuole (MCV), achieved by the induction and recruitment of the D. discoideum Zn2+ efflux pumps ZntA and ZntB. In cells lacking ZntA, there is further attenuation of M. marinum growth, presumably due to a compensatory efflux of Zn2+ into the MCV, carried out by ZntB, the main Zn2+ transporter in endosomes and phagosomes. Counterintuitively, bacterial growth is also impaired in zntB KO cells, in which MCVs appear to accumulate less Zn2+ than in wild-type cells, suggesting restriction by other Zn2+-mediated mechanisms. Absence of CtpC further epistatically attenuates the intracellular proliferation of M. marinum in zntA and zntB KO cells, confirming that mycobacteria face noxious levels of Zn2+.
Collapse
|
9
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
10
|
Horvatek P, Salzer A, Hanna AMF, Gratani FL, Keinhörster D, Korn N, Borisova M, Mayer C, Rejman D, Mäder U, Wolz C. Inducible expression of (pp)pGpp synthetases in Staphylococcus aureus is associated with activation of stress response genes. PLoS Genet 2020; 16:e1009282. [PMID: 33378356 PMCID: PMC7802963 DOI: 10.1371/journal.pgen.1009282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/12/2021] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The stringent response is characterized by the synthesis of the messenger molecules pppGpp, ppGpp or pGpp (here collectively designated (pp)pGpp). The phenotypic consequences resulting from (pp)pGpp accumulation vary among species and can be mediated by different underlying mechanisms. Most genome-wide analyses have been performed under stress conditions, which often mask the immediate effects of (pp)pGpp-mediated regulatory circuits. In Staphylococcus aureus, (pp)pGpp can be synthesized via the RelA-SpoT-homolog, RelSau upon amino acid limitation or via one of the two small (pp)pGpp synthetases RelP or RelQ upon cell wall stress. We used RNA-Seq to compare the global effects in response to induction of the synthetase of rel-Syn (coding for the enzymatic region of RelSau) or relQ without the need to apply additional stress conditions. Induction of rel-Syn resulted in changes in the nucleotide pool similar to induction of the stringent response via the tRNA synthetase inhibitor mupirocin: a reduction in the GTP pool, an increase in the ATP pool and synthesis of pppGpp, ppGpp and pGpp. Induction of all three enzymes resulted in similar changes in the transcriptome. However, RelQ was less active than Rel-Syn and RelP, indicating strong restriction of its (pp)pGpp-synthesis activity in vivo. (pp)pGpp induction resulted in the downregulation of many genes involved in protein and RNA/DNA metabolism. Many of the (pp)pGpp upregulated genes are part of the GTP sensitive CodY regulon and thus likely regulated through lowering of the GTP pool. New CodY independent transcriptional changes were detected including genes involved in the SOS response, iron storage (e.g. ftnA, dps), oxidative stress response (e.g., perR, katA, sodA) and the psmα1–4 and psmß1-2 operons coding for cytotoxic, phenol soluble modulins (PSMs). Analyses of the ftnA, dps and psm genes in different regulatory mutants revealed that their (pp)pGpp-dependent regulation can occur independent of the regulators PerR, Fur, SarA or CodY. Moreover, psm expression is uncoupled from expression of the quorum sensing system Agr, the main known psm activator. The expression of central genes of the oxidative stress response protects the bacteria from anticipated ROS stress derived from PSMs or exogenous sources. Thus, we identified a new link between the stringent response and oxidative stress in S. aureus that is likely crucial for survival upon phagocytosis. Most bacteria make use of the second messenger (pp)pGpp to reprogram bacterial metabolism under nutrient-limiting conditions. In the human pathogen Staphylococcus aureus, (pp)pGpp plays an important role in virulence, phagosomal escape and antibiotic tolerance. Here, we analyzed the immediate consequences of (pp)pGpp synthesis upon transcriptional induction of the (pp)pGpp-producing enzymes Rel, RelP or RelQ. (pp)pGpp synthesis provokes immediate changes in the nucleotide pool and severely impacts the expression of hundreds of genes. A main consequence of (pp)pGpp synthesis in S. aureus is the induction of ROS-inducing toxic phenol soluble modulins (PSMs) and simultaneous expression of the detoxifying system to protect the producer. This mechanism is likely of special advantage for the pathogen after phagocytosis.
