1
|
Ostendorp A, Ostendorp S, Zhou Y, Chaudron Z, Wolffram L, Rombi K, von Pein L, Falke S, Jeffries CM, Svergun DI, Betzel C, Morris RJ, Kragler F, Kehr J. Intrinsically disordered plant protein PARCL colocalizes with RNA in phase-separated condensates whose formation can be regulated by mutating the PLD. J Biol Chem 2022; 298:102631. [PMID: 36273579 PMCID: PMC9679465 DOI: 10.1016/j.jbc.2022.102631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
In higher plants, long-distance RNA transport via the phloem is crucial for communication between distant plant tissues to align development with stress responses and reproduction. Several recent studies suggest that specific RNAs are among the potential long-distance information transmitters. However, it is yet not well understood how these RNAs enter the phloem stream, how they are transported, and how they are released at their destination. It was proposed that phloem RNA-binding proteins facilitate RNA translocation. In the present study, we characterized two orthologs of the phloem-associated RNA chaperone-like (PARCL) protein from Arabidopsis thaliana and Brassica napus at functional and structural levels. Microscale thermophoresis showed that these phloem-abundant proteins can bind a broad spectrum of RNAs and show RNA chaperone activity in FRET-based in vitro assays. Our SAXS experiments revealed a high degree of disorder, typical for RNA-binding proteins. In agroinfiltrated tobacco plants, eYFP-PARCL proteins mainly accumulated in nuclei and nucleoli and formed cytosolic and nuclear condensates. We found that formation of these condensates was impaired by tyrosine-to-glutamate mutations in the predicted prion-like domain (PLD), while C-terminal serine-to-glutamate mutations did not affect condensation but reduced RNA binding and chaperone activity. Furthermore, our in vitro experiments confirmed phase separation of PARCL and colocalization of RNA with the condensates, while mutation as well as phosphorylation of the PLD reduced phase separation. Together, our results suggest that RNA binding and condensate formation of PARCL can be regulated independently by modification of the C-terminus and/or the PLD.
Collapse
Affiliation(s)
- Anna Ostendorp
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany,For correspondence: Anna Ostendorp
| | - Steffen Ostendorp
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Yuan Zhou
- Max Planck Institute of Molecular Plant Physiology, Department II, Potsdam, Germany
| | - Zoé Chaudron
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Lukas Wolffram
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Khadija Rombi
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Linn von Pein
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Hamburg, Germany,Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology, Hamburg, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Site, c/o DESY, Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Site, c/o DESY, Hamburg, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Hamburg, Germany,Universität Hamburg, Department of Chemistry, Institute of Biochemistry and Molecular Biology, Hamburg, Germany
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Department II, Potsdam, Germany
| | - Julia Kehr
- Universität Hamburg, Department of Biology, Institute of Plant Science and Microbiology, Hamburg, Germany
| |
Collapse
|
2
|
Liu Y, Vasina VV, Kraner ME, Peters WS, Sonnewald U, Knoblauch M. Proteomics of isolated sieve tubes from Nicotiana tabacum: sieve element-specific proteins reveal differentiation of the endomembrane system. Proc Natl Acad Sci U S A 2022; 119:e2112755119. [PMID: 34983847 PMCID: PMC8740716 DOI: 10.1073/pnas.2112755119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Symplasmicly connected cells called sieve elements form a network of tubes in the phloem of vascular plants. Sieve elements have essential functions as they provide routes for photoassimilate distribution, the exchange of developmental signals, and the coordination of defense responses. Nonetheless, they are the least understood main type of plant cells. They are extremely sensitive, possess a reduced endomembrane system without Golgi apparatus, and lack nuclei and translation machineries, so that transcriptomics and similar techniques cannot be applied. Moreover, the analysis of phloem exudates as a proxy for sieve element composition is marred by methodological problems. We developed a simple protocol for the isolation of sieve elements from leaves and stems of Nicotiana tabacum at sufficient amounts for large-scale proteome analysis. By quantifying the enrichment of individual proteins in purified sieve element relative to bulk phloem preparations, proteins of increased likelyhood to function specifically in sieve elements were identified. To evaluate the validity of this approach, yellow fluorescent protein constructs of genes encoding three of the candidate proteins were expressed in plants. Tagged proteins occurred exclusively in sieve elements. Two of them, a putative cytochrome b561/ferric reductase and a reticulon-like protein, appeared restricted to segments of the endoplasmic reticulum (ER) that were inaccessible to green fluorescent protein dissolved in the ER lumen, suggesting a previously unknown differentiation of the endomembrane system in sieve elements. Evidently, our list of promising candidate proteins ( SI Appendix, Table S1) provides a valuable exploratory tool for sieve element biology.
