1
|
Liu J, Zhao X, Cheng H, Guo Y, Ni X, Wang L, Sun G, Wen X, Chen J, Wang J, An J, Guo X, Shi Z, Li H, Wang R, Zhao M, Liao X, Wang Y, Zheng P, Wang M, Sun J. Comprehensive screening of industrially relevant components at genome scale using a high-quality gene overexpression collection of Corynebacterium glutamicum. Trends Biotechnol 2024:S0167-7799(24)00281-6. [PMID: 39455323 DOI: 10.1016/j.tibtech.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Development of efficient microbial strains for biomanufacturing requires deep understanding of the biology and functional components responsible for the synthesis, transport, and tolerance of the target compounds. A high-quality controllable gene overexpression strain collection was constructed for the industrial workhorse Corynebacterium glutamicum covering 99.7% of its genes. The collection was then used for comprehensive screening of components relevant to biomanufacturing features. In total, 15 components endowing cells with improved hyperosmotic tolerance and l-lysine productivity were identified, including novel transcriptional factors and DNA repair proteins. Systematic interrogation of a subset of the collection revealed efficient and specific exporters functioning in both C. glutamicum and Escherichia coli. Application of the new exporters was showcased to construct a strain with the highest l-threonine production level reported for C. glutamicum (75.1 g/l and 1.5 g/l·h) thus far. The genome-scale gene overexpression collection will serve as a valuable resource for fundamental biological studies and for developing industrial microorganisms for producing amino acids and other biochemicals.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaojia Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijiao Cheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yanmei Guo
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaomeng Ni
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Lixian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Guannan Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jin Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jingjing An
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xuan Guo
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhenkun Shi
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Haoran Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Ruoyu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Muqiang Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaoping Liao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Siziya IN, Lim HJ, Baek S, Lee S, Seo MJ. Mannosidase-inhibiting iminosugar production by recombinant Corynebacterium glutamicum harboring the 1-deoxynojirimycin biosynthetic gene cluster. Int J Biol Macromol 2024; 278:134858. [PMID: 39163968 DOI: 10.1016/j.ijbiomac.2024.134858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
The iminosugar class of carbohydrate-active enzyme inhibitors has therapeutic applications in metabolic syndrome conditions, viral infections and cancer. Compared to chemical synthesis, microbial iminosugar production has benefits of cost, sustainability and optimization. In this study, the 1-deoxynojirimycin (DNJ) biosynthetic gene cluster from Bacillus velezensis MBLB0692, and its individual genes, were cloned into Corynebacterium glutamicum (Cg). Characterizations of the encoded aminotransferase GabT1, phosphatase Yktc1, and dehydrogenase GutB1, were performed with purified enzymes and whole cell biocatalysts bearing individual and clustered (TYB) genes. GabT1 showed a variable pattern in its half-reaction with a slow turnover. GutB1 was an alkaline dehydrogenase with a broad substrate specificity and no divalent ion dependency while the zinc-dependent phosphatase Yktc1 had substrate specificity that was both pH- and ion-dependent. The CgYktc1 and CgGutB1 whole cells were viable biocatalysts with wider ranges of substrates than their enzyme counterparts. The CgTYB cells produced mannosidase-inhibiting iminosugars corresponding to mannojirimycin dehydrate (162 m/z) and deoxymannojirimycin (164 m/z). Mannosidase inhibitors have been found to be effective in treating orphan diseases, cancer and viral infections, and their biosynthesis by recombinant C. glutamicum can be optimized for industrial production and novel drug development.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyo Jung Lim
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea
| | - Suhyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sanggil Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea; Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
3
|
Pérez-García F, Brito LF, Bakken TI, Brautaset T. Riboflavin overproduction from diverse feedstocks with engineered Corynebacterium glutamicum. Biofabrication 2024; 16:045012. [PMID: 38996414 DOI: 10.1088/1758-5090/ad628e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Riboflavin overproduction byCorynebacterium glutamicumwas achieved by screening synthetic operons, enabling fine-tuned expression of the riboflavin biosynthetic genesribGCAH.The synthetic operons were designed by means of predicted translational initiation rates of each open reading frame, with the best-performing selection enabling riboflavin overproduction without negatively affecting cell growth. Overexpression of the fructose-1,6-bisphosphatase (fbp) and 5-phosphoribosyl 1-pyrophosphate aminotransferase (purF) encoding genes was then done to redirect the metabolic flux towards the riboflavin precursors. The resulting strain produced 8.3 g l-1of riboflavin in glucose-based fed-batch fermentations, which is the highest reported riboflavin titer withC. glutamicum. Further genetic engineering enabled both xylose and mannitol utilization byC. glutamicum, and we demonstrated riboflavin overproduction with the xylose-rich feedstocks rice husk hydrolysate and spent sulfite liquor, and the mannitol-rich feedstock brown seaweed hydrolysate. Remarkably, rice husk hydrolysate provided 30% higher riboflavin yields compared to glucose in the bioreactors.
Collapse
Affiliation(s)
- Fernando Pérez-García
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Luciana Fernandes Brito
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thea Isabel Bakken
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Oliveira-Filho ER, Rodionov DA, Hanson AD. Comparative Genomic and Genetic Evidence on a Role for the OarX Protein in Thiamin Salvage. ACS OMEGA 2024; 9:28888-28894. [PMID: 38973919 PMCID: PMC11223231 DOI: 10.1021/acsomega.4c03514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Salvage pathways for thiamin and its thiazole and pyrimidine moieties are poorly characterized compared to synthesis pathways. A candidate salvage gene is oarX, which encodes a short-chain dehydrogenase/reductase. In diverse bacteria, oarX clusters on the chromosome with genes of thiamin synthesis, salvage, or transport and is preceded by a thiamin pyrophosphate riboswitch. Thiamin and its moieties can undergo oxidations that convert a side-chain hydroxymethyl group to a carboxyl group, or the thiazole ring to a thiazolone, causing a loss of biological activity. To test if OarX participates in salvage of the carboxyl or thiazolone products, we used a genetic approach in Corynebacterium glutamicum ATCC 14067, which is auxotrophic for thiamin's pyrimidine moiety. This strain could not utilize the pyrimidine carboxyl derivative. This excluded a role in salvaging this product and narrowed the function search to metabolism of the carboxyl or thiazolone derivatives of thiamin or its thiazole moiety. However, a ΔthiG (thiazole auxotroph) strain was not rescued by any of these derivatives. Nor did deleting oarX affect rescue by the physiological pyrimidine and thiazole precursors of thiamin. These findings reinforce the genomic evidence that OarX has a function in thiamin metabolism and rule out five logical possibilities for what this function is.
Collapse
Affiliation(s)
- Edmar R. Oliveira-Filho
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| | - Dmitry A. Rodionov
- Infectious
and Inflammatory Diseases Center, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Andrew D. Hanson
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
Paul S, Olymon K, Martinez GS, Sarkar S, Yella VR, Kumar A. MLDSPP: Bacterial Promoter Prediction Tool Using DNA Structural Properties with Machine Learning and Explainable AI. J Chem Inf Model 2024; 64:2705-2719. [PMID: 38258978 DOI: 10.1021/acs.jcim.3c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Bacterial promoters play a crucial role in gene expression by serving as docking sites for the transcription initiation machinery. However, accurately identifying promoter regions in bacterial genomes remains a challenge due to their diverse architecture and variations. In this study, we propose MLDSPP (Machine Learning and Duplex Stability based Promoter prediction in Prokaryotes), a machine learning-based promoter prediction tool, to comprehensively screen bacterial promoter regions in 12 diverse genomes. We leveraged biologically relevant and informative DNA structural properties, such as DNA duplex stability and base stacking, and state-of-the-art machine learning (ML) strategies to gain insights into promoter characteristics. We evaluated several machine learning models, including Support Vector Machines, Random Forests, and XGBoost, and assessed their performance using accuracy, precision, recall, specificity, F1 score, and MCC metrics. Our findings reveal that XGBoost outperformed other models and current state-of-the-art promoter prediction tools, namely Sigma70pred and iPromoter2L, achieving F1-scores >95% in most systems. Significantly, the use of one-hot encoding for representing nucleotide sequences complements these structural features, enhancing our XGBoost model's predictive capabilities. To address the challenge of model interpretability, we incorporated explainable AI techniques using Shapley values. This enhancement allows for a better understanding and interpretation of the predictions of our model. In conclusion, our study presents MLDSPP as a novel, generic tool for predicting promoter regions in bacteria, utilizing original downstream sequences as nonpromoter controls. This tool has the potential to significantly advance the field of bacterial genomics and contribute to our understanding of gene regulation in diverse bacterial systems.
Collapse
Affiliation(s)
- Subhojit Paul
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Kaushika Olymon
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Gustavo Sganzerla Martinez
- Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
- Pediatrics, Izaak Walton Killam (IWK) Health Center, Canadian Center for Vaccinology (CCfV), Halifax, Nova Scotia B3H 4H7, Canada
| | - Sharmilee Sarkar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur 522302, Andhra Pradesh, India
| | - Aditya Kumar
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
6
|
Göttl VL, Meyer F, Schmitt I, Persicke M, Peters-Wendisch P, Wendisch VF, Henke NA. Enhancing astaxanthin biosynthesis and pathway expansion towards glycosylated C40 carotenoids by Corynebacterium glutamicum. Sci Rep 2024; 14:8081. [PMID: 38582923 PMCID: PMC10998873 DOI: 10.1038/s41598-024-58700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/31/2024] [Indexed: 04/08/2024] Open
Abstract
Astaxanthin, a versatile C40 carotenoid prized for its applications in food, cosmetics, and health, is a bright red pigment with powerful antioxidant properties. To enhance astaxanthin production in Corynebacterium glutamicum, we employed rational pathway engineering strategies, focused on improving precursor availability and optimizing terminal oxy-functionalized C40 carotenoid biosynthesis. Our efforts resulted in an increased astaxanthin precursor supply with 1.5-fold higher β-carotene production with strain BETA6 (18 mg g-1 CDW). Further advancements in astaxanthin production were made by fine-tuning the expression of the β-carotene hydroxylase gene crtZ and β-carotene ketolase gene crtW, yielding a nearly fivefold increase in astaxanthin (strain ASTA**), with astaxanthin constituting 72% of total carotenoids. ASTA** was successfully transferred to a 2 L fed-batch fermentation with an enhanced titer of 103 mg L-1 astaxanthin with a volumetric productivity of 1.5 mg L-1 h-1. Based on this strain a pathway expansion was achieved towards glycosylated C40 carotenoids under heterologous expression of the glycosyltransferase gene crtX. To the best of our knowledge, this is the first time astaxanthin-β-D-diglucoside was produced with C. glutamicum achieving high titers of microbial C40 glucosides of 39 mg L-1. This study showcases the potential of pathway engineering to unlock novel C40 carotenoid variants for diverse industrial applications.
Collapse
Affiliation(s)
- Vanessa L Göttl
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Florian Meyer
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Ina Schmitt
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Marcus Persicke
- CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
- Omics Core Facility - Proteom-Metabolom Unit (In Development), Bielefeld University, 33615, Bielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany
| | - Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615, Bielefeld, Germany.