Collapse
Affiliation(s)
- Petra Horvatek
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Andrea Salzer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | | | - Fabio Lino Gratani
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
- Quantitative Proteomics & Proteome Center Tuebingen, University of Tuebingen, Germany
| | - Daniela Keinhörster
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Natalya Korn
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Germany
- * E-mail:
| |
Collapse
|
11
|
The (p)ppGpp Synthetase RSH Mediates Stationary-Phase Onset and Antibiotic Stress Survival in Clostridioides difficile. J Bacteriol 2020; 202:JB.00377-20. [PMID: 32661079 DOI: 10.1128/jb.00377-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022] Open
Abstract
The human pathogen Clostridioides difficile is increasingly tolerant of multiple antibiotics and causes infections with a high rate of recurrence, creating an urgent need for new preventative and therapeutic strategies. The stringent response, a universal bacterial response to extracellular stress, governs antibiotic survival and pathogenesis in diverse organisms but has not previously been characterized in C. difficile Here, we report that the C. difficile (p)ppGpp synthetase RSH is incapable of utilizing GTP or GMP as a substrate but readily synthesizes ppGpp from GDP. The enzyme also utilizes many structurally diverse metal cofactors for reaction catalysis and remains functionally stable at a wide range of environmental pHs. Transcription of rsh is stimulated by stationary-phase onset and by exposure to the antibiotics clindamycin and metronidazole. Chemical inhibition of RSH by the ppGpp analog relacin increases antibiotic susceptibility in epidemic C. difficile R20291, indicating that RSH inhibitors may be a viable strategy for drug development against C. difficile infection. Finally, transcriptional suppression of rsh also increases bacterial antibiotic susceptibility, suggesting that RSH contributes to C. difficile antibiotic tolerance and survival.IMPORTANCE Clostridioides difficile infection (CDI) is an urgent public health threat with a high recurrence rate, in part because the causative bacterium has a high rate of antibiotic survival. The (p)ppGpp-mediated bacterial stringent response plays a role in antibiotic tolerance in diverse pathogens and is a potential target for development of new antimicrobials because the enzymes that metabolize (p)ppGpp have no mammalian homologs. We report that stationary-phase onset and antibiotics induce expression of the clostridial ppGpp synthetase RSH and that both chemical inhibition and translational suppression of RSH increase C. difficile antibiotic susceptibility. This demonstrates that development of RSH inhibitors to serve as adjuvants to antibiotic therapy is a potential approach for the development of new strategies to combat CDI.
Collapse
|
12
|
Intracellular Growth and Cell Cycle Progression are Dependent on (p)ppGpp Synthetase/Hydrolase in Brucella abortus. Pathogens 2020; 9:pathogens9070571. [PMID: 32674466 PMCID: PMC7400157 DOI: 10.3390/pathogens9070571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 01/29/2023] Open
Abstract
Brucella abortus is a pathogenic bacterium able to proliferate inside host cells. During the first steps of its trafficking, it is able to block the progression of its cell cycle, remaining at the G1 stage for several hours, before it reaches its replication niche. We hypothesized that starvation mediated by guanosine tetra- or penta-phosphate, (p)ppGpp, could be involved in the cell cycle arrest. Rsh is the (p)ppGpp synthetase/hydrolase. A B. abortus ∆rsh mutant is unable to grow in minimal medium, it is unable to survive in stationary phase in rich medium and it is unable to proliferate inside RAW 264.7 macrophages. A strain producing the heterologous constitutive (p)ppGpp hydrolase Mesh1b is also unable to proliferate inside these macrophages. Altogether, these data suggest that (p)ppGpp is necessary to allow B. abortus to adapt to its intracellular growth conditions. The deletion of dksA, proposed to mediate a part of the effect of (p)ppGpp on transcription, does not affect B. abortus growth in culture or inside macrophages. Expression of a gene coding for a constitutively active (p)ppGpp synthetase slows down growth in rich medium and inside macrophages. Using an mCherry–ParB fusion able to bind to the replication origin of the main chromosome of B. abortus, we observed that expression of the constitutive (p)ppGpp synthetase gene generates an accumulation of bacteria at the G1 phase. We thus propose that (p)ppGpp accumulation could be one of the factors contributing to the G1 arrest observed for B. abortus in RAW 264.7 macrophages.