Collapse
Affiliation(s)
- Yan Liu
- School of Biological Sciences, Washington State University, Pullman, WA 99154
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, Pullman, WA 99154
| | - Max E Kraner
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Winfried S Peters
- School of Biological Sciences, Washington State University, Pullman, WA 99154
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN 46835
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99154;
| |
Collapse
|
3
|
Simkovich A, Kohalmi SE, Wang A. Purification and Proteomics Analysis of Phloem Tissues from Virus-Infected Plants. Methods Mol Biol 2022; 2400:125-137. [PMID: 34905197 DOI: 10.1007/978-1-0716-1835-6_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant phloem vasculature is crucial for plant growth and development, and is essential for the systemic movement (SM) of plant viruses. Recent transcriptomic studies of the phloem during virus infection have shown the importance of this tissue, yet transcript levels do not provide definitive answers how virus-host interactions favour successful viral SM. Proteomic analyses have been used to identify host-virus protein interactions, uncovering a variety of ways by which viruses utilize host cellular machinery for completion of the viral infection cycle. Despite this new evidence through proteomics, very few phloem centric studies during viral infection have been performed. Here, we describe a protocol for the isolation of phloem tissues and proteins and the subsequent label-free quantitation (LFQ), for identification of proteomic alterations caused by viral infection.
Collapse
Affiliation(s)
- Aaron Simkovich
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Susanne E Kohalmi
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| |
Collapse
|
4
|
Sanden NC, Schulz A. Stationary sieve element proteins. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153511. [PMID: 34537466 DOI: 10.1016/j.jplph.2021.153511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Vascular plants use the phloem to move sugars and other molecules from source leaves to sink organs such as roots and fruits. Within the phloem, enucleate sieve elements provide the low-resistance pipe system that enable bulk flow of sap. In this review, we provide an overview of the highly specific protein machinery that localize to mature sieve elements without entering the phloem translocation stream. Generally, the proteins either maintain the flow, protect the sieve element against pathogens or transmit system wide signals. A notable exception is found in poppy, where part of the opium biosynthesis is compartmentalized in sieve elements. Biosynthesis of sieve element proteins happens either continuously in companion cell or transiently in immature sieve elements before nuclear disintegration. The latter population is translated during differentiation and stays functional without turnover during the entire lifespan of sieve elements. We discuss how protein longevity imposes some interesting restrictions on plants, especially in arborescent monocots with long living sieve elements.
Collapse
Affiliation(s)
- Niels Christian Sanden
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Alexander Schulz
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
5
|
The interplay of phloem-mobile signals in plant development and stress response. Biosci Rep 2021; 40:226464. [PMID: 32955092 PMCID: PMC7538631 DOI: 10.1042/bsr20193329] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/28/2023] Open
Abstract
Plants integrate a variety of biotic and abiotic factors for optimal growth in their given environment. While some of these responses are local, others occur distally. Hence, communication of signals perceived in one organ to a second, distal part of the plant and the coordinated developmental response require an intricate signaling system. To do so, plants developed a bipartite vascular system that mediates the uptake of water, minerals, and nutrients from the soil; transports high-energy compounds and building blocks; and traffics essential developmental and stress signals. One component of the plant vasculature is the phloem. The development of highly sensitive mass spectrometry and molecular methods in the last decades has enabled us to explore the full complexity of the phloem content. As a result, our view of the phloem has evolved from a simple transport path of photoassimilates to a major highway for pathogens, hormones and developmental signals. Understanding phloem transport is essential to comprehend the coordination of environmental inputs with plant development and, thus, ensure food security. This review discusses recent developments in its role in long-distance signaling and highlights the role of some of the signaling molecules. What emerges is an image of signaling paths that do not just involve single molecules but rather, quite frequently an interplay of several distinct molecular classes, many of which appear to be transported and acting in concert.
