1
|
Shokrollahi B, Park M, Baek YC, Jin S, Jang GS, Moon SJ, Um KH, Jang SS, Lee HJ. Differential gene expression in neonatal calf muscle tissues from Hanwoo cows overfed during mid to late pregnancy period. Sci Rep 2024; 14:23298. [PMID: 39375502 PMCID: PMC11458785 DOI: 10.1038/s41598-024-74976-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
Maternal nutrition significantly influences fetal development and postnatal outcomes. This study investigates the impact of maternal overfeeding during mid to late pregnancy on gene expression in the round and sirloin muscles of Hanwoo neonatal calves. Eight cows were assigned to either a control group receiving standard nutrition (100%) or a treated group receiving overnutrition (150%). After birth, tissue samples from the round and sirloin muscles of neonatal calves were collected and subjected to RNA sequencing to assess differentially expressed genes (DEGs). RNA sequencing identified 43 DEGs in round muscle and 15 in sirloin muscle, involving genes related to myogenesis, adipogenesis, and energy regulation. Key genes, including PPARGC1A, THBS1, CD44, JUND, CNN1, ENAH, and RUNX1, were predominantly downregulated. Gene ontology (GO) enrichment analyses revealed terms associated with muscle development, such as "biological regulation," "cellular process," and "response to stimulus." Protein-protein interaction networks highlighted complex interactions among DEGs. Random Forest analysis identified ARC, SLC1A5, and GNPTAB as influential genes for distinguishing between control and treated groups. Overall, maternal overnutrition during mid-to-late pregnancy results in the downregulation of genes involved in muscle development and energy metabolism in neonatal Hanwoo calves. These findings provide insights into the molecular effects of maternal nutrition on muscle development.
Collapse
Affiliation(s)
- Borhan Shokrollahi
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Myungsun Park
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Youl-Chang Baek
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Shil Jin
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Gi-Suk Jang
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Sung-Jin Moon
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Kyung-Hwan Um
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Sun-Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea.
| | - Hyun-Jeong Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, 55365, Wanju, Korea.
| |
Collapse
|
2
|
Pérez Segura LF, Ramirez RF, Relling AE, Roque-Jimenez JA, Zhang N, Vargas-Bello-Pérez E, Lee-Rangel HA. Effects of maternal calcium propionate supplementation on offspring productivity and meat metabolomic profile in sheep. PLoS One 2023; 18:e0294627. [PMID: 38117821 PMCID: PMC10732376 DOI: 10.1371/journal.pone.0294627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/07/2023] [Indexed: 12/22/2023] Open
Abstract
This study determined the effect of dietary calcium propionate (CaPr) as a source of energy supplementation during the First Half of Gestation (FMG), the Second Half of Gestation (SMG), and during All Gestation (AG), on offspring post-weaning growth performance, meat quality, and meat metabolomic profile. Thirty-one pregnant ewes were assigned to one of four treatments: a) supplementation of 30 gd-1 of CaPr during the first half of gestation (day 1 to day 75, n = 8) (FMG); b) supplementation of 30 gd-1 of CaPr during the second half of gestation (day 76 to day 150, n = 8) (SMG); c) supplementation of 30 gd-1 of CaPr during all gestation (AG, n = 8); d) no CaPr supplementation (control; CS, n = 7). The ewes were ad libitum fed a basal diet based on oat hay and corn silage. Ewes were distributed in a completely randomized unbalanced design to four treatments. The FMG group had lower (P ≤ 0.05) birth weight and weaning weight than the CS group. However, the average daily gain was similar across all treatments. Empty body weight and FMG had lower values (P ≤ 0.05) than the other groups. Both FMG and AG had lower hot carcass weight (P ≤ 0.05) compared to CS, while CaPr treatments resulted in reduced hot carcass yield (P ≤ 0.05). Meat color and texture were similar among treatments. A principal component analysis between gestation stages showed a trend for separating CS and FMG from SMG and AG, and that was explained by 93.7% of the data variability (PC1 = 87.9% and PC2 = 5.8%). Regarding meat metabolomic profile, 23 compounds were positively correlated between all treatments. Only 2 were negatively correlated (eicosane and naphthalene 1,2,3); but tetradecanoic acid, hexadecane, undecane 5-methyl, (-)-alpha, hexadecenoic acid, octadecanoic acid, and octadecane had a highly significant correlation (P ≤ 0.05). Overall, dam supplementation with CaPr during different periods of gestation provoked changes in meat metabolites related to the biosynthesis of fatty acids in lambs without negative changes in lamb's growth performance and carcass quality.
Collapse
Affiliation(s)
- Luis Fernando Pérez Segura
- Facultad de Agronomía y Veterinaria—Centro de Biociencias Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez, San Luis Potosí, México
| | - Rogelio Flores Ramirez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), San Luis Potosí, SLP, México
| | - Alejandro E. Relling
- Department of Animal Science, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, United States of America
| | - José Alejandro Roque-Jimenez
- Facultad de Agronomía y Veterinaria—Centro de Biociencias Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez, San Luis Potosí, México
| | - Naifeng Zhang
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Héctor A. Lee-Rangel
- Facultad de Agronomía y Veterinaria—Centro de Biociencias Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez, San Luis Potosí, México
| |
Collapse
|
3
|
Ogah OS, Oguntade AS, Chukwuonye II, Onyeonoro UU, Madukwe OO, Asinobi A, Ogah F, Orimolade OA, Babatunde AO, Okeke MF, Attah OP, Ebengho IG, Sliwa K, Stewart S. Childhood and Infant exposure to famine in the Biafran war is associated with hypertension in later life: the Abia NCDS study. J Hum Hypertens 2023; 37:936-943. [PMID: 36473942 DOI: 10.1038/s41371-022-00782-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
There are very few studies in Africans investigating the association between early life exposure to malnutrition and subsequent hypertension in adulthood. We set out to investigate this potential association within an adult cohort who were born around the time of the Biafran War (1968-1970) and subsequent famine in Nigeria. This was a retrospective analysis of Abia State Non-Communicable Diseases and Cardiovascular Risk Factors (AS-NCD-CRF) Survey, a community-based, cross-sectional study that profiled 386 adults (47.4% men) of Igbo ethnicity born in the decade between January 1965 and December 1974. Based on their date of birth and the timing of the famine, participants were grouped according to their exposure to famine as children (Child-Fam) or in-utero fetus/infant (Fet-Inf-Fam) or no exposure (No-Fam). Binomial logit regression models were fitted to determine the association between famine exposure and hypertension in adulthood. Overall, 130 participants had hypertension (33.7%). Compared to the No-Fam group (24.4%), the prevalence of hypertension was significantly elevated in both the Child-Fam (43% - adjusted OR 2.47, 95% CI 1.14-5.36) and Fet-Inf-Fam (44.6% - adjusted OR 2.54, 95% CI 1.33-4.86) groups. The risk of hypertension in adulthood was highest among females within the Child-Fam group. However, within the Fet-Inf-Fam group males had a equivalently higher risk than females. These data suggest that early life exposure to famine and malnutrition in Africa is associated with a markedly increased risk of hypertension in adulthood; with sex-based differences evident. Thus, the importance of avoiding armed conflicts and food in-security in the region cannot be overstated. The legacy effects of the Biafran War clearly show the wider need for ongoing programs that support the nutritional needs of African mothers, infants and children as well as proactive surveillance programs for the early signs of hypertension in young Africans.
Collapse
Affiliation(s)
- Okechukwu S Ogah
- Cardiology Unit, Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Cardiology Unit, Department of Medicine, University College Hospital, Ibadan, Nigeria.
- Institute of Advanced Medical Research and Training, College of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | | | - Innocent Ijezie Chukwuonye
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, UK
| | | | | | - Adanze Asinobi
- Nephrology Unit, Department of Paediatrics, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fisayo Ogah
- Department of Chemical Pathology, University College Hospital Ibadan, Ibadan, Nigeria
| | | | | | - Mesoma Frances Okeke
- Alexander Brown Hall, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ojoma Peace Attah
- Alexander Brown Hall, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Karen Sliwa
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
- Soweto Cardiovascular Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simon Stewart
- Institute of Health Research, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
4
|
Fonseca PAS, Suárez-Vega A, Pelayo R, Marina H, Alonso-García M, Gutiérrez-Gil B, Arranz JJ. Intergenerational impact of dietary protein restriction in dairy ewes on epigenetic marks in the perirenal fat of their suckling lambs. Sci Rep 2023; 13:4351. [PMID: 36928446 PMCID: PMC10020577 DOI: 10.1038/s41598-023-31546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
In sheep, nutrition during the prepubertal stage is essential for growth performance and mammary gland development. However, the potential effects of nutrient restriction in a prepuberal stage over the progeny still need to be better understood. Here, the intergenerational effect of maternal protein restriction at prepubertal age (2 months of age) on methylation patterns was evaluated in the perirenal fat of Assaf suckling lambs. In total, 17 lambs from ewes subjected to dietary protein restriction (NPR group, 44% less protein) and 17 lambs from control ewes (C group) were analyzed. These lambs were ranked based on their carcass proportion of perirenal and cavitary fat and classified into HighPCF and LowPCF groups. The perirenal tissue from 4 NPR-LowPCF, 4 NPR-HighPCF, 4 C-LowPCF, and 4 C-HighPCF lambs was subjected to whole-genome bisulfite sequencing and differentially methylated regions (DMRs) were identified. Among other relevant processes, these DMRs were mapped in genes responsible for regulating the transition of brown to white adipose tissue and nonshivering thermoregulation, which might be associated with better adaptation/survival of lambs in the perinatal stage. The current study provides important biological insights about the intergenerational effect on the methylation pattern of an NPR in replacement ewes.
Collapse
Affiliation(s)
- Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Rocio Pelayo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Hector Marina
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - María Alonso-García
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Juan-José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain.
| |
Collapse
|
5
|
Multi-Omics Analysis Reveals the Potential Effects of Maternal Dietary Restriction on Fetal Muscle Growth and Development. Nutrients 2023; 15:nu15041051. [PMID: 36839409 PMCID: PMC9964303 DOI: 10.3390/nu15041051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In terms of fetal muscle growth, development, and health, maternal nutrition is a crucial influence, although the exact biochemical mechanism by which this occurs is still not fully understood. To examine the potential impacts of maternal dietary restriction on fetal muscle development, the sheep maternal dietary restriction model was developed for this study. In our study, 12 pregnant ewes were evenly split into two experimental groups and fed either 75% or 100% of a maternal nutrient. In addition, a multi-omics analysis was used to study the embryonic longissimus dorsis on gestational days (GD) 85 and 135. The fetal weight at GD 135 was significantly below normal due to the maternal restricted diet (p < 0.01). When fetuses were exposed to the dietary deficit, 416 mRNAs and 40 proteins were significantly changed. At GD 85, the multi-omics analysis revealed that maternal dietary restriction led to a significant up-regulation of the cell cycle regulator CDK2 gene in the cellular senescence signaling pathway, and the results of the qRT-PCR were similar to the multi-omics analysis, which showed that SIX1, PAX7, the cell cycle factors CDK4 and CDK6, and the BCL-2 apoptosis factor were up-regulated and several skeletal muscle marker genes, such as MYF5 and MyoD were down-regulated. At GD 135, maternal dietary restriction blocks the muscle fiber differentiation and maturation. The multi-omics analysis revealed that the TEAD1 gene was in the Hippo signaling pathway, the muscle marker genes MYF5 and MyoG were significantly down-regulated, and the TEAD1 binding of the down-regulated VGLL3 gene might be potential mechanisms affecting myofiber differentiation and maturation. Knocking down the CDK2 gene could inhibit the proliferation of primary embryonic myoblasts, and the expression levels of cell cycle regulatory factors CDK4 and CDK6 were significantly changed. Under low nutrient culture conditions, the number of myoblasts decreased and the expression of CDK2, CDK6, MYF5, PAX7 and BCL-2 changed, which was in perfect agreement with the multi-omics analysis. All of the findings from our study helped to clarify the potential effects of maternal dietary restriction on fetal muscle growth and development. They also provided a molecular foundation for understanding the molecular regulatory mechanisms of maternal nutrition on fetal muscle growth and development, as well as for the development of new medications and the management of related metabolic diseases.