- CZS Junior Research Group, Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany.
| |
Collapse
|
7
|
Wendisch VF, Brito LF, Passaglia LM. Genome-based analyses to learn from and about Paenibacillus sonchi genomovar Riograndensis SBR5T. Genet Mol Biol 2024; 46:e20230115. [PMID: 38224489 PMCID: PMC10789242 DOI: 10.1590/1678-4685-gmb-2023-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024] Open
Abstract
Paenibacillus sonchi genomovar Riograndensis SBR5T is a plant growth-promoting rhizobacterium (PGPR) isolated in the Brazilian state of Rio Grande do Sul from the rhizosphere of Triticum aestivum. It fixes nitrogen, produces siderophores as well as the phytohormone indole-3-acetic acid, solubilizes phosphate and displays antagonist activity against Listeria monocytogenes and Pectobacterium carotovorum. Comprehensive omics analysis and the development of genetic tools are key to characterizing and engineering such non-model microorganisms. Therefore, the complete genome of SBR5T was sequenced, and shown to encode 6,705 proteins, 87 tRNAs, and 27 rRNAs and it enabled a landscape transcriptome analysis that unveiled conserved transcriptional and translational patterns and characterized operon structures and riboswitches. The pangenome of P. sonchi species is open with a stable core pangenome. At the same time, the analysis of genes coding for nitrogenases revealed that the trait of nitrogen fixation is sparse within the Paenibacillaceae family and the presence of Fe-only nitrogenase in the P. sonchi group was exclusive to SBR5T. The development of genetic tools for SBR5T enabled genetic transformation, plasmid construction for constitutive and inducible gene expression, and gene repression using the CRISPRi system. Altogether, the work with P. sonchi can guide the study of non-model bacteria with economic potential.
Collapse
Affiliation(s)
- Volker F. Wendisch
- Bielefeld University, Faculty of Biology, Genetics of Prokaryotes, Bielefeld, Germany
- Bielefeld University, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Luciana F. Brito
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Trondheim, Norway
| | - Luciane M.P. Passaglia
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Halle L, Hollmann N, Tenhaef N, Mbengi L, Glitz C, Wiechert W, Polen T, Baumgart M, Bott M, Noack S. Robotic workflows for automated long-term adaptive laboratory evolution: improving ethanol utilization by Corynebacterium glutamicum. Microb Cell Fact 2023; 22:175. [PMID: 37679814 PMCID: PMC10483779 DOI: 10.1186/s12934-023-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Adaptive laboratory evolution (ALE) is known as a powerful tool for untargeted engineering of microbial strains and genomics research. It is particularly well suited for the adaptation of microorganisms to new environmental conditions, such as alternative substrate sources. Since the probability of generating beneficial mutations increases with the frequency of DNA replication, ALE experiments are ideally free of constraints on the required duration of cell proliferation. RESULTS Here, we present an extended robotic workflow for performing long-term evolution experiments based on fully automated repetitive batch cultures (rbALE) in a well-controlled microbioreactor environment. Using a microtiter plate recycling approach, the number of batches and thus cell generations is technically unlimited. By applying the validated workflow in three parallel rbALE runs, ethanol utilization by Corynebacterium glutamicum ATCC 13032 (WT) was significantly improved. The evolved mutant strain WT_EtOH-Evo showed a specific ethanol uptake rate of 8.45 ± 0.12 mmolEtOH gCDW-1 h-1 and a growth rate of 0.15 ± 0.01 h-1 in lab-scale bioreactors. Genome sequencing of this strain revealed a striking single nucleotide variation (SNV) upstream of the ald gene (NCgl2698, cg3096) encoding acetaldehyde dehydrogenase (ALDH). The mutated basepair was previously predicted to be part of the binding site for the global transcriptional regulator GlxR, and re-engineering demonstrated that the identified SNV is key for enhanced ethanol assimilation. Decreased binding of GlxR leads to increased synthesis of the rate-limiting enzyme ALDH, which was confirmed by proteomics measurements. CONCLUSIONS The established rbALE technology is generally applicable to any microbial strain and selection pressure that fits the small-scale cultivation format. In addition, our specific results will enable improved production processes with C. glutamicum from ethanol, which is of particular interest for acetyl-CoA-derived products.
Collapse
Affiliation(s)
- Lars Halle
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Niels Hollmann
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Niklas Tenhaef
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Lea Mbengi
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Christiane Glitz
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Meike Baumgart
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, 52425, Jülich, Germany.
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
9
|
Schmidt P, Brandt D, Busche T, Kalinowski J. Characterization of Bacterial Transcriptional Regulatory Networks in Escherichia coli through Genome-Wide In Vitro Run-Off Transcription/RNA-seq (ROSE). Microorganisms 2023; 11:1388. [PMID: 37374890 DOI: 10.3390/microorganisms11061388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
The global characterization of transcriptional regulatory networks almost exclusively uses in vivo conditions, thereby providing a snapshot on multiple regulatory interactions at the same time. To complement these approaches, we developed and applied a method for characterizing bacterial promoters genome-wide by in vitro transcription coupled to transcriptome sequencing specific for native 5'-ends of transcripts. This method, called ROSE (run-off transcription/RNA-sequencing), only requires chromosomal DNA, ribonucleotides, RNA polymerase (RNAP) core enzyme, and a specific sigma factor, recognizing the corresponding promoters, which have to be analyzed. ROSE was performed on E. coli K-12 MG1655 genomic DNA using Escherichia coli RNAP holoenzyme (including σ70) and yielded 3226 transcription start sites, 2167 of which were also identified in in vivo studies, and 598 were new. Many new promoters not yet identified by in vivo experiments might be repressed under the tested conditions. Complementary in vivo experiments with E. coli K-12 strain BW25113 and isogenic transcription factor gene knockout mutants of fis, fur, and hns were used to test this hypothesis. Comparative transcriptome analysis demonstrated that ROSE could identify bona fide promoters that were apparently repressed in vivo. In this sense, ROSE is well-suited as a bottom-up approach for characterizing transcriptional networks in bacteria and ideally complementary to top-down in vivo transcriptome studies.
Collapse
Affiliation(s)
- Pascal Schmidt
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - David Brandt
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| |
Collapse
|
10
|
Zuchowski R, Schito S, Neuheuser F, Menke P, Berger D, Hollmann N, Gujar S, Sundermeyer L, Mack C, Wirtz A, Weiergräber OH, Polen T, Bott M, Noack S, Baumgart M. Discovery of novel amino acid production traits by evolution of synthetic co-cultures. Microb Cell Fact 2023; 22:71. [PMID: 37061714 PMCID: PMC10105947 DOI: 10.1186/s12934-023-02078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Amino acid production features of Corynebacterium glutamicum were extensively studied in the last two decades. Many metabolic pathways, regulatory and transport principles are known, but purely rational approaches often provide only limited progress in production optimization. We recently generated stable synthetic co-cultures, termed Communities of Niche-optimized Strains (CoNoS), that rely on cross-feeding of amino acids for growth. This setup has the potential to evolve strains with improved production by selection of faster growing communities. RESULTS Here we performed adaptive laboratory evolution (ALE) with a CoNoS to identify mutations that are relevant for amino acid production both in mono- and co-cultures. During ALE with the CoNoS composed of strains auxotrophic for either L-leucine or L-arginine, we obtained a 23% growth rate increase. Via whole-genome sequencing and reverse engineering, we identified several mutations involved in amino acid transport that are beneficial for CoNoS growth. The L-leucine auxotrophic strain carried an expression-promoting mutation in the promoter region of brnQ (cg2537), encoding a branched-chain amino acid transporter in combination with mutations in the genes for the Na+/H+-antiporter Mrp1 (cg0326-cg0321). This suggested an unexpected link of Mrp1 to L-leucine transport. The L-arginine auxotrophic partner evolved expression-promoting mutations near the transcriptional start site of the yet uncharacterized operon argTUV (cg1504-02). By mutation studies and ITC, we characterized ArgTUV as the only L-arginine uptake system of C. glutamicum with an affinity of KD = 30 nM. Finally, deletion of argTUV in an L-arginine producer strain resulted in a faster and 24% higher L-arginine production in comparison to the parental strain. CONCLUSION Our work demonstrates the power of the CoNoS-approach for evolution-guided identification of non-obvious production traits, which can also advance amino acid production in monocultures. Further rounds of evolution with import-optimized strains can potentially reveal beneficial mutations also in metabolic pathway enzymes. The approach can easily be extended to all kinds of metabolite cross-feeding pairings of different organisms or different strains of the same organism, thereby enabling the identification of relevant transport systems and other favorable mutations.
Collapse
Affiliation(s)
- Rico Zuchowski
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Simone Schito
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Friederike Neuheuser
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Philipp Menke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Berger
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Niels Hollmann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Srushti Gujar
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Lea Sundermeyer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Christina Mack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Oliver H Weiergräber
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
11
|
Busche T, Dostálová H, Rucká L, Holátko J, Barvík I, Štěpánek V, Pátek M, Kalinowski J. Overlapping SigH and SigE sigma factor regulons in Corynebacterium glutamicum. Front Microbiol 2023; 13:1059649. [PMID: 36925999 PMCID: PMC10012870 DOI: 10.3389/fmicb.2022.1059649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/15/2022] [Indexed: 03/06/2023] Open
Abstract
The sigma H (σΗ) and sigma E (σE) subunits of Corynebacterium glutamicum RNA polymerase belong to Group 4 of sigma factors, also called extracytoplasmic function (ECF) sigma factors. Genes of the C. glutamicum σΗ regulon that are involved in heat and oxidative stress response have already been defined, whereas the genes of the σE regulon, which is involved in cell surface stress response, have not been explored until now. Using the C. glutamicum RES167 strain and its derivative C. glutamicum ΔcseE with a deletion in the anti-σΕ gene, differential gene expression was analyzed by RNA sequencing. We found 296 upregulated and 398 downregulated genes in C. glutamicum ΔcseE compared to C. glutamicum RES167. To confirm the functional link between σΕ and the corresponding promoters, we tested selected promoters using the in vivo two-plasmid system with gfpuv as a reporter gene and by in vitro transcription. Analyses with RNAP+σΗ and RNAP+σΕ, which were previously shown to recognize similar promoters, proved that the σΗ and σE regulons significantly overlap. The σE-controlled genes were found to be involved for example in protein quality control (dnaK, dnaJ2, clpB, and clpC), the regulation of Clp proteases (clgR), and membrane integrity maintenance. The single-promoter analyses with σΗ and σΕ revealed that there are two groups of promoters: those which are exclusively σΗ-specific, and the other group of promoters, which are σΗ/σE-dependent. No exclusively σE-dependent promoter was detected. We defined the consensus sequences of exclusively σΗ-regulated promotors to be -35 GGAAt and - 10 GTT and σΗ/σE-regulated promoters to be -35 GGAAC and - 10 cGTT. Fifteen genes were found to belong to the σΗ/σΕ regulon. Homology modeling showed that there is a specific interaction between Met170 in σΗ and the nucleotides -31 and - 30 within the non-coding strand (AT or CT) of the σΗ-dependent promoters. In σE, Arg185 was found to interact with the nucleotides GA at the same positions in the σE-dependent promoters.