Collapse
|
13
|
Koliwer‐Brandl H, Knobloch P, Barisch C, Welin A, Hanna N, Soldati T, Hilbi H. DistinctMycobacterium marinumphosphatases determine pathogen vacuole phosphoinositide pattern, phagosome maturation, and escape to the cytosol. Cell Microbiol 2019; 21:e13008. [DOI: 10.1111/cmi.13008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Hendrik Koliwer‐Brandl
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| | - Paulina Knobloch
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| | - Caroline Barisch
- Faculty of Science, Department of BiochemistryUniversity of Geneva Geneva Switzerland
| | - Amanda Welin
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| | - Nabil Hanna
- Faculty of Science, Department of BiochemistryUniversity of Geneva Geneva Switzerland
| | - Thierry Soldati
- Faculty of Science, Department of BiochemistryUniversity of Geneva Geneva Switzerland
| | - Hubert Hilbi
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| |
Collapse
|
14
|
Transcriptome Analysis of Novosphingobium pentaromativorans US6-1 Reveals the Rsh Regulon and Potential Molecular Mechanisms of N-acyl-l-homoserine Lactone Accumulation. Int J Mol Sci 2018; 19:ijms19092631. [PMID: 30189641 PMCID: PMC6163740 DOI: 10.3390/ijms19092631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 11/17/2022] Open
Abstract
In most bacteria, a bifunctional Rsh responsible for (p)ppGpp metabolism is the key player in stringent response. To date, no transcriptome-wide study has been conducted to investigate the Rsh regulon, and the molecular mechanism of how Rsh affects the accumulation of N-acyl-l-homoserine lactone (AHL) remains unknown in sphingomonads. In this study, we identified an rshUS6–1 gene by sequence analysis in Novosphingobium pentaromativorans US6-1, a member of the sphingomonads. RNA-seq was used to determine transcription profiles of the wild type and the ppGpp-deficient rshUS6–1 deletion mutant (∆rsh). There were 1540 genes in the RshUS6–1 regulon, including those involved in common traits of sphingomonads such as exopolysaccharide biosynthesis. Furthermore, both RNA-seq and quantitative real-time polymerase chain reaction (qRT-PCR) showed essential genes for AHL production (novI and novR) were positively regulated by RshUS6–1 during the exponential growth phase. A degradation experiment indicated the reason for the AHL absence in ∆rsh was unrelated to the AHL degradation. According to RNA-seq, we proposed σE, DksA, Lon protease and RNA degradation enzymes might be involved in the RshUS6–1-dependent expression of novI and novR. Here, we report the first transcriptome-wide analysis of the Rsh regulon in sphingomonads and investigate the potential mechanisms regulating AHL accumulation, which is an important step towards understanding the regulatory system of stringent response in sphingomonads.
Collapse
|
15
|
Boggiatto PM, Fitzsimmons D, Bayles DO, Alt D, Vrentas CE, Olsen SC. Coincidence cloning recovery of Brucella melitensis RNA from goat tissues: advancing the in vivo analysis of pathogen gene expression in brucellosis. BMC Mol Biol 2018; 19:10. [PMID: 30068312 PMCID: PMC6071331 DOI: 10.1186/s12867-018-0111-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 07/24/2018] [Indexed: 11/10/2022] Open
Abstract
Background Brucella melitensis bacteria cause persistent, intracellular infections in small ruminants as well as in humans, leading to significant morbidity and economic loss worldwide. The majority of experiments on the transcriptional responses of Brucella to conditions inside the host have been performed following invasion of cultured mammalian cells, and do not address gene expression patterns during long-term infection. Results Here, we examine the application of the previously developed coincidence cloning methodology to recover and characterize B. melitensis RNA from the supramammary lymph node of experimentally-infected goats. Using coincidence cloning, we successfully recovered Brucella RNA from supramammary lymph nodes of B. melitensis-infected goats at both short-term (4 weeks) and long-term (38 weeks) infection time points. Amplified nucleic acid levels were sufficient for analysis of Brucella gene expression patterns by RNA-sequencing, providing evidence of metabolic activity in both the short-term and the long-term samples. We developed a workflow for the use of sequence polymorphism analysis to confirm recovery of the inoculated strain in the recovered reads, and utilized clustering analysis to demonstrate a distinct transcriptional profile present in samples recovered in long-term infection. In this first look at B. melitensis gene expression patterns in vivo, the subset of Brucella genes that was highly upregulated in long-term as compared to short-term infection included genes linked to roles in murine infection, such as genes involved in proline utilization and signal transduction. Finally, we demonstrated the challenges of qPCR validation of samples with very low ratios of pathogen:host RNA, as is the case during in vivo brucellosis, and alternatively characterized intermediate products of the coincidence cloning reaction. Conclusions Overall, this study provides the first example of recovery plus characterization of B. melitensis RNA from in vivo lymph node infection, and demonstrates that the coincidence cloning technique is a useful tool for characterizing in vivo transcriptional changes in Brucella species. Genes upregulated in long-term infection in this data set, including many genes not previously demonstrated to be virulence factors in mice or macrophage experiments, are candidates of future interest for potential roles in Brucella persistence in natural host systems. Electronic supplementary material The online version of this article (10.1186/s12867-018-0111-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola M Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, 50010, USA
| | - Daniel Fitzsimmons
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, 50010, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, 50010, USA
| | - David Alt
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, 50010, USA
| | - Catherine E Vrentas
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, 50010, USA.