Collapse
|
6
|
Calderón-Chagoya R, Vega-Murillo VE, García-Ruiz A, Ríos-Utrera Á, Martínez-Velázquez G, Montaño-Bermúdez M. Genome and chromosome wide association studies for growth traits in Simmental and Simbrah cattle. Anim Biosci 2023; 36:19-28. [PMID: 35798032 PMCID: PMC9834659 DOI: 10.5713/ab.21.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE The objective of this study was to perform genome (genome wide association studies [GWAS]) and chromosome (CWAS) wide association analyses to identify single nucleotide polymorphisms (SNPs) associated with growth traits in registered Simmental and Simbrah cattle. METHODS The phenotypes were deregressed BLUP EBVs for birth weight, weaning weight direct, weaning weight maternal, and yearling weight. The genotyping was performed with the GGP Bovine 150k chip. After the quality control analysis, 105,129 autosomal SNP from 967 animals (473 Simmental and 494 Simbrah) were used to carry out genotype association tests. The two association analyses were performed per breed and using combined information of the two breeds. The SNP associated with growth traits were mapped to their corresponding genes at 100 kb on either side. RESULTS A difference in magnitude of posterior probabilities was found across breeds between genome and chromosome wide association analyses. A total of 110, 143, and 302 SNP were associated with GWAS and CWAS for growth traits in the Simmental-, Simbrah-and joint -data analyses, respectively. It stands out from the enrichment analysis of the pathways for RNA polymerase (POLR2G, POLR3E) and GABAergic synapse (GABRR1, GABRR3) for Simmental cattle and p53 signaling pathway (BID, SERPINB5) for Simbrah cattle. CONCLUSION Only 6,265% of the markers associated with growth traits were found using CWAS and GWAS. The associated markers using the CWAS analysis, which were not associated using the GWAS, represents information that due to the model and priors was not associated with the traits.
Collapse
Affiliation(s)
- René Calderón-Chagoya
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510,
México,Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Colón, Querétaro 76280,
México
| | | | - Adriana García-Ruiz
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Colón, Querétaro 76280,
México
| | - Ángel Ríos-Utrera
- Campo Experimental La Posta, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Medellín, Veracruz 94277,
México
| | - Guillermo Martínez-Velázquez
- Campo Experimental Santiago Ixcuintla, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Santiago Ixcuintla, Nayarit 63570,
México
| | - Moisés Montaño-Bermúdez
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Colón, Querétaro 76280,
México,Corresponding Author: Moisés Montaño-Bermúdez, Tel: +52-55-38-71-8700 Ext. 80220, E-mail:
| |
Collapse
|
7
|
Townsend J, Braz CU, Taylor T, Khatib H. Effects of paternal methionine supplementation on sperm DNA methylation and embryo transcriptome in sheep. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac029. [PMID: 36727109 PMCID: PMC9885981 DOI: 10.1093/eep/dvac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Environmental effects on gene expression and offspring development can be mediated by epigenetic modifications. It is well established that maternal diet influences DNA methylation patterns and phenotypes in the offspring; however, the epigenetic effects of paternal diet on developing offspring warrants further investigation. Here, we examined how a prepubertal methionine-enriched paternal diet affected sperm DNA methylation and its subsequent effects on embryo gene expression. Three treatment and three control rams were bred to seven ewes, and blastocysts were flushed for RNA extraction. Semen was collected from all rams and submitted for reduced representation bisulfite sequencing analysis. In total, 166 differentially methylated cytosines were identified in the sperm from treatment versus control rams. Nine genes were found to be differentially expressed in embryos produced from treatment versus control rams, and seven differentially methylated cytosines in the sperm were found to be highly correlated with gene expression in the embryos. Our results demonstrate that sperm methylation differences induced by diet may influence fetal programming.
Collapse
Affiliation(s)
- Jessica Townsend
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Camila U Braz
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Todd Taylor
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| |
Collapse
|
8
|
Transcriptome profile in the skeletal muscle of cattle progeny as a function of maternal protein supplementation during mid-gestation. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Capra E, Toschi P, Del Corvo M, Lazzari B, Stella A, Williams JL, Loi P, Ajmone Marsan P. Short Communication: Maternal undernutrition during peri-conceptional period affects whole genome ovine muscle methylation in adult offspring. J Anim Sci 2022; 100:6586878. [PMID: 35580043 DOI: 10.1093/jas/skac180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Experimental and epidemiological studies suggest that maternal nutritional status during early pregnancy, including the period around the time of conception, may induce long-lasting epigenetic changes in the offspring. However, this remains largely unexplored in livestock. Therefore, the objective of this study was to evaluate if modification of the maternal diet of sheep (CTR: control; UND: 50% undernutrition) during the peri-conceptional period (42 days in total: -14/+28 from mating), would impact CpG methylation in muscle tissue (Longissimus dorsi) of adult offspring (11.5 months old). Reduced Representation Bisulfite Sequencing (RRBS), identified 262 (Edge-R, FDR<0.05) and 686 (Logistic Regression, FDR <0.001) differentially methylated regions (DMRs) between the UND and CTR groups. Gene ontology (GO) analysis identified genes related to development, functions of the muscular system and steroid hormone receptor activity within the DMRs. The data reported here show that nutritional stress during early pregnancy leads to epigenetic modifications in the muscle of the resulting offspring, with possible implications for cardiac dysfunction, muscle physiology and meat production.
Collapse
Affiliation(s)
- Emanuele Capra
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Einstein 26900 Lodi, Italy
| | - Paola Toschi
- Department. of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Marcello Del Corvo
- Department of Animal Science, Food and Technology - DIANA, and Nutrigenomics and Proteomics Research Center - PRONUTRIGEN, Università Cattolica del Sacro Cuore, Emilia Parmense 84, 29122, Piacenza, Italy
| | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Einstein 26900 Lodi, Italy
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Einstein 26900 Lodi, Italy
| | - John Lewis Williams
- Department of Animal Science, Food and Technology - DIANA, and Nutrigenomics and Proteomics Research Center - PRONUTRIGEN, Università Cattolica del Sacro Cuore, Emilia Parmense 84, 29122, Piacenza, Italy.,Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Pasqualino Loi
- Laboratory of Experimental Embryology, Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100, Teramo, Italy
| | - Paolo Ajmone Marsan
- Department of Animal Science, Food and Technology - DIANA, and Nutrigenomics and Proteomics Research Center - PRONUTRIGEN, Università Cattolica del Sacro Cuore, Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
10
|
Palmer EA, Vedovatto M, Oliveira RA, Ranches J, Vendramini JMB, Poore MH, Martins T, Binelli M, Arthington JD, Moriel P. Effects of maternal winter vs. year-round supplementation of protein and energy on postnatal growth, immune function, and carcass characteristics of Bos indicus-influenced beef offspring. J Anim Sci 2022; 100:6539999. [PMID: 35230426 PMCID: PMC8886918 DOI: 10.1093/jas/skac003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
This 2-yr study evaluated the effects of winter vs. year-round supplementation of Bos indicus-influenced beef cows on cow reproductive performance and impact on their offspring. On day 0 of each year (approximately day 122 ± 23 of gestation), 82 to 84 mature Brangus cows/yr were stratified by body weight (BW; 475 ± 67 kg) and body condition score (BCS; 4.85 ± 0.73) and randomly assigned to 1 of 6 bahiagrass (Paspalum notatum) pastures (13 to 14 cows/pasture). Treatments were randomly assigned to pastures consisting of winter supplementation with molasses + urea (WMOL), or year-round supplementation with molasses + urea (YMOL) or wheat middling-based range cubes (YCUB). Total yearly supplement DM amount was 272 kg/cow and supplements were formulated to be isocaloric and isonitrogenous (75% TDN and 20% CP). On day 421 (weaning; approximately 260 ± 24 d of age), 33 to 35 steers/yr were vaccinated against parainfluenza-3 (PI3) and bovine viral diarrhea virus type 1 (BVDV-1) and transported 1,193 km to a feedlot. Steers were penned according to maternal pasture and managed similarly until slaughter. Data were analyzed using the MIXED and GLIMMIX procedures of SAS. On day 217 (start of breeding season), BCS was greater (P = 0.01) for YMOL than WMOL cows, whereas BCS of YCUB did not differ (P ≥ 0.11) to both WMOL and YMOL cows. The percentage of cows that calved, calving date, birth BW, and preweaning BW of the first offspring did not differ (P ≥ 0.22) among maternal treatments. Plasma cortisol concentrations were greater (P ≤ 0.001) for YCUB steers at feedlot arrival (day 422) than WMOL and YMOL steers. Moreover, YCUB steers had greater (P = 0.02) and tended (P = 0.08) to have greater plasma concentrations of haptoglobin compared to WMOL and YMOL steers, respectively. Antibody titers against PI3 and BVDV-1 viruses did not differ (P ≥ 0.25) among maternal treatments. Steer BW at feedlot exit was greater (P ≤ 0.05) for YMOL and WMOL than YCUB steers. However, feedlot DMI did not differ (P ≥ 0.37) by maternal treatment. Hot carcass weight, yield grade, LMA, and marbling did not differ (P ≥ 0.14) among maternal treatments. Percentage of steers that graded low choice was enhanced (P ≤ 0.05) for WMOL and YCUB than YMOL steers. Maternal year-round supplementation of range cubes or molasses + urea either did not impact or decrease growth, immune function, and carcass characteristics of the offspring when compared with maternal supplementation of molasses + urea during winter only.
Collapse
Affiliation(s)
- Elizabeth A Palmer
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Marcelo Vedovatto
- Unidade Universitária de Aquidauana, Universidade Estadual de Mato Grosso do Sul, Aquidauana, MS, Brazil
| | - Rhaiza A Oliveira
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Juliana Ranches
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR 97720, USA
| | - Joao M B Vendramini
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Matthew H Poore
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Thiago Martins
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Mario Binelli
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - John D Arthington
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Philipe Moriel
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA,Corresponding author:
| |
Collapse
|
11
|
Naidu SJ, Arangasamy A, Selvaraju S, Binsila BK, Reddy IJ, Ravindra JP, Bhatta R. Maternal influence on the skewing of offspring sex ratio: a review. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Denoyelle L, de Villemereuil P, Boyer F, Khelifi M, Gaffet C, Alberto F, Benjelloun B, Pompanon F. Genetic Variations and Differential DNA Methylation to Face Contrasted Climates in Small Ruminants: An Analysis on Traditionally-Managed Sheep and Goats. Front Genet 2021; 12:745284. [PMID: 34650601 PMCID: PMC8508783 DOI: 10.3389/fgene.2021.745284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The way in which living organisms mobilize a combination of long-term adaptive mechanisms and short-term phenotypic plasticity to face environmental variations is still largely unknown. In the context of climate change, understanding the genetic and epigenetic bases for adaptation and plasticity is a major stake for preserving genomic resources and the resilience capacity of livestock populations. We characterized both epigenetic and genetic variations by contrasting 22 sheep and 21 goats from both sides of a climate gradient, focusing on free-ranging populations from Morocco. We produced for each individual Whole-Genome Sequence at 12X coverage and MeDIP-Seq data, to identify regions under selection and those differentially methylated. For both species, the analysis of genetic differences (FST) along the genome between animals from localities with high vs. low temperature annual variations detected candidate genes under selection in relation to environmental perception (5 genes), immunity (4 genes), reproduction (8 genes) and production (11 genes). Moreover, we found for each species one differentially methylated gene, namely AGPTA4 in goat and SLIT3 in sheep, which were both related, among other functions, to milk production and muscle development. In both sheep and goats, the comparison between genomic regions impacted by genetic and epigenetic variations suggests that climatic variations impacted similar biological pathways but different genes.