Collapse
Affiliation(s)
- Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Medical School East Westphalia-Lippe, Bielefeld University, Bielefeld, Germany
| | - Hana Dostálová
- Institute of Microbiology, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Lenka Rucká
- Institute of Microbiology, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Jiří Holátko
- Institute of Microbiology, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Ivan Barvík
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czechia
| | - Václav Štěpánek
- Institute of Microbiology, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Miroslav Pátek
- Institute of Microbiology, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
12
|
Martinez M, Petit J, Leyva A, Sogues A, Megrian D, Rodriguez A, Gaday Q, Ben Assaya M, Portela M, Haouz A, Ducret A, Grangeasse C, Alzari PM, Durán R, Wehenkel A. Eukaryotic-like gephyrin and cognate membrane receptor coordinate corynebacterial cell division and polar elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526586. [PMID: 36778425 PMCID: PMC9915583 DOI: 10.1101/2023.02.01.526586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The order Corynebacteriales includes major industrial and pathogenic actinobacteria such as Corynebacterium glutamicum or Mycobacterium tuberculosis . Their elaborate multi-layered cell wall, composed primarily of the mycolyl-arabinogalactan-peptidoglycan complex, and their polar growth mode impose a stringent coordination between the septal divisome, organized around the tubulin-like protein FtsZ, and the polar elongasome, assembled around the tropomyosin-like protein Wag31. Here, we report the identification of two new divisome members, a gephyrin-like repurposed molybdotransferase (GLP) and its membrane receptor (GLPR). We show that the interplay between the GLPR/GLP module, FtsZ and Wag31 is crucial for orchestrating cell cycle progression. Our results provide a detailed molecular understanding of the crosstalk between two essential machineries, the divisome and elongasome, and reveal that Corynebacteriales have evolved a protein scaffold to control cell division and morphogenesis similar to the gephyrin/GlyR system that in higher eukaryotes mediates synaptic signaling through network organization of membrane receptors and the microtubule cytoskeleton.
Collapse
Affiliation(s)
- M. Martinez
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - J. Petit
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - A. Leyva
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A. Sogues
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - D. Megrian
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - A. Rodriguez
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Q. Gaday
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - M. Ben Assaya
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - M. Portela
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A. Haouz
- Plate-forme de cristallographie, C2RT-Institut Pasteur, CNRS, UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - A. Ducret
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - C. Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - P. M. Alzari
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| | - R. Durán
- Analytical Biochemistry and Proteomics Unit, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - A. Wehenkel
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, F-75015 Paris, France
| |
Collapse
|
13
|
Reich SJ, Goldbeck O, Lkhaasuren T, Weixler D, Weiß T, Eikmanns BJ. C-di-AMP Is a Second Messenger in Corynebacterium glutamicum That Regulates Expression of a Cell Wall-Related Peptidase via a Riboswitch. Microorganisms 2023; 11:296. [PMID: 36838266 PMCID: PMC9960051 DOI: 10.3390/microorganisms11020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger discovered in Bacillus subtilis and involved in potassium homeostasis, cell wall maintenance and/or DNA stress response. As the role of c-di-AMP has been mostly studied in Firmicutes, we sought to increase the understanding of its role in Actinobacteria, namely in Corynebacterium glutamicum. This organism is a well-known industrial production host and a model organism for pathogens, such as C. diphtheriae or Mycobacterium tuberculosis. Here, we identify and analyze the minimal set of two C. glutamicum enzymes, the diadenylate cyclase DisA and the phosphodiesterase PdeA, responsible for c-di-AMP metabolism. DisA synthesizes c-di-AMP from two molecules of ATP, whereas PdeA degrades c-di-AMP, as well as the linear degradation intermediate phosphoadenylyl-(3'→5')-adenosine (pApA) to two molecules of AMP. Here, we show that a ydaO/kimA-type c-di-AMP-dependent riboswitch controls the expression of the strictly regulated cell wall peptidase gene nlpC in C. glutamicum. In contrast to previously described members of the ydaO/kimA-type riboswitches, our results suggest that the C. glutamicum nlpC riboswitch likely affects the translation instead of the transcription of its downstream gene. Although strongly regulated by different mechanisms, we show that the absence of nlpC, the first known regulatory target of c-di-AMP in C. glutamicum, is not detrimental for this organism under the tested conditions.
Collapse
Affiliation(s)
- Sebastian J. Reich
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | | | - Dominik Weixler
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Tamara Weiß
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
14
|
Kim GY, Kim J, Park G, Kim HJ, Yang J, Seo SW. Synthetic biology tools for engineering Corynebacterium glutamicum. Comput Struct Biotechnol J 2023; 21:1955-1965. [PMID: 36942105 PMCID: PMC10024154 DOI: 10.1016/j.csbj.2023.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Corynebacterium glutamicum is a promising organism for the industrial production of amino acids, fuels, and various value-added chemicals. From the whole genome sequence release, C. glutamicum has been valuable in the field of industrial microbiology and biotechnology. Continuous discovery of genetic manipulations and regulation mechanisms has developed C. glutamicum as a synthetic biology platform chassis. This review summarized diverse genomic manipulation technologies and gene expression tools for static, dynamic, and multiplex control at transcription and translation levels. Moreover, we discussed the current challenges and applicable tools to C. glutamicum for future advancements.
Collapse
Affiliation(s)
- Gi Yeon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jinyoung Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Geunyung Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyeon Jin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jina Yang
- Department of Chemical Engineering, Jeju National University, 102, Jejudaehak-ro, Jeju-si, Jeju-do 63243, South Korea
- Corresponding author.
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Bio-MAX Institute, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Engineering Research Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Corresponding author at: School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
15
|
Heo YB, Hwang GH, Kang SW, Bae S, Woo HM. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects. Microbiol Spectr 2022; 10:e0376022. [PMID: 36374037 PMCID: PMC9769817 DOI: 10.1128/spectrum.03760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Genome editing technology is a powerful tool for programming microbial cell factories. However, rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of the bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories. To address the issues, we demonstrate the genome engineering of Corynebacterium glutamicum as a GC-rich model industrial bacterium by generating premature termination codons (PTCs) in desired genes using high-fidelity cytosine base editors (CBEs). Through this CBE-STOP approach of introducing specific cytosine conversions, we constructed several single-gene-inactivated strains for three genes (ldh, idsA, and pyc) with high base editing efficiencies of average 95.6% (n = 45, C6 position) and the highest success rate of up to 100% for PTCs and ultimately developed a strain with five genes (ldh, actA, ackA, pqo, and pta) that were inactivated sequentially for enhancing succinate production. Although these mutant strains showed the desired phenotypes, whole-genome sequencing (WGS) data revealed that genome-wide point mutations occurred in each strain and further accumulated according to the duration of CBE plasmids. To lower the undesirable mutations, high-fidelity CBEs (pCoryne-YE1-BE3 and pCoryne-BE3-R132E) was employed for single or multiplexed genome editing in C. glutamicum, resulting in drastically reduced sgRNA-independent off-targets. Thus, we provide a CRISPR-assisted bacterial genome engineering tool with an average high efficiency of 90.5% (n = 76, C5 or C6 position) at the desired targets. IMPORTANCE Rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories. To address the issues, we identified the DNA off-targets for single and multiple genome engineering of the industrial bacterium Corynebacterium glutamicum using whole-genome sequencing. Further, we developed the high-fidelity (HF)-CBE with significantly reduced off-targets with comparable efficiency and precision. We believe that our DNA off-target analysis and the HF-CBE can promote CRISPR-assisted genome engineering over conventional gene manipulation tools by providing a markerless genetic tool without need for a foreign DNA donor.
Collapse
Affiliation(s)
- Yu Been Heo
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Gue-Ho Hwang
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea
| | - Seok Won Kang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
16
|
Sundermeyer L, Bosco G, Gujar S, Brocker M, Baumgart M, Willbold D, Weiergräber OH, Bellinzoni M, Bott M. Characteristics of the GlnH and GlnX Signal Transduction Proteins Controlling PknG-Mediated Phosphorylation of OdhI and 2-Oxoglutarate Dehydrogenase Activity in Corynebacterium glutamicum. Microbiol Spectr 2022; 10:e0267722. [PMID: 36445153 PMCID: PMC9769921 DOI: 10.1128/spectrum.02677-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/05/2022] [Indexed: 12/03/2022] Open
Abstract
In Corynebacterium glutamicum the protein kinase PknG phosphorylates OdhI and thereby abolishes the inhibition of 2-oxoglutarate dehydrogenase activity by unphosphorylated OdhI. Our previous studies suggested that PknG activity is controlled by the periplasmic binding protein GlnH and the transmembrane protein GlnX, because ΔglnH and ΔglnX mutants showed a growth defect on glutamine similar to that of a ΔpknG mutant. We have now confirmed the involvement of GlnH and GlnX in the control of OdhI phosphorylation by analyzing the OdhI phosphorylation status and glutamate secretion in ΔglnH and ΔglnX mutants and by characterizing ΔglnX suppressor mutants. We provide evidence for GlnH being a lipoprotein and show by isothermal titration calorimetry that it binds l-aspartate and l-glutamate with moderate to low affinity, but not l-glutamine, l-asparagine, or 2-oxoglutarate. Based on a structural comparison with GlnH of Mycobacterium tuberculosis, two residues critical for the binding affinity were identified and verified. The predicted GlnX topology with four transmembrane segments and two periplasmic domains was confirmed by PhoA and LacZ fusions. A structural model of GlnX suggested that, with the exception of a poorly ordered N-terminal region, the entire protein is composed of α-helices and small loops or linkers, and it revealed similarities to other bacterial transmembrane receptors. Our results suggest that the GlnH-GlnX-PknG-OdhI-OdhA signal transduction cascade serves to adapt the flux of 2-oxoglutarate between ammonium assimilation via glutamate dehydrogenase and energy generation via the tricarboxylic acid (TCA) cycle to the availability of the amino group donors l-glutamate and l-aspartate in the environment. IMPORTANCE Actinobacteria comprise a large number of species playing important roles in biotechnology and medicine, such as Corynebacterium glutamicum, the major industrial amino acid producer, and Mycobacterium tuberculosis, the pathogen causing tuberculosis. Many actinobacteria use a signal transduction process in which the phosphorylation status of OdhI (corynebacteria) or GarA (mycobacteria) regulates the carbon flux at the 2-oxoglutarate node. Inhibition of 2-oxoglutarate dehydrogenase by unphosphorylated OdhI shifts the flux of 2-oxoglutarate from the TCA cycle toward glutamate formation and, thus, ammonium assimilation. Phosphorylation of OdhI/GarA is catalyzed by the protein kinase PknG, whose activity was proposed to be controlled by the periplasmic binding protein GlnH and the transmembrane protein GlnX. In this study, we combined genetic, biochemical, and structural modeling approaches to characterize GlnH and GlnX of C. glutamicum and confirm their roles in the GlnH-GlnX-PknG-OdhI-OdhA signal transduction cascade. These findings are relevant also to other Actinobacteria employing a similar control process.