Collapse
|
6
|
Liu Y, Lin T, Valencia MV, Zhang C, Lv Z. Unraveling the Roles of Vascular Proteins Using Proteomics. Molecules 2021; 26:molecules26030667. [PMID: 33514014 PMCID: PMC7865979 DOI: 10.3390/molecules26030667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
Vascular bundles play important roles in transporting nutrients, growth signals, amino acids, and proteins between aerial and underground tissues. In order to understand these sophisticated processes, a comprehensive analysis of the roles of the components located in the vascular tissues is required. A great deal of data has been obtained from proteomic analyses of vascular tissues in plants, which mainly aim to identify the proteins moving through the vascular tissues. Here, different aspects of the phloem and xylem proteins are reviewed, including their collection methods, and their main biological roles in growth, and biotic and abiotic stress responses. The study of vascular proteomics shows great potential to contribute to our understanding of the biological mechanisms related to development and defense in plants.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
| | - Tianbao Lin
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
| | - Maria Valderrama Valencia
- Departamento Académico de Biología–Universidad Nacional de San Agustin de Arequipa Nro117, Arequipa 04000, Peru;
| | - Cankui Zhang
- Department of Agronomy and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (C.Z.); (Z.L.)
| | - Zhiqiang Lv
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.L.); (T.L.)
- Correspondence: (C.Z.); (Z.L.)
| |
Collapse
|
7
|
Ogden AJ, Bhatt JJ, Brewer HM, Kintigh J, Kariuki SM, Rudrabhatla S, Adkins JN, Curtis WR. Phloem Exudate Protein Profiles during Drought and Recovery Reveal Abiotic Stress Responses in Tomato Vasculature. Int J Mol Sci 2020; 21:E4461. [PMID: 32586033 PMCID: PMC7352395 DOI: 10.3390/ijms21124461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022] Open
Abstract
Drought is the leading cause of agricultural yield loss among all abiotic stresses, and the link between water deficit and phloem protein contents is relatively unexplored. Here we collected phloem exudates from Solanum lycopersicum leaves during periods of drought stress and recovery. Our analysis identified 2558 proteins, the most abundant of which were previously localized to the phloem. Independent of drought, enrichment analysis of the total phloem exudate protein profiles from all samples suggests that the protein content of phloem sap is complex, and includes proteins that function in chaperone systems, branched-chain amino acid synthesis, trehalose metabolism, and RNA silencing. We observed 169 proteins whose abundance changed significantly within the phloem sap, either during drought or recovery. Proteins that became significantly more abundant during drought include members of lipid metabolism, chaperone-mediated protein folding, carboxylic acid metabolism, abscisic acid signaling, cytokinin biosynthesis, and amino acid metabolism. Conversely, proteins involved in lipid signaling, sphingolipid metabolism, cell wall organization, carbohydrate metabolism, and a mitogen-activated protein kinase are decreased during drought. Our experiment has achieved an in-depth profiling of phloem sap protein contents during drought stress and recovery that supports previous findings and provides new evidence that multiple biological processes are involved in drought adaptation.