Collapse
Affiliation(s)
- Laure Denoyelle
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.,GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études
- PSL, MNHN, CNRS, SU, UA, Paris, France
| | - Frédéric Boyer
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Meidhi Khelifi
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Clément Gaffet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Florian Alberto
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Badr Benjelloun
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France.,Institut National de la Recherche Agronomique Maroc (INRA-Maroc), Centre Régional de Beni Mellal, Beni Mellal, Morocco
| | - François Pompanon
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
13
|
Effects of maternal gestational diet, with or without methionine, on muscle transcriptome of Bos indicus-influenced beef calves following a vaccine-induced immunological challenge. PLoS One 2021; 16:e0253810. [PMID: 34166453 PMCID: PMC8224847 DOI: 10.1371/journal.pone.0253810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal nutrition during gestation can cause epigenetic effects that translate to alterations in gene expression in offspring. This 2-year study employed RNA-sequencing technology to evaluate the pre- and post-vaccination muscle transcriptome of early-weaned Bos indicus-influenced beef calves born from dams offered different supplementation strategies from 57 ± 5 d prepartum until 17 ± 5 d postpartum. Seventy-two Brangus heifers (36 heifers/yr) were stratified by body weight and body condition score and assigned to bahiagrass pastures (3 heifers/pasture/yr). Treatments were randomly assigned to pastures and consisted of (i) no pre- or postpartum supplementation (NOSUP), (ii) pre- and postpartum supplementation of protein and energy using 7.2 kg of dry matter/heifer/wk of molasses + urea (MOL), or (iii) MOL fortified with 105 g/heifer/wk of methionine hydroxy analog (MOLMET). Calves were weaned on d 147 of the study. On d 154, 24 calves/yr (8 calves/treatment) were randomly selected and individually limit-fed a high-concentrate diet until d 201. Calves were vaccinated on d 160. Muscle biopsies were collected from the same calves (4 calves/treatment/day/yr) on d 154 (pre-vaccination) and 201 (post-vaccination) for gene expression analysis using RNA sequencing. Molasses maternal supplementation led to a downregulation of genes associated with muscle cell differentiation and development along with intracellular signaling pathways (e.g., Wnt and TGF-β signaling pathway) compared to no maternal supplementation. Maternal fortification with methionine altered functional gene-sets involved in amino acid transport and metabolism and the one-carbon cycle. In addition, muscle transcriptome was impacted by vaccination with a total of 2,396 differentially expressed genes (FDR ≤ 0.05) on d 201 vs. d 154. Genes involved in cell cycle progression, extracellular matrix, and collagen formation were upregulated after vaccination. This study demonstrated that maternal supplementation of energy and protein, with or without, methionine has long-term implications on the muscle transcriptome of offspring and potentially influence postnatal muscle development.
Collapse
|
14
|
Ahmad S, Drag MH, Salleh SM, Cai Z, Nielsen MO. Transcriptomics analysis of differentially expressed genes in subcutaneous and perirenal adipose tissue of sheep as affected by their pre- and early postnatal malnutrition histories. BMC Genomics 2021; 22:338. [PMID: 33975549 PMCID: PMC8114714 DOI: 10.1186/s12864-021-07672-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early life malnutrition is known to target adipose tissue with varying impact depending on timing of the insult. This study aimed to identify differentially expressed genes in subcutaneous (SUB) and perirenal (PER) adipose tissue of 2.5-years old sheep to elucidate the biology underlying differential impacts of late gestation versus early postnatal malnutrition on functional development of adipose tissues. Adipose tissues were obtained from 37 adult sheep born as twins to dams fed either NORM (fulfilling energy and protein requirements), LOW (50% of NORM) or HIGH (110% of protein and 150% of energy requirements) diets in the last 6-weeks of gestation. From day 3 to 6 months of age, lambs were fed high-carbohydrate-high-fat (HCHF) or moderate low-fat (CONV) diets, and thereafter the same moderate low-fat diet. RESULTS The gene expression profile of SUB in the adult sheep was not affected by the pre- or early postnatal nutrition history. In PER, 993 and 186 differentially expressed genes (DEGs) were identified in LOW versus HIGH and NORM, respectively, but no DEG was found between HIGH and NORM. DEGs identified in the mismatched pre- and postnatal nutrition groups LOW-HCHF (101) and HIGH-HCHF (192) were largely downregulated compared to NORM-CONV. Out of 831 DEGs, 595 and 236 were up- and downregulated in HCHF versus CONV, respectively. The functional enrichment analyses revealed that transmembrane (ion) transport activities, motor activities related to cytoskeletal and spermatozoa function (microtubules and the cytoskeletal motor protein, dynein), and responsiveness to the (micro) environmental extracellular conditions, including endocrine and nervous stimuli were enriched in the DEGs of LOW versus HIGH and NORM. We confirmed that mismatched pre- and postnatal feeding was associated with long-term programming of adipose tissue remodeling and immunity-related pathways. In agreement with phenotypic measurements, early postnatal HCHF feeding targeted pathways involved in kidney cell differentiation, and mismatched LOW-HCHF sheep had specific impairments in cholesterol metabolism pathways. CONCLUSIONS Both pre- and postnatal malnutrition differentially programmed (patho-) physiological pathways with implications for adipose functional development associated with metabolic dysfunctions, and PER was a major target.
Collapse
Affiliation(s)
- Sharmila Ahmad
- Nutrition Research Unit, Department of Animal Science, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Markus Hodal Drag
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Suraya Mohamad Salleh
- Department of Animal Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Zexi Cai
- Centre for Quantitative Genetics and Genomics, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Mette Olaf Nielsen
- Nutrition Research Unit, Department of Animal Science, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| |
Collapse
|
15
|
Costa TC, Du M, Nascimento KB, Galvão MC, Meneses JAM, Schultz EB, Gionbelli MP, Duarte MDS. Skeletal Muscle Development in Postnatal Beef Cattle Resulting from Maternal Protein Restriction during Mid-Gestation. Animals (Basel) 2021; 11:ani11030860. [PMID: 33803518 PMCID: PMC8003034 DOI: 10.3390/ani11030860] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
We aimed to investigate the effects of maternal protein restriction during mid-gestation on the skeletal muscle composition of the offspring. In the restriction treatment (RES, n = 9), cows were fed a basal diet, while in the control (CON, n = 9) group cows received the same RES diet plus the protein supplement during mid-gestation (100-200d). Samples of Longissimus dorsi muscle were collected from the offspring at 30d and 450d postnatal. Muscle fiber number was found to be decreased as a result of maternal protein restriction and persisted throughout the offspring's life (p < 0.01). The collagen content was enhanced (p < 0.05) due to maternal protein restriction at 30d. MHC2X mRNA expression tended to be higher (p = 0.08) in RES 30d offspring, however, no difference (p > 0.05) was found among treatments at 450d. Taken together, our results suggest that maternal protein restriction during mid-gestation has major and persistent effects by reducing muscle fiber formation and may slightly increase collagen accumulation in the skeletal muscle of the offspring. Although maternal protein restriction may alter the muscle fiber metabolism by favoring the establishment of a predominant glycolytic metabolism, the postnatal environment may be a determinant factor that establishes the different proportion of muscle fiber types.
Collapse
Affiliation(s)
- Thais Correia Costa
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa MG 3657-000, Brazil;
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa MG 3657-000, Brazil
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Karolina Batista Nascimento
- Department of Animal Science, Universidade Federal de Lavras, Lavras MG 37200-900, Brazil; (K.B.N.); (M.C.G.); (J.A.M.M.); (M.P.G.)
| | - Matheus Castilho Galvão
- Department of Animal Science, Universidade Federal de Lavras, Lavras MG 37200-900, Brazil; (K.B.N.); (M.C.G.); (J.A.M.M.); (M.P.G.)
| | - Javier Andrés Moreno Meneses
- Department of Animal Science, Universidade Federal de Lavras, Lavras MG 37200-900, Brazil; (K.B.N.); (M.C.G.); (J.A.M.M.); (M.P.G.)
| | - Erica Beatriz Schultz
- Department of Animal Science, Universidade Federal Rural do Rio de Janeiro, Seropédica RJ 23897-000, Brazil;
| | - Mateus Pies Gionbelli
- Department of Animal Science, Universidade Federal de Lavras, Lavras MG 37200-900, Brazil; (K.B.N.); (M.C.G.); (J.A.M.M.); (M.P.G.)
| | - Marcio de Souza Duarte
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa MG 3657-000, Brazil;
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa MG 3657-000, Brazil
- Correspondence: ; Tel.: +55-(31)-3612-4636
| |
Collapse
|
16
|
Desoye G, Herrera E. Adipose tissue development and lipid metabolism in the human fetus: The 2020 perspective focusing on maternal diabetes and obesity. Prog Lipid Res 2020; 81:101082. [PMID: 33383022 DOI: 10.1016/j.plipres.2020.101082] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
During development, the human fetus accrues the highest proportion of fat of all mammals. Precursors of fat lobules can be found at week 14 of pregnancy. Thereafter, they expand, filling with triacylglycerols during pregnancy. The resultant mature lipid-filled adipocytes emerge from a developmental programme of embryonic stem cells, which is regulated differently than adult adipogenesis. Fetal triacylglycerol synthesis uses glycerol and fatty acids derived predominantly from glycolysis and lipogenesis in liver and adipocytes. The fatty acid composition of fetal adipose tissue at the end of pregnancy shows a preponderance of palmitic acid, and differs from the mother. Maternal diabetes mellitus does not influence this fatty acid profile. Glucose oxidation is the main source of energy for the fetus, but mitochondrial fatty acid oxidation also contributes. Indirect evidence suggests the presence of lipoprotein lipase in fetal adipose tissue. Its activity may be increased under hyperinsulinemic conditions as in maternal diabetes mellitus and obesity, thereby contributing to increased triacylglycerol deposition found in the newborns of such pregnancies. Fetal lipolysis is low. Changes in the expression of genes controlling metabolism in fetal adipose tissue appear to contribute actively to the increased neonatal fat mass found in diabetes and obesity. Many of these processes are under endocrine regulation, principally by insulin, and show sex-differences. Novel fatty acid derived signals such as oxylipins are present in cord blood with as yet undiscovered function. Despite many decades of research on fetal lipid deposition and metabolism, many key questions await answers.
Collapse
Affiliation(s)
- G Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
| | - E Herrera
- Faculties of Pharmacy and Medicine, University CEU San Pablo, Madrid, Spain.
| |
Collapse
|
17
|
Gross N, Taylor T, Crenshaw T, Khatib H. The Intergenerational Impacts of Paternal Diet on DNA Methylation and Offspring Phenotypes in Sheep. Front Genet 2020; 11:597943. [PMID: 33250925 PMCID: PMC7674940 DOI: 10.3389/fgene.2020.597943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Knowledge of non-genomic inheritance of traits is currently limited. Although it is well established that maternal diet influences offspring inheritance of traits through DNA methylation, studies on the impact of prepubertal paternal diet on DNA methylation are rare. This study aimed to evaluate the impact of prepubertal diet in Polypay rams on complex traits, DNA methylation, and transmission of traits to offspring. A total of 10 littermate pairs of F0 rams were divided so that one ram was fed a control diet, and the other was fed the control diet with supplemental methionine. Diet was associated with earlier age at puberty in treatment vs. control F0 rams. F0 treatment rams tended to show decreased pubertal weight compared to control rams; however, no differences were detected in overall growth. A total of ten F0 rams were bred, and the entire F1 generation was fed a control diet. Diet of F0 rams had a significant association with scrotal circumference (SC) and weight at puberty of F1 offspring. The paternal diet was not significantly associated with F1 ram growth or age at puberty. The DNA methylation of F0 ram sperm was assessed, and genes related to both sexual development (e.g., DAZAP1, CHD7, TAB1, MTMR2, CELSR1, MGAT1) and body weight (e.g., DUOX2, DUOXA2) were prevalent in the data. These results provide novel information about the mechanisms through which the prepubertal paternal diet may alter body weight at puberty and sexual development.
