1
|
Sharma NK, Singh P, Saha B, Bhardwaj A, Iquebal MA, Pal Y, Nayan V, Jaiswal S, Giri SK, Legha RA, Bhattacharya TK, Kumar D, Rai A. Genome wide landscaping of copy number variations for horse inter-breed variability. Anim Biotechnol 2025; 36:2446251. [PMID: 39791493 DOI: 10.1080/10495398.2024.2446251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Copy number variations (CNVs) have become widely acknowledged as a significant source of genomic variability and phenotypic variance. To understand the genetic variants in horses, CNVs from six Indian horse breeds, namely, Manipuri, Zanskari, Bhutia, Spiti, Kathiawari and Marwari were discovered using Axiom™ Equine Genotyping Array. These breeds differed in agro-climatic adaptation with distinct phenotypic characters. A total of 2668 autosomal CNVs and 381 CNV regions (CNVRs) were identified with PennCNV tool. DeepCNV was employed to re-validate to get 883 autosomal CNVs, of which 9.06% were singleton type. A total of 180 CNVRs were identified after DeepCNV filtering with the estimated length of 3.12 Kb-4.90 Mb. The functional analysis showed the majority of the CNVRs genes enriched for sensory perception and olfactory receptor activity. An Equine CNVs database, EqCNVdb (http://backlin.cabgrid.res.in/eqcnvdb/) was developed which catalogues detailed information on the horse CNVs, CNVRs and gene content within CNVRs. Also, three random CNVRs were validated with real-time polymerase chain reaction. These findings will aid in the understanding the horse genome and serve as a preliminary foundation for future CNV association research with commercially significant equine traits. The identification of CNVs and CNVRs would lead to better insights into genetic basis of important traits.
Collapse
Affiliation(s)
- Nitesh Kumar Sharma
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prashant Singh
- ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Bibek Saha
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Yash Pal
- ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Varij Nayan
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shiv Kumar Giri
- Department of Biotechnology, Maharaja Agrasen University, Baddi (Solan), Himachal Pradesh, India
| | | | | | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
2
|
Liu X, Chen W, Huang B, Wang X, Peng Y, Zhang X, Chai W, Khan MZ, Wang C. Advancements in copy number variation screening in herbivorous livestock genomes and their association with phenotypic traits. Front Vet Sci 2024; 10:1334434. [PMID: 38274664 PMCID: PMC10808162 DOI: 10.3389/fvets.2023.1334434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Copy number variations (CNVs) have garnered increasing attention within the realm of genetics due to their prevalence in human, animal, and plant genomes. These structural genetic variations have demonstrated associations with a broad spectrum of phenotypic diversity, economic traits, environmental adaptations, epidemics, and other essential aspects of both plants and animals. Furthermore, CNVs exhibit extensive sequence variability and encompass a wide array of genomes. The advancement and maturity of microarray and sequencing technologies have catalyzed a surge in research endeavors pertaining to CNVs. This is particularly prominent in the context of livestock breeding, where molecular markers have gained prominence as a valuable tool in comparison to traditional breeding methods. In light of these developments, a contemporary and comprehensive review of existing studies on CNVs becomes imperative. This review serves the purpose of providing a brief elucidation of the fundamental concepts underlying CNVs, their mutational mechanisms, and the diverse array of detection methods employed to identify these structural variations within genomes. Furthermore, it seeks to systematically analyze the recent advancements and findings within the field of CNV research, specifically within the genomes of herbivorous livestock species, including cattle, sheep, horses, and donkeys. The review also highlighted the role of CNVs in shaping various phenotypic traits including growth traits, reproductive traits, pigmentation and disease resistance etc., in herbivorous livestock. The main goal of this review is to furnish readers with an up-to-date compilation of knowledge regarding CNVs in herbivorous livestock genomes. By integrating the latest research findings and insights, it is anticipated that this review will not only offer pertinent information but also stimulate future investigations into the realm of CNVs in livestock. In doing so, it endeavors to contribute to the enhancement of breeding strategies, genomic selection, and the overall improvement of herbivorous livestock production and resistance to diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Choudhury MP, Wang Z, Zhu M, Teng S, Yan J, Cao S, Yi G, Liu Y, Liao Y, Tang Z. Genome-Wide Detection of Copy Number Variations Associated with Miniature Features in Horses. Genes (Basel) 2023; 14:1934. [PMID: 37895283 PMCID: PMC10606273 DOI: 10.3390/genes14101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Copy number variations (CNVs) are crucial structural genomic variants affecting complex traits in humans and livestock animals. The current study was designed to conduct a comprehensive comparative copy number variation analysis among three breeds, Debao (DB), Baise (BS), and Warmblood (WB), with a specific focus on identifying genomic regions associated with miniature features in horses. Using whole-genome next-generation resequencing data, we identified 18,974 CNVs across 31 autosomes. Among the breeds, we found 4279 breed-specific CNV regions (CNVRs). Baise, Debao, and Warmblood displayed 2978, 986, and 895 distinct CNVRs, respectively, with 202 CNVRs shared across all three breeds. After removing duplicates, we obtained 1545 CNVRs from 26 horse genomes. Functional annotation reveals enrichment in biological functions, including antigen processing, cell metabolism, olfactory conduction, and nervous system development. Debao horses have 970 genes overlapping with CNVRs, possibly causing their small size and mountainous adaptations. We also found that the genes GHR, SOX9, and SOX11 may be responsible for the miniature features of the Debao horse by analyzing their overlapping CNVRs. Overall, this study offers valuable insights into the widespread presence of CNVs in the horse genome. The findings contribute to mapping horse CNVs and advance research on unique miniature traits observed in the Debao horse.
Collapse
Affiliation(s)
- Md. Panir Choudhury
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Bangladesh Livestock Research Institute, Ministry of Fisheries and Livestock, Savar, Dhaka 1341, Bangladesh
| | - Zihao Wang
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Min Zhu
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Shaohua Teng
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Jing Yan
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Shuwei Cao
- Animal Husbandry Research Institute, Guangxi Vocational University of Agriculture, Nanning 530002,China; (Z.W.); (M.Z.); (S.T.); (J.Y.); (S.C.)
| | - Guoqiang Yi
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuwen Liu
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 518124, China; (M.P.C.); (G.Y.); (Y.L.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
4
|
Tong X, Chen D, Hu J, Lin S, Ling Z, Ai H, Zhang Z, Huang L. Accurate haplotype construction and detection of selection signatures enabled by high quality pig genome sequences. Nat Commun 2023; 14:5126. [PMID: 37612277 PMCID: PMC10447580 DOI: 10.1038/s41467-023-40434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/27/2023] [Indexed: 08/25/2023] Open
Abstract
High-quality whole-genome resequencing in large-scale pig populations with pedigree structure and multiple breeds would enable accurate construction of haplotype and robust selection-signature detection. Here, we sequence 740 pigs, combine with 149 of our previously published resequencing data, retrieve 207 resequencing datasets, and form a panel of worldwide distributed wild boars, aboriginal and highly selected pigs with pedigree structures, amounting to 1096 genomes from 43 breeds. Combining with their haplotype-informative reads and pedigree structure, we accurately construct a panel of 1874 haploid genomes with 41,964,356 genetic variants. We further demonstrate its valuable applications in GWAS by identifying five novel loci for intramuscular fat content, and in genomic selection by increasing the accuracy of estimated breeding value by 36.7%. In evolutionary selection, we detect MUC13 gene under a long-term balancing selection, as well as NPR3 gene under positive selection for pig stature. Our study provides abundant genomic variations for robust selection-signature detection and accurate haplotypes for deciphering complex traits in pigs.
Collapse
Affiliation(s)
- Xinkai Tong
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
- College of Life Sciences, Jiangxi Normal University, NanChang, Jiangxi Province, PR China
| | - Dong Chen
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Jianchao Hu
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Shiyao Lin
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Ziqi Ling
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Huashui Ai
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China
| | - Zhiyan Zhang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China.
| | - Lusheng Huang
- National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, NanChang, Jiangxi Province, PR China.
| |
Collapse
|
5
|
Novak TE, Bailey NP, Stevison LS. Genetic characterization of Macaca arctoides: A highlight of key genes and pathways. Primates 2023:10.1007/s10329-023-01064-x. [PMID: 37142891 DOI: 10.1007/s10329-023-01064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
When compared to the approximately 22 other macaque species, Macaca arctoides has many unique phenotypes. These traits fall into various phenotypic categories, including genitalia, coloration, mating, and olfactory traits. Here we used a previously identified whole genome set of 690 outlier genes to look for possible genetic explanations of these unique traits. Of these, 279 genes were annotated miRNAs, which are non-coding. Patterns within the remaining outliers in coding genes were investigated using GO (n = 370) and String (n = 383) analysis, which showed many interconnected immune-related genes. Further, we compared the outliers to candidate pathways associated with M. arcotides' unique phenotypes, revealing 10/690 outlier genes that overlapped these four pathways: hedgehog signaling, WNT signaling, olfactory, and melanogenesis. Of these, genes in all pathways except olfactory had higher FST values than the rest of the genes in the genome based on permutation tests. Overall, our results point to many genes each having a small impact on phenotype, working in tandem to cause large systemic changes. Additionally, these results may indicate pleiotropy. This seems to be especially true with the development and coloration of M. arctoides. Our results highlight that development, melanogenesis, immune function, and miRNAs may be heavily involved in M. arctoides' evolutionary history.