Collapse
Affiliation(s)
- Aaron J. Ogden
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Jishnu J. Bhatt
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Heather M. Brewer
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Jack Kintigh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| | - Samwel M. Kariuki
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| | - Sairam Rudrabhatla
- School of Science, Engineering, and Technology, The Pennsylvania State University, Harrisburg Campus, 777 W Harrisburg Pike, Middletown, PA 17057, USA;
| | - Joshua N. Adkins
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratories, 902 Battelle Blvd, Richland, WA 99301, USA; (A.J.O.); (H.M.B.); (J.N.A.)
| | - Wayne R. Curtis
- Plant Biology Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.K.); (S.M.K.)
| |
Collapse
|
8
|
Knoblauch M, Peters WS, Bell K, Ross-Elliott TJ, Oparka KJ. Sieve-element differentiation and phloem sap contamination. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:43-49. [PMID: 29306743 DOI: 10.1016/j.pbi.2017.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Sieve elements (SEs) degrade selected organelles and cytoplasmic structures when they differentiate. According to classical investigations, only smooth ER, mitochondria, sieve element plastids, and, in most cases, P-proteins remain in mature SEs. More recent proteomics and immuno-histochemical studies, however, suggested that additional components including a protein-synthesizing machinery and a fully developed actin cytoskeleton operate in mature SEs. These interpretations are at odds with conventional imaging studies. Here we discuss potential causes for these discrepancies, concluding that differentiating SEs may play a role by 'contaminating' phloem exudates.
Collapse
Affiliation(s)
- Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA.
| | - Winfried S Peters
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Karen Bell
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Timothy J Ross-Elliott
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karl J Oparka
- Institute of Molecular Plant Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| |
Collapse
|
9
|
Spiegelman Z, Omer S, Mansfeld BN, Wolf S. Function of Cyclophilin1 as a long-distance signal molecule in the phloem of tomato plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:953-964. [PMID: 28053189 PMCID: PMC5444435 DOI: 10.1093/jxb/erw487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tomato (Solanum lycopersicum) diageotropica (dgt) mutants, containing a single mutation in the Cyclophilin1 (SlCyp1) gene, are auxin-insensitive, exhibiting a pleiotropic phenotype including lack of geotropism, abnormal xylem structure, lack of lateral roots (LRs), and elevated shoot-to-root ratio. SlCyp1 is a putative peptidyl-prolyl isomerase that can traffic from shoot to root, where it induces changes in auxin response, LR formation, and xylem development, suggesting it has a role as a long-distance signaling molecule. Here, we explored the mechanism underlying SlCyp1 function in the phloem. Expression of SlCyp1 under a phloem-specific (AtSuc2) promoter in dgt plants partially restored the wild-type phenotype, including lateral root development, root branching, and xylem morphology. The observed developmental changes were associated with physiological alternations at the whole-plant level, including a reduction in shoot-to-root ratio, enhanced transpiration, and elevated photosynthetic rates. Conversely, phloem-specific expression of SlCyp1 active-site mutants did not restore the wild-type phenotype. Local inhibition of cyclophilin functioning in the target tissue reduced auxin sensitivity, suggesting that its enzymatic activity in the distant organ is required for its action as a long-distance signalling agent. The data presented suggest that SlCyp1 is a signal molecule trafficking from shoot to root where its activity is required for auxin-mediated lateral root development.
Collapse
Affiliation(s)
- Ziv Spiegelman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Sumita Omer
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Ben N Mansfeld
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | - Shmuel Wolf
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| |
Collapse
|
10
|
Lopez-Cobollo RM, Filippis I, Bennett MH, Turnbull CGN. Comparative proteomics of cucurbit phloem indicates both unique and shared sets of proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:633-647. [PMID: 27472661 DOI: 10.1111/tpj.13288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Cucurbits are well-studied models for phloem biology but unusually possess both fascicular phloem (FP) within vascular bundles and additional extrafascicular phloem (EFP). Although the functional differences between the two systems are not yet clear, sugar analysis and limited protein profiling have established that FP and EFP have divergent compositions. Here we report a detailed comparative proteomics study of FP and EFP in two cucurbits, pumpkin and cucumber. We re-examined the sites of exudation by video microscopy, and confirmed that in both species, the spontaneous exudate following tissue cutting derives almost exclusively from EFP. Comparative gel electrophoresis and mass spectrometry-based proteomics of exudates, sieve element contents and microdissected stem tissues established that EFP and FP profiles are highly dissimilar, and that there are also species differences. Searches against cucurbit databases enabled identification of more than 300 FP proteins from each species. Few of the detected proteins (about 10%) were shared between the sieve element contents of FP and EFP, and enriched Gene Ontology categories also differed. To explore quantitative differences in the proteomes, we developed multiple reaction monitoring methods for cucumber proteins that are representative markers for FP or EFP and assessed exudate composition at different times after tissue cutting. Based on failure to detect FP markers in exudate samples, we conclude that FP is blocked very rapidly and therefore makes a minimal contribution to the exudates. Overall, the highly divergent contents of FP and EFP indicate that they are substantially independent vascular compartments.