Collapse
Affiliation(s)
- Lea Sundermeyer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Graziella Bosco
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Srushti Gujar
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
- IBI-7: Structural Biochemistry, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Melanie Brocker
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Dieter Willbold
- IBI-7: Structural Biochemistry, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Oliver H. Weiergräber
- IBI-7: Structural Biochemistry, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Marco Bellinzoni
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale, Paris, France
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
17
|
Choi WW, Jeong H, Kim Y, Lee HS. Gene nceA encodes a Ni/Co-sensing transcription factor to regulate metal efflux in Corynebacterium glutamicum. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865361. [PMID: 36460048 DOI: 10.1093/mtomcs/mfac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
The function of Corynebacterium glutamicum open reading frame (ORF) NCgl2684 (named nceA in this study), which was annotated to encode a metalloregulator, was assessed using physiological, genetic, and biochemical approaches. Cells with deleted-nceA (ΔnceA) showed a resistant phenotype to NiSO4 and CoSO4 and showed faster growth in minimal medium containing 20 μM NiSO4 or 10 μM CoSO4 than both the wild-type and nceA-overexpressing (P180-nceA) cells. In the ΔnceA strain, the transcription of the downstream-located ORF NCgl2685 (nceB), annotated to encode efflux protein, was increased approximately 4-fold, whereas gene transcription decreased down to 30% level in the P180-nceA strain. The transcriptions of the nceA and nceB genes were stimulated, even when as little as 5 nM NiSO4 was added to the growth medium. Protein NceA was able to bind DNA comprising the promoter region (from -14 to + 18) of the nceA--nceB operon. The protein-DNA interaction was abolished in the presence of 20 μM NiSO4, 50 μM CoSO4, or 50 μM CdSO4. Although manganese induced the transcription of the nceA and nceB genes, it failed to interrupt protein-DNA interaction. Simultaneously, the P180-nceA cells showed increased sensitivity to oxidants such as menadione, hydrogen peroxide, and cumene hydroperoxide, but not diamide. Collectively, our data show that NceA is a nickel- and cobalt-sensing transcriptional regulator that controls the transcription of the probable efflux protein-encoding nceB. The genes are able to suppress intracellular levels of nickel to prevent reactions, which can cause oxidative damage to cellular components.
Collapse
Affiliation(s)
- Won-Woo Choi
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 27136, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
18
|
Yang HD, Jeong H, Kim Y, Lee HS. The cysS gene (ncgl0127) of Corynebacterium glutamicum is required for sulfur assimilation and affects oxidative stress-responsive cysteine import. Res Microbiol 2022; 173:103983. [PMID: 35931248 DOI: 10.1016/j.resmic.2022.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
The OsnR protein functions as a transcriptional repressor of genes involved in redox-dependent stress responses. Here, we studied Corynebacterium glutamicum ORF ncgl0127 (referred to as cysS in this study), one of the target genes of OsnR, to reveal its role in osnR-mediated stress responses. The ΔcysS strain was found to be a cysteine auxotroph, and the transcription levels of the sulfur assimilatory genes and cysR, the master regulatory gene for sulfur assimilation, were low in this strain. Complementation of the strain with cysR transformed the strain into a cysteine prototroph. Cells challenged with oxidants or cysteine showed transcriptional stimulation of the cysS gene and decreased transcription of the ncgl2463 gene, which encodes a cysteine/cystine importer. The transcription of the ncgl2463 gene was increased in the ΔcysS strain and further stimulated by cysteine. Unlike the wild-type strain, ΔcysS cells grown with an excess amount of cysteine showed an oxidant- and alkylating agent-resistant phenotype, suggesting deregulated cysteine import. Collectively, our data suggest that the cysS gene plays a positive role in sulfur assimilation and a negative role in cysteine import, in particular in cells under oxidative stress.
Collapse
Affiliation(s)
- Han-Deul Yang
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea.
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 27136, Republic of Korea.
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
19
|
Ye Y, Zhong M, Zhang Z, Chen T, Shen Y, Lin Z, Wang Y. Genomic Iterative Replacements of Large Synthetic DNA Fragments in Corynebacterium glutamicum. ACS Synth Biol 2022; 11:1588-1599. [PMID: 35290032 DOI: 10.1021/acssynbio.1c00644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic genomics will advance our understanding of life and allow us to rebuild the genomes of industrial microorganisms for enhancing performances. Corynebacterium glutamicum, a Gram-positive bacterium, is an important industrial workhorse. However, its genome synthesis is impeded by the low efficiencies in DNA delivery and in genomic recombination/replacement. In the present study, we describe a genomic iterative replacement system based on RecET recombination for C. glutamicum, involving the successive integration of up to 10 kb DNA fragments obtained in vitro, and the transformants are selected by the alternative use of kanR and speR selectable markers. As a proof of concept, we systematically redesigned and replaced a 54.3 kb wild-type sequence of C. glutamicumATCC13032 with its 55.1 kb synthetic counterpart with several novel features, including decoupled genes, the standard PCRTags, and 20 loxPsym sites, which was for the first time incorporated into a bacterial genome. The resulting strain semi-synCG-A1 had a phenotype and fitness similar to the wild-type strain under various stress conditions. The stability of the synthetic genome region faithfully maintained over 100 generations of nonselective growth. Genomic deletions, inversions, and translocations occurred in the synthetic genome region upon induction of synthetic chromosome rearrangement and modification by loxP-mediated evolution (SCRaMbLE), revealing potential genetic flexibility for C. glutamicum. This strategy can be used for the synthesis of a larger region of the genome and facilitate the endeavors for metabolic engineering and synthetic biology of C. glutamicum.
Collapse
Affiliation(s)
- Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Minmin Zhong
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Zhanhua Zhang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Tai Chen
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou 510006, China
| | - Yun Wang
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
20
|
Abstract
RNase J exerts both 5'-3' exoribonuclease and endoribonuclease activities and plays a major role in ribonucleotide metabolism in various bacteria; however, its gene regulation is not well understood. In this study, we investigated the regulation of rnj expression in Corynebacterium glutamicum. rnj mRNA expression was increased in a strain with an rnj mutation. Deletion of the genes encoding RNase E/G also resulted in increased rnj mRNA levels, although the effect was smaller than that of the rnj mutation. rnj mRNA was more stable in the rnj mutant strain than in wild-type cells. These results indicate that RNase J regulates its own gene by degrading its mRNA. The growth of rnj and pnp mutant cells was impaired at cold temperatures. The expression of rnj mRNA was transiently induced by cold shock; however, this induction was not observed in the rnj mutant strain, suggesting that autoregulation by self-degradation is responsible for inducing of rnj expression under cold-shock conditions. IMPORTANCE Corynebacterium glutamicum harbors one RNase E/G-type enzyme and one RNase J-type enzyme which are major ribonucleases in various bacteria. However, little is known about these gene regulations. Here, we show that RNase J autoregulates its own gene expression and RNase E/G is also involved in the rnj mRNA degradation. Furthermore, we show that transient induction of the rnj mRNA in the cold-shock condition is dependent on RNase J autoregulation. This study sheds light on the regulatory mechanism of RNase J in C. glutamicum.
Collapse
|
21
|
Kang DH, Ko SC, Heo YB, Lee HJ, Woo HM. RoboMoClo: A Robotics-Assisted Modular Cloning Framework for Multiple Gene Assembly in Biofoundry. ACS Synth Biol 2022; 11:1336-1348. [PMID: 35167276 DOI: 10.1021/acssynbio.1c00628] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficient and versatile DNA assembly frameworks have had an impact on promoting synthetic biology to build complex biological systems. To accelerate system development, laboratory automation (or biofoundry) provides an opportunity to construct organisms and DNA assemblies via computer-aided design. However, a modular cloning (MoClo) system for multiple DNA assemblies limits the biofoundry workflow in terms of simplicity and feasibility by preparing the number of cloning materials such as destination vectors prior to the automation process. Herein, we propose robot-assisted MoClo (RoboMoClo) to accelerate a synthetic biology project with multiple gene expressions at the biofoundry. The architecture of the RoboMoClo framework provides a hybrid strategy of hierarchical gene assembly and iterative gene assembly, and fewer destination vectors compared with other MoClo systems. An industrial bacterium, Corynebacterium glutamicum, was used as a model host for RoboMoClo. After building a biopart library (promoter and terminator; level 0) and evaluating its features (level 1), various transcriptional directions in multiple gene assemblies (level 2) were studied using the RoboMoClo vectors. Among the constructs, the convergent construct exhibited potential transcriptional interference through the collision of RNA polymerases. To study design of experiment-guided lycopene biosynthesis in C. glutamicum (levels 1, 2, and 3), the biofoundry-assisted multiple gene assembly was demonstrated as a proof-of-concept by constructing various sub-pathway units (level 2) and pathway units (level 3) for C. glutamicum. The RoboMoClo framework provides an improved MoClo toolkit for laboratory automation in a synthetic biology application.
Collapse
Affiliation(s)
- Dong Hun Kang
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sung Cheon Ko
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yu Been Heo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
22
|
Liu J, Liu M, Shi T, Sun G, Gao N, Zhao X, Guo X, Ni X, Yuan Q, Feng J, Liu Z, Guo Y, Chen J, Wang Y, Zheng P, Sun J. CRISPR-assisted rational flux-tuning and arrayed CRISPRi screening of an L-proline exporter for L-proline hyperproduction. Nat Commun 2022; 13:891. [PMID: 35173152 PMCID: PMC8850433 DOI: 10.1038/s41467-022-28501-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Development of hyperproducing strains is important for biomanufacturing of biochemicals and biofuels but requires extensive efforts to engineer cellular metabolism and discover functional components. Herein, we optimize and use the CRISPR-assisted editing and CRISPRi screening methods to convert a wild-type Corynebacterium glutamicum to a hyperproducer of L-proline, an amino acid with medicine, feed, and food applications. To facilitate L-proline production, feedback-deregulated variants of key biosynthetic enzyme γ-glutamyl kinase are screened using CRISPR-assisted single-stranded DNA recombineering. To increase the carbon flux towards L-proline biosynthesis, flux-control genes predicted by in silico analysis are fine-tuned using tailored promoter libraries. Finally, an arrayed CRISPRi library targeting all 397 transporters is constructed to discover an L-proline exporter Cgl2622. The final plasmid-, antibiotic-, and inducer-free strain produces L-proline at the level of 142.4 g/L, 2.90 g/L/h, and 0.31 g/g. The CRISPR-assisted strain development strategy can be used for engineering industrial-strength strains for efficient biomanufacturing.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Moshi Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tuo Shi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Guannan Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Gao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojia Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Qianqian Yuan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Zhemin Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Yanmei Guo
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Abstract
Terpenoids represent the largest group of secondary metabolites with variable structures and functions. Terpenoids are well known for their beneficial application in human life, such as pharmaceutical products, vitamins, hormones, anticancer drugs, cosmetics, flavors and fragrances, foods, agriculture, and biofuels. Recently, engineering microbial cells have been provided with a sustainable approach to produce terpenoids with high yields. Noticeably, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has emerged as one of the most efficient genome-editing technologies to engineer microorganisms for improving terpenoid production. In this review, we summarize the application of the CRISPR-Cas system for the production of terpenoids in microbial hosts such as Escherichia coli, Saccharomyces cerevisiae, Corynebacterium glutamicum, and Pseudomonas putida. CRISPR-Cas9 deactivated Cas9 (dCas9)-based CRISPR (CRISPRi), and the dCas9-based activator (CRISPRa) have been used in either individual or combinatorial systems to control the metabolic flux for enhancing the production of terpenoids. Finally, the prospects of using the CRISPR-Cas system in terpenoid production are also discussed.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, Viet Nam.,Bioresource Research Center, Phenikaa University, Hanoi, Viet Nam
| |
Collapse
|
24
|
Park JC, Jeong H, Kim Y, Lee HS. Trehalose biosynthetic gene otsB of Corynebacterium glutamicum is regulated by whcE in response to oxidative stress. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35040429 DOI: 10.1099/mic.0.001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene whcE of Corynebacterium glutamicum plays a positive role in oxidative stress responses and the WhcE protein interacts with SpiE. By utilizing 2D-PAGE analysis, we identified the otsB gene to be under the control of whcE. The transcription of otsB, encoding trehalose 6-phosphatase, was stimulated by oxidative stress, and whcE and spiE were involved in diamide-mediated transcriptional stimulation. The ΔotsB strain was created and found to be sensitive to the thiol-specific oxidant diamide, suggesting a role of the gene in stress responses. Genes located upstream of otsB, such as NCgl2534 and otsA, formed an operon and purified WhcE was able to bind to the promoter region of the operon (PNCgl2534), but the binding was only possible in the presence of the oxidant diamide. In addition, the transcriptional activation of PNCgl2534 by WhcE was demonstrated in in vivo assays and the transcription was stimulated in cells exposed to the oxidant diamide. These findings indicate that WhcE is a transcriptional activator, and otsB, which is involved in trehalose biosynthesis, has a role in oxidative stress responses in C. glutamicum.