| | - Steven C Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, 50010, USA
| |
Collapse
|
16
|
Zai X, Yang Q, Yin Y, Li R, Qian M, Zhao T, Li Y, Zhang J, Fu L, Xu J, Chen W. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses. Front Microbiol 2017; 8:2347. [PMID: 29238329 PMCID: PMC5712581 DOI: 10.3389/fmicb.2017.02347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022] Open
Abstract
Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS) via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs) that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular homeostasis and metabolic balance under stress. In conclusion, our results provide a better understanding of the global metabolic adaptations of B. abortus associated with distinct environmental stresses. The identification of proteins necessary for stress resistance is crucial toward elucidating the infectious process in order to control brucellosis, and may facilitate the discovery of novel therapeutic targets and effective vaccines.
Collapse
Affiliation(s)
- Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaoling Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Mengying Qian
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Taoran Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
17
|
Freddi L, Damiano MA, Chaloin L, Pennacchietti E, Al Dahouk S, Köhler S, De Biase D, Occhialini A. The Glutaminase-Dependent System Confers Extreme Acid Resistance to New Species and Atypical Strains of Brucella. Front Microbiol 2017; 8:2236. [PMID: 29187839 PMCID: PMC5695133 DOI: 10.3389/fmicb.2017.02236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/31/2017] [Indexed: 11/28/2022] Open
Abstract
Neutralophilic bacteria have developed specific mechanisms to cope with the acid stress encountered in environments such as soil, fermented foods, and host compartments. In Escherichia coli, the glutamate decarboxylase (Gad)-dependent system is extremely efficient: it requires the concerted action of glutamate decarboxylase (GadA/GadB) and of the glutamate (Glu)/γ-aminobutyrate antiporter, GadC. Notably, this system is operative also in new strains/species of Brucella, among which Brucella microti, but not in the “classical” species, with the exception of marine mammals strains. Recently, the glutaminase-dependent system (named AR2_Q), relying on the deamination of glutamine (Gln) into Glu and on GadC activity, was described in E. coli. In Brucella genomes, a putative glutaminase (glsA)-coding gene is located downstream of the gadBC genes. We found that in B. microti these genes are expressed as a polycistronic transcript. Moreover, using a panel of Brucella genus-representative strains, we show that the AR2_Q system protects from extreme acid stress (pH ≤2.5), in the sole presence of Gln, only the Brucella species/strains predicted to have functional glsA and gadC. Indeed, mutagenesis approaches confirmed the involvement of glsA and gadC of B. microti in AR2_Q and that the acid-sensitive phenotype of B. abortus can be ascribed to a Ser248Leu substitution in GlsA, leading to loss of glutaminase activity. Furthermore, we found that the gene BMI_II339, of unknown function and downstream of the gadBC–glsA operon, positively affects Gad- and GlsA-dependent AR. Thus, we identified novel determinants that allow newly discovered and marine mammals Brucella strains to be better adapted to face hostile acidic environments. As for significance, this work may contribute to the understanding of the host preferences of Brucella species and opens the way to alternative diagnostic targets in epidemiological surveillance of brucellosis.
