1
|
Tabatabaee Y, Roch S, Warnow T. QR-STAR: A Polynomial-Time Statistically Consistent Method for Rooting Species Trees Under the Coalescent. J Comput Biol 2023; 30:1146-1181. [PMID: 37902986 DOI: 10.1089/cmb.2023.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
We address the problem of rooting an unrooted species tree given a set of unrooted gene trees, under the assumption that gene trees evolve within the model species tree under the multispecies coalescent (MSC) model. Quintet Rooting (QR) is a polynomial time algorithm that was recently proposed for this problem, which is based on the theory developed by Allman, Degnan, and Rhodes that proves the identifiability of rooted 5-taxon trees from unrooted gene trees under the MSC. However, although QR had good accuracy in simulations, its statistical consistency was left as an open problem. We present QR-STAR, a variant of QR with an additional step and a different cost function, and prove that it is statistically consistent under the MSC. Moreover, we derive sample complexity bounds for QR-STAR and show that a particular variant of it based on "short quintets" has polynomial sample complexity. Finally, our simulation study under a variety of model conditions shows that QR-STAR matches or improves on the accuracy of QR. QR-STAR is available in open-source form on github.
Collapse
Affiliation(s)
- Yasamin Tabatabaee
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sebastien Roch
- Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tandy Warnow
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Hudson LK, Andershock WE, Yan R, Golwalkar M, M’ikanatha NM, Nachamkin I, Thomas LS, Moore C, Qian X, Steece R, Garman KN, Dunn JR, Kovac J, Denes TG. Phylogenetic Analysis Reveals Source Attribution Patterns for Campylobacter spp. in Tennessee and Pennsylvania. Microorganisms 2021; 9:microorganisms9112300. [PMID: 34835426 PMCID: PMC8625337 DOI: 10.3390/microorganisms9112300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
Campylobacteriosis is the most common bacterial foodborne illness in the United States and is frequently associated with foods of animal origin. The goals of this study were to compare clinical and non-clinical Campylobacter populations from Tennessee (TN) and Pennsylvania (PA), use phylogenetic relatedness to assess source attribution patterns, and identify potential outbreak clusters. Campylobacter isolates studied (n = 3080) included TN clinical isolates collected and sequenced for routine surveillance, PA clinical isolates collected from patients at the University of Pennsylvania Health System facilities, and non-clinical isolates from both states for which sequencing reads were available on NCBI. Phylogenetic analyses were conducted to categorize isolates into species groups and determine the population structure of each species. Most isolates were C. jejuni (n = 2132, 69.2%) and C. coli (n = 921, 29.9%), while the remaining were C. lari (0.4%), C. upsaliensis (0.3%), and C. fetus (0.1%). The C. jejuni group consisted of three clades; most non-clinical isolates were of poultry (62.7%) or cattle (35.8%) origin, and 59.7 and 16.5% of clinical isolates were in subclades associated with poultry or cattle, respectively. The C. coli isolates grouped into two clades; most non-clinical isolates were from poultry (61.2%) or swine (29.0%) sources, and 74.5, 9.2, and 6.1% of clinical isolates were in subclades associated with poultry, cattle, or swine, respectively. Based on genomic similarity, we identified 42 C. jejuni and one C. coli potential outbreak clusters. The C. jejuni clusters contained 188 clinical isolates, 19.6% of the total C. jejuni clinical isolates, suggesting that a larger proportion of campylobacteriosis may be associated with outbreaks than previously determined.
Collapse
Affiliation(s)
- Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
| | | | - Runan Yan
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Mugdha Golwalkar
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | | | - Irving Nachamkin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Linda S. Thomas
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Christina Moore
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Xiaorong Qian
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Richard Steece
- Division of Laboratory Services, Tennessee Department of Health, Nashville, TN 37216, USA; (L.S.T.); (C.M.); (X.Q.); (R.S.)
| | - Katie N. Garman
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - John R. Dunn
- Tennessee Department of Health, Nashville, TN 37243, USA; (M.G.); (K.N.G.); (J.R.D.)
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (R.Y.); (J.K.)
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA;
- Correspondence:
| |
Collapse
|
3
|
Calland JK, Pascoe B, Bayliss SC, Mourkas E, Berthenet E, Thorpe HA, Hitchings MD, Feil EJ, Corander J, Blaser MJ, Falush D, Sheppard SK. Quantifying bacterial evolution in the wild: A birthday problem for Campylobacter lineages. PLoS Genet 2021; 17:e1009829. [PMID: 34582435 PMCID: PMC8500405 DOI: 10.1371/journal.pgen.1009829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/08/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022] Open
Abstract
Measuring molecular evolution in bacteria typically requires estimation of the rate at which nucleotide changes accumulate in strains sampled at different times that share a common ancestor. This approach has been useful for dating ecological and evolutionary events that coincide with the emergence of important lineages, such as outbreak strains and obligate human pathogens. However, in multi-host (niche) transmission scenarios, where the pathogen is essentially an opportunistic environmental organism, sampling is often sporadic and rarely reflects the overall population, particularly when concentrated on clinical isolates. This means that approaches that assume recent common ancestry are not applicable. Here we present a new approach to estimate the molecular clock rate in Campylobacter that draws on the popular probability conundrum known as the 'birthday problem'. Using large genomic datasets and comparative genomic approaches, we use isolate pairs that share recent common ancestry to estimate the rate of nucleotide change for the population. Identifying synonymous and non-synonymous nucleotide changes, both within and outside of recombined regions of the genome, we quantify clock-like diversification to estimate synonymous rates of nucleotide change for the common pathogenic bacteria Campylobacter coli (2.4 x 10-6 s/s/y) and Campylobacter jejuni (3.4 x 10-6 s/s/y). Finally, using estimated total rates of nucleotide change, we infer the number of effective lineages within the sample time frame-analogous to a shared birthday-and assess the rate of turnover of lineages in our sample set over short evolutionary timescales. This provides a generalizable approach to calibrating rates in populations of environmental bacteria and shows that multiple lineages are maintained, implying that large-scale clonal sweeps may take hundreds of years or more in these species.