Collapse
Affiliation(s)
| | - Ioannis Filippis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Mark H Bennett
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Colin G N Turnbull
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
11
|
Barbaglia AM, Tamot B, Greve V, Hoffmann-Benning S. Phloem Proteomics Reveals New Lipid-Binding Proteins with a Putative Role in Lipid-Mediated Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:563. [PMID: 27200036 PMCID: PMC4849433 DOI: 10.3389/fpls.2016.00563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 05/13/2023]
Abstract
Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three proteins are indeed lipid-binding and act in the vasculature possibly in a function related to long-distance signaling, the three proteins do not act in the same but rather in distinct pathways. It also points toward PLAFP as a prime candidate to investigate long-distance lipid signaling in the plant drought response.
Collapse
Affiliation(s)
| | | | | | - Susanne Hoffmann-Benning
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
12
|
Du B, Wei Z, Wang Z, Wang X, Peng X, Du B, Chen R, Zhu L, He G. Phloem-exudate proteome analysis of response to insect brown plant-hopper in rice. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:13-22. [PMID: 26072143 DOI: 10.1016/j.jplph.2015.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/12/2015] [Accepted: 03/16/2015] [Indexed: 05/23/2023]
Abstract
Brown plant-hopper (Nilaparvata lugens Stål, BPH), one of the most devastating agricultural insect pests of rice throughout Asia, ingests nutrients from rice sieve tubes and causes a dramatic yield loss. Planting resistant variety is an efficient and economical way to control this pest. Understanding the mechanisms of host resistance is extremely valuable for molecular design of resistant rice variety. Here, we used an iTRAQ-based quantitative proteomics approach to perform analysis of protein expression profiles in the phloem exudates of BPH-resistant and susceptible rice plants following BPH infestation. A total of 238 proteins were identified, most of which were previously described to be present in the phloem of rice and other plants. The expression of genes for selected proteins was confirmed using a laser capture micro-dissection method and RT-PCR. The mRNAs for three proteins, RGAP, TCTP, and TRXH, were further analyzed by using in situ mRNA hybridization and localized in the phloem cells. Our results showed that BPH feeding induced significant changes in the abundance of proteins in phloem sap of rice involved in multiple pathways, including defense signal transduction, redox regulation, and carbohydrate and protein metabolism, as well as cell structural proteins. The results presented provide new insights into rice resistance mechanisms and should facilitate the breeding of novel elite BPH-resistant rice varieties.