Collapse
Affiliation(s)
- Taylor E Novak
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| | - Nick P Bailey
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Laurie S Stevison
- Department of Biological Sciences, Auburn University, Auburn, AL, USA.
| |
Collapse
|
6
|
Wang Y, Li YX, Zhang J, Qian Y, Meng CH, Zhong JF, Cao SX. PLAG1 g.8795C>T Mutation Regulates Early Body Weight in Hu Sheep by Weakening miR-139 Binding. Genes (Basel) 2023; 14:467. [PMID: 36833394 PMCID: PMC9956256 DOI: 10.3390/genes14020467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Sheep birth and weaning weights indicate their growth and survival. Thus, identifying molecular genetic markers for early body weight is important in sheep breeding. Pleomorphic adenoma gene 1 (PLAG1) is important for regulating birth weight and body length in mammals; however, its relationship with sheep body weight remains unknown. Here, the 3'-untranslated region (3'-UTR) of the Hu sheep PLAG1 gene was cloned, single nucleotide polymorphisms (SNPs) were screened, genotype-early body weight relationships were analyzed, and the possible molecular mechanism was explored. PLAG1 3'-UTR sequences with five forms of base sequences plus poly(A) tails were detected in Hu sheep and the g.8795C>T mutation was identified. Luciferase reporter assay indicated that the g.8795C>T mutation influenced PLAG1 post-transcriptional activity. miRBase prediction showed that the g.8795C>T mutation was located in the miR-139 seed sequence binding region, and miR-139 overexpression significantly decreased both PLAG1-CC and PLAG1-TT activities. Moreover, the luciferase activity of PLAG1-CC was significantly lower than that of the PLAG1-TT, but miR-139 inhibition substantially increased both PLAG1-CC and PLAG1-TT luciferase activities, suggesting that PLAG1 is the target gene of miR-139. Thus, the g.8795C>T mutation upregulates PLAG1 expression by weakening its binding with miR-139, promoting PLAG1 expression, and increasing Hu sheep birth and weaning weights.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
- Key Laboratory of Crop and Animal Intergrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yin-xia Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
- Key Laboratory of Crop and Animal Intergrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Jun Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
- Key Laboratory of Crop and Animal Intergrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yong Qian
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
- Key Laboratory of Crop and Animal Intergrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Chun-hua Meng
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
- Key Laboratory of Crop and Animal Intergrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Ji-feng Zhong
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
- Key Laboratory of Crop and Animal Intergrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Shao-xian Cao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Provincial Engineering Research Center of Precision Animal Breeding, Nanjing 210014, China
- Key Laboratory of Crop and Animal Intergrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
7
|
Moradi MH, Mahmodi R, Farahani AHK, Karimi MO. Genome-wide evaluation of copy gain and loss variations in three Afghan sheep breeds. Sci Rep 2022; 12:14286. [PMID: 35996004 PMCID: PMC9395407 DOI: 10.1038/s41598-022-18571-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Copy number variation (CNV) is one of the main sources of variation between different individuals that has recently attracted much researcher interest as a major source for heritable variation in complex traits. The aim of this study was to identify CNVs in Afghan indigenous sheep consisting of three Arab, Baluchi, and Gadik breeds using genomic arrays containing 53,862 single nucleotide polymorphism (SNP) markers. Data were analyzed using the Hidden Markov Model (HMM) of PennCNV software. In this study, out of 45 sheep studied, 97.8% (44 animals) have shown CNVs. In total, 411 CNVs were observed for autosomal chromosomes and the entire sequence length of around 144 Mb was identified across the genome. The average number of CNVs per each sheep was 9.13. The identified CNVs for Arab, Baluchi, and Gadik breeds were 306, 62, and 43, respectively. After merging overlapped regions, a total of 376 copy number variation regions (CNVR) were identified, which are 286, 50, and 40 for Arab, Baluchi, and Gadik breeds, respectively. Bioinformatics analysis was performed to identify the genes and QTLs reported in these regions and the biochemical pathways involved by these genes. The results showed that many of these CNVRs overlapped with the genes or QTLs that are associated with various pathways such as immune system development, growth, reproduction, and environmental adaptions. Furthermore, to determine a genome-wide pattern of selection signatures in Afghan sheep breeds, the unbiased estimates of FST was calculated and the results indicated that 37 of the 376 CNVRs (~ 10%) have been also under selection signature, most of those overlapped with the genes influencing production, reproduction and immune system. Finally, the statistical methods used in this study was applied in an external dataset including 96 individuals of the Iranian sheep breed. The results indicated that 20 of the 114 CNVRs (18%) identified in Iranian sheep breed were also identified in our study, most of those overlapped with the genes influencing production, reproduction and immune system. Overall, this is the first attempts to develop the genomic map of loss and gain variation in the genome of Afghan indigenous sheep breeds, and may be important to shed some light on the genomic regions associated with some economically important traits in these breeds.
Collapse
Affiliation(s)
- Mohammad Hossein Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Roqiah Mahmodi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | | | - Mohammad Osman Karimi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Herat University, Herat, Afghanistan
| |
Collapse
|
8
|
Copy Number Variation (CNV): A New Genomic Insight in Horses. Animals (Basel) 2022; 12:ani12111435. [PMID: 35681904 PMCID: PMC9179425 DOI: 10.3390/ani12111435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary This study aimed to contribute to our knowledge of CNVs, a type of genomic marker in equines, by producing, for the first time, a fine-scale characterization of the CNV regions (CNVRs) in the Pura Raza Española horse breed. We found not only the existence of a unique pattern of genomic regions enriched in CNVs in the PRE in comparison with the data available from other breeds but also the incidence of CNVs across the entire genome. Since these regions could affect the structure and dose of the genes involved, we also performed a gene ontology analysis which revealed that most of the genes overlapping in CNVRs were related to the olfactory pathways and immune response. Abstract Copy number variations (CNVs) are a new-fangled source of genetic variation that can explain changes in the phenotypes in complex traits and diseases. In recent years, their study has increased in many livestock populations. However, the study and characterization of CNVs in equines is still very limited. Our study aimed to investigate the distribution pattern of CNVs, characterize CNV regions (CNVRs), and identify the biological pathways affected by CNVRs in the Pura Raza Española (PRE) breed. To achieve this, we analyzed high-density SNP genotyping data (670,804 markers) from a large cohort of 654 PRE horses. In total, we identified 19,902 CNV segments and 1007 CNV regions in the whole population. The length of the CNVs ranged from 1.024 kb to 4.55 Mb, while the percentage of the genome covered by CNVs was 4.4%. Interestingly, duplications were more abundant than deletions and mixed CNVRs. In addition, the distribution of CNVs across the chromosomes was not uniform, with ECA12 being the chromosome with the largest percentage of its genome covered (19.2%), while the highest numbers of CNVs were found in ECA20, ECA12, and ECA1. Our results showed that 71.4% of CNVRs contained genes involved in olfactory transduction, olfactory receptor activity, and immune response. Finally, 39.1% of the CNVs detected in our study were unique when compared with CNVRs identified in previous studies. To the best of our knowledge, this is the first attempt to reveal and characterize the CNV landscape in PRE horses, and it contributes to our knowledge of CNVs in equines, thus facilitating the understanding of genetic and phenotypic variations in the species. However, further research is still needed to confirm if the CNVs observed in the PRE are also linked to variations in the specific phenotypical differences in the breed.
Collapse
|
9
|
Wang M, Liu Y, Bi X, Ma H, Zeng G, Guo J, Guo M, Ling Y, Zhao C. Genome-Wide Detection of Copy Number Variants in Chinese Indigenous Horse Breeds and Verification of CNV-Overlapped Genes Related to Heat Adaptation of the Jinjiang Horse. Genes (Basel) 2022; 13:genes13040603. [PMID: 35456409 PMCID: PMC9033042 DOI: 10.3390/genes13040603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
In the present study, genome-wide CNVs were detected in a total of 301 samples from 10 Chinese indigenous horse breeds using the Illumina Equine SNP70 Bead Array, and the candidate genes related to adaptability to high temperature and humidity in Jinjiang horses were identified and validated. We determined a total of 577 CNVs ranging in size from 1.06 Kb to 2023.07 Kb on the 31 pairs of autosomes. By aggregating the overlapping CNVs for each breed, a total of 495 CNVRs were detected in the 10 Chinese horse breeds. As many as 211 breed-specific CNVRs were determined, of which 64 were found in the Jinjiang horse population. By removing repetitive CNV regions between breeds, a total of 239 CNVRs were identified in the Chinese indigenous horse breeds including 102 losses, 133 gains and 4 of both events (losses and gains in the same region), in which 131 CNVRs were novel and only detected in the present study compared with previous studies. The total detected CNVR length was 41.74 Mb, accounting for 1.83% of the total length of equine autosomal chromosomes. The coverage of CNVRs on each chromosome varied from 0.47% to 15.68%, with the highest coverage on ECA 12, but the highest number of CNVRs was detected on ECA1 and ECA24. A total of 229 genes overlapping with CNVRs were detected in the Jinjiang horse population, which is an indigenous horse breed unique to the southeastern coast of China exhibiting adaptability to high temperature and humidity. The functional annotation of these genes showed significant relation to cellular heat acclimation and immunity. The expression levels of the candidate genes were validated by heat shock treatment of various durations on fibroblasts of horses. The results show that the expression levels of HSPA1A were significantly increased among the different heat shock durations. The expression level of NFKBIA and SOCS4 declined from the beginning of heat shock to 2 h after heat shock and then showed a gradual increase until it reached the highest value at 6 h and 10 h of heat shock, respectively. Breed-specific CNVRs of Chinese indigenous horse breeds were revealed in the present study, and the results facilitate mapping CNVs on the whole genome and also provide valuable insights into the molecular mechanisms of adaptation to high temperature and humidity in the Jinjiang horse.
Collapse
Affiliation(s)
- Min Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Yu Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Xiaokun Bi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Hongying Ma
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi’an 710032, China;
| | - Guorong Zeng
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Jintu Guo
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Minghao Guo
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Yao Ling
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
| | - Chunjiang Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
- Correspondence:
| |
Collapse
|
10
|
de Faria DA, do Prado Paim T, Dos Santos CA, Paiva SR, Nogueira MB, McManus C. Selection signatures for heat tolerance in Brazilian horse breeds. Mol Genet Genomics 2022; 297:449-462. [PMID: 35150300 DOI: 10.1007/s00438-022-01862-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Since domestication, horse breeds have adapted to their environments and differentiated from one another. This paper uses two methods to detect selection signatures in 23 horse breeds, eight of which are Brazilian (610 animals), both cold-blooded and warm-blooded, from temperate and tropical regions. These animals were genotyped using the GGP Equine BeadChip and we analysed the data by Principal Component Analysis (PCA). The samples were separated into groups based on their geographical area of origin and PCA results studied. The genomic regions under selection were detected by hapFLK and PCAdapt methodologies, identifying six regions under selection with at least one Brazilian horse breed. These regions contain genes associated with heat tolerance, skin colour, body size, energy production/metabolism, genes involved in protein degradation/turnover/DNA repair, genes reducing the impact of oxidative stress/cellular repair, and transcriptional regulation. This work confirmed LCORL and NCAPG gene regions in previous studies associated with body size on Equine Chromosome Autosome 3 (ECA3). On the same ECA3, a region implicating genes linked to coat colour was identified, also previously related to heat stress. Regions with genes coding heat shock proteins were found on ECA1 and 2, and many candidate genes for oxidation-reduction which are a natural response to heat stress. However, a larger sample size and whole-genome SNPs are needed to understand better and identify new candidate regions as well as their functional relation with heat tolerance.