Collapse
Affiliation(s)
- Jung Chul Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk 390-711, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 339-700, Republic of Korea
| |
Collapse
|
25
|
OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6528914. [DOI: 10.1093/femsle/fnac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 02/13/2022] [Indexed: 11/14/2022] Open
|
26
|
Linder M, Haak M, Botes A, Kalinowski J, Rückert C. Construction of an IS-Free Corynebacterium glutamicum ATCC 13 032 Chassis Strain and Random Mutagenesis Using the Endogenous ISCg1 Transposase. Front Bioeng Biotechnol 2021; 9:751334. [PMID: 34976962 PMCID: PMC8715038 DOI: 10.3389/fbioe.2021.751334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
Mobile genetic elements (MGEs) contribute to instability of the host genome and plasmids. Previously, removal of the prophages in the industrial amino acid producer Corynebacterium glutamicum ATCC 13 032 resulted in strain MB001 which showed better survival under stress conditions and increased transformability. Still, eight families of Insertion Sequence (IS) elements with 27 potentially active members remain in MB001, two of which were demonstrated to be detrimental in biotechnological processes. In this study, systematical deletion of all complete IS elements in MB001 resulted in the MGE-free strain CR101. CR101 shows growth characteristics identical to the wildtype and the increased transformability of MB001. Due to its improved genome stability, we consider this strain to be an optimal host for basic research and biotechnology. As a “zero-background” host, it is also an ideal basis to study C. glutamicum IS elements. Re-sequencing of CR101 revealed that only five spontaneous point mutations had occurred during the construction process, highlighting the low mutation rate of C. glutamicum on the nucleotide level. In a second step, we developed an easily applicable ISCg1-based transposon mutagenesis system to randomly transpose a selectable marker. For optimal plasmid stability during cloning in Escherichia coli, the system utilizes a genetic switch based on the phage integrase Bxb1. Use of this integrase revealed the presence of a functional attB site in the C. glutamicum genome. To avoid cross-talk with our system and increase ease-of-use, we removed the attB site and also inserted the Bxb1 encoding gene into the chromosome of CR101. Successful insertion of single markers was verified by sequencing randomly selected mutants. Sequencing pooled mutant libraries revealed only a weak target site specificity, seemingly random distribution of insertion sites and no general strand bias. The resulting strain, ML103, together with plasmid pML10 provides a easily customizable system for random mutagenesis in an otherwise genomically stable C. glutamicum. Taken together, the MGE-free C. glutamicum strain CR101, the derivative ML103, and the plasmid pML10 provide a useful set of tools to study C. glutamicum in the future.
Collapse
Affiliation(s)
- Marten Linder
- CeBiTec Bielefeld, Technology Platform Genomics, Bielefeld University, Bielefeld, Germany
| | - Markus Haak
- CeBiTec Bielefeld, Technology Platform Genomics, Bielefeld University, Bielefeld, Germany
| | - Angela Botes
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Jörn Kalinowski
- CeBiTec Bielefeld, Technology Platform Genomics, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert
- CeBiTec Bielefeld, Technology Platform Genomics, Bielefeld University, Bielefeld, Germany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
- *Correspondence: Christian Rückert ,
| |
Collapse
|
27
|
Stella RG, Baumann P, Lorke S, Münstermann F, Wirtz A, Wiechert J, Marienhagen J, Frunzke J. Biosensor-based isolation of amino acid-producing Vibrio natriegens strains. Metab Eng Commun 2021; 13:e00187. [PMID: 34824977 PMCID: PMC8605253 DOI: 10.1016/j.mec.2021.e00187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 12/28/2022] Open
Abstract
The marine bacterium Vibrio natriegens has recently been demonstrated to be a promising new host for molecular biology and next generation bioprocesses. V. natriegens is a Gram-negative, non-pathogenic slight-halophilic bacterium, with a high nutrient versatility and a reported doubling time of under 10 min. However, V. natriegens is not an established model organism yet, and further research is required to promote its transformation into a microbial workhorse. In this work, the potential of V. natriegens as an amino acid producer was investigated. First, the transcription factor-based biosensor LysG, from Corynebacterium glutamicum, was adapted for expression in V. natriegens to facilitate the detection of positively charged amino acids. A set of different biosensor variants were constructed and characterized, using the expression of a fluorescent protein as sensor output. After random mutagenesis, one of the LysG-based sensors was used to screen for amino acid producer strains. Here, fluorescence-activated cell sorting enabled the selective sorting of highly fluorescent cells, i.e. potential producer cells. Using this approach, individual L-lysine, L-arginine and L-histidine producers could be obtained producing up to 1 mM of the effector amino acid, extracellularly. Genome sequencing of the producer strains provided insight into the amino acid production metabolism of V. natriegens. This work demonstrates the successful expression and application of transcription factor-based biosensors in V. natriegens and provides insight into the underlying physiology, forming a solid basis for further development of this promising microbe.
Collapse
Affiliation(s)
- Roberto Giuseppe Stella
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Philipp Baumann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Sophia Lorke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Felix Münstermann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Johanna Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
28
|
Van Loi V, Busche T, Fritsch VN, Weise C, Gruhlke MCH, Slusarenko AJ, Kalinowski J, Antelmann H. The two-Cys-type TetR repressor GbaA confers resistance under disulfide and electrophile stress in Staphylococcus aureus. Free Radic Biol Med 2021; 177:120-131. [PMID: 34678418 PMCID: PMC8693949 DOI: 10.1016/j.freeradbiomed.2021.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus has to cope with oxidative and electrophile stress during host-pathogen interactions. The TetR-family repressor GbaA was shown to sense electrophiles, such as N-ethylmaleimide (NEM) via monothiol mechanisms of the two conserved Cys55 or Cys104 residues in vitro. In this study, we further investigated the regulation and function of the GbaA repressor and its Cys residues in S. aureus COL. The GbaA-controlled gbaAB-SACOL2595-97 and SACOL2592-nmrA-2590 operons were shown to respond only weakly 3-10-fold to oxidants, electrophiles or antibiotics in S. aureus COL, but are 57-734-fold derepressed in the gbaA deletion mutant, indicating that the physiological inducer is still unknown. Moreover, the gbaA mutant remained responsive to disulfide and electrophile stress, pointing to additional redox control mechanisms of both operons. Thiol-stress induction of the GbaA regulon was strongly diminished in both single Cys mutants, supporting that both Cys residues are required for redox-sensing in vivo. While GbaA and the single Cys mutants are reversible oxidized under diamide and allicin stress, these thiol switches did not affect the DNA binding activity. The repressor activity of GbaA could be only partially inhibited with NEM in vitro. Survival assays revealed that the gbaA mutant confers resistance under diamide, allicin, NEM and methylglyoxal stress, which was mediated by the SACOL2592-90 operon encoding for a putative glyoxalase and oxidoreductase. Altogether, our results support that the GbaA repressor functions in the defense against oxidative and electrophile stress in S. aureus. GbaA represents a 2-Cys-type redox sensor, which requires another redox-sensing regulator and an unknown thiol-reactive ligand for full derepression of the GbaA regulon genes.
Collapse
Affiliation(s)
- Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Christoph Weise
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, D-14195, Berlin, Germany
| | | | - Alan John Slusarenko
- Department of Plant Physiology, RWTH Aachen University, D-52056, Aachen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
29
|
Jeong H, Kim Y, Lee HS. OsnR is an autoregulatory negative transcription factor controlling redox-dependent stress responses in Corynebacterium glutamicum. Microb Cell Fact 2021; 20:203. [PMID: 34663317 PMCID: PMC8524982 DOI: 10.1186/s12934-021-01693-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023] Open
Abstract
Background Corynebacterium glutamicum is used in the industrial production of amino acids and nucleotides. During the course of fermentation, C. glutamicum cells face various stresses and employ multiple regulatory genes to cope with the oxidative stress. The osnR gene plays a negative regulatory role in redox-dependent oxidative-stress responses, but the underlying mechanism is not known yet. Results Overexpression of the osnR gene in C. glutamicum affected the expression of genes involved in the mycothiol metabolism. ChIP-seq analysis revealed that OsnR binds to the promoter region of multiple genes, including osnR and cg0026, which seems to function in the membrane-associated redox metabolism. Studies on the role of the osnR gene involving in vitro assays employing purified OsnR proteins and in vivo physiological analyses have identified that OsnR inhibits the transcription of its own gene. Further, oxidant diamide stimulates OsnR-binding to the promoter region of the osnR gene. The genes affected by the overexpression of osnR have been found to be under the control of σH. In the osnR-overexpressing strain, the transcription of sigH is significantly decreased and the stimulation of sigH transcription by external stress is lost, suggesting that osnR and sigH form an intimate regulatory network. Conclusions Our study suggests that OsnR not only functions as a transcriptional repressor of its own gene and of those involved in redox-dependent stress responses but also participates in the global transcriptional regulation by controlling the transcription of other master regulators, such as sigH. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01693-1.
Collapse
Affiliation(s)
- Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
30
|
Migur A, Heyl F, Fuss J, Srikumar A, Huettel B, Steglich C, Prakash JSS, Reinhardt R, Backofen R, Owttrim GW, Hess WR. The temperature-regulated DEAD-box RNA helicase CrhR interactome: Autoregulation and photosynthesis-related transcripts. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab416. [PMID: 34499142 DOI: 10.1093/jxb/erab416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 06/13/2023]
Abstract
RNA helicases play crucial functions in RNA biology. In plants, RNA helicases are encoded by large gene families, performing roles in abiotic stress responses, development, the post-transcriptional regulation of gene expression as well as house-keeping functions. Several of these RNA helicases are targeted to the organelles, mitochondria and chloroplasts. Cyanobacteria are the direct evolutionary ancestors of plant chloroplasts. The cyanobacterium Synechocystis 6803 encodes a single DEAD-box RNA helicase, CrhR, that is induced by a range of abiotic stresses, including low temperature. Though the ΔcrhR mutant exhibits a severe cold-sensitive phenotype, the physiological function(s) performed by CrhR have not been described. To identify transcripts interacting with CrhR, we performed RNA co-immunoprecipitation with extracts from a Synechocystis crhR deletion mutant expressing the FLAG-tagged native CrhR or a K57A mutated version with an anticipated enhanced RNA binding. The composition of the interactome was strikingly biased towards photosynthesis-associated and redox-controlled transcripts. A transcript highly enriched in all experiments was the crhR mRNA, suggesting an auto-regulatory molecular mechanism. The identified interactome explains the described physiological role of CrhR in response to the redox poise of the photosynthetic electron transport chain and characterizes CrhR as an enzyme with a diverse range of transcripts as molecular targets.