Collapse
Affiliation(s)
- Nicole Gross
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Todd Taylor
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas Crenshaw
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
18
|
Sohel MMH, Akyuz B, Konca Y, Arslan K, Gurbulak K, Abay M, Kaliber M, Cinar MU. Differential protein input in the maternal diet alters the skeletal muscle transcriptome in fetal sheep. Mamm Genome 2020; 31:309-324. [PMID: 33164111 DOI: 10.1007/s00335-020-09851-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Maternal nutrition during pregnancy is one of the major intrauterine environmental factors that influence fetal development by significantly altering the expression of genes that might have a consequence on the physiological, morphological, and metabolic performance of the offspring in the postnatal period. The impact of maternal dietary protein on the expression of genes in sheep fetal skeletal muscle development is not well understood. The current study aims to investigate the impact of high and low maternal dietary protein on the holistic mRNA expression in the sheep fetal skeletal muscle. Dams were exposed to an isoenergetic high-protein diet (HP, 160-270 g/day), low-protein diet (LP, 73-112 g/day), and standard protein (SP, 119-198 g/day) diets during pregnancy. Fetal skeletal muscles were obtained at the 105th day of pregnancy and mRNA expression profiles were evaluated using Affymetrix GeneChip™ Ovine Gene 1.0 ST Array. The transcriptional analysis revealed a total of 323, 354, and 14 genes were differentially regulated (fold change > 2 and false discovery rate ≤ 0.05) in HP vs. SP, LP vs. HP, and SP vs. LP, respectively. Several myogenic genes, including MYOD1, MYH2, MYH1, are significantly upregulated, while genes related to the immune system, such as CXCL11, HLA-E, CXCL10, CXCL9, TLRs, are significantly downregulated in the fetal muscle of the HP group compared to those of SP and LP group. Bioinformatic analysis revealed that the majority of these genes are involved in pathways related to the immune system and diseases. The results of our study demonstrate that both augmented and restricted dietary proteins in maternal diet during pregnancy alter the expression of genes as well as the offspring's genetic marks.
Collapse
Affiliation(s)
- Md Mahmodul Hasan Sohel
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey.,Genome and Stem Cell Centre, Erciyes University, 38039, Kayseri, Turkey
| | - Bilal Akyuz
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Yusuf Konca
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, 38039, Kayseri, Turkey
| | - Korhan Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Kutlay Gurbulak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Murat Abay
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Mahmut Kaliber
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, 38039, Kayseri, Turkey
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Melikgazi, 38039, Kayseri, Turkey.
| |
Collapse
|
19
|
Liu L, Amorín R, Moriel P, DiLorenzo N, Lancaster PA, Peñagaricano F. Differential network analysis of bovine muscle reveals changes in gene coexpression patterns in response to changes in maternal nutrition. BMC Genomics 2020; 21:684. [PMID: 33008289 PMCID: PMC7531131 DOI: 10.1186/s12864-020-07068-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Coexpression network analysis is a powerful tool to reveal transcriptional regulatory mechanisms, identify transcription factors, and discover gene functions. It can also be used to investigate changes in coexpression patterns in response to environmental insults or changes in experimental conditions. Maternal nutrition is considered a major intrauterine regulator of fetal developmental programming. The objective of this study was to investigate structural changes in gene coexpression networks in the muscle of bull beef calves gestated under diets with or without methionine supplementation. Both muscle transcriptome and methylome were evaluated using next generation sequencing. Results Maternal methionine supplementation significantly perturbed coexpression patterns in the offspring’s muscle. Indeed, we found that neither the connection strength nor the connectivity pattern of six modules (subnetworks) detected in the control diet were preserved in the methionine-rich diet. Functional characterization revealed that some of the unpreserved modules are implicated in myogenesis, adipogenesis, fibrogenesis, canonical Wnt/β-catenin pathway, ribosome structure, rRNA binding and processing, mitochondrial activities, ATP synthesis and NAD(P) H oxidoreductases, among other functions. The bisulfite sequencing analysis showed that nearly 2% of all evaluated cytosines were differentially methylated between maternal diets. Interestingly, there were significant differences in the levels of gene body DNA methylation between preserved and unpreserved modules. Conclusions Overall, our findings provide evidence that maternal nutrition can significantly alter gene coexpression patterns in the offspring, and some of these perturbations are mediated by changes in DNA methylation.
Collapse
Affiliation(s)
- Lihe Liu
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI, 53706, USA.,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Rocío Amorín
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Philipe Moriel
- Range Cattle Research and Education Center, University of Florida, Ona, FL, 33865, USA
| | - Nicolás DiLorenzo
- North Florida Research and Education Center, University of Florida, Marianna, FL, 32351, USA
| | - Phillip A Lancaster
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI, 53706, USA. .,Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
20
|
Hernández-Montiel W, Martínez-Núñez MA, Ramón-Ugalde JP, Román-Ponce SI, Calderón-Chagoya R, Zamora-Bustillos R. Genome-Wide Association Study Reveals Candidate Genes for Litter Size Traits in Pelibuey Sheep. Animals (Basel) 2020; 10:ani10030434. [PMID: 32143402 PMCID: PMC7143297 DOI: 10.3390/ani10030434] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022] Open
Abstract
The Pelibuey sheep has adaptability to climatic variations, resistance to parasites, and good maternal ability, whereas some ewes present multiple births, which increases the litter size in farm sheep. The litter size in some wool sheep breeds is associated with the presence of mutations, mainly in the family of the transforming growth factor β (TGF-β) genes. To explore genetic mechanisms underlying the variation in litter size, we conducted a genome-wide association study in two groups of Pelibuey sheep (multiparous sheep with two lambs per birth vs. uniparous sheep with a single lamb at birth) using the OvineSNP50 BeadChip. We identified a total of 57 putative SNPs markers (p < 3.0 × 10-3, Bonferroni correction). The candidate genes that may be associated with litter size in Pelibuey sheep are CLSTN2, MTMR2, DLG1, CGA, ABCG5, TRPM6, and HTR1E. Genomic regions were also identified that contain three quantitative trait loci (QTLs) for aseasonal reproduction (ASREP), milk yield (MY), and body weight (BW). These results allowed us to identify SNPs associated with genes that could be involved in the reproductive process related to prolificacy.
Collapse
Affiliation(s)
- Wilber Hernández-Montiel
- TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico; (W.H.-M.); (J.P.R.-U.)
- Departamento de Ciencias Agropecuarias, Universidad del Papaloapan, Loma Bonita Oaxaca 68400, Mexico
| | - Mario Alberto Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico;
| | - Julio Porfirio Ramón-Ugalde
- TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico; (W.H.-M.); (J.P.R.-U.)
| | - Sergio Iván Román-Ponce
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Ajuchitlán Colón, Querétaro 76280, Mexico;
- Correspondence: (S.I.R.-P.); (R.Z.-B.); Tel.: +52-5538718700 (ext. 80208) (S.I.R.-P.); +52-999-341-0860 (ext. 7631) (R.Z.-B.)
| | - Rene Calderón-Chagoya
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Ajuchitlán Colón, Querétaro 76280, Mexico;
| | - Roberto Zamora-Bustillos
- TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico; (W.H.-M.); (J.P.R.-U.)
- Correspondence: (S.I.R.-P.); (R.Z.-B.); Tel.: +52-5538718700 (ext. 80208) (S.I.R.-P.); +52-999-341-0860 (ext. 7631) (R.Z.-B.)
| |
Collapse
|
21
|
Methionine increases yolk production to offset the negative effect of caloric restriction on reproduction without affecting longevity in C. elegans. Aging (Albany NY) 2020; 12:2680-2697. [PMID: 32028263 PMCID: PMC7041781 DOI: 10.18632/aging.102770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/12/2020] [Indexed: 01/06/2023]
Abstract
Caloric restriction (CR) or Dietary restriction (DR) is known to improve health and in many cases increases lifespan. However, its negative effect on reproduction has not been fully studied. Practicing CR/DR without adequate knowledge on its side effect may risk complications such as infertility, birth defect, or malnutrition. In this study, by using several CR strategies in C. elegans, we examine key functions of reproduction including embryonic development and larvae growth. We find that CR significantly decreases the survival of embryos and slows the growth of the offspring. We further determine that defect in oocyte but not sperm is responsible for the compromised reproduction under CR. Interestingly, adding methionine to the medium reverses the reproduction defects, but does not affect the long lifespan resulted from CR. The beneficial effect of methionine on reproduction requires the yolk protein vitellogenin. CR down-regulates vitellogenin expression, which can be reversed by supplementing methionine in the food. Lacking the yolk protein transport due to rme-2 mutation blocks methionine’s beneficial effects. Our study has revealed a novel, methionine-mediated genetic pathway linking nutrient sensing to reproduction and suggested methionine as a potential food supplement to mitigate the side effect of CR.
Collapse
|
22
|
Proteomic analyses of sheep (ovis aries) embryonic skeletal muscle. Sci Rep 2020; 10:1750. [PMID: 32019949 PMCID: PMC7000794 DOI: 10.1038/s41598-020-58349-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/13/2020] [Indexed: 11/08/2022] Open
Abstract
The growth and development of embryonic skeletal muscle plays a crucial role in sheep muscle mass. But proteomic analyses for embryonic skeletal development in sheep had been little involved in the past research. In this study, we explored differential abundance proteins during embryonic skeletal muscle development by the tandem mass tags (TMT) and performed a protein profile analyses in the longissimus dorsi of Chinese merino sheep at embryonic ages Day85 (D85N), Day105 (D105N) and Day135 (D135N). 5,520 proteins in sheep embryonic skeletal muscle were identified, and 1,316 of them were differential abundance (fold change ≥1.5 and p-value < 0.05). After the KEGG enrichment analyses, these differential abundance proteins were significant enriched in the protein binding, muscle contraction and energy metabolism pathways. After validation of the protein quantification with the parallel reaction monitoring (PRM), 41% (16/39) significant abundance proteins were validated, which was similar to the results of protein quantification with TMT. All results indicated that D85N to D105N was the stage of embryonic muscle fibers proliferation, while D105N to D135N was the stage of their hypertrophy. These findings provided a deeper understanding of the function and rules of proteins in different phases of sheep embryonic skeletal muscle growth and development.
Collapse
|
23
|
Sex Determination Using RNA-Sequencing Analyses in Early Prenatal Pig Development. Genes (Basel) 2019; 10:genes10121010. [PMID: 31817322 PMCID: PMC6947224 DOI: 10.3390/genes10121010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Sexual dimorphism is a relevant factor in animal science, since it can affect the gene expression of economically important traits. Eventually, the interest in the prenatal phase in a transcriptome study may not comprise the period of development in which male and female conceptuses are phenotypically divergent. Therefore, it would be interesting if sex differentiation could be performed using transcriptome data, with no need for extra techniques. In this study, the sex of pig conceptuses (embryos at 25 days-old and fetuses at 35 days-old) was determined by reads counts per million (CPM) of Y chromosome-linked genes that were discrepant among samples. Thus, ten genes were used: DDX3Y, KDM5D, ZFY, EIF2S3Y, EIF1AY, LOC110255320, LOC110257894, LOC396706, LOC100625207, and LOC110255257. Conceptuses that presented reads CPM sum for these genes (ΣCPMchrY) greater than 400 were classified as males and those with ΣCPMchrY below 2 were classified as females. It was demonstrated that the sex identification can be performed at early stages of pig development from RNA-sequencing analysis of genes mapped on Y chromosome. Additionally, these results reinforce that sex determination is a mechanism conserved across mammals, highlighting the importance of using pigs as an animal model to study sex determination during human prenatal development.