Collapse
Affiliation(s)
- Jessica K. Calland
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Ben Pascoe
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Sion C. Bayliss
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Evangelos Mourkas
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Elvire Berthenet
- French National Reference Center for Campylobacters and Helicobacters, University of Bordeaux, Bordeaux, France
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Harry A. Thorpe
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Matthew D. Hitchings
- Institute of Life Sciences, Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Edward J. Feil
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Daniel Falush
- Centre for Microbes, Development and Health, Institute Pasteur of Shanghai, Shanghai, China
- * E-mail: (DF); (SKS)
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail: (DF); (SKS)
| |
Collapse
|
4
|
Mao B, Yin R, Li X, Cui S, Zhang H, Zhao J, Chen W. Comparative Genomic Analysis of Lactiplantibacillus plantarum Isolated from Different Niches. Genes (Basel) 2021; 12:genes12020241. [PMID: 33567604 PMCID: PMC7914981 DOI: 10.3390/genes12020241] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
Lactiplantibacillus plantarum can adapt to a variety of niches and is widely distributed in many sources. We used comparative genomics to explore the differences in the genome and in the physiological characteristics of L. plantarum isolated from pickles, fermented sauce, and human feces. The relationships between genotypes and phenotypes were analyzed to address the effects of isolation source on the genetic variation of L. plantarum. The comparative genomic results indicate that the numbers of unique genes in the different strains were niche-dependent. L. plantarum isolated from fecal sources generally had more strain-specific genes than L. plantarum isolated from pickles. The phylogenetic tree and average nucleotide identity (ANI) results indicate that L. plantarum in pickles and fermented sauce clustered independently, whereas the fecal L. plantarum was distributed more uniformly in the phylogenetic tree. The pan-genome curve indicated that the L. plantarum exhibited high genomic diversity. Based on the analysis of the carbohydrate active enzyme and carbohydrate-use abilities, we found that L. plantarum strains isolated from different sources exhibited different expression of the Glycoside Hydrolases (GH) and Glycosyl Transferases (GT) families and that the expression patterns of carbohydrate active enzymes were consistent with the evolution relationships of the strains. L. plantarum strains exhibited niche-specific characteristicsand the results provided better understating on genetics of this species.
Collapse
Affiliation(s)
- Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (R.Y.); (X.L.); (S.C.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruimin Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (R.Y.); (X.L.); (S.C.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoshu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (R.Y.); (X.L.); (S.C.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (R.Y.); (X.L.); (S.C.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (R.Y.); (X.L.); (S.C.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (R.Y.); (X.L.); (S.C.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-8591-2155
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.M.); (R.Y.); (X.L.); (S.C.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Olkkola S, Rossi M, Jaakkonen A, Simola M, Tikkanen J, Hakkinen M, Tuominen P, Huitu O, Niemimaa J, Henttonen H, Kivistö R. Host-Dependent Clustering of Campylobacter Strains From Small Mammals in Finland. Front Microbiol 2021; 11:621490. [PMID: 33584588 PMCID: PMC7873845 DOI: 10.3389/fmicb.2020.621490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 02/02/2023] Open
Abstract
Small mammals are known to carry Campylobacter spp.; however, little is known about the genotypes and their role in human infections. We studied intestinal content from small wild mammals collected in their natural habitats in Finland in 2010-2017, and in close proximity to 40 pig or cattle farms in 2017. The animals were trapped using traditional Finnish metal snap traps. Campylobacter spp. were isolated from the intestinal content using direct plating on mCCDA. A total of 19% of the captured wild animals (n = 577) and 41% of the pooled farm samples (n = 227) were positive for C. jejuni, which was the only Campylobacter species identified. The highest prevalence occurred in yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus) which carried Campylobacter spp. in 66.3 and 63.9% of the farm samples and 41.5 and 24.4% of individual animals trapped from natural habitats, respectively. Interestingly, all house mouse (Mus musculus) and shrew (Sorex spp.) samples were negative for Campylobacter spp. C. jejuni isolates (n = 145) were further characterized by whole-genome sequencing. Core genome multilocus sequence typing (cgMLST) clustering showed that mouse and vole strains were separated from the rest of the C. jejuni population (636 and 671 allelic differences, 94 and 99% of core loci, respectively). Very little or no alleles were shared with C. jejuni genomes described earlier from livestock or human isolates. FastANI results further indicated that C. jejuni strains from voles are likely to represent a new previously undescribed species or subspecies of Campylobacter. Core-genome phylogeny showed that there was no difference between isolates originating from the farm and wild captured animals. Instead, the phylogeny followed the host species-association. There was some evidence (one strain each) of livestock-associated C. jejuni occurring in a farm-caught A. flavicollis and a brown rat (Rattus norvegicus), indicating that although small mammals may not be the original reservoir of Campylobacter colonizing livestock, they may sporadically carry C. jejuni strains occurring mainly in livestock and be associated with disease in humans.