Collapse
Affiliation(s)
- Luca Freddi
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Maria A Damiano
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Laurent Chaloin
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Eugenia Pennacchietti
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory Affiliated to the Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Latina, Italy
| | | | - Stephan Köhler
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory Affiliated to the Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Latina, Italy
| | - Alessandra Occhialini
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| |
Collapse
|
18
|
Roset MS, Alefantis TG, DelVecchio VG, Briones G. Iron-dependent reconfiguration of the proteome underlies the intracellular lifestyle of Brucella abortus. Sci Rep 2017; 7:10637. [PMID: 28878308 PMCID: PMC5587712 DOI: 10.1038/s41598-017-11283-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/21/2017] [Indexed: 12/24/2022] Open
Abstract
Brucella ssp. is a facultative intracellular pathogen that causes brucellosis, a worldwide zoonosis that affects a wide range of mammals including humans. A critical step for the establishment of a successful Brucella infection is its ability to survive within macrophages. To further understand the mechanisms that Brucella utilizes to adapt to an intracellular lifestyle, a differential proteomic study was performed for the identification of intracellular modulated proteins. Our results demonstrated that at 48 hours post-infection Brucella adjusts its metabolism in order to survive intracellularly by modulating central carbon metabolism. Remarkably, low iron concentration is likely the dominant trigger for reprogramming the protein expression profile. Up-regulation of proteins dedicated to reduce the concentration of reactive oxygen species, protein chaperones that prevent misfolding of proteins, and proteases that degrade toxic protein aggregates, suggest that Brucella protects itself from damage likely due to oxidative burst. This proteomic analysis of B. abortus provides novel insights into the mechanisms utilized by Brucella to establish an intracellular persistent infection and will aid in the development of new control strategies and novel targets for antimicrobial therapy.
Collapse
Affiliation(s)
- M S Roset
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, IIB-INTECH-CONICET, San Martín 1650, Buenos Aires, Argentina.
| | - T G Alefantis
- Vital Probes Inc., 1820 N. E.27th Drive, Wilton Manors, Florida, USA.,Sanofi Pasteur, 1 Discovery Drive, Swiftwater, PA, USA
| | - V G DelVecchio
- Vital Probes Inc., 1820 N. E.27th Drive, Wilton Manors, Florida, USA
| | - G Briones
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, IIB-INTECH-CONICET, San Martín 1650, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Rossetti CA, Drake KL, Lawhon SD, Nunes JS, Gull T, Khare S, Adams LG. Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein-Protein Interactions. Front Microbiol 2017; 8:1275. [PMID: 28798726 PMCID: PMC5529337 DOI: 10.3389/fmicb.2017.01275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Abstract
To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the "Two component system" providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as "ABC transporters" and "T4SS system" were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114), the "flagellar assembly" pathway and the cell components "bacterial-type flagellum hook" and "bacterial-type flagellum" were repressed in the tissue-associated B. melitensis, while RopE1 sigma factor, a flagellar repressor, was activated throughout the experiment. These results support the idea that Brucella employ a stealthy strategy at the onset of the infection of susceptible hosts. Further, through systems-level in silico host:pathogen protein-protein interactions simulation and correlation of pathogen gene expression with the host gene perturbations, we identified unanticipated interactions such as VirB11::MAPK8IP1; BtaE::NFKBIA, and 22 kDa OMP precursor::BAD and MAP2K3. These findings are suggestive of new virulence factors and mechanisms responsible for Brucella evasion of the host's protective immune response and the capability to maintain a dormant state. The predicted protein-protein interactions and the points of disruption provide novel insights that will stimulate advanced hypothesis-driven approaches toward revealing a clearer understanding of new virulence factors and mechanisms influencing the pathogenesis of brucellosis.