Collapse
Affiliation(s)
- Danielle Assis de Faria
- Faculdade de Agronomia e Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Tiago do Prado Paim
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Camila Alves Dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Goiano, Rodovia Sul Goiana, Km 01, Zona Rural, Rio Verde, GO, 75901-970, Brazil
| | - Samuel Rezende Paiva
- Embrapa Recursos Genéticos e Biotecnologia, Final W5 Norte, Brasília, DF, 70770-917, Brasil
| | - Marcelo Bchara Nogueira
- Faculdade de Agronomia e Veterinária, Instituto Central de Ciências, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Concepta McManus
- Departamento de Ciências Fisiológicas, Instituto de Biologia, Campus Darcy Ribeiro, Universidade de Brasília, Asa Norte, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
11
|
Wang X, Wang Y, Cao X, Huang Y, Li P, Lan X, Buren C, Hu L, Chen H. Copy number variations of the KAT6A gene are associated with body measurements of Chinese sheep breeds. Anim Biotechnol 2021:1-8. [PMID: 34842492 DOI: 10.1080/10495398.2021.2005616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Copy number variation (CNV) is one kind of genomic structure variations and presents as gains and losses of genomic fragments. More recently, we have made an atlas of CNV maps for livestock. In the future, it is a primary focus to determine the phenotypic effects of candidate CNVs. Lysine Acetyltransferase 6 A (KAT6A) is a protein coding gene and plays a critical role in many cellular processes. However, the effects of KAT6A CNVs on sheep body measurements remains unknown. In this study, we performed quantitative polymerase chain reaction (qPCR) to detect the presences and distributions of three CNV regions within KAT6A gene in 672 sheep from four Chinese breeds. Association analysis indicated that the three CNVs of KAT6A gene were significantly associated with body measurement(s) in Small-tailed Han sheep (STH) and Hu sheep (HU) (p < 0.05), while no effects on Large-tailed Han sheep (LTH) were observed (p > 0.05) were observed. Additionally, only one CNV was significantly associated with body measurement (body length) in Chaka sheep (CK) (p < 0.05). Our study provided evidence that the CNV(s) of KAT6A gene could be used as candidate marker(s) for molecular breedings of STH, HU, and CK breeds.
Collapse
Affiliation(s)
- Xiaogang Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiru Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yongzhen Huang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pi Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaogetu Buren
- Animal Disease Control Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
12
|
Detection of 15-bp Deletion Mutation within PLAG1 Gene and Its Effects on Growth Traits in Goats. Animals (Basel) 2021; 11:ani11072064. [PMID: 34359192 PMCID: PMC8300177 DOI: 10.3390/ani11072064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Goats have always served as an important domesticated livestock. PLAG1 is a major gene that affects the stature and growth of animals. Body size traits are very important for goats as it directly affects the economic characteristics of meat and cashmere production. This study showed that the 15-base pair (bp) InDel (rs637141549) can significantly affect growth traits such as body weight, height, height at hip cross, chest circumference, hip width and body index of goats through the detection of large samples (n = 1581) in four indigenous breeds. Accordingly, it is suggested that the deletion mutation can be used as a potential molecular marker that significantly affects goat growth traits. Moreover, the 15bp deletion mutation can be used as a potential molecular marker, which significantly affects the growth traits of goats and plays an important role in animal husbandry production. Abstract Stature and weight are important growth and development traits for animals, which also significantly affect the productivity of livestock. Polymorphic adenoma gene 1 (PLAG1) is located in the growth-related quantitative trait nucleotides (QTN), and its variation has been determined to significantly affect the body stature of bovines. This study found that novel 15-bp InDel could significantly influence important growth traits in goats. The frequencies of genotypes of the 15-bp mutation and relationship with core growth traits such as body weight, body height, height at hip cross, chest circumference, hip width and body index were explored in 1581 individuals among 4 Chinese native goat breeds. The most frequent genotypes of Shaanbei white Cashmere goat (SWCG), Inner Mongolia White Cashmere goat (IMCG) and Guanzhong Dairy goat (GZDG) were II genotypes (insertion/insertion), and the frequency of ID genotype (insertion/deletion) was found to be slightly higher than that of II genotype in Hainan Black goat (HNBG), showing that the frequency of the I allele was higher than that of the D allele. In adult goats, there were significant differences between 15-bp variation and body weight, chest circumference and body height traits in SWCG (p < 0.05). Furthermore, the locus was also found to be significantly correlated with the body index of HNBG (p = 0.044) and hip width in GZDG (p = 0.002). In regard to lambs, there were significant differences in height at the hip cross of SWCG (p = 0.036) and hip width in IMWC (p = 0.005). The corresponding results suggest that the 15-bp InDel mutation of PLAG1 is associated with the regulation of important growth characteristics of both adult and lamb of goats, which may serve as efficient molecular markers for goat breeding.
Collapse
|
13
|
Kumar H, Panigrahi M, Saravanan KA, Rajawat D, Parida S, Bhushan B, Gaur GK, Dutt T, Mishra BP, Singh RK. Genome-wide detection of copy number variations in Tharparkar cattle. Anim Biotechnol 2021; 34:448-455. [PMID: 34191685 DOI: 10.1080/10495398.2021.1942027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Copy number variations (CNVs) are major forms of genetic variation with an increasing importance in animal genomics. This study used the Illumina BovineSNP 50 K BeadChip to detect the genome-wide CNVs in the Tharparkar cattle. With the aid of PennCNV software, we noticed a total of 447 copy number variation regions (CNVRs) across the autosomal genome, occupying nearly 2.17% of the bovine genome. The average size of detected CNVRs was found to be 122.2 kb, the smallest CNVR being 50.02 kb in size, to the largest being 1,232.87 Kb. Enrichment analyses of the genes in these CNVRs gave significant associations with molecular adaptation-related Gene Ontology (GO) terms. Most CNVR genes were significantly enriched for specific biological functions; signaling pathways, sensory responses to stimuli, and various cellular processes. In addition, QTL analysis of CNVRs described them to be linked with economically essential traits in cattle. The findings here provide crucial information for constructing a more comprehensive CNVR map for the indigenous cattle genome.
Collapse
Affiliation(s)
- Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - G K Gaur
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - B P Mishra
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - R K Singh
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
14
|
Yuan C, Lu Z, Guo T, Yue Y, Wang X, Wang T, Zhang Y, Hou F, Niu C, Sun X, Zhao H, Zhu S, Liu J, Yang B. A global analysis of CNVs in Chinese indigenous fine-wool sheep populations using whole-genome resequencing. BMC Genomics 2021; 22:78. [PMID: 33485316 PMCID: PMC7825165 DOI: 10.1186/s12864-021-07387-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Background Copy number variation (CNV) is an important source of genetic variation that has a significant influence on phenotypic diversity, economically important traits and the evolution of livestock species. In this study, the genome-wide CNV distribution characteristics of 32 fine-wool sheep from three breeds were analyzed using resequencing. Results A total of 1,747,604 CNVs were detected in this study, and 7228 CNV regions (CNVR) were obtained after merging overlapping CNVs; these regions accounted for 2.17% of the sheep reference genome. The average length of the CNVRs was 4307.17 bp. “Deletion” events took place more frequently than “duplication” or “both” events. The CNVRs obtained overlapped with previously reported sheep CNVRs to variable extents (4.39–55.46%). Functional enrichment analysis showed that the CNVR-harboring genes were mainly involved in sensory perception systems, nutrient metabolism processes, and growth and development processes. Furthermore, 1855 of the CNVRs were associated with 166 quantitative trait loci (QTL), including milk QTLs, carcass QTLs, and health-related QTLs, among others. In addition, the 32 fine-wool sheep were divided into horned and polled groups to analyze for the selective sweep of CNVRs, and it was found that the relaxin family peptide receptor 2 (RXFP2) gene was strongly influenced by selection. Conclusions In summary, we constructed a genomic CNV map for Chinese indigenous fine-wool sheep using resequencing, thereby providing a valuable genetic variation resource for sheep genome research, which will contribute to the study of complex traits in sheep. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07387-7.
Collapse
Affiliation(s)
- Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Xijun Wang
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Tianxiang Wang
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, 734031, China
| | - Yajun Zhang
- Xinjiang Gongnaisi Breeding Sheep Farm, Xinyuan, 835808, China
| | - Fujun Hou
- Aohan Banner Breeding Sheep Farm, Chifeng, 024300, China
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Xiaopin Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Shaohua Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China.
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Sheep Breeding Engineering Technology Research Center, Lanzhou, 730050, China.
| |
Collapse
|
15
|
Binversie EE, Baker LA, Engelman CD, Hao Z, Moran JJ, Piazza AM, Sample SJ, Muir P. Analysis of copy number variation in dogs implicates genomic structural variation in the development of anterior cruciate ligament rupture. PLoS One 2020; 15:e0244075. [PMID: 33382735 PMCID: PMC7774950 DOI: 10.1371/journal.pone.0244075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
Anterior cruciate ligament (ACL) rupture is an important condition of the human knee. Second ruptures are common and societal costs are substantial. Canine cranial cruciate ligament (CCL) rupture closely models the human disease. CCL rupture is common in the Labrador Retriever (5.79% prevalence), ~100-fold more prevalent than in humans. Labrador Retriever CCL rupture is a polygenic complex disease, based on genome-wide association study (GWAS) of single nucleotide polymorphism (SNP) markers. Dissection of genetic variation in complex traits can be enhanced by studying structural variation, including copy number variants (CNVs). Dogs are an ideal model for CNV research because of reduced genetic variability within breeds and extensive phenotypic diversity across breeds. We studied the genetic etiology of CCL rupture by association analysis of CNV regions (CNVRs) using 110 case and 164 control Labrador Retrievers. CNVs were called from SNPs using three different programs (PennCNV, CNVPartition, and QuantiSNP). After quality control, CNV calls were combined to create CNVRs using ParseCNV and an association analysis was performed. We found no strong effect CNVRs but found 46 small effect (max(T) permutation P<0.05) CCL rupture associated CNVRs in 22 autosomes; 25 were deletions and 21 were duplications. Of the 46 CCL rupture associated CNVRs, we identified 39 unique regions. Thirty four were identified by a single calling algorithm, 3 were identified by two calling algorithms, and 2 were identified by all three algorithms. For 42 of the associated CNVRs, frequency in the population was <10% while 4 occurred at a frequency in the population ranging from 10–25%. Average CNVR length was 198,872bp and CNVRs covered 0.11 to 0.15% of the genome. All CNVRs were associated with case status. CNVRs did not overlap previous canine CCL rupture risk loci identified by GWAS. Associated CNVRs contained 152 annotated genes; 12 CNVRs did not have genes mapped to CanFam3.1. Using pathway analysis, a cluster of 19 homeobox domain transcript regulator genes was associated with CCL rupture (P = 6.6E-13). This gene cluster influences cranial-caudal body pattern formation during embryonic limb development. Clustered genes were found in 3 CNVRs on chromosome 14 (HoxA), 28 (NKX6-2), and 36 (HoxD). When analysis was limited to deletion CNVRs, the association was strengthened (P = 8.7E-16). This study suggests a component of the polygenic risk of CCL rupture in Labrador Retrievers is associated with small effect CNVs and may include aspects of stifle morphology regulated by homeobox domain transcript regulator genes.