Collapse
Affiliation(s)
- Anzhela Migur
- Faculty of Biology, University of Freiburg, Schänzlestr., Freiburg, Germany
| | - Florian Heyl
- Department of Computer Science, University of Freiburg, Georges-Koehler-Allee, Freiburg, Germany
| | - Janina Fuss
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg, Köln, Germany
| | - Afshan Srikumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Bruno Huettel
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg, Köln, Germany
| | - Claudia Steglich
- Faculty of Biology, University of Freiburg, Schänzlestr., Freiburg, Germany
| | - Jogadhenu S S Prakash
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Rolf Backofen
- Department of Computer Science, University of Freiburg, Georges-Koehler-Allee, Freiburg, Germany
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wolfgang R Hess
- Faculty of Biology, University of Freiburg, Schänzlestr., Freiburg, Germany
| |
Collapse
|
31
|
Bharmal MHM, Gega A, Schrader JM. A combination of mRNA features influence the efficiency of leaderless mRNA translation initiation. NAR Genom Bioinform 2021; 3:lqab081. [PMID: 34568822 PMCID: PMC8459731 DOI: 10.1093/nargab/lqab081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
Bacterial translation is thought to initiate by base pairing of the 16S rRNA and the Shine-Dalgarno sequence in the mRNA's 5' untranslated region (UTR). However, transcriptomics has revealed that leaderless mRNAs, which completely lack any 5' UTR, are broadly distributed across bacteria and can initiate translation in the absence of the Shine-Dalgarno sequence. To investigate the mechanism of leaderless mRNA translation initiation, synthetic in vivo translation reporters were designed that systematically tested the effects of start codon accessibility, leader length, and start codon identity on leaderless mRNA translation initiation. Using these data, a simple computational model was built based on the combinatorial relationship of these mRNA features that can accurately classify leaderless mRNAs and predict the translation initiation efficiency of leaderless mRNAs. Thus, start codon accessibility, leader length, and start codon identity combine to define leaderless mRNA translation initiation in bacteria.
Collapse
Affiliation(s)
| | - Alisa Gega
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
32
|
Siebert D, Altenbuchner J, Blombach B. A Timed Off-Switch for Dynamic Control of Gene Expression in Corynebacterium Glutamicum. Front Bioeng Biotechnol 2021; 9:704681. [PMID: 34395409 PMCID: PMC8358305 DOI: 10.3389/fbioe.2021.704681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Dynamic control of gene expression mainly relies on inducible systems, which require supplementation of (costly) inducer molecules. In contrast, synthetic regulatory circuits, which allow the timed shutdown of gene expression, are rarely available and therefore represent highly attractive tools for metabolic engineering. To achieve this, we utilized the VanR/P vanABK * regulatory system of Corynebacterium glutamicum, which consists of the transcriptional repressor VanR and a modified promoter of the vanABK operon (P vanABK *). VanR activity is modulated by one of the phenolic compounds ferulic acid, vanillin or vanillic acid, which are co-metabolized with d-glucose. Thus, gene expression in the presence of d-glucose is turned off if one of the effector molecules is depleted from the medium. To dynamically control the expression of the aceE gene, encoding the E1 subunit of the pyruvate dehydrogenase complex that is essential for growth on d-glucose, we replaced the native promoter by vanR/P vanABK * yielding C. glutamicum ΔP aceE ::vanR-P vanABK *. The biomass yield of this strain increased linearly with the supplemented amount of effector. After consumption of the phenolic compounds growth ceased, however, C. glutamicumΔP aceE ::vanR-P vanABK * continued to utilize the residual d-glucose to produce significant amounts of pyruvate, l-alanine, and l-valine. Interestingly, equimolar concentrations of the three phenolic compounds resulted in different biomass yields; and with increasing effector concentration, the product spectrum shifted from pyruvate over l-alanine to l-valine. To further test the suitability of the VanR/P vanABK * system, we overexpressed the l-valine biosynthesis genes ilvBNCE in C. glutamicum ΔP aceE ::vanR-P vanABK *, which resulted in efficient l-valine production with a yield of about 0.36 mol l-valine per mol d-glucose. These results demonstrate that the VanR/P vanABK * system is a valuable tool to control gene expression in C. glutamicum in a timed manner by the cheap and abundant phenolic compounds ferulic acid, vanillin, and vanillic acid.
Collapse
Affiliation(s)
- Daniel Siebert
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Josef Altenbuchner
- Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| |
Collapse
|
33
|
Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Huang J, Chen J, Wang Y, Shi T, Ni X, Pu W, Liu J, Zhou Y, Cai N, Han S, Zheng P, Sun J. Development of a Hyperosmotic Stress Inducible Gene Expression System by Engineering the MtrA/MtrB-Dependent NCgl1418 Promoter in Corynebacterium glutamicum. Front Microbiol 2021; 12:718511. [PMID: 34367120 PMCID: PMC8334368 DOI: 10.3389/fmicb.2021.718511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Corynebacterium glutamicum is an important workhorse for industrial production of diversiform bioproducts. Precise regulation of gene expression is crucial for metabolic balance and enhancing production of target molecules. Auto-inducible promoters, which can be activated without expensive inducers, are ideal regulatory tools for industrial-scale application. However, few auto-inducible promoters have been identified and applied in C. glutamicum. Here, a hyperosmotic stress inducible gene expression system was developed and used for metabolic engineering of C. glutamicum. The promoter of NCgl1418 (P NCgl1418 ) that was activated by the two-component signal transduction system MtrA/MtrB was found to exhibit a high inducibility under hyperosmotic stress conditions. A synthetic promoter library was then constructed by randomizing the flanking and space regions of P NCgl1418 , and mutant promoters exhibiting high strength were isolated via fluorescence activated cell sorting (FACS)-based high-throughput screening. The hyperosmotic stress inducible gene expression system was applied to regulate the expression of lysE encoding a lysine exporter and repress four genes involved in lysine biosynthesis (gltA, pck, pgi, and hom) by CRISPR interference, which increased the lysine titer by 64.7% (from 17.0 to 28.0 g/L) in bioreactors. The hyperosmotic stress inducible gene expression system developed here is a simple and effective tool for gene auto-regulation in C. glutamicum and holds promise for metabolic engineering of C. glutamicum to produce valuable chemicals and fuels.
Collapse
Affiliation(s)
- Jingwen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tuo Shi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wei Pu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yingyu Zhou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ningyun Cai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jibin Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
35
|
Droste J, Rückert C, Kalinowski J, Hamed MB, Anné J, Simoens K, Bernaerts K, Economou A, Busche T. Extensive Reannotation of the Genome of the Model Streptomycete Streptomyces lividans TK24 Based on Transcriptome and Proteome Information. Front Microbiol 2021; 12:604034. [PMID: 33935985 PMCID: PMC8079986 DOI: 10.3389/fmicb.2021.604034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/12/2021] [Indexed: 01/04/2023] Open
Abstract
Streptomyces lividans TK24 is a relevant Gram-positive soil inhabiting bacterium and one of the model organisms of the genus Streptomyces. It is known for its potential to produce secondary metabolites, antibiotics, and other industrially relevant products. S. lividans TK24 is the plasmid-free derivative of S. lividans 66 and a close genetic relative of the strain Streptomyces coelicolor A3(2). In this study, we used transcriptome and proteome data to improve the annotation of the S. lividans TK24 genome. The RNA-seq data of primary 5'-ends of transcripts were used to determine transcription start sites (TSS) in the genome. We identified 5,424 TSS, of which 4,664 were assigned to annotated CDS and ncRNAs, 687 to antisense transcripts distributed between 606 CDS and their UTRs, 67 to tRNAs, and 108 to novel transcripts and CDS. Using the TSS data, the promoter regions and their motifs were analyzed in detail, revealing a conserved -10 (TAnnnT) and a weakly conserved -35 region (nTGACn). The analysis of the 5' untranslated region (UTRs) of S. lividans TK24 revealed 17% leaderless transcripts. Several cis-regulatory elements, like riboswitches or attenuator structures could be detected in the 5'-UTRs. The S. lividans TK24 transcriptome contains at least 929 operons. The genome harbors 27 secondary metabolite gene clusters of which 26 could be shown to be transcribed under at least one of the applied conditions. Comparison of the reannotated genome with that of the strain Streptomyces coelicolor A3(2) revealed a high degree of similarity. This study presents an extensive reannotation of the S. lividans TK24 genome based on transcriptome and proteome analyses. The analysis of TSS data revealed insights into the promoter structure, 5'-UTRs, cis-regulatory elements, attenuator structures and novel transcripts, like small RNAs. Finally, the repertoire of secondary metabolite gene clusters was examined. These data provide a basis for future studies regarding gene characterization, transcriptional regulatory networks, and usage as a secondary metabolite producing strain.
Collapse
Affiliation(s)
- Julian Droste
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Mohamed Belal Hamed
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, KU Leuven, Rega Institute, Leuven, Belgium.,Molecular Biology Department, National Research Centre, Dokii, Egypt
| | - Jozef Anné
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, KU Leuven, Rega Institute, Leuven, Belgium
| | - Kenneth Simoens
- Bio- and Chemical Systems Technology, Reactor Engineering, and Safety (CREaS) Section, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering, and Safety (CREaS) Section, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, KU Leuven, Rega Institute, Leuven, Belgium
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
36
|
Tenhaef N, Stella R, Frunzke J, Noack S. Automated Rational Strain Construction Based on High-Throughput Conjugation. ACS Synth Biol 2021; 10:589-599. [PMID: 33593066 DOI: 10.1021/acssynbio.0c00599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Molecular cloning is the core of synthetic biology, as it comprises the assembly of DNA and its expression in target hosts. At present, however, cloning is most often a manual, time-consuming, and repetitive process that highly benefits from automation. The automation of a complete rational cloning procedure, i.e., from DNA creation to expression in the target host, involves the integration of different operations and machines. Examples of such workflows are sparse, especially when the design is rational (i.e., the DNA sequence design is fixed and not based on randomized libraries) and the target host is less genetically tractable (e.g., not sensitive to heat-shock transformation). In this study, an automated workflow for the rational construction of plasmids and their subsequent conjugative transfer into the biotechnological platform organism Corynebacterium glutamicum is presented. The whole workflow is accompanied by a custom-made software tool. As an application example, a rationally designed library of transcription factor-biosensors based on the regulator Lrp was constructed and characterized. A sensor with an improved dynamic range was obtained, and insights from the screening provided evidence for a dual regulator function of C. glutamicum Lrp.