Collapse
Affiliation(s)
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- European Food Safety Authority (EFSA), Parma, Italy
| | | | | | | | | | | | - Otso Huitu
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jukka Niemimaa
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Epping L, Antão EM, Semmler T. Population Biology and Comparative Genomics of Campylobacter Species. Curr Top Microbiol Immunol 2021; 431:59-78. [PMID: 33620648 DOI: 10.1007/978-3-030-65481-8_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zoonotic pathogen Campylobacter is the leading cause for bacterial foodborne infections in humans. Campylobacters are most commonly transmitted via the consumption of undercooked poultry meat or raw milk products. The decreasing costs of whole genome sequencing enabled large genome-based analyses of the evolution and population structure of this pathogen, as well as the development of novel high-throughput molecular typing methods. Here, we review the evolutionary development and the population diversity of the two most clinically relevant Campylobacter species; C. jejuni and C. coli. The state-of-the-art phylogenetic studies showed clustering of C. jejuni lineages into host specialists and generalists with coexisting lifestyles in chicken and livestock-associated hosts, as well as the separation of C. coli isolates of riparian origin (waterfowl, water) from C. coli isolated from clinical and farm-related samples. We will give an overview of recombination between both species and the potential impact of horizontal gene transfer on host adaptation in Campylobacter. Additionally, this review briefly places the current knowledge of the population structure of other Campylobacter species such as C. lari, C. concisus and C. upsaliensis into perspective. We also provide an overview of how molecular typing methods such as multilocus sequence typing (MLST) and whole genome MLST have been used to detect and trace Campylobacter outbreaks along the food chain.
Collapse
Affiliation(s)
- Lennard Epping
- Microbial Genomics, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | | | - Torsten Semmler
- Microbial Genomics, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany.
| |
Collapse
|
7
|
A Phylogeny-Informed Proteomics Approach for Species Identification within the Burkholderia cepacia Complex. J Clin Microbiol 2020; 58:JCM.01741-20. [PMID: 32878952 DOI: 10.1128/jcm.01741-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 01/17/2023] Open
Abstract
Ancestral genetic exchange between members of many important bacterial pathogen groups has resulted in phylogenetic relationships better described as networks than as bifurcating trees. In certain cases, these reticulated phylogenies have resulted in phenotypic and molecular overlap that challenges the construction of practical approaches for species identification in the clinical microbiology laboratory. Burkholderia cepacia complex (Bcc), a betaproteobacteria species group responsible for significant morbidity in persons with cystic fibrosis and chronic granulomatous disease, represents one such group where network-structured phylogeny has hampered the development of diagnostic methods for species-level discrimination. Here, we present a phylogeny-informed proteomics approach to facilitate diagnostic classification of pathogen groups with reticulated phylogenies, using Bcc as an example. Starting with a set of more than 800 Bcc and Burkholderia gladioli whole-genome assemblies, we constructed phylogenies with explicit representation of inferred interspecies recombination. Sixteen highly discriminatory peptides were chosen to distinguish B. cepacia, Burkholderia cenocepacia, Burkholderia multivorans, and B. gladioli and multiplexed into a single, rapid liquid chromatography-tandem mass spectrometry multiple reaction monitoring (LC-MS/MS MRM) assay. Testing of a blinded set of isolates containing these four Burkholderia species demonstrated 50/50 correct automatic negative calls (100% accuracy with a 95% confidence interval [CI] of 92.9 to 100%), and 70/70 correct automatic species-level positive identifications (100% accuracy with 95% CI 94.9 to 100%) after accounting for a single initial incorrect identification due to a preanalytic error, correctly identified on retesting. The approach to analysis described here is applicable to other pathogen groups for which development of diagnostic classification methods is complicated by interspecies recombination.
Collapse
|
8
|
Mehat JW, La Ragione RM, van Vliet AHM. Campylobacter jejuni and Campylobacter coli autotransporter genes exhibit lineage-associated distribution and decay. BMC Genomics 2020; 21:314. [PMID: 32306949 PMCID: PMC7168839 DOI: 10.1186/s12864-020-6704-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
Background Campylobacter jejuni and Campylobacter coli are major global causes of bacterial gastroenteritis. Whilst several individual colonisation and virulence factors have been identified, our understanding of their role in the transmission, pathogenesis and ecology of Campylobacter has been hampered by the genotypic and phenotypic diversity within C. jejuni and C. coli. Autotransporter proteins are a family of outer membrane or secreted proteins in Gram-negative bacteria such as Campylobacter, which are associated with virulence functions. In this study we have examined the distribution and predicted functionality of the previously described capC and the newly identified, related capD autotransporter gene families in Campylobacter. Results Two capC-like autotransporter families, designated capC and capD, were identified by homology searches of genomes of the genus Campylobacter. Each family contained four distinct orthologs of CapC and CapD. The distribution of these autotransporter genes was determined in 5829 C. jejuni and 1347 C. coli genomes. Autotransporter genes were found as intact, complete copies and inactive formats due to premature stop codons and frameshift mutations. Presence of inactive and intact autotransporter genes was associated with C. jejuni and C. coli multi-locus sequence types, but for capC, inactivation was independent from the length of homopolymeric tracts in the region upstream of the capC gene. Inactivation of capC or capD genes appears to represent lineage-specific gene decay of autotransporter genes. Intact capC genes were predominantly associated with the C. jejuni ST-45 and C. coli ST-828 generalist lineages. The capD3 gene was only found in the environmental C. coli Clade 3 lineage. These combined data support a scenario of inter-lineage and interspecies exchange of capC and subsets of capD autotransporters. Conclusions In this study we have identified two novel, related autotransporter gene families in the genus Campylobacter, which are not uniformly present and exhibit lineage-specific associations and gene decay. The distribution and decay of the capC and capD genes exemplifies the erosion of species barriers between certain lineages of C. jejuni and C. coli, probably arising through co-habitation. This may have implications for the phenotypic variability of these two pathogens and provide opportunity for new, hybrid genotypes to emerge.