Collapse
|
24
|
Gallardo M, Cárcamo JG, Arias-Darraz L, Alvear C. Effect of Diet and Type of Pregnancy on Transcriptional Expression of Selected Genes in Sheep Mammary Gland. Animals (Basel) 2019; 9:ani9090589. [PMID: 31438555 PMCID: PMC6770544 DOI: 10.3390/ani9090589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
Simple Summary An experiment was designed to determine the effect of diet and type of pregnancy on the mammary gland development, measured by the transcriptional expression of genes involved in angiogenesis and cell turnover/lactogenesis. To that end, twin and single-bearing ewes were fed naturalized pasture or red clover from day −45 pre-partum until day +60 post-partum, taking samples of mammary tissue at day −10, +30 and +60 post-partum. The results showed that the group of twin-bearing ewes fed red clover was the best combination to increase the expression of genes associated to angiogenesis and cell turnover/lactogenesis in the mammary gland. Abstract These trials were carried out to determine firstly the effect of diet and type of pregnancy on the transcriptional expression of genes involved in angiogenesis and cell turnover/lactogenesis inside the sheep mammary gland from late gestation to late lactation. Eighteen Ile de France sheep, 8 twin- and 10 single-bearing ewes were alloted into two groups according to their diet, either based on ad libitum naturalized pasture or red clover hay plus lupine from day −45 pre-partum until day +60 post-partum. Samples from diets and mammary glands were collected at day −10 pre partum (time 1), day +30 (time 2) and day +60 post-partum (time 3) and analyzed by qRT-PCR. Additionally, samples from longissimus dorsi muscle were taken from lambs twice, at weaning and 45 days later, to determine the effect of the maternal treatment with regard to diet and type of pregnancy, on the mRNA expression of genes involved in lipid metabolism. The data was processed using the lme4 package for R, and SPSS Statistics 23.0 for Windows®. The results showed that the group of twin-bearing ewes fed red clover showed a higher expression of genes involved in angiogenesis before lambing and in cell turnover/lactogenesis during late lactation, explained by a lamb survival mechanism to delay apoptosis as a way to keep a secretory cells population and boosted by the diet quality, assuring a longer milk production potential during late lactation. Regarding lambs, apparently the maternal diet would influence the transcriptional expression of lipogenic enzymes in the longissimus dorsi muscle after weaning, but further studies are necessary to validate these results. In summary, Twin-bearing ewes fed red clover performed best at increasing the expression of genes associated with angiogenesis and cell turnover/lactogenesis in the mammary gland.
Collapse
Affiliation(s)
- María Gallardo
- Facultad de Ciencias, Universidad Austral de Chile, PO Box 567, Valdivia 5090000, Chile.
| | - Juan G Cárcamo
- Facultad de Ciencias, Universidad Austral de Chile, PO Box 567, Valdivia 5090000, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia 5090000, Chile
| | - Luis Arias-Darraz
- Facultad de Ciencias, Universidad Austral de Chile, PO Box 567, Valdivia 5090000, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Valdivia 5090000, Chile
| | - Carlos Alvear
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, Santiago 8320000, Chile
| |
Collapse
|
25
|
Hasan MS, Feugang JM, Liao SF. A Nutrigenomics Approach Using RNA Sequencing Technology to Study Nutrient-Gene Interactions in Agricultural Animals. Curr Dev Nutr 2019; 3:nzz082. [PMID: 31414073 PMCID: PMC6686084 DOI: 10.1093/cdn/nzz082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/08/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022] Open
Abstract
Thorough understanding of animal gene expression driven by dietary nutrients can be regarded as a bottom line of advanced animal nutrition research. Nutrigenomics (including transcriptomics) studies the effects of dietary nutrients on cellular gene expression and, ultimately, phenotypic changes in living organisms. Transcriptomics can be applied to investigate animal tissue transcriptomes at a defined nutritional state, which can provide a holistic view of intracellular RNA expression. As a novel transcriptomics approach, RNA sequencing (RNA-Seq) technology can monitor all gene expressions simultaneously in response to dietary intervention. The principle and history of RNA-Seq are briefly reviewed, and its 3 principal steps are described in this article. Application of RNA-Seq in different areas of animal nutrition research is summarized. Lastly, the application of RNA-Seq in swine science and nutrition is also reviewed. In short, RNA-Seq holds significant potential to be employed for better understanding the nutrient-gene interactions in agricultural animals.
Collapse
Affiliation(s)
- M Shamimul Hasan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Shengfa F Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
26
|
Cellular Mechanisms and Epigenetic Changes: Role of Nutrition in Livestock. Vet Clin North Am Food Anim Pract 2019; 35:249-263. [PMID: 31103179 DOI: 10.1016/j.cvfa.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the context of physiologic responses that determine the growth, development, and health status of livestock, the role of epigenetics and the underlying cellular mechanisms it affects remain to be fully elucidated. Although recent work has provided evidence that maternal dietary energy level, carbohydrate type, or intestinal supply of methyl donors can elicit molecular changes in tissues of the embryo, fetus, or neonate, there are few data linking epigenetics with biochemical and physiologic outcomes. Therefore, efforts linking the epigenome with physiologic and developmental outcomes offer exciting opportunities for discoveries that can impact efficiency of nutrient use and well-being of livestock.
Collapse
|
27
|
da Cruz WFG, Schoonmaker JP, de Resende FD, Siqueira GR, Rodrigues LM, Zamudio GDR, Ladeira MM. Effects of maternal protein supplementation and inclusion of rumen-protected fat in the finishing diet on nutrient digestibility and expression of intestinal genes in Nellore steers. Anim Sci J 2019; 90:1200-1211. [PMID: 31317623 DOI: 10.1111/asj.13273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/23/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022]
Abstract
The study aimed to evaluate nutrient digestibility and intestine gene expression in the progeny from cows supplemented during gestation and fed diets with or without rumen-protected fat (RPF) in the feedlot. Forty-eight Nellore steers, averaging 340 kg, were housed in individual pens and allotted in a completely randomized design using a 2 × 2 factorial arrangement (dams nutrition × RPF). Cows' supplementation started after 124 ± 21 days of gestation. The feedlot lasted 135 days and diets had the inclusion of zero or 6% of RPF. Digestibility was evaluated by total feces collection. Steers were slaughtered using the concussion technique and samples of pancreas and small intestine were collected immediately after the slaughter to analyze α-amylase activity, and the expression of SLC5A1, CD36, and CCK and villi morphometry. Feeding RPF increased nutrients digestibility (p < 0.01). There was no effect of maternal nutrition on digestibility and α-amylase activity in steers (p > 0.05). Duodenal expression of SLC5A1, CD36, and CCK increased in the progeny from restricted cows. In conclusion, protein restriction during mid to late gestation of dams has long-term effects on small-intestine length and on expression of membrane transporters genes in the duodenum of the progeny. However, maternal nutrition does not affect digestibility in the feedlot.
Collapse
Affiliation(s)
- Wendell F G da Cruz
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Jon P Schoonmaker
- Department of Animal Science, Purdue University, West Lafayette, Indiana, USA
| | | | | | - Liziana M Rodrigues
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Germán D R Zamudio
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Marcio M Ladeira
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| |
Collapse
|
28
|
Wei XS, Zhao HH, He JJ, Yin QY, Cao YC, Cai CJ, Yao JH. Maternal nicotinamide supplementation during the perinatal period modifies the small intestine morphology and antioxidative status of offspring kids. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Analysis of mRNA abundance for histone variants, histone- and DNA-modifiers in bovine in vivo and in vitro oocytes and embryos. Sci Rep 2019; 9:1217. [PMID: 30718778 PMCID: PMC6362035 DOI: 10.1038/s41598-018-38083-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Transcript abundance of histone variants, modifiers of histone and DNA in bovine in vivo oocytes and embryos were measured as mean transcripts per million (TPM). Six of 14 annotated histone variants, 8 of 52 histone methyl-transferases, 5 of 29 histone de-methylases, 5 of 20 acetyl-transferases, 5 of 19 de-acetylases, 1 of 4 DNA methyl-transferases and 0 of 3 DNA de-methylases were abundant (TPM >50) in at least one stage studied. Overall, oocytes and embryos contained more varieties of mRNAs for histone modification than for DNA. Three expression patterns were identified for histone modifiers: (1) transcription before embryonic genome activation (EGA) and down-regulated thereafter such as PRMT1; (2) low in oocytes but transiently increased for EGA such as EZH2; (3) high in oocytes but decreased by EGA such as SETD3. These expression patterns were altered by in vitro culture. Additionally, the presence of mRNAs for the TET enzymes throughout pre-implantation development suggests persistent de-methylation. Together, although DNA methylation changes are well-recognized, the first and second orders of significance in epigenetic changes by in vivo embryos may be histone variant replacements and modifications of histones.
Collapse
|
30
|
Oczkowicz M, Szmatoła T, Świątkiewicz M, Pawlina-Tyszko K, Gurgul A, Ząbek T. Corn dried distillers grains with solubles (cDDGS) in the diet of pigs change the expression of adipose genes that are potential therapeutic targets in metabolic and cardiovascular diseases. BMC Genomics 2018; 19:864. [PMID: 30509175 PMCID: PMC6276254 DOI: 10.1186/s12864-018-5265-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background Corn dried distillers grains with solubles (cDDGS) are a byproduct of biofuel and alcohol production. cDDGS have been used in pig feed for many years, because they are readily available and rich in protein, fiber, unsaturated fatty acids and phytosterols. However, feed mixtures too high in cDDGS result in the worsening of backfat quality. We performed RNA-sequencing analysis of backfat from crossbred pigs fed different diets. The diets were isoenergetic but contained different amounts of cDDGS and various sources of fats. The animals were divided into four dietary groups during the two months of experimentation: group I (control (-cDDGS+rapeseed oil)), group II (+cDDGS+rapeseed oil), group III (+cDDGS+beef tallow), and group IV (+cDDGS+coconut oil). The aim of the present experiment was to evaluate changes in the backfat transcriptome of pigs fed isoenergetic diets that differed in cDDGS presence. Results Via DESeq2 software, we identified 93 differentially expressed genes (DEGs) between groups I and II, 13 between groups I and III, and 125 between groups I and IV. DEGs identified between group I (-cDDGS+rapeseed oil) and group II (+cDDGS+rapeseed oil) were highly overrepresented in several KEGG pathways: metabolic pathways (FDR < 1.21e-06), oxidative phosphorylation (FDR < 0.00189), fatty acid biosynthesis (FDR < 0.00577), Huntington’s disease (FDR < 0.00577), fatty acid metabolism (FDR < 0.0112), Parkinson’s disease (FDR < 0.0151), non-alcoholic fatty liver disease (NAFLD) (FDR < 0.016), Alzheimer’s disease (FDR < 0.0211) and complement and coagulation cascades (FDR < 0.02). Conclusions We observed that the addition of cDDGS positively affects the expression of several genes that have been recently proposed as potential targets for the treatment of obesity, diabetes, cardiovascular disease, and Alzheimer’s disease (e.g., FASN, AACS, ALAS1, HMGCS1, and VSIG4). Thus, our results support the idea of including cDDGS into the diets of companion animals and humans and encourage research into the bioactive ingredients of cDDGS. Electronic supplementary material The online version of this article (10.1186/s12864-018-5265-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Oczkowicz
- Department of Molecular Biology of Animals, National Research Institute of Animal Production, ul Krakowska 1, 32-083 Balice, Cracow, Poland.