Collapse
Affiliation(s)
- Ba Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhe Wei
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhanqi Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoxiao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinxin Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
13
|
Serra-Soriano M, Navarro JA, Genoves A, Pallás V. Comparative proteomic analysis of melon phloem exudates in response to viral infection. J Proteomics 2015; 124:11-24. [PMID: 25892132 DOI: 10.1016/j.jprot.2015.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/03/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Phloem vasculature is the route that most plant viruses use to spread widely around the plant. In addition, phloem sap transports signals that trigger systemic defense responses to infection. We investigated the proteome-level changes that occur in phloem sap during virus infection using the 2D-DIGE technique. Total proteins were extracted from phloem exudates of healthy and Melon necrotic spot virus infected melon plants and analyzed by 2D-DIGE. A total of 1046 spots were detected but only 25 had significant changes in abundance. After mass spectrometry, 19 different proteins corresponding to 22 spots were further identified (13 of them up-accumulated and 9 down-accumulated). Most of them were involved in controlling redox balance and cell death. Only two of the differentially altered proteins had never been described to be present in the phloem before: a carboxylesterase and the fumarylacetoacetate hydrolase 1, both considered negative regulators of cell death. RT-PCR analysis of phloem sap RNAs revealed that the transcripts corresponding to some of the identified protein could be also loaded into the sieve elements. The impact of these proteins in the host response against viral infections and the potential involvement in regulating development, growth and stress response in melon plants is discussed. BIOLOGICAL SIGNIFICANCE Despite the importance of phloem as an integrative pathway for resource distribution, signaling and plant virus transport little is known about the modifications induced by these pathogens in phloem sap proteome. Only one previous study has actually examined the phloem sap proteome during viral infection using conventional two-dimensional electrophoresis. Since the major limitation of this technique has been its low sensitivity, the authors only identified five phloem proteins with altered abundance. To circumvent this issue we use two-dimensional difference in-gel electrophoresis (2D DIGE) technique, which combined with DeCyder Differential Analysis Software allows a more accurate and sensitive quantitative analysis than with conventional 2D PAGE. We identified 19 different proteins which accumulation in phloem sap was altered during a compatible plant virus infection including redox and hypersensitivity response-related proteins. Therefore, this work would help to understand the basic processes that occur in phloem during plant-virus interaction.
Collapse
Affiliation(s)
- Marta Serra-Soriano
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - Ainhoa Genoves
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| |
Collapse
|
14
|
Witzel K, Neugart S, Ruppel S, Schreiner M, Wiesner M, Baldermann S. Recent progress in the use of 'omics technologies in brassicaceous vegetables. FRONTIERS IN PLANT SCIENCE 2015; 6:244. [PMID: 25926843 PMCID: PMC4396356 DOI: 10.3389/fpls.2015.00244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/26/2015] [Indexed: 05/21/2023]
Abstract
Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub-optimal irradiation. This review covers recent applications of 'omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality.
Collapse
Affiliation(s)
- Katja Witzel
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Susanne Neugart
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Silke Ruppel
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Monika Schreiner
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Melanie Wiesner
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Susanne Baldermann
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
- Institute of Nutritional Science, University of PotsdamNuthetal, Germany
| |
Collapse
|
15
|
Muneer S, Ko CH, Soundararajan P, Manivnnan A, Park YG, Jeong BR. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities. PLoS One 2015; 10:e0120899. [PMID: 25789769 PMCID: PMC4366178 DOI: 10.1371/journal.pone.0120899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/27/2015] [Indexed: 01/11/2023] Open
Abstract
Although grafting is broadly used in the production of crops, no information is available about the proteins involved in vascular connections between rootstock and scion. Similarly, proteome changes under the light intensities widely used for grafted seedlings are of practical use. The objective of this study was to determine the proteome of vascular connections using watermelon (Citrullus vulgaris Schrad.) ‘Sambok Honey’ and ‘Speed’ as the scion and bottle gourd (Lagenaria siceraria Stanld.) ‘RS Dongjanggun’ as the rootstock grown under different light intensities (25, 50, 75 and 100 μmol m−2 s−1). Our proteomic analysis revealed 24 and 27 differentially expressed proteins in ‘Sambok Honey’ and ‘Speed’, respectively, under different light intensities. The identified proteins were largely involved in ion binding, amino acid metabolism, transcriptional regulation and defense response. The enhancement of ion-binding, transcriptional regulation, amino acid metabolism, and defense response proteins suggests a strengthening of the connection between the rootstock and scion under high light intensity. Indeed, the accumulation of key enzymes in the biological processes described above appears to play an important role in the vascular connections of grafted seedlings. Moreover, it appears that 100 μmol m−2 s−1 results in better protein expression responses in grafted seedlings.