Collapse
Affiliation(s)
- Jai W Mehat
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.
| |
Collapse
|
9
|
Johansson C, Nilsson A, Kaden R, Rautelin H. Differences in virulence gene expression between human blood and stool Campylobacter coli clade 1 ST828CC isolates. Gut Pathog 2019; 11:42. [PMID: 31388358 PMCID: PMC6669978 DOI: 10.1186/s13099-019-0322-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter colonise the gastrointestinal tract of warm-blooded animals and are major enteropathogens in humans. C. coli is less common than C. jejuni and accounts for about 10% of the total number of Campylobacter infections although the two species seem to share many virulence determinants. Campylobacter bacteraemia is rare, estimated to occur in less than 1% of the infections, and the exact mechanisms regulating the progression of the infection from the gastrointestinal tract to the blood stream are unclear. Here, we looked at the contribution of C. coli to Campylobacter infections and further compared various virulence traits in C. coli clade 1 blood and stool isolates. RESULTS We assessed the numbers of C. jejuni and C. coli among typed isolates in the PubMLST database and found that C. coli accounted for 25.9% of blood isolates, but only 8.9% of the stool isolates. Phylogenetic analysis of 128 C. coli clade 1 whole genome sequences deposited to NCBI revealed no specific clustering of the human blood, stool or animal isolates. Of the six C. coli isolates chosen for phenotypic analyses, stool isolates adhered significantly better to human HT-29 colon cancer cells than the blood isolates, while there was no difference in induced IL-8 levels between the isolates. Furthermore, the stool isolates had two- to fourfold higher RNA expression levels of the flpA, ciaB, iamA and cdt virulence genes than the blood isolates. Finally, we looked at the gene structure of the cdtA, B and C toxin genes and found numerous nucleotide additions and deletions disrupting the open reading frames. In contrast to 58% isolates of animal origin, only 38% and 32% of human blood and stool isolates, respectively, had all three cdt genes intact, a prerequisite to produce functional toxins. CONCLUSIONS This study reveals interesting differences between C. coli clade 1 isolates of human and animal origin on one hand, and also between human blood and stool isolates, on the other. The results suggest that C. coli might downregulate and/or inactivate various virulence determinants as the isolates pass from the animal host to the human gastrointestinal tract and enter the human blood stream.
Collapse
Affiliation(s)
- Cecilia Johansson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Present Address: Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - René Kaden
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hilpi Rautelin
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Chukwu MO, Luther King Abia A, Ubomba-Jaswa E, Obi L, Dewar JB. Characterization and Phylogenetic Analysis of Campylobacter Species Isolated from Paediatric Stool and Water Samples in the Northwest Province, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2205. [PMID: 31234440 PMCID: PMC6617328 DOI: 10.3390/ijerph16122205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Abstract
Antibiotic-resistant Campylobacter could adversely affect treatment outcomes, especially in children. We investigated the antibiotic susceptibility profiles, virulence potentials and genetic relatedness of Campylobacter spp. from paediatric and water samples in the North West Province, South Africa. Overall, 237 human and 20 water isolates were identified using culture and real-time polymerase chain reaction (PCR). The antibiotic susceptibility profiles were determined using the disk diffusion method. Gradient strips were used to determine the minimum inhibitory concentration of each antibiotic. Antibiotic resistance (gryA, tetO and 23S rRNA 2075G and 2074C) and virulence (cadF and ciaB) genes were also investigated using PCR. A phylogenetic tree to ascertain the clonality between water and clinical isolates was constructed using MEGA 7. Overall, 95% (water) and 64.7% (human) of the isolates were resistant to at least one antibiotic tested. The highest resistance was against clarithromycin (95%) for water and ampicillin (60.7%) for human isolates. The 23S rRNA 2075G/2074C mutation was the most expressed resistance gene. Phylogenetic reconstruction revealed eight intermixed clades within water and human Campylobacter isolates. This study suggests the possible circulation of potentially pathogenic antibiotic-resistant Campylobacter in the Northwest Province, South Africa with drinking water being a possible vector for disease transmission in this area.
Collapse
Affiliation(s)
- Martina O Chukwu
- Department of Life and Consumer science, College of Agriculture and Environmental Sciences, University of South Africa, Corner Christiaan De wet and Pioneer Avenue, 1724 Florida park Roodepoort, Gauteng 1709, South Africa.
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
| | - Eunice Ubomba-Jaswa
- Department of Biotechnology, University of Johannesburg, 37 Nind Street, Doornfontein, Gauteng 2094, South Africa.
- Water Research Commission, Lynnwood Bridge Office Park, Bloukrans Building, 4 Daventry Street, Lynnwood Manor, Pretoria 0081, South Africa.
| | - Lawrence Obi
- Sefako Makgatho Health Science University, Molotlegi Street, Ga-Rankuwa,Pretoria, Gauteng, P.O Box 60, Medunsa 0204, South Africa.
| | - John Barr Dewar
- Department of Life and Consumer science, College of Agriculture and Environmental Sciences, University of South Africa, Corner Christiaan De wet and Pioneer Avenue, 1724 Florida park Roodepoort, Gauteng 1709, South Africa.