Collapse
Affiliation(s)
- Emily E. Binversie
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lauren A. Baker
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Corinne D. Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhengling Hao
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John J. Moran
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexander M. Piazza
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susannah J. Sample
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Muir
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
High-quality genomic tools have been integral in understanding genomic architecture and function in the modern-day horse. The equine genetics community has a long tradition of pooling resources to develop genomic tools. Since the equine genome was sequenced in 2006, several iterations of high throughput genotyping arrays have been developed and released, enabling rapid and cost-effective genotyping. This review highlights the design considerations of each iteration, focusing on data available during development and outlining considerations in selecting the genetic variants included on each array. Additionally, we outline recent applications of equine genotyping arrays as well as future prospects and applications.
Collapse
Affiliation(s)
- Robert J Schaefer
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Avenue, St Paul, MN 55108, USA.
| | - Molly E McCue
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Avenue, St Paul, MN 55108, USA. https://twitter.com/Molly_McCue_DVM
| |
Collapse
|
17
|
Ablondi M, Eriksson S, Tetu S, Sabbioni A, Viklund Å, Mikko S. Genomic Divergence in Swedish Warmblood Horses Selected for Equestrian Disciplines. Genes (Basel) 2019; 10:E976. [PMID: 31783652 PMCID: PMC6947233 DOI: 10.3390/genes10120976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 01/12/2023] Open
Abstract
The equestrian sport horse Swedish Warmblood (SWB) originates from versatile cavalry horses. Most modern SWB breeders have specialized their breeding either towards show jumping or dressage disciplines. The aim of this study was to explore the genomic structure of SWB horses to evaluate the presence of genomic subpopulations, and to search for signatures of selection in subgroups of SWB with high or low breeding values (EBVs) for show jumping. We analyzed high density genotype information from 380 SWB horses born in the period 2010-2011, and used Principal Coordinates Analysis and Discriminant Analysis of Principal Components to detect population stratification. Fixation index and Cross Population Extended Haplotype Homozygosity scores were used to scan the genome for potential signatures of selection. In accordance with current breeding practice, this study highlights the development of two separate breed subpopulations with putative signatures of selection in eleven chromosomes. These regions involve genes with known function in, e.g., mentality, endogenous reward system, development of connective tissues and muscles, motor control, body growth and development. This study shows genetic divergence, due to specialization towards different disciplines in SWB horses. This latter evidence can be of interest for SWB and other horse studbooks encountering specialized breeding.
Collapse
Affiliation(s)
- Michela Ablondi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Susanne Eriksson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Sasha Tetu
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Alberto Sabbioni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (M.A.); (A.S.)
| | - Åsa Viklund
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| | - Sofia Mikko
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, S-75007 Uppsala, Sweden; (S.E.); (S.T.); (Å.V.)
| |
Collapse
|
18
|
Solé M, Ablondi M, Binzer-Panchal A, Velie BD, Hollfelder N, Buys N, Ducro BJ, François L, Janssens S, Schurink A, Viklund Å, Eriksson S, Isaksson A, Kultima H, Mikko S, Lindgren G. Inter- and intra-breed genome-wide copy number diversity in a large cohort of European equine breeds. BMC Genomics 2019; 20:759. [PMID: 31640551 PMCID: PMC6805398 DOI: 10.1186/s12864-019-6141-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Copy Number Variation (CNV) is a common form of genetic variation underlying animal evolution and phenotypic diversity across a wide range of species. In the mammalian genome, high frequency of CNV differentiation between breeds may be candidates for population-specific selection. However, CNV differentiation, selection and its population genetics have been poorly explored in horses. RESULTS We investigated the patterns, population variation and gene annotation of CNV using the Axiom® Equine Genotyping Array (670,796 SNPs) from a large cohort of individuals (N = 1755) belonging to eight European horse breeds, varying from draught horses to several warmblood populations. After quality control, 152,640 SNP CNVs (individual markers), 18,800 segment CNVs (consecutive SNP CNVs of same gain/loss state or both) and 939 CNV regions (CNVRs; overlapping segment CNVs by at least 1 bp) compared to the average signal of the reference (Belgian draught horse) were identified. Our analyses showed that Equus caballus chromosome 12 (ECA12) was the most enriched in segment CNV gains and losses (~ 3% average proportion of the genome covered), but the highest number of segment CNVs were detected on ECA1 and ECA20 (regardless of size). The Friesian horses showed private SNP CNV gains (> 20% of the samples) on ECA1 and Exmoor ponies displayed private SNP CNV losses on ECA25 (> 20% of the samples). The Warmblood cluster showed private SNP CNV gains located in ECA9 and Draught cluster showed private SNP CNV losses located in ECA7. The length of the CNVRs ranged from 1 kb to 21.3 Mb. A total of 10,612 genes were annotated within the CNVRs. The PANTHER annotation of these genes showed significantly under- and overrepresented gene ontology biological terms related to cellular processes and immunity (Bonferroni P-value < 0.05). We identified 80 CNVRs overlapping with known QTL for fertility, coat colour, conformation and temperament. We also report 67 novel CNVRs. CONCLUSIONS This work revealed that CNV patterns, in the genome of some European horse breeds, occurred in specific genomic regions. The results provide support to the hypothesis that high frequency private CNVs residing in genes may potentially be responsible for the diverse phenotypes seen between horse breeds.
Collapse
Affiliation(s)
- Marina Solé
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Michela Ablondi
- Department of Veterinary Science, Università di Parma, Parma, Italy
| | - Amrei Binzer-Panchal
- Department of Medical Sciences, Array and Analysis Facility, Uppsala University, Uppsala, Sweden
| | - Brandon D Velie
- Faculty of Life and Environmental Science, University of Sydney, Sydney, NSW, Australia
| | - Nina Hollfelder
- Department of Medical Sciences, Array and Analysis Facility, Uppsala University, Uppsala, Sweden
| | - Nadine Buys
- Livestock Genetics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Bart J Ducro
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| | - Liesbeth François
- Livestock Genetics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Steven Janssens
- Livestock Genetics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Anouk Schurink
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands.,Centre for Genetic Resources, the Netherlands (CGN), Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| | - Åsa Viklund
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Susanne Eriksson
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anders Isaksson
- Department of Medical Sciences, Array and Analysis Facility, Uppsala University, Uppsala, Sweden
| | - Hanna Kultima
- Department of Medical Sciences, Array and Analysis Facility, Uppsala University, Uppsala, Sweden
| | - Sofia Mikko
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gabriella Lindgren
- Department of Animal Breeding & Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Livestock Genetics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| |
Collapse
|
19
|
Wang Y, Zhang T, Wang C. Detection and analysis of genome-wide copy number variation in the pig genome using an 80 K SNP Beadchip. J Anim Breed Genet 2019; 137:166-176. [PMID: 31506991 DOI: 10.1111/jbg.12435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/23/2022]
Abstract
Copy number variation (CNV) is an important source of genetic variability in human or animal genomes and play key roles in phenotypic diversity and disease susceptibility. In the present study, we performed a genome-wide analysis for CNV detection using SNP genotyping data of 857 Large White pigs. A total of 312 CNV regions (CNVRs) were detected with the PennCNV algorithm, which covered 57.76 Mb of the pig genome and correspond to 2.36% of the genome sequence. The length of the CNVRs on autosomes ranged from 1.77 Kb to 1.76 Mb with an average of 185.11 Kb. Of these, 220 completely or partially overlapped with 1,092 annotated genes, which enriched a wide variety of biological processes. Comparisons with previously reported pig CNVR revealed 92 (29.49%) novel CNVRs. Experimentally, 80% of CNVRs selected randomly were validated by quantitative PCR (qPCR). We also performed an association analysis between some of the CNVRs and reproductive traits, with results demonstrating the potential importance of CNVR61 and CNVR283 associated with litter sizes. Notably, the GPER1 gene located in CNVR61 plays a key role in reproduction. Our study is an important complement to the CNV map in the pig genome and provides valuable information for investigating the association between genomic variation and economic traits.
Collapse
Affiliation(s)
- Yuan Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.,Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tingrong Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Chuduan Wang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Ji J, Luo C, Zou X, Lv X, Xu Y, Shu D, Qu H. Association of host genetics with intestinal microbial relevant to body weight in a chicken F2 resource population. Poult Sci 2019; 98:4084-4093. [DOI: 10.3382/ps/pez199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
|
21
|
Beeson SK, Mickelson JR, McCue ME. Exploration of fine-scale recombination rate variation in the domestic horse. Genome Res 2019; 29:1744-1752. [PMID: 31434677 PMCID: PMC6771410 DOI: 10.1101/gr.243311.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/15/2019] [Indexed: 01/17/2023]
Abstract
Total genetic map length and local recombination landscapes typically vary within and across populations. As a first step to understanding the recombination landscape in the domestic horse, we calculated population recombination rates and identified likely recombination hotspots using approximately 1.8 million SNP genotypes for 485 horses from 32 distinct breeds. The resulting breed-averaged recombination map spans 2.36 Gb and accounts for 2939.07 cM. Recombination hotspots occur once per 23.8 Mb on average and account for ∼9% of the physical map length. Regions with elevated recombination rates in the entire cohort were enriched for genes in pathways involving interaction with the environment: immune system processes (specifically, MHC class I and class II genes), responses to stimuli, and serotonin receptor pathways. We found significant correlations between differences in local recombination rates and population differentiation quantified by F ST Analysis of breed-specific maps revealed thousands of hotspot regions unique to particular breeds, as well as unique "coldspots," regions where a particular breed showed below-average recombination, whereas all other breeds had evidence of a hotspot. Finally, we identified relative enrichment (P = 5.88 × 10-27) for the in silico-predicted recognition motif for equine PR/SET domain 9 (PRDM9) in recombination hotspots. These results indicate that selective pressures and PRDM9 function contribute to variation in recombination rates across the domestic horse genome.