Collapse
Affiliation(s)
- Niklas Tenhaef
- Institute of Bio- and Geosciences − IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Robert Stella
- Institute of Bio- and Geosciences − IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences − IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences − IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
37
|
Toyoda K, Inui M. The ldhA Gene Encoding Fermentative l-Lactate Dehydrogenase in Corynebacterium Glutamicum Is Positively Regulated by the Global Regulator GlxR. Microorganisms 2021; 9:microorganisms9030550. [PMID: 33800875 PMCID: PMC7999487 DOI: 10.3390/microorganisms9030550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial metabolism shifts from aerobic respiration to fermentation at the transition from exponential to stationary growth phases in response to limited oxygen availability. Corynebacterium glutamicum, a Gram-positive, facultative aerobic bacterium used for industrial amino acid production, excretes l-lactate, acetate, and succinate as fermentation products. The ldhA gene encoding l-lactate dehydrogenase is solely responsible for l-lactate production. Its expression is repressed at the exponential phase and prominently induced at the transition phase. ldhA is transcriptionally repressed by the sugar-phosphate-responsive regulator SugR and l-lactate-responsive regulator LldR. Although ldhA expression is derepressed even at the exponential phase in the sugR and lldR double deletion mutant, a further increase in its expression is still observed at the stationary phase, implicating the action of additional transcription regulators. In this study, involvement of the cAMP receptor protein-type global regulator GlxR in the regulation of ldhA expression was investigated. The GlxR-binding site found in the ldhA promoter was modified to inhibit or enhance binding of GlxR. The ldhA promoter activity and expression of ldhA were altered in proportion to the binding affinity of GlxR. Similarly, l-lactate production was also affected by the binding site modification. Thus, GlxR was demonstrated to act as a transcriptional activator of ldhA.
Collapse
Affiliation(s)
- Koichi Toyoda
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
- Correspondence:
| |
Collapse
|
38
|
In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nat Commun 2021; 12:678. [PMID: 33514753 PMCID: PMC7846839 DOI: 10.1038/s41467-021-21003-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
Reprogramming complex cellular metabolism requires simultaneous regulation of multigene expression. Ex-situ cloning-based methods are commonly used, but the target gene number and combinatorial library size are severely limited by cloning and transformation efficiencies. In-situ methods such as multiplex automated genome engineering (MAGE) depends on high-efficiency transformation and incorporation of heterologous DNA donors, which are limited to few microorganisms. Here, we describe a Base Editor-Targeted and Template-free Expression Regulation (BETTER) method for simultaneously diversifying multigene expression. BETTER repurposes CRISPR-guided base editors and in-situ generates large numbers of genetic combinations of diverse ribosome binding sites, 5’ untranslated regions, or promoters, without library construction, transformation, and incorporation of DNA donors. We apply BETTER to simultaneously regulate expression of up to ten genes in industrial and model microorganisms Corynebacterium glutamicum and Bacillus subtilis. Variants with improved xylose catabolism, glycerol catabolism, or lycopene biosynthesis are respectively obtained. This technology will be useful for large-scale fine-tuning of multigene expression in both genetically tractable and intractable microorganisms. To obtain optimal yield and productivity in bioproduction, expression of pathway genes must be appropriately coordinated. Here, the authors report repurposing of base editors for simultaneous regulation of multiple gene expression and demonstrate its application in industrially important and model microorganisms.
Collapse
|
39
|
Henke NA, Krahn I, Wendisch VF. Improved Plasmid-Based Inducible and Constitutive Gene Expression in Corynebacterium glutamicum. Microorganisms 2021; 9:204. [PMID: 33478126 PMCID: PMC7835838 DOI: 10.3390/microorganisms9010204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/18/2023] Open
Abstract
Corynebacterium glutamicum has been safely used in white biotechnology for the last 60 years and the portfolio of new pathways and products is increasing rapidly. Hence, expression vectors play a central role in discovering endogenous gene functions and in establishing heterologous gene expression. In this work, new expression vectors were designed based on two strategies: (i) a library screening of constitutive native and synthetic promoters and (ii) an increase of the plasmid copy number. Both strategies were combined and resulted in a very strong expression and overproduction of the fluorescence protein GfpUV. As a second test case, the improved vector for constitutive expression was used to overexpress the endogenous xylulokinase gene xylB in a synthetic operon with xylose isomerase gene xylA from Xanthomonas campestris. The xylose isomerase activity in crude extracts was increased by about three-fold as compared to that of the parental vector. In terms of application, the improved vector for constitutive xylA and xylB expression was used for production of the N-methylated amino acid sarcosine from monomethylamine, acetate, and xylose. As a consequence, the volumetric productivity of sarcosine production was 50% higher as compared to that of the strain carrying the parental vector.
Collapse
Affiliation(s)
| | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (N.A.H.); (I.K.)
| |
Collapse
|
40
|
Genome-wide identification of novel genes involved in Corynebacteriales cell envelope biogenesis using Corynebacterium glutamicum as a model. PLoS One 2021; 15:e0240497. [PMID: 33383576 PMCID: PMC7775120 DOI: 10.1371/journal.pone.0240497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 01/06/2023] Open
Abstract
Corynebacteriales are Actinobacteria that possess an atypical didermic cell envelope. One of the principal features of this cell envelope is the presence of a large complex made up of peptidoglycan, arabinogalactan and mycolic acids. This covalent complex constitutes the backbone of the cell wall and supports an outer membrane, called mycomembrane in reference to the mycolic acids that are its major component. The biosynthesis of the cell envelope of Corynebacteriales has been extensively studied, in particular because it is crucial for the survival of important pathogens such as Mycobacterium tuberculosis and is therefore a key target for anti-tuberculosis drugs. In this study, we explore the biogenesis of the cell envelope of Corynebacterium glutamicum, a non-pathogenic Corynebacteriales, which can tolerate dramatic modifications of its cell envelope as important as the loss of its mycomembrane. For this purpose, we used a genetic approach based on genome-wide transposon mutagenesis. We developed a highly effective immunological test based on the use of anti-cell wall antibodies that allowed us to rapidly identify bacteria exhibiting an altered cell envelope. A very large number (10,073) of insertional mutants were screened by means of this test, and 80 were finally selected, representing 55 different loci. Bioinformatics analyses of these loci showed that approximately 60% corresponded to genes already characterized, 63% of which are known to be directly involved in cell wall processes, and more specifically in the biosynthesis of the mycoloyl-arabinogalactan-peptidoglycan complex. We identified 22 new loci potentially involved in cell envelope biogenesis, 76% of which encode putative cell envelope proteins. A mutant of particular interest was further characterized and revealed a new player in mycolic acid metabolism. Because a large proportion of the genes identified by our study is conserved in Corynebacteriales, the library described here provides a new resource of genes whose characterization could lead to a better understanding of the biosynthesis of the envelope components of these bacteria.
Collapse
|
41
|
Bakkes PJ, Ramp P, Bida A, Dohmen-Olma D, Bott M, Freudl R. Improved pEKEx2-derived expression vectors for tightly controlled production of recombinant proteins in Corynebacterium glutamicum. Plasmid 2020; 112:102540. [DOI: 10.1016/j.plasmid.2020.102540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
|
42
|
Marques F, Luzhetskyy A, Mendes MV. Engineering Corynebacterium glutamicum with a comprehensive genomic library and phage-based vectors. Metab Eng 2020; 62:221-234. [DOI: 10.1016/j.ymben.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
|
43
|
Zhu L, Mack C, Wirtz A, Kranz A, Polen T, Baumgart M, Bott M. Regulation of γ-Aminobutyrate (GABA) Utilization in Corynebacterium glutamicum by the PucR-Type Transcriptional Regulator GabR and by Alternative Nitrogen and Carbon Sources. Front Microbiol 2020; 11:544045. [PMID: 33193127 PMCID: PMC7652997 DOI: 10.3389/fmicb.2020.544045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid mainly formed by decarboxylation of L-glutamate and is widespread in nature from microorganisms to plants and animals. In this study, we analyzed the regulation of GABA utilization by the Gram-positive soil bacterium Corynebacterium glutamicum, which serves as model organism of the phylum Actinobacteria. We show that GABA usage is subject to both specific and global regulatory mechanisms. Transcriptomics revealed that the gabTDP genes encoding GABA transaminase, succinate semialdehyde dehydrogenase, and GABA permease, respectively, were highly induced in GABA-grown cells compared to glucose-grown cells. Expression of the gabTDP genes was dependent on GABA and the PucR-type transcriptional regulator GabR, which is encoded divergently to gabT. A ΔgabR mutant failed to grow with GABA, but not with glucose. Growth of the mutant on GABA was restored by plasmid-based expression of gabR or of gabTDP, indicating that no further genes are specifically required for GABA utilization. Purified GabR (calculated mass 55.75 kDa) formed an octamer with an apparent mass of 420 kDa and bound to two inverted repeats in the gabR-gabT intergenic region. Glucose, gluconate, and myo-inositol caused reduced expression of gabTDP, presumably via the cAMP-dependent global regulator GlxR, for which a binding site is present downstream of the gabT transcriptional start site. C. glutamicum was able to grow with GABA as sole carbon and nitrogen source. Ammonium and, to a lesser extent, urea inhibited growth on GABA, whereas L-glutamine stimulated it. Possible mechanisms for these effects are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
44
|
Cervantes-Rivera R, Puhar A. Whole-genome Identification of Transcriptional Start Sites by Differential RNA-seq in Bacteria. Bio Protoc 2020; 10:e3757. [PMID: 33659416 PMCID: PMC7842792 DOI: 10.21769/bioprotoc.3757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/25/2020] [Accepted: 07/23/2020] [Indexed: 11/02/2022] Open
Abstract
Gene transcription in bacteria often starts some nucleotides upstream of the start codon. Identifying the specific Transcriptional Start Site (TSS) is essential for genetic manipulation, as in many cases upstream of the start codon there are sequence elements that are involved in gene expression regulation. Taken into account the classical gene structure, we are able to identify two kinds of transcriptional start site: primary and secondary. A primary transcriptional start site is located some nucleotides upstream of the translational start site, while a secondary transcriptional start site is located within the gene encoding sequence. Here, we present a step by step protocol for genome-wide transcriptional start sites determination by differential RNA-sequencing (dRNA-seq) using the enteric pathogen Shigella flexneri serotype 5a strain M90T as model. However, this method can be employed in any other bacterial species of choice. In the first steps, total RNA is purified from bacterial cultures using the hot phenol method. Ribosomal RNA (rRNA) is specifically depleted via hybridization probes using a commercial kit. A 5'-monophosphate-dependent exonuclease (TEX)-treated RNA library enriched in primary transcripts is then prepared for comparison with a library that has not undergone TEX-treatment, followed by ligation of an RNA linker adaptor of known sequence allowing the determination of TSS with single nucleotide precision. Finally, the RNA is processed for Illumina sequencing library preparation and sequenced as purchased service. TSS are identified by in-house bioinformatic analysis. Our protocol is cost-effective as it minimizes the use of commercial kits and employs freely available software.