| |
Collapse
|
11
|
Genetics behind the Biosynthesis of Nonulosonic Acid-Containing Lipooligosaccharides in Campylobacter coli. J Bacteriol 2019; 201:JB.00759-18. [PMID: 30692173 DOI: 10.1128/jb.00759-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni and Campylobacter coli are the most common causes of bacterial gastroenteritis in the world. Ganglioside mimicry by C. jejuni lipooligosaccharide (LOS) is the triggering factor of Guillain-Barré syndrome (GBS), an acute polyneuropathy. Sialyltransferases from glycosyltransferase family 42 (GT-42) are essential for the expression of ganglioside mimics in C. jejuni Recently, two novel GT-42 genes, cstIV and cstV, have been identified in C. coli Despite being present in ∼11% of currently available C. coli genomes, the biological role of cstIV and cstV is unknown. In the present investigation, mutation studies with two strains expressing either cstIV or cstV were performed and mass spectrometry was used to investigate differences in the chemical composition of LOS. Attempts were made to identify donor and acceptor molecules using in vitro activity tests with recombinant GT-42 enzymes. Here we show that CstIV and CstV are involved in C. coli LOS biosynthesis. In particular, cstV is associated with LOS sialylation, while cstIV is linked to the addition of a diacetylated nonulosonic acid residue.IMPORTANCE Despite the fact that Campylobacter coli a major foodborne pathogen, its glycobiology has been largely neglected. The genetic makeup of the C. coli lipooligosaccharide biosynthesis locus was largely unknown until recently. C. coli harbors a large set of genes associated with lipooligosaccharide biosynthesis, including genes for several putative glycosyltransferases involved in the synthesis of sialylated lipooligosaccharide in Campylobacter jejuni In the present study, C. coli was found to express lipooligosaccharide structures containing sialic acid and other nonulosonate acids. These findings have a strong impact on our understanding of C. coli ecology, host-pathogen interaction, and pathogenesis.
Collapse
|
12
|
Emele MF, Možina SS, Lugert R, Bohne W, Masanta WO, Riedel T, Groß U, Bader O, Zautner AE. Proteotyping as alternate typing method to differentiate Campylobacter coli clades. Sci Rep 2019; 9:4244. [PMID: 30862911 PMCID: PMC6414644 DOI: 10.1038/s41598-019-40842-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 02/25/2019] [Indexed: 11/26/2022] Open
Abstract
Besides Campylobacter jejuni, Campylobacter coli is the most common bacterial cause of gastroenteritis worldwide. C. coli is subdivided into three clades, which are associated with sample source. Clade 1 isolates are associated with acute diarrhea in humans whereas clade 2 and 3 isolates are more commonly obtained from environmental waters. The phylogenetic classification of an isolate is commonly done using laborious multilocus sequence typing (MLST). The aim of this study was to establish a proteotyping scheme using MALDI-TOF MS to offer an alternative to sequence-based methods. A total of 97 clade-representative C. coli isolates were analyzed by MALDI-TOF-based intact cell mass spectrometry (ICMS) and evaluated to establish a C. coli proteotyping scheme. MLST was used as reference method. Different isoforms of the detectable biomarkers, resulting in biomarker mass shifts, were associated with their amino acid sequences and included into the C. coli proteotyping scheme. In total, we identified 16 biomarkers to differentiate C. coli into the three clades and three additional sub-clades of clade 1. In this study, proteotyping has been successfully adapted to C. coli. The established C. coli clades and sub-clades can be discriminated using this method. Especially the clinically relevant clade 1 isolates can be differentiated clearly.
Collapse
Affiliation(s)
- Matthias Frederik Emele
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Raimond Lugert
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Wolfgang Bohne
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Wycliffe Omurwa Masanta
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany.,Department of Medical Microbiology, Maseno University Medical School, Private Bag, Maseno, Kenya
| | - Thomas Riedel
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig, Germany
| | - Uwe Groß
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Oliver Bader
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Andreas Erich Zautner
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany.
| |
Collapse
|
13
|
Johansson C, Nilsson A, Kaden R, Rautelin H. Campylobacter coli Clade 3 Isolates Induce Rapid Cell Death In Vitro. Appl Environ Microbiol 2019; 85:e02993-18. [PMID: 30578266 PMCID: PMC6384112 DOI: 10.1128/aem.02993-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Campylobacter bacteria are major human enteropathogens. Campylobacter coli shows less genetic diversity than C. jejuni and clusters into three clades, of which clade 1 includes most human and farm animal isolates, while environmental C. coli isolates mainly belong to clades 2 and 3. Recently, we sequenced the whole genomes of eight C. coli clade 2 and 3 isolates cultivated from water, and here we studied their interaction with human HT-29 colon cancer cells compared to that of clinical clade 1 isolates. All C. coli clade 3 isolates already caused cell necrosis 1 to 2 h after inoculation, whereas none of the clade 1 and 2 isolates analyzed induced cell death. Isolates from clades 2 and 3 adhered to epithelial cells better than clade 1 isolates, but all isolates induced similar levels of interleukin-8 (IL-8). Alignment and phylogenetic analysis of the translated putative virulence genes cadF, flpA, iamA, ciaB, and ceuE revealed clade-specific protein sequence variations, with clade 1 and 2 sequences being more closely related and clade 3 sequences being further apart, in general. Moreover, when RNA levels were measured, clade 3 isolates showed significantly lower levels of expression of cadF, iamA, and ceuE than clade 2 isolates, while flpA expression levels were higher in clade 3 isolates. The cytolethal distending toxin genes were also expressed in clades 2 and 3, although there was no difference between clades. Our findings demonstrate differences between the effects of C. coli clade 1, 2, and 3 isolates on human cells and suggest that C. coli clade 3 might be more virulent than clade 2 due to the observed cytotoxicity.IMPORTANCECampylobacter coli is a common zoonotic cause of gastroenteritis in humans worldwide. The majority of infections are caused by C. coli clade 1 isolates, whereas infections due to clade 2 and 3 isolates are rare. Whether this depends on a low prevalence of clade 2 and 3 isolates in reservoirs important for human infections or their lower ability to cause human disease is unknown. Here, we studied the effects of C. coli clade 2 and 3 isolates on a human cell line. These isolates adhered to human cells to a higher degree than clinical clade 1 isolates. Furthermore, we could show that C. coli clade 3 isolates rapidly induced cell death, suggesting differences in the virulence of C. coli The exact mechanism of cell death remains to be revealed, but selected genes showed interesting clade-specific expression patterns.