Collapse
Affiliation(s)
- Carlos A Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | | | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Jairo S Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Leslie G Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
20
|
Barbier T, Zúñiga-Ripa A, Moussa S, Plovier H, Sternon JF, Lázaro-Antón L, Conde-Álvarez R, De Bolle X, Iriarte M, Moriyón I, Letesson JJ. Brucella central carbon metabolism: an update. Crit Rev Microbiol 2017; 44:182-211. [PMID: 28604247 DOI: 10.1080/1040841x.2017.1332002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brucellae are facultative intracellular pathogens causing brucellosis, an important zoonosis. Here, we review the nutritional, genetic, proteomic and transcriptomic studies on Brucella carbon uptake and central metabolism, information that is needed for a better understanding of Brucella virulence. There is no uniform picture across species but the studies suggest primary and/or secondary transporters for unknown carbohydrates, lactate, glycerol phosphate, erythritol, xylose, ribose, glucose and glucose/galactose, and routes for their incorporation to central metabolism, including an erythritol pathway feeding the pentose phosphate cycle. Significantly, all brucellae lack phosphoenolpyruvate synthase and phosphofructokinase genes, which confirms previous evidence on glycolysis absence, but carry all Entner-Doudoroff (ED) pathway and Krebs cycle (and glyoxylate pathway) genes. However, glucose catabolism proceeds through the pentose phosphate cycle in the classical species, and the ED pathway operates in some rodent-associated brucellae, suggesting an ancestral character for this pathway in this group. Gluconeogenesis is functional but does not rely exclusively on classical fructose bisphosphatases. Evidence obtained using infection models is fragmentary but suggests the combined or sequential use of hexoses/pentoses, amino acids and gluconeogenic substrates. We also discuss the role of the phosphotransferase system, stringent reponse, quorum sensing, BvrR/S and sRNAs in metabolism control, an essential aspect of the life style of facultative intracellular parasites.
Collapse
Affiliation(s)
- T Barbier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - A Zúñiga-Ripa
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - S Moussa
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - H Plovier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - J F Sternon
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - L Lázaro-Antón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - R Conde-Álvarez
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - X De Bolle
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - M Iriarte
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - I Moriyón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - J J Letesson
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| |
Collapse
|
21
|
Abdou E, Jiménez de Bagüés MP, Martínez-Abadía I, Ouahrani-Bettache S, Pantesco V, Occhialini A, Al Dahouk S, Köhler S, Jubier-Maurin V. RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity. Front Cell Infect Microbiol 2017; 7:186. [PMID: 28573107 PMCID: PMC5435760 DOI: 10.3389/fcimb.2017.00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022] Open
Abstract
For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original "in vitro model of persistence" consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL), were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work therefore contributes significantly to the unraveling of persistence mechanisms in this important zoonotic pathogen.
Collapse
Affiliation(s)
- Elias Abdou
- Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de MontpellierMontpellier, France
| | - María P. Jiménez de Bagüés
- Unidad de Tecnología en Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria, Instituto Agroalimentario de Aragón (CITA-Universidad de Zaragoza)Zaragoza, Spain
| | - Ignacio Martínez-Abadía
- Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de MontpellierMontpellier, France
| | - Safia Ouahrani-Bettache
- Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de MontpellierMontpellier, France
| | - Véronique Pantesco
- Institut de Médecine Régénératrice et Biothérapie—U1183 Institut National de la Santé et de la Recherche MédicaleMontpellier, France
| | - Alessandra Occhialini
- Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de MontpellierMontpellier, France
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Stephan Köhler
- Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de MontpellierMontpellier, France
| | - Véronique Jubier-Maurin
- Institut de Recherche en Infectiologie de Montpellier UMR9004, Centre National de la Recherche Scientifique, Université de MontpellierMontpellier, France
| |
Collapse
|
22
|
Hallez R, Delaby M, Sanselicio S, Viollier PH. Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat Rev Microbiol 2017; 15:137-148. [PMID: 28138140 DOI: 10.1038/nrmicro.2016.183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The class Alphaproteobacteria includes Gram-negative free-living, symbiotic and obligate intracellular bacteria, as well as important plant, animal and human pathogens. Recent work has established the key antagonistic roles that phosphorylated guanosines, cyclic-di-GMP (c-di-GMP) and the alarmones guanosine tetraphosphate and guanosine pentaphosphate (collectively referred to as (p)ppGpp), have in the regulation of the cell cycle in these bacteria. In this Review, we discuss the insights that have been gained into the regulation of the initiation of DNA replication and cytokinesis by these second messengers, with a particular focus on the cell cycle of Caulobacter crescentus. We explore how the fluctuating levels of c-di-GMP and (p)ppGpp during the progression of the cell cycle and under conditions of stress control the synthesis and proteolysis of key regulators of the cell cycle. As these signals also promote bacterial interactions with host cells, the enzymes that control (p)ppGpp and c-di-GMP are attractive antibacterial targets.