Collapse
Affiliation(s)
- Samantha K Beeson
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - James R Mickelson
- Veterinary and Biomedical Sciences Department, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Molly E McCue
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, Minnesota 55108, USA
| |
Collapse
|
22
|
Jia C, Wang H, Li C, Wu X, Zan L, Ding X, Guo X, Bao P, Pei J, Chu M, Liang C, Yan P. Genome-wide detection of copy number variations in polled yak using the Illumina BovineHD BeadChip. BMC Genomics 2019; 20:376. [PMID: 31088363 PMCID: PMC6518677 DOI: 10.1186/s12864-019-5759-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 01/29/2023] Open
Abstract
Background Copy number variations (CNVs), which are genetic variations present throughout mammalian genomes, are a vital source of phenotypic variation that can lead to the development of unique traits. In this study we used the Illunima BovineHD BeadChip to conduct genome-wide detection of CNVs in 215 polled yaks. Results A total of 1066 CNV regions (CNVRs) were detected with a total length of 181.6 Mb, comprising ~ 7.2% of the bovine autosomal genome. The size of these CNVRs ranged from 5.53 kb to 1148.45 kb, with an average size of 170.31 kb. Eight out of nine randomly chosen CNVRs were successfully validated by qPCR. A functional enrichment analysis of the CNVR-associated genes indicated their relationship to a number of molecular adaptations that enable yaks to thrive at high altitudes. One third of the detected CNVRs were mapped to QTLs associated with six classes of economically important traits, indicating that these CNVRs may play an important role in variations of these traits. Conclusions Our genome-wide yak CNV map may thus provide valuable insights into both the molecular mechanisms of high altitude adaptation and the potential genomic basis of economically important traits in yak. Electronic supplementary material The online version of this article (10.1186/s12864-019-5759-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Congjun Jia
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hongbo Wang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chen Li
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|
23
|
Corbi-Botto CM, Morales-Durand H, Zappa ME, Sadaba SA, Peral-García P, Giovambattista G, Díaz S. Genomic structural diversity in Criollo Argentino horses: Analysis of copy number variations. Gene 2019; 695:26-31. [DOI: 10.1016/j.gene.2018.12.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/04/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
|
24
|
Pitea A, Kondofersky I, Sass S, Theis FJ, Mueller NS, Unger K. Copy number aberrations from Affymetrix SNP 6.0 genotyping data-how accurate are commonly used prediction approaches? Brief Bioinform 2018; 21:272-281. [PMID: 30351397 DOI: 10.1093/bib/bby096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Copy number aberrations (CNAs) are known to strongly affect oncogenes and tumour suppressor genes. Given the critical role CNAs play in cancer research, it is essential to accurately identify CNAs from tumour genomes. One particular challenge in finding CNAs is the effect of confounding variables. To address this issue, we assessed how commonly used CNA identification algorithms perform on SNP 6.0 genotyping data in the presence of confounding variables. We simulated realistic synthetic data with varying levels of three confounding variables-the tumour purity, the length of a copy number region and the CNA burden (the percentage of CNAs present in a profiled genome)-and evaluated the performance of OncoSNP, ASCAT, GenoCNA, GISTIC and CGHcall. Furthermore, we implemented and assessed CGHcall*, an adjusted version of CGHcall accounting for high CNA burden. Our analysis on synthetic data indicates that tumour purity and the CNA burden strongly influence the performance of all the algorithms. No algorithm can correctly find lost and gained genomic regions across all tumour purities. The length of CNA regions influenced the performance of ASCAT, CGHcall and GISTIC. OncoSNP, GenoCNA and CGHcall* showed little sensitivity. Overall, CGHcall* and OncoSNP showed reasonable performance, particularly in samples with high tumour purity. Our analysis on the HapMap data revealed a good overlap between CGHcall, CGHcall* and GenoCNA results and experimentally validated data. Our exploratory analysis on the TCGA HNSCC data revealed plausible results of CGHcall, CGHcall* and GISTIC in consensus HNSCC CNA regions. Code is available at https://github.com/adspit/PASCAL.
Collapse
Affiliation(s)
- Adriana Pitea
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ivan Kondofersky
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Steffen Sass
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Nikola S Mueller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany.,Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, Neuherberg, Germany Nikola S. Mueller, Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
25
|
Rafter P, Purfield DC, Berry DP, Parnell AC, Gormley IC, Kearney JF, Coffey MP, Carthy TR. Characterization of copy number variants in a large multibreed population of beef and dairy cattle using high-density single nucleotide polymorphism genotype data. J Anim Sci 2018; 96:4112-4124. [PMID: 30239746 DOI: 10.1093/jas/sky302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Copy number variants (CNVs) are a form of genomic variation that changes the structure of the genome through deletion or duplication of stretches of DNA. The objective of the present study was to characterize CNVs in a large multibreed population of beef and dairy bulls. The CNVs were called on the autosomes of 5,551 cattle from 22 different beef and dairy breeds, using 2 freely available software suites, QuantiSNP and PennCNV. All CNVs were classified into either deletions or duplications. The median concordance between PennCNV and QuantiSNP, per animal, was 18.5% for deletions and 0% for duplications. The low concordance rate between PennCNV and QuantiSNP indicated that neither algorithm, by itself, could identify all CNVs in the population. In total, PennCNV and QuantiSNP collectively identified 747,129 deletions and 432,523 duplications; 80.2% of all duplications and 69.1% of all deletions were present only once in the population. Only 0.154% of all CNVs identified were present in more than 50 animals in the population. The distribution of the percentage of the autosomes that were composed of deletions, per animal, was positively skewed, as was the distribution for the percentage of the autosomes that were composed of duplications, per animal. The first quartile, median, and third quartile of the distribution of the percentage of the autosomes that were composed of deletions were 0.019%, 0.037%, and 0.201%, respectively. The first quartile, median, and third quartile of the distribution of the percentage of the autosomes that were composed of duplications were 0.013%, 0.028%, and 0.076%, respectively. The distributions of the number of deletions and duplications per animal were both positively skewed. The interquartile range for the number of deletions per animal in the population was between 16 and 117, whereas for duplications it was between 8 and 23. Per animal, there tended to be twice as many deletions as duplications. The distribution of the length of deletions was positively skewed, as was the distribution of the length of duplications. The interquartile range for the length of deletions in the population was between 25 and 101 kb, and for duplications the interquartile range was between 46 and 235 kb. Per animal, duplications tended to be twice as long as deletions. This study provides a description of the characteristics and distribution of CNVs in a large multibreed population of beef and dairy cattle.
Collapse
Affiliation(s)
- Pierce Rafter
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.,UCD School of Mathematics and Statistics, Insight Centre for Data Analytics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Deirdre C Purfield
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Donagh P Berry
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Andrew C Parnell
- UCD School of Mathematics and Statistics, Insight Centre for Data Analytics, University College Dublin, Belfield, Dublin 4, Ireland
| | - I Claire Gormley
- UCD School of Mathematics and Statistics, Insight Centre for Data Analytics, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Mike P Coffey
- Animal and Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian EH25 9RG
| | - Tara R Carthy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
26
|
Schurink A, da Silva VH, Velie BD, Dibbits BW, Crooijmans RPMA, Franҫois L, Janssens S, Stinckens A, Blott S, Buys N, Lindgren G, Ducro BJ. Copy number variations in Friesian horses and genetic risk factors for insect bite hypersensitivity. BMC Genet 2018; 19:49. [PMID: 30060732 PMCID: PMC6065148 DOI: 10.1186/s12863-018-0657-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 07/19/2018] [Indexed: 12/04/2022] Open
Abstract
Background Many common and relevant diseases affecting equine welfare have yet to be tested regarding structural variants such as copy number variations (CNVs). CNVs make up a substantial proportion of total genetic variability in populations of many species, resulting in more sequence differences between individuals than SNPs. Associations between CNVs and disease phenotypes have been established in several species, but equine CNV studies have been limited. Aim of this study was to identify CNVs and to perform a genome-wide association (GWA) study in Friesian horses to identify genomic loci associated with insect bite hypersensitivity (IBH), a common seasonal allergic dermatitis observed in many horse breeds worldwide. Results Genotypes were obtained using the Axiom® Equine Genotyping Array containing 670,796 SNPs. After quality control of genotypes, 15,041 CNVs and 5350 CNV regions (CNVRs) were identified in 222 Friesian horses. Coverage of the total genome by CNVRs was 11.2% with 49.2% of CNVRs containing genes. 58.0% of CNVRs were novel (i.e. so far only identified in Friesian horses). A SNP- and CNV-based GWA analysis was performed, where about half of the horses were affected by IBH. The SNP-based analysis showed a highly significant association between the MHC region on ECA20 and IBH in Friesian horses. Associations between the MHC region on ECA20 and IBH were also detected based on the CNV-based analysis. However, CNVs associated with IBH in Friesian horses were not often in close proximity to SNPs identified to be associated with IBH. Conclusions CNVs were identified in a large sample of the Friesian horse population, thereby contributing to our knowledge on CNVs in horses and facilitating our understanding of the equine genome and its phenotypic expression. A clear association was identified between the MHC region on ECA20 and IBH in Friesian horses based on both SNP- and CNV-based GWA studies. These results imply that MHC contributes to IBH sensitivity in Friesian horses. Although subsequent analyses are needed for verification, nucleotide differences, as well as more complex structural variations like CNVs, seem to contribute to IBH sensitivity. IBH should be considered as a common disease with a complex genomic architecture. Electronic supplementary material The online version of this article (10.1186/s12863-018-0657-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anouk Schurink
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700, AH, Wageningen, the Netherlands.
| | - Vinicius H da Silva
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700, AH, Wageningen, the Netherlands.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7023, 75007, Uppsala, Sweden.,Department of Animal Ecology, Netherlands Institute of Ecology, NIOO-KNAW, 6708, PB, Wageningen, the Netherlands
| | - Brandon D Velie
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7023, 75007, Uppsala, Sweden
| | - Bert W Dibbits
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700, AH, Wageningen, the Netherlands
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700, AH, Wageningen, the Netherlands
| | - Liesbeth Franҫois
- KU Leuven, Department of Biosystems, Livestock Genetics, P.O. Box 2456, 3001, Heverlee, Belgium
| | - Steven Janssens
- KU Leuven, Department of Biosystems, Livestock Genetics, P.O. Box 2456, 3001, Heverlee, Belgium
| | - Anneleen Stinckens
- KU Leuven, Department of Biosystems, Livestock Genetics, P.O. Box 2456, 3001, Heverlee, Belgium
| | - Sarah Blott
- Reproductive Biology, Faculty of Medicine and Health Sciences, The University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Nadine Buys
- KU Leuven, Department of Biosystems, Livestock Genetics, P.O. Box 2456, 3001, Heverlee, Belgium
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7023, 75007, Uppsala, Sweden
| | - Bart J Ducro
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700, AH, Wageningen, the Netherlands
| |
Collapse
|
27
|
Han H, Zhang X, Zhao X, Xia X, Lei C, Dang R. Eight Y chromosome genes show copy number variations in horses. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-263-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Copy number variations (CNVs), which represent a significant source of genetic diversity on the Y chromosome in mammals, have been shown to be associated with the development of many complex phenotypes, such as reproduction and male fertility. The occurrence of CNVs has been confirmed on the Y chromosome in horses. However, the copy numbers (CNs) of Equus caballus Y chromosome (ECAY) genes are largely unknown. To demonstrate the copy number variations of Y chromosome genes in horses, the quantitative real-time polymerase chain reaction (qPCR) method was applied to measure the CNVs of the eukaryotic translation initiation factor 1A Y (EIF1AY), equine testis-specific transcript on Y 1 (ETSTY1), equine testis-specific transcript on Y 4 (ETSTY4), equine testis-specific transcript on Y 5 (ETSTY5), equine transcript Y4 (ETY4), ubiquitin activating enzyme Y (UBE1Y), sex determining region Y (SRY), and inverted repeat 2 Y (YIR2) across 14 Chinese domestic horse breeds in this study. Our results revealed that these eight genes were multi-copy; furthermore, some of the well acknowledged single-copy genes such as SRY and EIF1AY were found to be multi-copy in this research. The median copy numbers (MCNs) varied among different breeds for the same gene. The CNVs of Y chromosome genes showed different distribution patterns among Chinese horse breeds, indicating the impact of natural selection on copy numbers. Our results will provide fundamental information for future functional studies.