Collapse
Affiliation(s)
- Cecilia Johansson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - René Kaden
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hilpi Rautelin
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Cambier A, Martiny D, Hallin M, Wautier M, Giot JB, Khaldi MZ, Cambier J, Léonard P. Campylobacter coli meningitis in a 57-year-old patient. Acta Clin Belg 2018; 73:427-430. [PMID: 29384014 DOI: 10.1080/17843286.2018.1431015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Campylobacter coli is a major pathogen rarely responsible for extra-intestinal infections. We report a case of Campylobacter coli bacteremia and meningitis in a 57-year-old immunocompetent Belgian man. The strain, isolated from cerebrospinal fluid, belonged to the unusual sequence type 8418 (ST8418). The patient fully recovered after meropenem treatment.
Collapse
Affiliation(s)
- Audrey Cambier
- Centre Hospitalier Universitaire de Liège, Quartier Hôpital, Liège, Belgium
| | - Delphine Martiny
- Faculté de Médecine et Pharmacie, Université de Mons, Mons, Belgium
- Laboratoire Hospitalier Universitaire de Bruxelles-, Université libre de Bruxelles, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium
| | - Marie Hallin
- Laboratoire Hospitalier Universitaire de Bruxelles-, Université libre de Bruxelles, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium
| | - Magali Wautier
- Laboratoire Hospitalier Universitaire de Bruxelles-, Université libre de Bruxelles, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium
| | - Jean-Baptiste Giot
- Centre Hospitalier Universitaire de Liège, Quartier Hôpital, Liège, Belgium
| | - Myriam Z. Khaldi
- Centre Hospitalier Universitaire de Liège, Quartier Hôpital, Liège, Belgium
| | | | - Philippe Léonard
- Centre Hospitalier Universitaire de Liège, Quartier Hôpital, Liège, Belgium
| |
Collapse
|
15
|
Pérez-Losada M, Arenas M, Castro-Nallar E. Microbial sequence typing in the genomic era. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 63:346-359. [PMID: 28943406 PMCID: PMC5908768 DOI: 10.1016/j.meegid.2017.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Abstract
Next-generation sequencing (NGS), also known as high-throughput sequencing, is changing the field of microbial genomics research. NGS allows for a more comprehensive analysis of the diversity, structure and composition of microbial genes and genomes compared to the traditional automated Sanger capillary sequencing at a lower cost. NGS strategies have expanded the versatility of standard and widely used typing approaches based on nucleotide variation in several hundred DNA sequences and a few gene fragments (MLST, MLVA, rMLST and cgMLST). NGS can now accommodate variation in thousands or millions of sequences from selected amplicons to full genomes (WGS, NGMLST and HiMLST). To extract signals from high-dimensional NGS data and make valid statistical inferences, novel analytic and statistical techniques are needed. In this review, we describe standard and new approaches for microbial sequence typing at gene and genome levels and guidelines for subsequent analysis, including methods and computational frameworks. We also present several applications of these approaches to some disciplines, namely genotyping, phylogenetics and molecular epidemiology.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA 20147, USA; CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal; Children's National Medical Center, Washington, DC 20010, USA.
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Eduardo Castro-Nallar
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Santiago 8370146, Chile
| |
Collapse
|
16
|
Nilsson A, Johansson C, Skarp A, Kaden R, Bertilsson S, Rautelin H. Survival ofCampylobacter jejuniandCampylobacter coliwater isolates in lake and well water. APMIS 2018; 126:762-770. [DOI: 10.1111/apm.12879] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/25/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Anna Nilsson
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| | - Cecilia Johansson
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| | - Astrid Skarp
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| | - René Kaden
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology, and Science for Life Laboratory; Uppsala University; Uppsala Sweden
| | - Hilpi Rautelin
- Department of Medical Sciences; Clinical Microbiology; Uppsala University; Uppsala Sweden
| |
Collapse
|
17
|
Origin, evolution, and distribution of the molecular machinery for biosynthesis of sialylated lipooligosaccharide structures in Campylobacter coli. Sci Rep 2018; 8:3028. [PMID: 29445215 PMCID: PMC5813019 DOI: 10.1038/s41598-018-21438-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/05/2018] [Indexed: 01/04/2023] Open
Abstract
Campylobacter jejuni and Campylobacter coli are the most common cause of bacterial gastroenteritis worldwide. Additionally, C. jejuni is the most common bacterial etiological agent in the autoimmune Guillain-Barré syndrome (GBS). Ganglioside mimicry by C. jejuni lipooligosaccharide (LOS) is the triggering factor of the disease. LOS-associated genes involved in the synthesis and transfer of sialic acid (glycosyltranferases belonging to family GT-42) are essential in C. jejuni to synthesize ganglioside-like LOS. Despite being isolated from GBS patients, scarce genetic evidence supports C. coli role in the disease. In this study, through data mining and bioinformatics analysis, C. coli is shown to possess a larger GT-42 glycosyltransferase repertoire than C. jejuni. Although GT-42 glycosyltransferases are widely distributed in C. coli population, only a fraction of C. coli strains (1%) are very likely able to express ganglioside mimics. Even though the activity of C. coli specific GT-42 enzymes and their role in shaping the bacterial population are yet to be explored, evidence presented herein suggest that loss of function of some LOS-associated genes occurred during agriculture niche adaptation.