Collapse
Affiliation(s)
- Régis Hallez
- Bacterial Cell cycle and Development (BCcD), Unité de recherche en biologie des micro-organismes (URBM), University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Marie Delaby
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefano Sanselicio
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.,Present address: Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
23
|
The Bacterial Second Messenger Cyclic di-GMP Regulates Brucella Pathogenesis and Leads to Altered Host Immune Response. Infect Immun 2016; 84:3458-3470. [PMID: 27672085 DOI: 10.1128/iai.00531-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/19/2016] [Indexed: 11/20/2022] Open
Abstract
Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection.
Collapse
|
24
|
Ahmed W, Zheng K, Liu ZF. Establishment of Chronic Infection: Brucella's Stealth Strategy. Front Cell Infect Microbiol 2016; 6:30. [PMID: 27014640 PMCID: PMC4791395 DOI: 10.3389/fcimb.2016.00030] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultative intracellular pathogen that causes zoonotic infection known as brucellosis which results in abortion and infertility in natural host. Humans, especially in low income countries, can acquire infection by direct contact with infected animal or by consumption of animal products and show high morbidity, severe economic losses and public health problems. However for survival, host cells develop complex immune mechanisms to defeat and battle against attacking pathogens and maintain a balance between host resistance and Brucella virulence. On the other hand as a successful intracellular pathogen, Brucella has evolved multiple strategies to evade immune response mechanisms to establish persistent infection and replication within host. In this review, we mainly summarize the "Stealth" strategies employed by Brucella to modulate innate and the adaptive immune systems, autophagy, apoptosis and possible role of small noncoding RNA in the establishment of chronic infection. The purpose of this review is to give an overview for recent understanding how this pathogen evades immune response mechanisms of host, which will facilitate to understanding the pathogenesis of brucellosis and the development of novel, more effective therapeutic approaches to treat brucellosis.
Collapse
Affiliation(s)
- Waqas Ahmed
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Ke Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
25
|
The Complete Genome of Brucella Suis 019 Provides Insights on Cross-Species Infection. Genes (Basel) 2016; 7:genes7020007. [PMID: 26821047 PMCID: PMC4773751 DOI: 10.3390/genes7020007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 11/21/2022] Open
Abstract
Brucella species are the most important zoonotic pathogens worldwide and cause considerable harm to humans and animals. In this study, we presented the complete genome of B. suis 019 isolated from sheep (ovine) with epididymitis. B. suis 019 has a rough phenotype and can infect sheep, rhesus monkeys and possibly humans. The comparative genome analysis demonstrated that B. suis 019 is closest to the vaccine strain B. suis bv. 1 str. S2. Further analysis associated the rsh gene to the pathogenicity of B. suis 019, and the WbkA gene to the rough phenotype of B. suis 019. The 019 complete genome data was deposited in the GenBank database with ID PRJNA308608.
Collapse
|
26
|
de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1505-17. [PMID: 25892682 DOI: 10.1016/j.ajpath.2015.03.003] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 01/18/2023]
Abstract
This review of Brucella-host interactions and immunobiology discusses recent discoveries as the basis for pathogenesis-informed rationales to prevent or treat brucellosis. Brucella spp., as animal pathogens, cause human brucellosis, a zoonosis that results in worldwide economic losses, human morbidity, and poverty. Although Brucella spp. infect humans as an incidental host, 500,000 new human infections occur annually, and no patient-friendly treatments or approved human vaccines are reported. Brucellae display strong tissue tropism for lymphoreticular and reproductive systems with an intracellular lifestyle that limits exposure to innate and adaptive immune responses, sequesters the organism from the effects of antibiotics, and drives clinical disease manifestations and pathology. Stealthy brucellae exploit strategies to establish infection, including i) evasion of intracellular destruction by restricting fusion of type IV secretion system-dependent Brucella-containing vacuoles with lysosomal compartments, ii) inhibition of apoptosis of infected mononuclear cells, and iii) prevention of dendritic cell maturation, antigen presentation, and activation of naive T cells, pathogenesis lessons that may be informative for other intracellular pathogens. Data sets of next-generation sequences of Brucella and host time-series global expression fused with proteomics and metabolomics data from in vitro and in vivo experiments now inform interactive cellular pathways and gene regulatory networks enabling full-scale systems biology analysis. The newly identified effector proteins of Brucella may represent targets for improved, safer brucellosis vaccines and therapeutics.