Collapse
|
28
|
Metzger J, Rau J, Naccache F, Bas Conn L, Lindgren G, Distl O. Genome data uncover four synergistic key regulators for extremely small body size in horses. BMC Genomics 2018; 19:492. [PMID: 29940849 PMCID: PMC6019228 DOI: 10.1186/s12864-018-4877-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023] Open
Abstract
Background Miniature size in horses represents an extreme reduction of withers height that originated after domestication. In some breeds, it is a highly desired trait representing a breed- or subtype-specific feature. The genomic changes that emerged due to strong-targeted selection towards this distinct type remain unclear. Results Comparisons of whole-genome sequencing data from two Miniature Shetland ponies and one standard-sized Shetland pony, performed to elucidate genetic determinants for miniature size, revealed four synergistic variants, limiting withers height to 34.25 in. (87 cm). Runs of homozygosity regions were detected spanning these four variants in both the Miniature Shetland ponies and the standard-sized Shetland pony. They were shown to be characteristic of the Shetland pony breed, resulting in a miniature type under specific genotypic combinations. These four genetic variants explained 72% of the size variation among Shetland ponies and related breeds. The length of the homozygous regions indicate that they arose over 1000 years ago. In addition, a copy number variant was identified in DIAPH3 harboring a loss exclusively in ponies and donkeys and thus representing a potential height-associated variant. Conclusion This study reveals main drivers for miniature size in horses identified in whole genome data and thus provides relevant candidate genes for extremely short stature in mammals. Electronic supplementary material The online version of this article (10.1186/s12864-018-4877-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Metzger
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Janina Rau
- Unit of Reproductive Medicine of the Clinics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Fanny Naccache
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Laura Bas Conn
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.
| |
Collapse
|
29
|
Pawlina-Tyszko K, Gurgul A, Szmatoła T, Ropka-Molik K, Semik-Gurgul E, Klukowska-Rötzler J, Koch C, Mählmann K, Bugno-Poniewierska M. Genomic landscape of copy number variation and copy neutral loss of heterozygosity events in equine sarcoids reveals increased instability of the sarcoid genome. Biochimie 2017; 140:122-132. [PMID: 28743673 DOI: 10.1016/j.biochi.2017.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
Abstract
Although they are the most common neoplasms in equids, sarcoids are not fully characterized at the molecular level. Therefore, the objective of this study was to characterize the landscape of structural rearrangements, such as copy number variation (CNV) and copy neutral loss of heterozygosity (cnLOH), in the genomes of sarcoid tumor cells. This information will not only broaden our understanding of the characteristics of this genome but will also improve the general knowledge of this tumor and the mechanisms involved in its generation. To this end, Equine SNP64K Illumina microarrays were applied along with bioinformatics tools dedicated for signal intensity analysis. The analysis revealed increased instability of the genome of sarcoid cells compared with unaltered skin tissue samples, which was manifested by the prevalence of CNV and cnLOH events. Many of the identified CNVs overlapped with the other research results, but the simultaneously observed variability in the number and sizes of detected aberrations indicated a need for further studies and the development of more reliable bioinformatics algorithms. The functional analysis of genes co-localized with the identified aberrations revealed that these genes are engaged in vital cellular processes. In addition, a number of these genes directly contribute to neoplastic transformation. Furthermore, large numbers of cnLOH events identified in the sarcoids suggested that they may play no less significant roles than CNVs in the carcinogenesis of this tumor. Thus, our results indicate the importance of cnLOH and CNV in equine sarcoid oncogenesis and present a direction of future research.
Collapse
Affiliation(s)
- Klaudia Pawlina-Tyszko
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| | - Artur Gurgul
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| | - Tomasz Szmatoła
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| | - Katarzyna Ropka-Molik
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| | - Ewelina Semik-Gurgul
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| | - Jolanta Klukowska-Rötzler
- Division of Pedriatric Hematology/Oncology, Department of Clinical Research, University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland; Department of Emergency Medicine, University Hospital Bern, Inselspital, 3010, Bern, Switzerland.
| | - Christoph Koch
- Swiss Institute of Equine Medicine ISME, Faculty of Veterinary Medicine, University of Bern and Agroscope, Länggassstrasse 124c, Postfach 8466, CH-3001, Bern, Switzerland.
| | - Kathrin Mählmann
- Swiss Institute of Equine Medicine ISME, Faculty of Veterinary Medicine, University of Bern and Agroscope, Länggassstrasse 124c, Postfach 8466, CH-3001, Bern, Switzerland; Equine Clinic: Surgery and Radiology, Department of Veterinary Medicine, Free University of Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| | - Monika Bugno-Poniewierska
- Laboratory of Genomics, Department of Animal Genomics and Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| |
Collapse
|
30
|
Association study and expression analysis of CYP4A11 gene copy number variation in Chinese cattle. Sci Rep 2017; 7:46599. [PMID: 28492277 PMCID: PMC5425913 DOI: 10.1038/srep46599] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/22/2017] [Indexed: 11/09/2022] Open
Abstract
The identification of copy number variations (CNVs) allow us to explore genomic polymorphisms. In recent years, significant progress in understanding CNVs has been made in studies of human and animals, however, association and expression studies of CNVs are still in the early stage. It was previously reported that the Cytochrome P-450 4A11 (CYP4A11) gene is located within a copy number variable region (CNVR) that encompasses quantitative trait loci (QTLs) for economic traits like meat quality and milk production. So, this study was performed to determine the presence of CYP4A11 CNV in six distinct cattle breeds, identify its relationship with growth, and explore the biological effects of gene expression. For three CYP4A11 CNV types, Normal was more frequent than Gain or Loss. Association analysis revealed a positive effect of CYP4A11 copy number on growth traits (P < 0.05). One-way analysis of variance (ANOVA) analysis revealed that more CYP4A11 copies increased the gene expression level. Moreover, overexpression of CYP4A11 in vitro revealed its effect on lipid deposit. The data provide evidence for the functional role of CYP4A11 CNV and provide the basis for future applications in cattle breeding.
Collapse
|
31
|
Kader A, Liu X, Dong K, Song S, Pan J, Yang M, Chen X, He X, Jiang L, Ma Y. Identification of copy number variations in three Chinese horse breeds using 70K single nucleotide polymorphism BeadChip array. Anim Genet 2016; 47:560-9. [PMID: 27440410 DOI: 10.1111/age.12451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 02/06/2023]
Abstract
Copy number variation (CNV), an essential form of genetic variation, has been increasingly recognized as one promising genetic marker in the analysis of animal genomes. Here, we used the Equine 70K single nucleotide polymorphism genotyping array for the genome-wide detection of CNVs in 96 horses from three diverse Chinese breeds: Debao pony (DB), Mongolian horse (MG) and Yili horse (YL). A total of 287 CNVs were determined and merged into 122 CNV regions (CNVRs) ranging from 199 bp to 2344 kb in size and distributed in a heterogeneous manner on chromosomes. These CNVRs were integrated with seven existing reports to generate a composite genome-wide dataset of 1558 equine CNVRs, revealing 69 (56.6%) novel CNVRs. The majority (69.7%) of the 122 CNVRs overlapped with 438 genes, whereas 30.3% were located in intergenic regions. Most of these genes were associated with common CNVRs, which were shared by divergent horse breeds. As many as 60, 42 and 91 genes overlapping with the breed-specific ss were identified in DB, MG and YL respectively. Among these genes, FGF11, SPEM1, PPARG, CIDEB, HIVEP1 and GALR may have potential relevance to breed-specific traits. These findings provide valuable information for understanding the equine genome and facilitating association studies of economically important traits with equine CNVRs in the future.
Collapse
Affiliation(s)
- Adiljan Kader
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China.,Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 83000, China
| | - Xuexue Liu
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China
| | - Kunzhe Dong
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China.,United States Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Shen Song
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China.,Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Jianfei Pan
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China
| | - Min Yang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China
| | - Xiaofei Chen
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China
| | - Xiaohong He
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China
| | - Lin Jiang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China.
| | - Yuehui Ma
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No 2 Yuanmingyuan West Rd., Haidian, Beijing, 100193, China.
| |
Collapse
|
32
|
Ghosh S, Das PJ, McQueen CM, Gerber V, Swiderski CE, Lavoie JP, Chowdhary BP, Raudsepp T. Analysis of genomic copy number variation in equine recurrent airway obstruction (heaves). Anim Genet 2016; 47:334-44. [PMID: 26932307 DOI: 10.1111/age.12426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2016] [Indexed: 12/18/2022]
Abstract
We explored the involvement of genomic copy number variants (CNVs) in susceptibility to recurrent airway obstruction (RAO), or heaves-an asthmalike inflammatory disease in horses. Analysis of 16 RAO-susceptible (cases) and six RAO-resistant (control) horses on a custom-made whole-genome 400K equine tiling array identified 245 CNV regions (CNVRs), 197 previously known and 48 new, distributed on all horse autosomes and the X chromosome. Among the new CNVRs, 30 were exclusively found in RAO cases and were further analyzed by quantitative PCR, including additional cases and controls. Suggestive association (P = 0.03; corrected P = 0.06) was found between RAO and a loss on chromosome 5 involving NME7, a gene necessary for ciliary functions in lungs and involved in primary ciliary dyskinesia in humans. The CNVR could be a potential marker for RAO susceptibility but needs further study in additional RAO cohorts. Other CNVRs were not associated with RAO, although several involved genes of interest, such as SPI2/SERPINA1 from the serpin gene family, which are associated with chronic obstructive pulmonary disease and asthma in humans. The SPI2/SERPINA1 CNVR showed striking variation among horses, but it was not significantly different between RAO cases and controls. The findings provide baseline information on the relationship between CNVs and RAO susceptibility. Discovery of new CNVs and the use of a larger population of RAO-affected and control horses are needed to shed more light on their significance in modulating this complex and heterogeneous disease.