Collapse
|
18
|
Nilsson A, Skarp A, Johansson C, Kaden R, Engstrand L, Rautelin H. Characterization of Swedish Campylobacter coli clade 2 and clade 3 water isolates. Microbiologyopen 2018; 7:e00583. [PMID: 29424055 PMCID: PMC6079167 DOI: 10.1002/mbo3.583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/27/2022] Open
Abstract
Campylobacter jejuni and Campylobacter coli are important bacterial enteropathogens. Poultry is the best‐known reservoir for Campylobacter infection but natural bodies of water have also been shown to be important pathways for transmission. Campylobacter can survive in cold water but most of the studies have focused on C. jejuni only. In this paper, we take a closer look at the biology and water survival strategies of C. coli. Eight C. coli isolates cultivated from raw (incoming) surface water at water plants in Sweden were characterized using whole‐genome sequencing and phenotypical assays. Phylogenetic analysis assigned the Swedish water isolates to clades 2 and 3, known to include C. coli of environmental origin. In addition, 53 earlier published sequences of C. coli clade 2 and 3 from environmental waters were included for in silico analyses. Generally, clade 2 isolates had larger genomes, which included a functional tricarballylate utilization locus, while clade 3 isolates contained different genes involved in oxidative stress as well as putative virulence factors. The Swedish water isolates of clade 2 formed large, blurry bacterial colonies on agar, whereas clade 3 colonies were smaller. All Swedish isolates were motile, but clade 3 isolates formed larger motility zones on soft agar, and none of these isolates produced biofilm. Although water survival varied between the analyzed isolates, there were hardly any clade‐specific significant differences. Our results highlight the diversity of C. coli in general, and show differences in metabolic capabilities and ways to handle oxidative stress between clade 2 and 3 water isolates.
Collapse
Affiliation(s)
- Anna Nilsson
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Astrid Skarp
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Johansson
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - René Kaden
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, and Science for Life Laboratory, Clinical Genomics, Stockholm, Sweden
| | - Hilpi Rautelin
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Sekyere JO, Asante J. Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics. Future Microbiol 2018; 13:241-262. [PMID: 29319341 DOI: 10.2217/fmb-2017-0172] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacteria and fungi continue to develop new ways to adapt and survive the lethal or biostatic effects of antimicrobials through myriad mechanisms. Novel antibiotic resistance genes such as lsa(C), erm(44), VCC-1, mcr-1, mcr-2, mcr-3, mcr-4, bla KLUC-3 and bla KLUC-4 were discovered through comparative genomics and further functional studies. As well, mutations in genes that hitherto were unknown to confer resistance to antimicrobials, such as trm, PP2C, rpsJ, HSC82, FKS2 and Rv2887, were shown by genomics and transcomplementation assays to mediate antimicrobial resistance in Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecium, Saccharomyces cerevisae, Candida glabrata and Mycobacterium tuberculosis, respectively. Thus, genomics, transcriptomics and metagenomics, coupled with functional studies are the future of antimicrobial resistance research and novel drug discovery or design.
Collapse
Affiliation(s)
- John Osei Sekyere
- Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Jonathan Asante
- Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| |
Collapse
|
20
|
Nilsson A, Johansson C, Skarp A, Kaden R, Engstrand L, Rautelin H. Genomic and phenotypic characteristics of Swedish C. jejuni water isolates. PLoS One 2017; 12:e0189222. [PMID: 29216271 PMCID: PMC5720728 DOI: 10.1371/journal.pone.0189222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023] Open
Abstract
Campylobacter jejuni is the most common cause of bacterial gastroenteritis. Major reservoirs are warm-blooded animals, poultry in particular, but Campylobacter can also be transmitted via water. In this paper, we have taken a closer look at the biology and potential virulence of C. jejuni water isolates. Seven C. jejuni isolates from incoming surface water at water plants in Sweden were characterized with whole genome sequencing and phenotypical testing. Multi locus sequence typing analysis revealed that these isolates belonged to groups known to include both common (ST48CC) and uncommon (ST1275CC, ST683, ST793 and ST8853) human pathogens. Further genomic characterization revealed that these isolates had potential for arsenic resistance (due to presence of arsB gene in all isolates), an anaerobic dimethyl sulfoxide oxidoreductase (in three isolates) and lacked the MarR-type transcriptional regulator gene rrpB (in all but one isolate) earlier shown to be involved in better survival under oxidative and aerobic stress. As putative virulence factors were concerned, there were differences between the water isolates in the presence of genes coding for cytolethal distending toxin (cdtABC), Type VI secretion system and sialylated LOS, as well as in biofilm formation. However, all isolates were motile and could adhere to and invade the human HT-29 colon cancer cell line in vitro and induce IL-8 secretion suggesting potential to infect humans. This is, to the best of our knowledge, the first study where C. jejuni water isolates have been characterized using whole genome sequencing and phenotypical assays. We found differences and shared traits among the isolates but also potential to infect humans.