| | - Tomasz Szmatoła
- Department of Molecular Biology of Animals, National Research Institute of Animal Production, ul Krakowska 1, 32-083 Balice, Cracow, Poland
| | - Małgorzata Świątkiewicz
- Department of Nutrition Physiology, National Research Institute of Animal Production, Cracow, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Molecular Biology of Animals, National Research Institute of Animal Production, ul Krakowska 1, 32-083 Balice, Cracow, Poland
| | - Artur Gurgul
- Department of Molecular Biology of Animals, National Research Institute of Animal Production, ul Krakowska 1, 32-083 Balice, Cracow, Poland
| | - Tomasz Ząbek
- Department of Molecular Biology of Animals, National Research Institute of Animal Production, ul Krakowska 1, 32-083 Balice, Cracow, Poland
| |
Collapse
|
31
|
Sanglard LP, Nascimento M, Moriel P, Sommer J, Ashwell M, Poore MH, Duarte MDS, Serão NVL. Impact of energy restriction during late gestation on the muscle and blood transcriptome of beef calves after preconditioning. BMC Genomics 2018; 19:702. [PMID: 30253751 PMCID: PMC6156876 DOI: 10.1186/s12864-018-5089-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023] Open
Abstract
Background Maternal nutrition has been highlighted as one of the main factors affecting intra-uterine environment. The increase in nutritional requirements by beef cows during late gestation can cause nutritional deficiency in the fetus and impact the fetal regulation of genes associated with myogenesis and immune response. Methods Forty days before the expected calving date, cows were assigned to one of two diets: 100% (control) or 70% (restricted group) of the daily energy requirement. Muscle samples were collected from 12 heifers and 12 steers, and blood samples were collected from 12 steers. The objective of this work was to identify and to assess the biological relevance of differentially expressed genes (DEG) in the skeletal muscle and blood of beef calves born from cows that experienced [or not] a 30% energy restriction during the last 40 days of gestation. Results A total of 160, 164, and 346 DEG (q-value< 0.05) were identified in the skeletal muscle for the effects of diet, sex, and diet-by-sex interaction, respectively. For blood, 452, 1392, and 155 DEG were identified for the effects of diet, time, and diet-by-time interaction, respectively. For skeletal muscle, results based on diet identified genes involved in muscle metabolism. In muscle, from the 10 most DEG down-regulated in the energy-restricted group (REST), we identified 5 genes associated with muscle metabolism and development: SLCO3A1, ATP6V0D1, SLC2A1, GPC4, and RASD2. In blood, among the 10 most DEG, we found genes related to response to stress up-regulated in the REST after weaning, such as SOD3 and INO80D, and to immune response down-regulated in the REST after vaccination, such as OASL, KLRF1, and LOC104968634. Conclusion In conclusion, maternal energy restriction during late gestation may limit the expression of genes in the muscle and increase expression in the blood of calves. In addition, enrichment analysis showed that a short-term maternal energy restriction during pregnancy affects the expression of genes related to energy metabolism and muscle contraction, and immunity and stress response in the blood. Therefore, alterations in the intra-uterine environment can modify prenatal development with lasting consequences to adult life. Electronic supplementary material The online version of this article (10.1186/s12864-018-5089-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leticia P Sanglard
- Department of Animal Science, Iowa State University, Ames, 50011, USA.,Department of Animal Science, North Carolina State University, Raleigh, 27695, USA
| | - Moysés Nascimento
- Department of Animal Science, North Carolina State University, Raleigh, 27695, USA.,Department of Statistics, Universidade Federal de Viçosa, Viçosa, 36570-000, Brazil
| | - Philipe Moriel
- Range Cattle Research and Education Center, University of Florida, Ona, Florida, 33865, USA
| | - Jeffrey Sommer
- Department of Animal Science, North Carolina State University, Raleigh, 27695, USA
| | - Melissa Ashwell
- Department of Animal Science, North Carolina State University, Raleigh, 27695, USA
| | - Matthew H Poore
- Department of Animal Science, North Carolina State University, Raleigh, 27695, USA
| | - Márcio de S Duarte
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-000, Brazil.,Instituto Nacional de Ciência e Tecnologia - Ciência Animal, Viçosa, 36570-000, Brazil
| | - Nick V L Serão
- Department of Animal Science, Iowa State University, Ames, 50011, USA. .,Department of Animal Science, North Carolina State University, Raleigh, 27695, USA.
| |
Collapse
|
32
|
Duan J(E, Zhang M, Flock K, Seesi SA, Mandoiu I, Jones A, Johnson E, Pillai S, Hoffman M, McFadden K, Jiang H, Reed S, Govoni K, Zinn S, Jiang Z, Tian X(C. Effects of maternal nutrition on the expression of genomic imprinted genes in ovine fetuses. Epigenetics 2018; 13:793-807. [PMID: 30051747 PMCID: PMC6224220 DOI: 10.1080/15592294.2018.1503489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/04/2018] [Accepted: 07/15/2018] [Indexed: 12/27/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon of differential allelic expression based on parental origin. To date, 263 imprinted genes have been identified among all investigated mammalian species. However, only 21 have been described in sheep, of which 11 are annotated in the current ovine genome. Here, we aim to i) use DNA/RNA high throughput sequencing to identify new monoallelically expressed and imprinted genes in day 135 ovine fetuses and ii) determine whether maternal diet (100%, 60%, or 140% of National Research Council Total Digestible Nutrients) influences expression of imprinted genes. We also reported strategies to solve technical challenges in the data analysis pipeline. We identified 80 monoallelically expressed, 13 new putative imprinted genes, and five known imprinted genes in sheep using the 263 genes stated above as a guide. Sanger sequencing confirmed allelic expression of seven genes, CASD1, COPG2, DIRAS3, INPP5F, PLAGL1, PPP1R9A, and SLC22A18. Among the 13 putative imprinted genes, five were localized in the known sheep imprinting domains of MEST on chromosome 4, DLK1/GTL2 on chromosome 18 and KCNQ1 on chromosome 21, and three were in a novel sheep imprinted cluster on chromosome 4, known in other species as PEG10/SGCE. The expression of DIRAS3, IGF2, PHLDA2, and SLC22A18 was altered by maternal diet, albeit without allelic expression reversal. Together, our results expanded the list of sheep imprinted genes to 34 and demonstrated that while the expression levels of four imprinted genes were changed by maternal diet, the allelic expression patterns were un-changed for all imprinted genes studied.
Collapse
Affiliation(s)
| | - Mingyuan Zhang
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kaleigh Flock
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Sahar Al Seesi
- Department of Computer Science, University of Connecticut, Storrs, CT, USA
| | - Ion Mandoiu
- Department of Computer Science, University of Connecticut, Storrs, CT, USA
| | - Amanda Jones
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Elizabeth Johnson
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Sambhu Pillai
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Maria Hoffman
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Katelyn McFadden
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Hesheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Sarah Reed
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Kristen Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Steve Zinn
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| | - Zongliang Jiang
- School of Animal Science, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | | |
Collapse
|
33
|
Armstrong E, Iriarte A, Nicolini P, De Los Santos J, Ithurralde J, Bielli A, Bianchi G, Peñagaricano F. Comparison of transcriptomic landscapes of different lamb muscles using RNA-Seq. PLoS One 2018; 13:e0200732. [PMID: 30040835 PMCID: PMC6057623 DOI: 10.1371/journal.pone.0200732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Transcriptome deep sequencing is a powerful tool for exploring the genetic architecture of complex traits. Gene expression patterns may explain a high degree of the observed phenotypic differences in histochemical and metabolic parameters related to meat quality among different muscles. In this study, we sequenced by RNA-Seq the whole transcriptome of nine lamb muscles: Semimembranosus (SM), Semitendinosus (ST), Cranial gluteobiceps, Gluteus medius (GM), Rectus femoris, Supraspinatus (SS), Longissimus lumborum (LL), Adductor and Psoas major. Significant gene expression differences were detected between almost all pairwise comparisons, being more pronounced between SS and ST, SM and LL, and ST and GM. These differences can be explained in terms of ATPase and glycolytic activities, muscle fiber typing and oxidative score, clustering muscles as fast glycolytic, intermediate or slow oxidative. ST showed up-regulation of gene pathways related to carbohydrate metabolism, energy generation and protein turnover as expected from a fast white muscle. SS showed myosin isoforms typical of slow muscles and high expression of genes related to calcium homeostasis and vascularization. SM, LL and GM showed in general intermediate gene expression patterns. Several novel transcripts were detected, mostly related to muscle contraction and structure, oxidative metabolism, lipid metabolism and protein phosphorylation. Expression profiles were consistent with previous histochemical and metabolic characterization of these muscles. Up-regulation of ion transport genes may account for significant differences in water holding capacity. High expression of genes related to cell adhesion, cytoskeleton organization, extracellular matrix components and protein phosphorylation may be related to meat yellowness and lower tenderness scores. Differential expression of genes related to glycolytic activity and lactic acid generation among fast, intermediate and slow muscles may explain the detected final meat pH differences. These results reveal new candidate genes associated with lamb meat quality, and give a deeper insight into the genetic architecture of these complex traits.
Collapse
Affiliation(s)
- Eileen Armstrong
- Departamento de Genética y Mejora Animal, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| | - Andres Iriarte
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Paula Nicolini
- Polo de Desarrollo Universitario Instituto Superior de la Carne, Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
| | - Jorge De Los Santos
- Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Javier Ithurralde
- Departamento de Morfología y Desarrollo, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Alejandro Bielli
- Departamento de Morfología y Desarrollo, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | | | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
34
|
Dado-Senn B, Skibiel AL, Fabris TF, Zhang Y, Dahl GE, Peñagaricano F, Laporta J. RNA-Seq reveals novel genes and pathways involved in bovine mammary involution during the dry period and under environmental heat stress. Sci Rep 2018; 8:11096. [PMID: 30038226 PMCID: PMC6056563 DOI: 10.1038/s41598-018-29420-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
The bovine dry period is a dynamic non-lactating phase where the mammary gland undergoes extensive cellular turnover. Utilizing RNA sequencing, we characterized novel genes and pathways involved in this process and determined the impact of dry period heat stress. Mammary tissue was collected before and during the dry period (−3, 3, 7, 14, and 25 days relative to dry-off [day 0]) from heat-stressed (HT, n = 6) or cooled (CL, n = 6) late-gestation Holstein cows. We identified 3,315 differentially expressed genes (DEGs) between late lactation and early involution, and 880 DEGs later in the involution process. DEGs, pathways, and upstream regulators during early involution support the downregulation of functions such as anabolism and milk component synthesis, and upregulation of cell death, cytoskeleton degradation, and immune response. The impact of environmental heat stress was less significant, yet genes, pathways, and upstream regulators involved in processes such as ductal branching morphogenesis, cell death, immune function, and protection against tissue stress were identified. Our research advances understanding of the mammary gland transcriptome during the dry period, and under heat stress insult. Individual genes, pathways, and upstream regulators highlighted in this study point towards potential targets for dry period manipulation and mitigation of the negative consequences of heat stress on mammary function.
Collapse
Affiliation(s)
- Bethany Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Amy L Skibiel
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Thiago F Fabris
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Y Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jimena Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
35
|
Coleman DN, Rivera-Acevedo KC, Relling AE. Prepartum fatty acid supplementation in sheep I. Eicosapentaenoic and docosahexaenoic acid supplementation do not modify ewe and lamb metabolic status and performance through weaning. J Anim Sci 2018; 96:364-374. [PMID: 29365147 DOI: 10.1093/jas/skx012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/25/2017] [Indexed: 12/11/2022] Open
Abstract
Fatty acids are involved in the regulation of many physiological pathways, including those involved in gene expression and energy metabolism. Through effects on these pathways, fatty acids may have lifelong impacts on offspring development and metabolism via maternal supplementation. Therefore, our objective was to investigate the impact of supplementing a source of omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) during late gestation on productive and metabolic responses of ewes and their offspring. Eighty-four gestating ewes (28 pens) were blocked and randomly assigned to a diet with 0.39% added fat during the last 50 d of gestation (d -0). The fat sources were Ca salts of a palmitic fatty acid distillate (PFAD) or EPA + DHA. After lambing (d 1), all ewes and lambs were placed on the same pasture. The ewes were weighed and BCS was measured on d -50, -20, 30, and 60 (weaning) of the experiment. Blood samples were taken from the ewes on d -50, -20, 1 (lambing), 30, and 60. Milk yield and composition were measured at 30 d postpartum. Lambs were weighed and bled at d 1, 30, and 60, and ADG was calculated. All plasma samples were analyzed for glucose and NEFA. Ghrelin, prostaglandin E metabolites (PGEM), and the prostaglandin D2 metabolite 11β-PGF2α were measured in d -20 ewe samples. Insulin and adropin were measured in lamb samples at d 60. There was no difference on ewe BW (P = 0.48) or BCS (P = 0.55), or plasma concentrations of glucose (P = 0.57), NEFA (P = 0.44), ghrelin (P = 0.36), PGEM (P = 0.32), and 11β-PGF2α (P = 0.86) between ewes supplemented with PFAD or EPA + DHA. Neither milk yield nor its composition was different (P > 0.10) among treatments. Lambs born from ewes supplemented with PFAD or EPA + DHA did not have different BW (P = 0.22), ADG (P = 0.21) or plasma NEFA (P = 0.52), glucose (P = 0.50), insulin (P = 0.59), and adropin (P = 0.72) concentrations. These results suggest that supplementation of EPA and DHA during late gestation did not affect ewe metabolic profile or milk production. Lamb performance and metabolism through weaning were not affected by maternal supplementation with an enriched source of EPA and DHA.