Collapse
Affiliation(s)
- Sowbiya Muneer
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea
| | - Chung Ho Ko
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea
| | | | - Abinaya Manivnnan
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea
| | - Yoo Gyeong Park
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660–701, Korea
| | - Byoung Ryong Jeong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 660–701, Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660–701, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, 660–701, Korea
- * E-mail:
| |
Collapse
|
16
|
Capriotti AL, Cavaliere C, Piovesana S, Stampachiacchiere S, Ventura S, Zenezini Chiozzi R, Laganà A. Characterization of quinoa seed proteome combining different protein precipitation techniques: Improvement of knowledge of nonmodel plant proteomics. J Sep Sci 2015; 38:1017-25. [PMID: 25580831 DOI: 10.1002/jssc.201401319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/19/2014] [Accepted: 12/25/2014] [Indexed: 12/21/2022]
Abstract
A shotgun proteomics approach was used to characterize the quinoa seed proteome. To obtain comprehensive proteomic data from quinoa seeds three different precipitation procedures were employed: MeOH/CHCl3 /double-distilled H2 O, acetone either alone or with trichloroacetic acid; the isolated proteins were then in-solution digested and the resulting peptides were analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. However, since quinoa is a nonmodel plant species, only a few protein sequences are included in the most widely known protein sequence databases. To improve the data reliability a UniProt subdatabase, containing only proteins of Caryophillales order, was used. A total of 352 proteins were identified and evaluated both from a qualitative and quantitative point of view. This combined approach is certainly useful to increase the final number of identifications, but no particular class of proteins was extracted and identified in spite of the different chemistries and the different precipitation protocols. However, with respect to the other two procedures, from the relative quantitative analysis, based on the number of spectral counts, the trichloroacetic acid/acetone protocol was the best procedure for sample handling and quantitative protein extraction. This study could pave the way to further high-throughput studies on Chenopodium Quinoa.
Collapse
|
17
|
Hu J, Rampitsch C, Bykova NV. Advances in plant proteomics toward improvement of crop productivity and stress resistancex. FRONTIERS IN PLANT SCIENCE 2015; 6:209. [PMID: 25926838 PMCID: PMC4396383 DOI: 10.3389/fpls.2015.00209] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/16/2015] [Indexed: 05/14/2023]
Abstract
Abiotic and biotic stresses constrain plant growth and development negatively impacting crop production. Plants have developed stress-specific adaptations as well as simultaneous responses to a combination of various abiotic stresses with pathogen infection. The efficiency of stress-induced adaptive responses is dependent on activation of molecular signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification (PTM) of proteins primarily associated with defense mechanisms. In this review, we summarize and evaluate the contribution of proteomic studies to our understanding of stress response mechanisms in different plant organs and tissues. Advanced quantitative proteomic techniques have improved the coverage of total proteomes and sub-proteomes from small amounts of starting material, and characterized PTMs as well as protein-protein interactions at the cellular level, providing detailed information on organ- and tissue-specific regulatory mechanisms responding to a variety of individual stresses or stress combinations during plant life cycle. In particular, we address the tissue-specific signaling networks localized to various organelles that participate in stress-related physiological plasticity and adaptive mechanisms, such as photosynthetic efficiency, symbiotic nitrogen fixation, plant growth, tolerance and common responses to environmental stresses. We also provide an update on the progress of proteomics with major crop species and discuss the current challenges and limitations inherent to proteomics techniques and data interpretation for non-model organisms. Future directions in proteomics research toward crop improvement are further discussed.
Collapse
Affiliation(s)
- Junjie Hu
- Department of Biology, Memorial University of Newfoundland, St. John’sNL, Canada
- Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, MordenMB, Canada
| | - Christof Rampitsch
- Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, MordenMB, Canada
| | - Natalia V. Bykova
- Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, MordenMB, Canada
- *Correspondence: Natalia V. Bykova, Cereal Proteomics, Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5, Canada
| |
Collapse
|