Collapse
Affiliation(s)
- Ramón Cervantes-Rivera
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90 187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90 187 Umeå, Sweden
| | - Andrea Puhar
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 90 187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90 187 Umeå, Sweden
| |
Collapse
|
45
|
Wiechert J, Gätgens C, Wirtz A, Frunzke J. Inducible Expression Systems Based on Xenogeneic Silencing and Counter-Silencing and Design of a Metabolic Toggle Switch. ACS Synth Biol 2020; 9:2023-2038. [PMID: 32649183 DOI: 10.1021/acssynbio.0c00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inducible expression systems represent key modules in regulatory circuit design and metabolic engineering approaches. However, established systems are often limited in terms of applications due to high background expression levels and inducer toxicity. In bacteria, xenogeneic silencing (XS) proteins are involved in the tight control of horizontally acquired, AT-rich DNA. The action of XS proteins may be opposed by interference with a specific transcription factor, resulting in the phenomenon of counter-silencing, thereby activating gene expression. In this study, we harnessed this principle for the construction of a synthetic promoter library consisting of phage promoters targeted by the Lsr2-like XS protein CgpS of Corynebacterium glutamicum. Counter-silencing was achieved by inserting the operator sequence of the gluconate-responsive transcription factor GntR. The GntR-dependent promoter library is comprised of 28 activated and 16 repressed regulatory elements featuring effector-dependent tunability. For selected candidates, background expression levels were confirmed to be significantly reduced in comparison to established heterologous expression systems. Finally, a GntR-dependent metabolic toggle switch was implemented in a C. glutamicum l-valine production strain allowing the dynamic redirection of carbon flux between biomass and product formation.
Collapse
Affiliation(s)
- Johanna Wiechert
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Cornelia Gätgens
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Astrid Wirtz
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Frunzke
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
46
|
Zhang J, Qian F, Dong F, Wang Q, Yang J, Jiang Y, Yang S. De Novo Engineering of Corynebacterium glutamicum for l-Proline Production. ACS Synth Biol 2020; 9:1897-1906. [PMID: 32627539 DOI: 10.1021/acssynbio.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
l-Proline is an important amino acid that has various industrial applications. Industrial l-proline-producing strains are obtained by the mutagenesis of Corynebacterium glutamicum. In this study, the optimized C. glutamicum genome-editing tools were further applied in the de novo construction of a hyper-l-proline-producing strain. Overexpression of a feedback inhibition-resistant γ-glutamic kinase mutant ProBG149K, deletion of a proline dehydrogenase to block l-proline degradation, overexpression of glutamate dehydrogenase to increase glutamate synthesis flux, the mutation of 6-phosphate gluconate dehydrogenase and glucose-6-phosphate-dehydrogenase in the pentose phosphate pathway to enhance NADPH supply, the deletion of pyruvate aminotransferase to decrease the byproduct l-alanine synthesis, and weakening of α-ketoglutarate dehydrogenase to regulate the TCA cycle were combined to obtain ZQJY-9. ZQJY-9 produced 19.68 ± 0.22 g/L of l-proline in flask fermentation and was also demonstrated at the 3 L bioreactor level by fed-batch fermentation producing 120.18 g/L of l-proline at 76 h with the highest productivity of 1.581 g/L/h.
Collapse
Affiliation(s)
- Jiao Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fenghui Qian
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
| | - Feng Dong
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
| | - Qingzhuo Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
- Shanghai Taoyusheng Biotechnology Co., Ltd, Shanghai 201203, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou 313000, China
| |
Collapse
|
47
|
Methanol-Essential Growth of Corynebacterium glutamicum: Adaptive Laboratory Evolution Overcomes Limitation due to Methanethiol Assimilation Pathway. Int J Mol Sci 2020; 21:ijms21103617. [PMID: 32443885 PMCID: PMC7279501 DOI: 10.3390/ijms21103617] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Methanol is a sustainable substrate for biotechnology. In addition to natural methylotrophs, metabolic engineering has gained attention for transfer of methylotrophy. Here, we engineered Corynebacterium glutamicum for methanol-dependent growth with a sugar co-substrate. Heterologous expression of genes for methanol dehydrogenase from Bacillus methanolicus and of ribulose monophosphate pathway genes for hexulose phosphate synthase and isomerase from Bacillus subtilis enabled methanol-dependent growth of mutants carrying one of two independent metabolic cut-offs, i.e., either lacking ribose-5-phosphate isomerase or ribulose-5-phosphate epimerase. Whole genome sequencing of strains selected by adaptive laboratory evolution (ALE) for faster methanol-dependent growth was performed. Subsequently, three mutations were identified that caused improved methanol-dependent growth by (1) increased plasmid copy numbers, (2) enhanced riboflavin supply and (3) reduced formation of the methionine-analogue O-methyl-homoserine in the methanethiol pathway. Our findings serve as a foundation for the engineering of C. glutamicum to unleash the full potential of methanol as a carbon source in biotechnological processes.
Collapse
|
48
|
The Iron Deficiency Response of Corynebacterium glutamicum and a Link to Thiamine Biosynthesis. Appl Environ Microbiol 2020; 86:AEM.00065-20. [PMID: 32144105 DOI: 10.1128/aem.00065-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
The response to iron limitation of the Gram-positive soil bacterium Corynebacterium glutamicum was analyzed with respect to secreted metabolites, the transcriptome, and the proteome. During growth in glucose minimal medium, iron limitation caused a shift from lactate to pyruvate as the major secreted organic acid complemented by l-alanine and 2-oxoglutarate. Transcriptome and proteome analyses revealed that a pronounced iron starvation response governed by the transcriptional regulators DtxR and RipA was detectable in the late, but not in the early, exponential-growth phase. A link between iron starvation and thiamine pyrophosphate (TPP) biosynthesis was uncovered by the strong upregulation of thiC As phosphomethylpyrimidine synthase (ThiC) contains an iron-sulfur cluster, limiting activities of the TPP-dependent pyruvate-2-oxoglutarate dehydrogenase supercomplex probably cause the excretion of pyruvate and 2-oxoglutarate. In line with this explanation, thiamine supplementation could strongly diminish the secretion of these acids. The upregulation of thiC and other genes involved in thiamine biosynthesis and transport is presumably due to TPP riboswitches present at the 5' end of the corresponding operons. The results obtained in this study provide new insights into iron homeostasis in C. glutamicum and demonstrate that the metabolic consequences of iron limitation can be due to the iron dependency of coenzyme biosynthesis.IMPORTANCE Iron is an essential element for most organisms but causes problems due to poor solubility under oxic conditions and due to toxicity by catalyzing the formation of reactive oxygen species (ROS). Therefore, bacteria have evolved complex regulatory networks for iron homeostasis aiming at a sufficient iron supply while minimizing ROS formation. In our study, the responses of the actinobacterium Corynebacterium glutamicum to iron limitation were analyzed, resulting in a detailed view on the processes involved in iron homeostasis in this model organism. In particular, we provide evidence that iron limitation causes TPP deficiency, presumably due to insufficient activity of the iron-dependent phosphomethylpyrimidine synthase (ThiC). TPP deficiency was deduced from the upregulation of genes controlled by a TPP riboswitch and secretion of metabolites caused by insufficient activity of the TPP-dependent enzymes pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. To our knowledge, the link between iron starvation and thiamine synthesis has not been elaborated previously.
Collapse
|
49
|
Essential dynamic interdependence of FtsZ and SepF for Z-ring and septum formation in Corynebacterium glutamicum. Nat Commun 2020; 11:1641. [PMID: 32242019 PMCID: PMC7118173 DOI: 10.1038/s41467-020-15490-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/09/2020] [Indexed: 12/25/2022] Open
Abstract
The mechanisms of Z-ring assembly and regulation in bacteria are poorly understood, particularly in non-model organisms. Actinobacteria, a large bacterial phylum that includes the pathogen Mycobacterium tuberculosis, lack the canonical FtsZ-membrane anchors and Z-ring regulators described for E. coli. Here we investigate the physiological function of Corynebacterium glutamicum SepF, the only cell division-associated protein from Actinobacteria known to interact with the conserved C-terminal tail of FtsZ. We show an essential interdependence of FtsZ and SepF for formation of a functional Z-ring in C. glutamicum. The crystal structure of the SepF–FtsZ complex reveals a hydrophobic FtsZ-binding pocket, which defines the SepF homodimer as the functional unit, and suggests a reversible oligomerization interface. FtsZ filaments and lipid membranes have opposing effects on SepF polymerization, indicating that SepF has multiple roles at the cell division site, involving FtsZ bundling, Z-ring tethering and membrane reshaping activities that are needed for proper Z-ring assembly and function. The mechanisms of Z-ring assembly and regulation in bacteria are poorly understood, particularly in non-model organisms. Here, Sogues et al. study the interaction between FtsZ and SepF in Corynebacterium glutamicum, showing an essential interdependence of these proteins for formation of a functional Z-ring.
Collapse
|
50
|
Structure of a Core Promoter in Bifidobacterium longum NCC2705. J Bacteriol 2020; 202:JB.00540-19. [PMID: 31964699 DOI: 10.1128/jb.00540-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 01/04/2023] Open
Abstract
Bacterial promoters consist of core sequence motifs termed -35 and -10 boxes. The consensus motifs are TTGACA and TATAAT, respectively, which were identified from leading investigations on Escherichia coli However, the consensus sequences are not likely to fit genetically divergent bacteria. The sigma factor of the genus Bifidobacterium has a characteristic polar domain in the N terminus, suggesting the possibility of specific promoter recognition. We reevaluated the structure of Bifidobacterium longum NCC2705 promoters and compared them to other bacteria. Transcriptional start sites (TSSs) of the B. longum NCC2705 strain were identified using transcriptome sequencing (RNA-Seq) analysis to extract promoter regions. Conserved motifs of a bifidobacterial promoter were determined using regions upstream of TSSs and a hidden Markov model. As a result, consensus motifs of the -35 and -10 boxes were TTGTGC and TACAAT, respectively. To assess each base of both motifs, we constructed 37 plasmids based on pKO403-TPCTcon, including the hup promoter connected with a chloramphenicol acetyltransferase as a reporter gene. This reporter assay showed two optimal motifs of the -35 and -10 boxes, namely, TTGNNN and TANNNT, respectively. We further analyzed spacer lengths between the -35 and -10 boxes via a bioinformatics approach. The spacer lengths predominant in bacteria have been generally reported to be approximately 17 bp. In contrast, the predominant spacer lengths in the genus Bifidobacterium and related species were 11 bp, in addition to 17 bp. A reporter assay to assess the spacer lengths indicated that the 11-bp spacer length produced unusually high activity.IMPORTANCE The structures of sigma factors vary among bacterial strains, indicating that recognition rules may also vary. Therefore, we investigated the promoter structure of Bifidobacterium longum NCC2705 using a bioinformatics approach and wet analyses. The most frequent and optimal motifs were similar to other bacterial consensus motifs. The optimal spacer length between the two boxes was reported to be 17 bp. It is widely applied to a bioinformatics approach for other bacteria. Unexpectedly, conserved spacer lengths were 11 bp as well as 17 bp in the genus Bifidobacterium Moreover, the sigma factor of the genus Bifidobacterium has a characteristic domain in the N terminus which may contribute to the additional functions. Hence, it would be valuable to reevaluate the promoter in other organisms.
Collapse
|