Collapse
Affiliation(s)
- D N Coleman
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH
| | - K C Rivera-Acevedo
- Department of Animal Science, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - A E Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH
| |
Collapse
|
36
|
Namous H, Peñagaricano F, Del Corvo M, Capra E, Thomas DL, Stella A, Williams JL, Marsan PA, Khatib H. Integrative analysis of methylomic and transcriptomic data in fetal sheep muscle tissues in response to maternal diet during pregnancy. BMC Genomics 2018; 19:123. [PMID: 29409445 PMCID: PMC5801776 DOI: 10.1186/s12864-018-4509-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Numerous studies have established a link between maternal diet and the physiological and metabolic phenotypes of their offspring. In previous studies in sheep, we demonstrated that different maternal diets altered the transcriptome of fetal tissues. However, the mechanisms underlying transcriptomic changes are poorly understood. DNA methylation is an epigenetic mark regulating transcription and is largely influenced by dietary components of the one-carbon cycle that generate the methyl group donor, SAM. Therefore, in the present study, we tested whether different maternal diets during pregnancy would alter the DNA methylation and gene expression patterns in fetal tissues. RESULTS Pregnant ewes were randomly divided into two groups which received either hay or corn diet from mid-gestation (day 67 ± 5) until day 131 ± 1 when fetuses were collected by necropsy. A total of 1516 fetal longissimus dorsi (LD) tissues were used for DNA methylation analysis and gene expression profiling. Whole genome DNA methylation using methyl-binding domain enrichment analysis revealed 60 differentially methylated regions (DMRs) between hay and corn fetuses with 39 DMRs more highly methylated in the hay fetuses vs. 21 DMRs more highly methylated in the corn fetuses. Three DMRs (LPAR3, PLIN5-PLIN4, and the differential methylation of a novel lincRNA) were validated using bisulfite sequencing. These DMRs were associated with differential gene expression. Additionally, significant DNA methylation differences were found at the single CpG level. Integrative methylome and transcriptome analysis revealed an association between gene expression and inter-/intragenic methylated regions. Furthermore, intragenic DMRs were found to be associated with expression of neighboring genes. CONCLUSIONS The findings of this study imply that maternal diet from mid- to late-gestation can shape the epigenome and the transcriptome of fetal tissues, and putatively affect phenotypes of the lambs.
Collapse
Affiliation(s)
- Hadjer Namous
- Department of Animal Sciences, University of Wisconsin, 1675 Observatory Drive, Madison, WI 53706 USA
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida Genetics Institute, University of Florida, Florida, USA
| | - Marcello Del Corvo
- Institute of Zootechnics and PRONUTRIGEN Research Center, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Lodi, Italy
| | - David L. Thomas
- Department of Animal Sciences, University of Wisconsin, 1675 Observatory Drive, Madison, WI 53706 USA
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Lodi, Italy
| | - John L. Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia
| | - Paolo Ajmone Marsan
- Institute of Zootechnics and PRONUTRIGEN Research Center, Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Hasan Khatib
- Department of Animal Sciences, University of Wisconsin, 1675 Observatory Drive, Madison, WI 53706 USA
| |
Collapse
|
37
|
Al Abri MA, Posbergh C, Palermo K, Sutter NB, Eberth J, Hoffman GE, Brooks SA. Genome-Wide Scans Reveal a Quantitative Trait Locus for Withers Height in Horses Near the ANKRD1 Gene. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2017.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Ochoa JC, Peñagaricano F, Baez GM, Melo LF, Motta JCL, Garcia-Guerra A, Meidan R, Pinheiro Ferreira JC, Sartori R, Wiltbank MC. Mechanisms for rescue of corpus luteum during pregnancy: gene expression in bovine corpus luteum following intrauterine pulses of prostaglandins E1 and F2α†. Biol Reprod 2017; 98:465-479. [DOI: 10.1093/biolre/iox183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/25/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julian C Ochoa
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Giovanni M Baez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Agricultural and Animal Sciences, Universidad Francisco de Paula Santander, Cucuta, Colombia
| | - Leonardo F Melo
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Science, Escola Superior de Agricultura “Luiz de Queiroz” University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Jessica C L Motta
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Science, Escola Superior de Agricultura “Luiz de Queiroz” University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Alvaro Garcia-Guerra
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Rina Meidan
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - João C Pinheiro Ferreira
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Roberto Sartori
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Science, Escola Superior de Agricultura “Luiz de Queiroz” University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Milo C Wiltbank
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
39
|
Hoffman ML, Reed SA, Pillai SM, Jones AK, McFadden KK, Zinn SA, Govoni KE. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM:The effects of poor maternal nutrition during gestation on offspring postnatal growth and metabolism. J Anim Sci 2017; 95:2222-2232. [PMID: 28727021 DOI: 10.2527/jas.2016.1229] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Poor maternal nutrition during gestation has been linked to poor growth and development, metabolic dysfunction, impaired health, and reduced productivity of offspring in many species. Poor maternal nutrition can be defined as an excess or restriction of overall nutrients or specific macro- or micronutrients in the diet of the mother during gestation. Interestingly, there are several reports that both restricted- and over-feeding during gestation negatively affect offspring postnatal growth with reduced muscle and bone deposition, increased adipose accumulation, and metabolic dysregulation through reduced leptin and insulin sensitivity. Our laboratory and others have used experimental models of restricted- and over-feeding during gestation to evaluate effects on early postnatal growth of offspring. Restricted- and over-feeding during gestation alters body size, circulating growth factors, and metabolic hormones in offspring postnatally. Both restricted- and over-feeding alter muscle growth, increase lipid content in the muscle, and cause changes in expression of myogenic factors. Although the negative effects of poor maternal nutrition on offspring growth have been well characterized in recent years, the mechanisms contributing to these changes are not well established. Our laboratory has focused on elucidating these mechanisms by evaluating changes in gene and protein expression, and stem cell function. Through RNA-Seq analysis, we observed changes in expression of genes involved in protein synthesis, metabolism, cell function, and signal transduction in muscle tissue. We recently reported that satellite cells, muscle stem cells, have altered expression of myogenic factors in offspring from restricted-fed mothers. Bone marrow derived mesenchymal stem cells, multipotent cells that contribute to development and maintenance of several tissues including bone, muscle, and adipose, have a 50% reduction in cell proliferation and altered metabolism in offspring from both restricted- and over-fed mothers. These findings indicate that poor maternal nutrition may alter offspring postnatal growth by programming stem cell populations. In conclusion, poor maternal nutrition during gestation negatively affects offspring postnatal growth, potentially through impaired stem and satellite cell function. Therefore, determining the mechanisms that contribute to fetal programming is critical to identifying effective management interventions for these offspring and improving efficiency of production.
Collapse
|
40
|
Paradis F, Wood KM, Swanson KC, Miller SP, McBride BW, Fitzsimmons C. Maternal nutrient restriction in mid-to-late gestation influences fetal mRNA expression in muscle tissues in beef cattle. BMC Genomics 2017; 18:632. [PMID: 28821223 PMCID: PMC5562975 DOI: 10.1186/s12864-017-4051-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 08/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Manipulating maternal nutrition during specific periods of gestation can result in re-programming of fetal and post-natal development. In this experiment we investigated how a feed restriction of 85% compared with 140% of total metabolizable energy requirements, fed to cows during mid-to-late gestation, influences phenotypic development of fetuses and mRNA expression of growth (Insulin-Like Growth Factor family and Insulin Receptor (INSR)), myogenic (Myogenic Differentiation 1 (MYOD1), Myogenin (MYOG), Myocyte Enhancer Factor 2A (MEF2A), Serum Response Factor (SRF)) and adipogenic (Peroxisome Proliferator Activated Receptor Gamma (PPARG)) genes in fetal longissimus dorsi (LD) and semitendinosus (ST) muscle. DNA methylation of imprinted genes, Insulin Like Growth Factor 2 (IGF2) and Insulin Like Growth Factor 2 Receptor (IGF2R), and micro RNA (miRNA) expression, were also examined as potential consequences of poor maternal nutrition, but also potential regulators of altered gene expression patterns. RESULTS While the nutrient restriction impacted dam body weight, no differences were observed in phenotypic fetal measurements (weight, crown-rump length, or thorax circumference). Interestingly, LD and ST muscles responded differently to the differential pre-natal nutrient levels. While LD muscle of restricted fetal calves had greater mRNA abundances for Insulin Like Growth Factor 1 and its receptor (IGF1 and IGF1R), IGF2R, INSR, MYOD1, MYOG, and PPARG, no significant differences were observed for gene expression in ST muscle. Similarly, feed restriction had a greater impact on the methylation level of IGF2 Differentially Methylated Region 2 (DMR2) in LD muscle as compared to ST muscle between treatment groups. A negative correlation existed between IGF2 mRNA expression and IGF2 DMR2 methylation level in both LD and ST muscles. Differential expression of miRNAs 1 and 133a were also detected in LD muscle. CONCLUSIONS Our data suggests that a nutrient restriction of 85% as compared to 140% of total metabolizable energy requirements during the 2nd half of gestation can alter the expression of growth, myogenic and adipogenic genes in fetal muscle without apparent differences in fetal phenotype. It also appears that the impact of feed restriction varies between muscles suggesting a priority for nutrient partitioning depending on muscle function and/or fiber composition. Differences in the methylation level in IGF2, a well-known imprinted gene, as well as differences in miRNA expression, may be functional mechanisms that precede the differences in gene expression observed, and could lead to trans-generational epigenetic programming.
Collapse
Affiliation(s)
- Francois Paradis
- Department of Agriculture, Food, and Nutritional Science, University of Alberta, 4-10 Agriculture-Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Katie M Wood
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Kendall C Swanson
- Department of Animal Science, North Dakota State University, Fargo, ND, 58102, USA
| | | | - Brian W McBride
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Carolyn Fitzsimmons
- Department of Agriculture, Food, and Nutritional Science, University of Alberta, 4-10 Agriculture-Forestry Centre, Edmonton, AB, T6G 2P5, Canada. .,Agriculture and Agri-Food Canada, Edmonton, AB, T6G 2C8, Canada.
| |
Collapse
|
41
|
Sebastiano RS, Sweeney T, Good B, Hanrahan JP, Keady TWJ. Can the amount of digestible undegraded protein offered to ewes during late pregnancy affect the performance and immune response of their offspring to gastrointestinal nematodes? Vet Parasitol 2017; 236:42-50. [PMID: 28288763 DOI: 10.1016/j.vetpar.2017.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 11/24/2022]
Abstract
Maternal nutrition during pregnancy is a major environmental influence on foetal development with consequent effects on postnatal performance. We hypothesised that the level of intake of digestible undegraded protein (DUP) by the dam in late pregnancy would impact on the effectiveness of the immune response by offspring to gastrointestinal nematode infection. Eighty-five twin/triplet-bearing ewes, which were indoors from mid-pregnancy, were randomly assigned to 4 treatment groups for the final 6 weeks of pregnancy. Treatments were silage plus one of two iso-energetic and iso-nitrogenous concentrates (differing in DUP concentration; 29 and 94g/kg DM) offered at one of two feed levels (18/30 and 24/35kg in total for twin/triplet-bearing ewes, respectively). Ewes with triplets had one lamb removed at birth so that all ewes nursed 2 lambs when put to pasture as one flock in a 5-paddock rotational grazing system; all lambs were slaughtered after 29 weeks. Faecal egg count (FEC) and levels of serum IgA and IgE specific for Teladorsagia circumcincta were assessed for all lambs at various time points between 10 weeks of age and slaughter. Animal performance (live weight, live-weight gain, carcass weight) was recorded for all lambs. Worm burden at slaughter was determined for a sample of 12 lambs from each treatment. Nematodirus spp. FEC, 'other strongyles' FEC, and serum IgA and IgE specific for T. circumcincta were unaffected either by the concentration of DUP in the concentrate or by the level of concentrate offered to ewes in late pregnancy (P>0.1). Likewise, the dietary regime of the dams had no effect on lamb performance (P>0.1). It is concluded that increasing the DUP intake of ewes in late pregnancy had no effect on the immune response of their offspring to gastrointestinal nematode infection acquired through grazing naturally infected pasture.