Collapse
Affiliation(s)
- S Ghosh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - P J Das
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.,National Research Centre on Yak (ICAR), Dirang, Arunachal Pradesh, 790101, India
| | - C M McQueen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - V Gerber
- Department of Veterinary Medicine, University of Bern, Bern, Switzerland
| | - C E Swiderski
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - J-P Lavoie
- Department of Clinical Sciences, University of Montreal, Montreal, QC, J2S 7C6, Canada
| | - B P Chowdhary
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.,New Research Complex, Qatar University, Doha, 2713, Qatar
| | - T Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
33
|
Juma AR, Damdimopoulou PE, Grommen SVH, Van de Ven WJM, De Groef B. Emerging role of PLAG1 as a regulator of growth and reproduction. J Endocrinol 2016; 228:R45-56. [PMID: 26577933 DOI: 10.1530/joe-15-0449] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/15/2022]
Abstract
Pleomorphic adenoma gene 1 (PLAG1) belongs to the PLAG family of zinc finger transcription factors along with PLAG-like 1 and PLAG-like 2. The PLAG1 gene is best known as an oncogene associated with certain types of cancer, most notably pleomorphic adenomas of the salivary gland. While the mechanisms of PLAG1-induced tumorigenesis are reasonably well understood, the role of PLAG1 in normal physiology is less clear. It is known that PLAG1 is involved in cell proliferation by directly regulating a wide array of target genes, including a number of growth factors such as insulin-like growth factor 2. This is likely to be a central mode of action for PLAG1 both in embryonic development and in cancer. The phenotype of Plag1 knockout mice suggests an important role for PLAG1 also in postnatal growth and reproduction, as PLAG1 deficiency causes growth retardation and reduced fertility. A role for PLAG1 in growth and reproduction is further corroborated by genome-wide association studies in humans and domestic animals in which polymorphisms in the PLAG1 genomic region are associated with body growth and reproductive traits. Here we review the current evidence for PLAG1 as a regulator of growth and fertility and discuss possible endocrine mechanisms involved.
Collapse
Affiliation(s)
- Almas R Juma
- Department of PhysiologyAnatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, AustraliaDepartment of Clinical SciencesIntervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, 141 86 Stockholm, SwedenDepartment of Human GeneticsKU Leuven, B-3000 Leuven, Belgium
| | - Pauliina E Damdimopoulou
- Department of PhysiologyAnatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, AustraliaDepartment of Clinical SciencesIntervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, 141 86 Stockholm, SwedenDepartment of Human GeneticsKU Leuven, B-3000 Leuven, Belgium
| | - Sylvia V H Grommen
- Department of PhysiologyAnatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, AustraliaDepartment of Clinical SciencesIntervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, 141 86 Stockholm, SwedenDepartment of Human GeneticsKU Leuven, B-3000 Leuven, Belgium
| | - Wim J M Van de Ven
- Department of PhysiologyAnatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, AustraliaDepartment of Clinical SciencesIntervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, 141 86 Stockholm, SwedenDepartment of Human GeneticsKU Leuven, B-3000 Leuven, Belgium
| | - Bert De Groef
- Department of PhysiologyAnatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, AustraliaDepartment of Clinical SciencesIntervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, 141 86 Stockholm, SwedenDepartment of Human GeneticsKU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
34
|
Walker LC, Wiggins GAR, Pearson JF. The Role of Constitutional Copy Number Variants in Breast Cancer. ACTA ACUST UNITED AC 2015; 4:407-23. [PMID: 27600231 PMCID: PMC4996380 DOI: 10.3390/microarrays4030407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 01/16/2023]
Abstract
Constitutional copy number variants (CNVs) include inherited and de novo deviations from a diploid state at a defined genomic region. These variants contribute significantly to genetic variation and disease in humans, including breast cancer susceptibility. Identification of genetic risk factors for breast cancer in recent years has been dominated by the use of genome-wide technologies, such as single nucleotide polymorphism (SNP)-arrays, with a significant focus on single nucleotide variants. To date, these large datasets have been underutilised for generating genome-wide CNV profiles despite offering a massive resource for assessing the contribution of these structural variants to breast cancer risk. Technical challenges remain in determining the location and distribution of CNVs across the human genome due to the accuracy of computational prediction algorithms and resolution of the array data. Moreover, better methods are required for interpreting the functional effect of newly discovered CNVs. In this review, we explore current and future application of SNP array technology to assess rare and common CNVs in association with breast cancer risk in humans.
Collapse
Affiliation(s)
- Logan C Walker
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch 8140, New Zealand.
| | - George A R Wiggins
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch 8140, New Zealand.
| | - John F Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch 8140, New Zealand.
| |
Collapse
|
35
|
McQueen CM, Dindot SV, Foster MJ, Cohen ND. Genetic Susceptibility to Rhodococcus equi. J Vet Intern Med 2015; 29:1648-59. [PMID: 26340305 PMCID: PMC4895676 DOI: 10.1111/jvim.13616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 02/02/2023] Open
Abstract
Rhodococcus equi pneumonia is a major cause of morbidity and mortality in neonatal foals. Much effort has been made to identify preventative measures and new treatments for R. equi with limited success. With a growing focus in the medical community on understanding the genetic basis of disease susceptibility, investigators have begun to evaluate the interaction of the genetics of the foal with R. equi. This review describes past efforts to understand the genetic basis underlying R. equi susceptibility and tolerance. It also highlights the genetic technology available to study horses and describes the use of this technology in investigating R. equi. This review provides readers with a foundational understanding of candidate gene approaches, single nucleotide polymorphism‐based, and copy number variant‐based genome‐wide association studies, and next generation sequencing (both DNA and RNA).
Collapse
Affiliation(s)
- C M McQueen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - S V Dindot
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX
| | - M J Foster
- Medical Sciences Library, Texas A&M University, College Station, TX
| | - N D Cohen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
36
|
Zhang L, Jia S, Plath M, Huang Y, Li C, Lei C, Zhao X, Chen H. Impact of Parental Bos taurus and Bos indicus Origins on Copy Number Variation in Traditional Chinese Cattle Breeds. Genome Biol Evol 2015; 7:2352-61. [PMID: 26260653 PMCID: PMC4558867 DOI: 10.1093/gbe/evv151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Copy number variation (CNV) is an important component of genomic structural variation and plays a role not only in evolutionary diversification but also in domestication. Chinese cattle were derived from Bos taurus and Bos indicus, and several breeds presumably are of hybrid origin, but the evolution of CNV regions (CNVRs) has not yet been examined in this context. Here, we of CNVRs, mtDNA D-loop sequence variation, and Y-chromosomal single nucleotide polymorphisms to assess the impact of maternal and paternal B. taurus and B. indicus origins on the distribution of CNVRs in 24 Chinese domesticated bulls. We discovered 470 genome-wide CNVRs, only 72 of which were shared by all three Y-lineages (B. taurus: Y1, Y2; B. indicus: Y3), whereas 265 were shared by inferred taurine or indicine paternal lineages, and 228 when considering their maternal taurine or indicine origins. Phylogenetic analysis uncovered eight taurine/indicine hybrids, and principal component analysis on CNVs corroborated genomic exchange during hybridization. The distribution patterns of CNVRs tended to be lineage-specific, and correlation analysis revealed significant positive or negative co-occurrences of CNVRs across lineages. Our study suggests that CNVs in Chinese cattle partly result from selective breeding during domestication, but also from hybridization and introgression.
Collapse
Affiliation(s)
- Liangzhi Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China Key laboratory of adaptation and evolution of plateau biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences
| | - Shangang Jia
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Martin Plath
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Yongzhen Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Congjun Li
- United States Department of Agriculture-Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, Maryland
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Xin Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
37
|
Bertolini F, Scimone C, Geraci C, Schiavo G, Utzeri VJ, Chiofalo V, Fontanesi L. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms. PLoS One 2015; 10:e0131925. [PMID: 26151450 PMCID: PMC4495037 DOI: 10.1371/journal.pone.0131925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 12/13/2022] Open
Abstract
Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.
Collapse
Affiliation(s)
- Francesca Bertolini
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, Italy
- Department of Veterinary Sciences, Animal Production Unit, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Concetta Scimone
- Department of Veterinary Sciences, Animal Production Unit, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Claudia Geraci
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, Italy
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, Italy
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, Italy
| | - Vincenzo Chiofalo
- Department of Veterinary Sciences, Animal Production Unit, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
- Meat Research Consortium, Polo Universitario dell’Annunziata, Messina, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, Italy
- * E-mail:
| |
Collapse
|
38
|
Genome-wide characteristics of copy number variation in Polish Holstein and Polish Red cattle using SNP genotyping assay. Genetica 2015; 143:145-55. [DOI: 10.1007/s10709-015-9822-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/27/2015] [Indexed: 12/15/2022]
|
39
|
Dong K, Pu Y, Yao N, Shu G, Liu X, He X, Zhao Q, Guan W, Ma Y. Copy number variation detection using SNP genotyping arrays in three Chinese pig breeds. Anim Genet 2015; 46:101-9. [PMID: 25590996 DOI: 10.1111/age.12247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2014] [Indexed: 01/19/2023]
Abstract
We performed genome-wide CNV detection based on SNP genotyping data of 96 Chinese-native Tibetan, Dahe and Wuzhishan pigs. These pigs are particularly interesting because of their excellent adaptation to hypoxia or small body size, which facilitates the use of them as models of different human diseases in addition to valuable agricultural animals. A total of 105 CNV regions (CNVRs) were identified, encompassing 16.71 Mb of the pig genome. Seven of 10 (70%) CNVRs selected randomly were validated by quantitative real-time PCR. Comparison with previous studies revealed 25 (23.81%) novel CNVRs, indicating that CNV coverage of the pig genome is still incomplete and there exists large diversity between pig breeds. Functional analysis of genes located in these CNVRs confirmed the high representation of genes involved in sensory perception, neurological system processes and other basic metabolic processes. In addition, the majority of these CNVRs were detected to span reported pig QTL that affect various traits, which highlighted three biologically interesting genes with copy number changes (i.e., ANKRD34B, FAM110B and ABCG1). These genes may have economic importance in pig breeding and are worth being further investigated. We also obtained some CNVRs harboring genes that had human orthologs involved in human diseases such as cardiovascular disease and Alzheimer's disease. The findings of this study are a significant extension of the coverage of CNVRs in the pig genome and provide valuable resources for follow-up-associated studies of CNVs in pig complex traits as well as important implications of human diseases.