Collapse
Affiliation(s)
- Paul de Figueiredo
- Department of Veterinary Pathobiology, Texas A&M University and Texas AgriLife Research, College Station, Texas; Norman Borlaug Center, Texas A&M University, College Station, Texas; Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University and Texas AgriLife Research, College Station, Texas
| | - Allison Rice-Ficht
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Carlos A Rossetti
- Institute of Pathobiology, CICVyA-CNIA, National Institute of Animal Agriculture Technology (INTA), Buenos Aires, Argentina
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University and Texas AgriLife Research, College Station, Texas.
| |
Collapse
|
27
|
Riafrecha LE, Vullo D, Ouahrani-Bettache S, Köhler S, Dumy P, Winum JY, Supuran CT, Colinas PA. Inhibition of β-carbonic anhydrases from Brucella suis with C-cinnamoyl glycosides incorporating the phenol moiety. J Enzyme Inhib Med Chem 2015; 30:1017-20. [DOI: 10.3109/14756366.2014.986120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Leonardo E. Riafrecha
- LADECOR, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina,
| | - Daniela Vullo
- Laboratorio di Chimica Bioinorganica, Universitá degli Studi di Firenze, Sesto Fiorentino (Firenze), Italy,
| | - Safia Ouahrani-Bettache
- Centre d’Études d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-Université Montpellier 1-Université Montpellier, Montpellier Cedex, France,
| | - Stephan Köhler
- Centre d’Études d’Agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS-Université Montpellier 1-Université Montpellier, Montpellier Cedex, France,
| | - Pascal Dumy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-ENSCM-UM1-UM2, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, Montpellier Cedex, France, and
| | - Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-ENSCM-UM1-UM2, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, Montpellier Cedex, France, and
| | - Claudiu T. Supuran
- Laboratorio di Chimica Bioinorganica, Universitá degli Studi di Firenze, Sesto Fiorentino (Firenze), Italy,
- NEUROFARBA Department, Section of Pharmaceutical Chemistry, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Pedro A. Colinas
- LADECOR, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina,
| |
Collapse
|
28
|
Zhu Y, Pei G, Niu X, Shi M, Zhang M, Chen L, Zhang W. Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. MOLECULAR BIOSYSTEMS 2014; 11:770-82. [PMID: 25502571 DOI: 10.1039/c4mb00651h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Low ethanol tolerance is a crucial factor that restricts the feasibility of bioethanol production in renewable cyanobacterial systems. Our previous studies showed that several transcriptional regulators were differentially regulated by exogenous ethanol in Synechocystis. In this study, by constructing knockout mutants of 34 Synechocystis putative transcriptional regulator-encoding genes and analyzing their phenotypes under ethanol stress, we found that three mutants of regulatory gene sll1392, sll1712 and slr1860 grew poorly in the BG11 medium supplemented with ethanol when compared with the wild type in the same medium, suggesting that the genes may be involved in the regulation of ethanol tolerance. To decipher the regulatory mechanism, targeted LC-MS and untargeted GC-MS approaches were employed to determine metabolic profiles of the three mutants and the wild type under both normal and ethanol stress conditions. The results were then subjected to PCA and WGCNA analyses to determine the responsive metabolites and metabolic modules related to ethanol tolerance. Interestingly, the results showed that there was a significant overlapping of the responsive metabolites and metabolic modules between three regulatory proteins, suggesting that a possible crosstalk between various regulatory proteins may be involved in combating against ethanol toxicity in Synechocystis. The study provided new insights into ethanol-tolerance regulation and knowledge important to rational tolerance engineering in Synechocystis.
Collapse
Affiliation(s)
- Ye Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Ronneau S, Moussa S, Barbier T, Conde-Álvarez R, Zuniga-Ripa A, Moriyon I, Letesson JJ. Brucella, nitrogen and virulence. Crit Rev Microbiol 2014; 42:507-25. [PMID: 25471320 DOI: 10.3109/1040841x.2014.962480] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.
Collapse
Affiliation(s)
| | - Simon Moussa
- a UNamur, URBM 61 rue de Bruxelles , Namur , Belgium and
| | | | - Raquel Conde-Álvarez
- b Departamento de Microbiología , Edificio de Investigación, Universidad de Navarra , Pamplona , Spain
| | - Amaia Zuniga-Ripa
- b Departamento de Microbiología , Edificio de Investigación, Universidad de Navarra , Pamplona , Spain
| | - Ignacio Moriyon
- b Departamento de Microbiología , Edificio de Investigación, Universidad de Navarra , Pamplona , Spain
| | | |
Collapse
|