Collapse
Affiliation(s)
| | - Torres Sweeney
- School of Veterinary Medicine University College Dublin, D4, Ireland.
| | - Barbara Good
- Animal & Grassland Research and Innovation Centre, Teagasc, Athenry, Co. Galway, Ireland.
| | - James P Hanrahan
- Animal & Grassland Research and Innovation Centre, Teagasc, Athenry, Co. Galway, Ireland.
| | - Timothy W J Keady
- Animal & Grassland Research and Innovation Centre, Teagasc, Athenry, Co. Galway, Ireland.
| |
Collapse
|
42
|
Loor JJ, Vailati-Riboni M, McCann JC, Zhou Z, Bionaz M. TRIENNIAL LACTATION SYMPOSIUM: Nutrigenomics in livestock: Systems biology meets nutrition. J Anim Sci 2016; 93:5554-74. [PMID: 26641165 DOI: 10.2527/jas.2015-9225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The advent of high-throughput technologies to study an animal's genome, proteome, and metabolome (i.e., "omics" tools) constituted a setback to the use of reductionism in livestock research. More recent development of "next-generation sequencing" tools was instrumental in allowing in-depth studies of the microbiome in the rumen and other sections of the gastrointestinal tract. Omics, along with bioinformatics, constitutes the foundation of modern systems biology, a field of study widely used in model organisms (e.g., rodents, yeast, humans) to enhance understanding of the complex biological interactions occurring within cells and tissues at the gene, protein, and metabolite level. Application of systems biology concepts is ideal for the study of interactions between nutrition and physiological state with tissue and cell metabolism and function during key life stages of livestock species, including the transition from pregnancy to lactation, in utero development, or postnatal growth. Modern bioinformatic tools capable of discerning functional outcomes and biologically meaningful networks complement the ever-increasing ability to generate large molecular, microbial, and metabolite data sets. Simultaneous visualization of the complex intertissue adaptations to physiological state and nutrition can now be discerned. Studies to understand the linkages between the microbiome and the absorptive epithelium using the integrative approach are emerging. We present examples of new knowledge generated through the application of functional analyses of transcriptomic, proteomic, and metabolomic data sets encompassing nutritional management of dairy cows, pigs, and poultry. Published work to date underscores that the integrative approach across and within tissues may prove useful for fine-tuning nutritional management of livestock. An important goal during this process is to uncover key molecular players involved in the organismal adaptations to nutrition.
Collapse
|
43
|
Identification and Classification of New Transcripts in Dorper and Small-Tailed Han Sheep Skeletal Muscle Transcriptomes. PLoS One 2016; 11:e0159638. [PMID: 27434270 PMCID: PMC4951087 DOI: 10.1371/journal.pone.0159638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
High-throughput mRNA sequencing enables the discovery of new transcripts and additional parts of incompletely annotated transcripts. Compared with the human and cow genomes, the reference annotation level of the sheep genome is still low. An investigation of new transcripts in sheep skeletal muscle will improve our understanding of muscle development. Therefore, applying high-throughput sequencing, two cDNA libraries from the biceps brachii of small-tailed Han sheep and Dorper sheep were constructed, and whole-transcriptome analysis was performed to determine the unknown transcript catalogue of this tissue. In this study, 40,129 transcripts were finally mapped to the sheep genome. Among them, 3,467 transcripts were determined to be unannotated in the current reference sheep genome and were defined as new transcripts. Based on protein-coding capacity prediction and comparative analysis of sequence similarity, 246 transcripts were classified as portions of unannotated genes or incompletely annotated genes. Another 1,520 transcripts were predicted with high confidence to be long non-coding RNAs. Our analysis also revealed 334 new transcripts that displayed specific expression in ruminants and uncovered a number of new transcripts without intergenus homology but with specific expression in sheep skeletal muscle. The results confirmed a complex transcript pattern of coding and non-coding RNA in sheep skeletal muscle. This study provided important information concerning the sheep genome and transcriptome annotation, which could provide a basis for further study.
Collapse
|
44
|
Hoffman ML, Peck KN, Wegrzyn JL, Reed SA, Zinn SA, Govoni KE. Poor maternal nutrition during gestation alters the expression of genes involved in muscle development and metabolism in lambs1. J Anim Sci 2016; 94:3093-9. [DOI: 10.2527/jas.2016-0570] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
45
|
Epigenetic and SP1-mediated regulation is involved in the repression of galactokinase 1 gene in the liver of neonatal piglets born to betaine-supplemented sows. Eur J Nutr 2016; 56:1899-1909. [PMID: 27250629 DOI: 10.1007/s00394-016-1232-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE In this study, we sought to investigate the effects of maternal betaine supplementation on the expression and regulation of GALK1 gene in the liver of neonatal piglets. METHODS Sixteen sows of two groups were fed control or betaine-supplemented diets (3 g/kg), respectively, throughout the pregnancy. Newborn piglets were individually weighed immediately after birth, and one male piglet close to mean body weight from the same litter was selected and killed before suckling. Serum samples of newborn piglets were analyzed for biochemical indexes, hormone and amino acid levels. Liver samples were analyzed for GALK1 expression by real-time PCR and western blotting, while GALK1 regulational mechanism was analyzed by methylated DNA immunoprecipitation, chromatin immunoprecipitation and microRNAs expression. RESULTS Betaine-exposed neonatal piglets had lower serum concentration of galactose, which was associated with significantly down-regulated hepatic GALK1 expression. The repression of GALK1 mRNA expression was associated with DNA hypermethylation and more enriched repression histone mark H3K27me3 on its promoter. Binding sites of SP1, GR and STAT3 were predicted on GALK1 promoter, and decreased SP1 protein content and lower SP1 binding to GALK1 promoter were detected in the liver of betaine-exposed piglets. Furthermore, the expression of miRNA-149 targeting GALK1 was up-regulated in the liver of betaine-exposed piglets, along with elevated miRNAs-processing enzymes Dicer and Ago2. CONCLUSIONS Our results suggest that maternal dietary betaine supplementation during gestation suppresses GALK1 expression in the liver of neonatal piglets, which involves complex gene regulation mechanisms including DNA methylation, histone modification, miRNAs expression and SP1-mediated transcriptional modulation.
Collapse
|
46
|
Bionaz M, Osorio J, Loor JJ. TRIENNIAL LACTATION SYMPOSIUM: Nutrigenomics in dairy cows: Nutrients, transcription factors, and techniques1,2. J Anim Sci 2015; 93:5531-53. [DOI: 10.2527/jas.2015-9192] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. Osorio
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
47
|
Maternal Plane of Nutrition during Late Gestation and Weaning Age Alter Angus × Simmental Offspring Longissimus Muscle Transcriptome and Intramuscular Fat. PLoS One 2015; 10:e0131478. [PMID: 26153887 PMCID: PMC4496061 DOI: 10.1371/journal.pone.0131478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/01/2015] [Indexed: 12/29/2022] Open
Abstract
In model organisms both the nutrition of the mother and the young offspring could induce long-lasting transcriptional changes in tissues. In livestock, such changes could have important roles in determining nutrient use and meat quality. The main objective was to evaluate if plane of maternal nutrition during late-gestation and weaning age alter the offspring's Longissimus muscle (LM) transcriptome, animal performance, and metabolic hormones. Whole-transcriptome microarray analysis was performed on LM samples of early (EW) and normal weaned (NW) Angus × Simmental calves born to grazing cows receiving no supplement [low plane of nutrition (LPN)] or 2.3 kg high-grain mix/day [medium plane of nutrition (MPN)] during the last 105 days of gestation. Biopsies of LM were harvested at 78 (EW), 187 (NW) and 354 (before slaughter) days of age. Despite greater feed intake in MPN offspring, blood insulin was greater in LPN offspring. Carcass intramuscular fat content was greater in EW offspring. Bioinformatics analysis of the transcriptome highlighted a modest overall response to maternal plane of nutrition, resulting in only 35 differentially expressed genes (DEG). However, weaning age and a high-grain diet (EW) strongly impacted the transcriptome (DEG = 167), especially causing a lipogenic program activation. In addition, between 78 and 187 days of age, EW steers had an activation of the innate immune system due presumably to macrophage infiltration of intramuscular fat. Between 187 and 354 days of age (the "finishing" phase), NW steers had an activation of the lipogenic transcriptome machinery, while EW steers had a clear inhibition through the epigenetic control of histone acetylases. Results underscored the need to conduct further studies to understand better the functional outcome of transcriptome changes induced in the offspring by pre- and post-natal nutrition. Additional knowledge on molecular and functional outcomes would help produce more efficient beef cattle.
Collapse
|
48
|
Joseph R, Poschmann J, Sukarieh R, Too PG, Julien SG, Xu F, Teh AL, Holbrook JD, Ng KL, Chong YS, Gluckman PD, Prabhakar S, Stünkel W. ACSL1 Is Associated With Fetal Programming of Insulin Sensitivity and Cellular Lipid Content. Mol Endocrinol 2015; 29:909-20. [PMID: 25915184 DOI: 10.1210/me.2015-1020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Individuals who are born small for gestational age (SGA) have a risk to develop various metabolic diseases during their life course. The biological memory of the prenatal state of growth restricted individuals may be reflected in epigenetic alterations in stem cell populations. Mesenchymal stem cells (MSCs) from the Wharton's jelly of umbilical cord tissue are multipotent, and we generated primary umbilical cord MSC isolates from SGA and normal neonates, which were subsequently differentiated into adipocytes. We established chromatin state maps for histone marks H3K27 acetylation and H3K27 trimethylation and tested whether enrichment of these marks was associated with gene expression changes. After validating gene expression levels for 10 significant chromatin immunoprecipitation sequencing candidate genes, we selected acyl-coenzyme A synthetase 1 (ACSL1) for further investigations due to its key roles in lipid metabolism. The ACSL1 gene was found to be highly associated with histone acetylation in adipocytes differentiated from MSCs with SGA background. In SGA-derived adipocytes, the ACSL1 expression level was also found to be associated with increased lipid loading as well as higher insulin sensitivity. ACSL1 depletion led to changes in expression of candidate genes such as proinflammatory chemokines and down-regulated both, the amount of cellular lipids and glucose uptake. Increased ACSL1, as well as modulated downstream candidate gene expression, may reflect the obese state, as detected in mice fed a high-fat diet. In summary, we believe that ACSL1 is a programmable mediator of insulin sensitivity and cellular lipid content and adipocytes differentiated from Wharton's jelly MSCs recapitulate important physiological characteristics of SGA individuals.
Collapse
Affiliation(s)
- Roy Joseph
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| | - Jeremie Poschmann
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| | - Rami Sukarieh
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| | - Peh Gek Too
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| | - Sofi G Julien
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| | - Feng Xu
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| | - Ai Ling Teh
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| | - Joanna D Holbrook
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| | - Kai Lyn Ng
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| | - Shyam Prabhakar
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| | - Walter Stünkel
- Singapore Institute for Clinical Sciences (R.J., R.S., P.G.T., S.G.J., F.X., A.L.T., J.D.H., Y.S.C., P.D.G., W.S.), Agency for Science, Technology and Research, Singapore 117609; Genome Institute of Singapore (J.P., S.P.), Agency for Science, Technology and Research, Singapore 138672; Department of Obstetrics and Gynaecology (K.L.N., Y.S.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Liggins Institute (P.D.G.), University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|