Collapse
Affiliation(s)
- K Dong
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Science (CAAS), Beijing, 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schrimpf R, Metzger J, Martinsson G, Sieme H, Distl O. Implication of FKBP6
for Male Fertility in Horses. Reprod Domest Anim 2014; 50:195-199. [DOI: 10.1111/rda.12467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/16/2014] [Indexed: 11/29/2022]
Affiliation(s)
- R Schrimpf
- Institute for Animal Breeding and Genetics; University of Veterinary Medicine Hannover; Hannover Germany
| | - J Metzger
- Institute for Animal Breeding and Genetics; University of Veterinary Medicine Hannover; Hannover Germany
| | | | - H Sieme
- Clinic for Horses; Unit for Reproduction Medicine; University of Veterinary Medicine Hannover; Hannover Germany
| | - O Distl
- Institute for Animal Breeding and Genetics; University of Veterinary Medicine Hannover; Hannover Germany
| |
Collapse
|
41
|
Abstract
We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. Genomes of individuals in a species vary in many ways, one of which is DNA copy number variation (CNV). This includes deletions, duplications, and complex rearrangements typically larger than 50 base-pairs. CNVs are part of normal genetic variation contributing to phenotypic diversity but can also be pathogenic and associated with diseases and disorders. In order to distinguish between the two, detailed knowledge about CNVs in the species of interest is needed. Here we studied the genomes of 38 normal horses of 16 diverse breeds, and identified 258 CNV regions. We integrated our findings with previously published horse CNVs and generated a composite dataset of ∼1400 CNVRs. Despite this large number, our analysis shows that CNV research in horses needs further improvement because the current data are based on 10% of horse breeds and that most CNVRs are study-specific and require validation. Finally, we analyzed CNVs in horses with disorders of sexual development and found in two male pseudo-hermaphrodites a large deletion disrupting a group of genes involved in sex hormone metabolism and sexual differentiation. The findings underline the possible role of CNVs in complex disorders such as development and reproduction.
Collapse
|
42
|
Zhou W, Liu R, Zhang J, Zheng M, Li P, Chang G, Wen J, Zhao G. A genome-wide detection of copy number variation using SNP genotyping arrays in Beijing-You chickens. Genetica 2014; 142:441-50. [PMID: 25214021 DOI: 10.1007/s10709-014-9788-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 08/18/2014] [Indexed: 12/28/2022]
Abstract
Copy number variation (CNV) has been recently examined in many species and is recognized as being a source of genetic variability, especially for disease-related phenotypes. In this study, the PennCNV software, a genome-wide CNV detection system based on the 60 K SNP BeadChip was used on a total sample size of 1,310 Beijing-You chickens (a Chinese local breed). After quality control, 137 high confidence CNVRs covering 27.31 Mb of the chicken genome and corresponding to 2.61 % of the whole chicken genome. Within these regions, 131 known genes or coding sequences were involved. Q-PCR was applied to verify some of the genes related to disease development. Results showed that copy number of genes such as, phosphatidylinositol-5-phosphate 4-kinase II alpha, PHD finger protein 14, RHACD8 (a CD8α- like messenger RNA), MHC B-G, zinc finger protein, sarcosine dehydrogenase and ficolin 2 varied between individual chickens, which also supports the reliability of chip-detection of the CNVs. As one source of genomic variation, CNVs may provide new insight into the relationship between the genome and phenotypic characteristics.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang L, Jia S, Yang M, Xu Y, Li C, Sun J, Huang Y, Lan X, Lei C, Zhou Y, Zhang C, Zhao X, Chen H. Detection of copy number variations and their effects in Chinese bulls. BMC Genomics 2014; 15:480. [PMID: 24935859 PMCID: PMC4073501 DOI: 10.1186/1471-2164-15-480] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 06/10/2014] [Indexed: 02/03/2023] Open
Abstract
Background Copy number variations (CNVs) are a main source of genomic structural variations underlying animal evolution and production traits. Here, with one pure-blooded Angus bull as reference, we describe a genome-wide analysis of CNVs based on comparative genomic hybridization arrays in 29 Chinese domesticated bulls and examined their effects on gene expression and cattle growth traits. Results We identified 486 copy number variable regions (CNVRs), covering 2.45% of the bovine genome, in 24 taurine (Bos taurus), together with 161 ones in 2 yaks (Bos grunniens) and 163 ones in 3 buffaloes (Bubalus bubalis). Totally, we discovered 605 integrated CNVRs, with more “loss” events than both “gain” and “both” ones, and clearly clustered them into three cattle groups. Interestingly, we confirmed their uneven distributions across chromosomes, and the differences of mitochondrion DNA copy number (gain: taurine, loss: yak & buffalo). Furthermore, we confirmed approximately 41.8% (253/605) and 70.6% (427/605) CNVRs span cattle genes and quantitative trait loci (QTLs), respectively. Finally, we confirmed 6 CNVRs in 9 chosen ones by using quantitative PCR, and further demonstrated that CNVR22 had significantly negative effects on expression of PLA2G2D gene, and both CNVR22 and CNVR310 were associated with body measurements in Chinese cattle, suggesting their key effects on gene expression and cattle traits. Conclusions The results advanced our understanding of CNV as an important genomic structural variation in taurine, yak and buffalo. This study provides a highly valuable resource for Chinese cattle’s evolution and breeding researches. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-480) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Hong Chen
- College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
44
|
Identification of genomic loci associated with Rhodococcus equi susceptibility in foals. PLoS One 2014; 9:e98710. [PMID: 24892408 PMCID: PMC4043894 DOI: 10.1371/journal.pone.0098710] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/04/2014] [Indexed: 11/30/2022] Open
Abstract
Pneumonia caused by Rhodococcus equi is a common cause of disease and death in foals. Although agent and environmental factors contribute to the incidence of this disease, the genetic factors influencing the clinical outcomes of R. equi pneumonia are ill-defined. Here, we performed independent single nucleotide polymorphism (SNP)- and copy number variant (CNV)-based genome-wide association studies to identify genomic loci associated with R. equi pneumonia in foals. Foals at a large Quarter Horse breeding farm were categorized into 3 groups: 1) foals with R. equi pneumonia (clinical group [N = 43]); 2) foals with ultrasonographic evidence of pulmonary lesions that never developed clinical signs of pneumonia (subclinical group [N = 156]); and, 3) foals without clinical signs or ultrasonographic evidence of pneumonia (unaffected group [N = 49]). From each group, 24 foals were randomly selected and used for independent SNP- and CNV-based genome-wide association studies (GWAS). The SNP-based GWAS identified a region on chromosome 26 that had moderate evidence of association with R. equi pneumonia when comparing clinical and subclinical foals. A joint analysis including all study foals revealed a 3- to 4-fold increase in odds of disease for a homozygous SNP within the associated region when comparing the clinical group with either of the other 2 groups of foals or their combination. The region contains the transient receptor potential cation channel, subfamily M, member 2 (TRPM2) gene, which is involved in neutrophil function. No associations were identified in the CNV-based GWAS. Collectively, these data identify a region on chromosome 26 associated with R. equi pneumonia in foals, providing evidence that genetic factors may indeed contribute to this important disease of foals.
Collapse
|
45
|
Zhao Q, Han MJ, Sun W, Zhang Z. Copy number variations among silkworms. BMC Genomics 2014; 15:251. [PMID: 24684762 PMCID: PMC3997817 DOI: 10.1186/1471-2164-15-251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/25/2014] [Indexed: 11/10/2022] Open
Abstract
Background Copy number variations (CNVs), which are important source for genetic and phenotypic variation, have been shown to be associated with disease as well as important QTLs, especially in domesticated animals. However, little is known about the CNVs in silkworm. Results In this study, we have constructed the first CNVs map based on genome-wide analysis of CNVs in domesticated silkworm. Using next-generation sequencing as well as quantitative PCR (qPCR), we identified ~319 CNVs in total and almost half of them (~ 49%) were distributed on uncharacterized chromosome. The CNVs covered 10.8 Mb, which is about 2.3% of the entire silkworm genome. Furthermore, approximately 61% of CNVs directly overlapped with SDs in silkworm. The genes in CNVs are mainly related to reproduction, immunity, detoxification and signal recognition, which is consistent with the observations in mammals. Conclusions An initial CNVs map for silkworm has been described in this study. And this map provides new information for genetic variations in silkworm. Furthermore, the silkworm CNVs may play important roles in reproduction, immunity, detoxification and signal recognition. This study provided insight into the evolution of the silkworm genome and an invaluable resource for insect genomics research.
Collapse
Affiliation(s)
| | | | | | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
46
|
Wang W, Wang S, Hou C, Xing Y, Cao J, Wu K, Liu C, Zhang D, Zhang L, Zhang Y, Zhou H. Genome-wide detection of copy number variations among diverse horse breeds by array CGH. PLoS One 2014; 9:e86860. [PMID: 24497987 PMCID: PMC3907382 DOI: 10.1371/journal.pone.0086860] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/13/2013] [Indexed: 01/08/2023] Open
Abstract
Recent studies have found that copy number variations (CNVs) are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds) and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs). The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO), genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.
Collapse
Affiliation(s)
- Wei Wang
- College of Life Sciences Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Biological Manufacturing, Hohhot, China
| | - Shenyuan Wang
- College of Life Sciences Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Biological Manufacturing, Hohhot, China
| | - Chenglin Hou
- College of Life Sciences Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Biological Manufacturing, Hohhot, China
| | - Yanping Xing
- College of Life Sciences Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Biological Manufacturing, Hohhot, China
| | - Junwei Cao
- College of Life Sciences Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Biological Manufacturing, Hohhot, China
| | - Kaifeng Wu
- College of Life Sciences Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Biological Manufacturing, Hohhot, China
| | - Chunxia Liu
- College of Life Sciences Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Biological Manufacturing, Hohhot, China
| | - Dong Zhang
- College of Life Sciences Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Biological Manufacturing, Hohhot, China
| | - Li Zhang
- College of Life Sciences Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Biological Manufacturing, Hohhot, China
| | - Yanru Zhang
- College of Life Sciences Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Biological Manufacturing, Hohhot, China
- * E-mail: (YZ); (HZ)
| | - Huanmin Zhou
- College of Life Sciences Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Biological Manufacturing, Hohhot, China
- * E-mail: (YZ); (HZ)
| |
Collapse
|