Collapse
Affiliation(s)
- Anna Nilsson
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Johansson
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Astrid Skarp
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - René Kaden
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, and Science for Life Laboratory, Stockholm, Sweden
| | - Hilpi Rautelin
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Culebro A, Revez J, Pascoe B, Friedmann Y, Hitchings MD, Stupak J, Sheppard SK, Li J, Rossi M. Large Sequence Diversity within the Biosynthesis Locus and Common Biochemical Features of Campylobacter coli Lipooligosaccharides. J Bacteriol 2016; 198:2829-40. [PMID: 27481928 PMCID: PMC5038013 DOI: 10.1128/jb.00347-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/23/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Despite the importance of lipooligosaccharides (LOSs) in the pathogenicity of campylobacteriosis, little is known about the genetic and phenotypic diversity of LOS in Campylobacter coli In this study, we investigated the distribution of LOS locus classes among a large collection of unrelated C. coli isolates sampled from several different host species. Furthermore, we paired C. coli genomic information and LOS chemical composition for the first time to investigate possible associations between LOS locus class sequence diversity and biochemical heterogeneity. After identifying three new LOS locus classes, only 85% of the 144 isolates tested were assigned to a class, suggesting higher genetic diversity than previously thought. This genetic diversity is at the basis of a completely unexplored LOS structural heterogeneity. Mass spectrometry analysis of the LOSs of nine isolates, representing four different LOS classes, identified two features distinguishing C. coli LOS from that of Campylobacter jejuni 2-Amino-2-deoxy-d-glucose (GlcN)-GlcN disaccharides were present in the lipid A backbone, in contrast to the β-1'-6-linked 3-diamino-2,3-dideoxy-d-glucopyranose (GlcN3N)-GlcN backbone observed in C. jejuni Moreover, despite the fact that many of the genes putatively involved in 3-acylamino-3,6-dideoxy-d-glucose (Quip3NAcyl) were apparently absent from the genomes of various isolates, this rare sugar was found in the outer core of all C. coli isolates. Therefore, regardless of the high genetic diversity of the LOS biosynthesis locus in C. coli, we identified species-specific phenotypic features of C. coli LOS that might explain differences between C. jejuni and C. coli in terms of population dynamics and host adaptation. IMPORTANCE Despite the importance of C. coli to human health and its controversial role as a causative agent of Guillain-Barré syndrome, little is known about the genetic and phenotypic diversity of C. coli LOSs. Therefore, we paired C. coli genomic information and LOS chemical composition for the first time to address this paucity of information. We identified two species-specific phenotypic features of C. coli LOS, which might contribute to elucidating the reasons behind the differences between C. jejuni and C. coli in terms of population dynamics and host adaptation.
Collapse
Affiliation(s)
- Alejandra Culebro
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Joana Revez
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ben Pascoe
- College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Yasmin Friedmann
- College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Matthew D Hitchings
- College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom
| | - Jacek Stupak
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Samuel K Sheppard
- College of Medicine, Institute of Life Science, Swansea University, Swansea, United Kingdom Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jianjun Li
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Zautner AE, Goldschmidt AM, Thürmer A, Schuldes J, Bader O, Lugert R, Groß U, Stingl K, Salinas G, Lingner T. SMRT sequencing of the Campylobacter coli BfR-CA-9557 genome sequence reveals unique methylation motifs. BMC Genomics 2015; 16:1088. [PMID: 26689587 PMCID: PMC4687069 DOI: 10.1186/s12864-015-2317-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Campylobacter species are the most prevalent bacterial pathogen causing acute enteritis worldwide. In contrast to Campylobacter jejuni, about 5 % of Campylobacter coli strains exhibit susceptibility to restriction endonuclease digestion by DpnI cutting specifically 5'-G(m)ATC-3' motifs. This indicates significant differences in DNA methylation between both microbial species. The goal of the study was to analyze the methylome of a C. coli strain susceptible to DpnI digestion, to identify its methylation motifs and restriction modification systems (RM-systems), and compare them to related organisms like C. jejuni and Helicobacter pylori. RESULTS Using one SMRT cell and the PacBio RS sequencing technology followed by PacBio Modification and Motif Analysis the complete genome of the DpnI susceptible strain C. coli BfR-CA-9557 was sequenced to 500-fold coverage and assembled into a single contig of 1.7 Mbp. The genome contains a CJIE1-like element prophage and is phylogenetically closer to C. coli clade 1 isolates than clade 3. 45,881 6-methylated adenines (ca. 2.7 % of genome positions) that are predominantly arranged in eight different methylation motifs and 1,788 4-methylated cytosines (ca. 0.1 %) have been detected. Only two of these motifs correspond to known restriction modification motifs. Characteristic for this methylome was the very high fraction of methylation of motifs with mostly above 99 %. CONCLUSIONS Only five dominant methylation motifs have been identified in C. jejuni, which have been associated with known RM-systems. C. coli BFR-CA-9557 shares one (RAATTY) of these, but four ORFs could be assigned to putative Type I RM-systems, seven ORFs to Type II RM-systems and three ORFs to Type IV RM-systems. In accordance with DpnI prescreening RM-system IIP, methylation of GATC motifs was detected in C. coli BfR-CA-9557. A homologous IIP RM-system has been described for H. pylori. The remaining methylation motifs are specific for C. coli BfR-CA-9557 and have been neither detected in C. jejuni nor in H. pylori. The results of this study give us new insights into epigenetics of Campylobacteraceae and provide the groundwork to resolve the function of RM-systems in C. coli.
Collapse
Affiliation(s)
- Andreas E Zautner
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075, Göttingen, Germany.
| | - Anne-Marie Goldschmidt
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075, Göttingen, Germany
| | - Andrea Thürmer
- Institute for Microbiology and Genetics, Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Jörg Schuldes
- Institute for Microbiology and Genetics, Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075, Göttingen, Germany
| | - Raimond Lugert
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075, Göttingen, Germany
| | - Kerstin Stingl
- Federal Institute for Risk Assessment (BfR), Department of Biological Safety - National Reference Laboratory for Campylobacter, D-12277, Berlin, Germany
| | - Gabriela Salinas
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
| | - Thomas Lingner
- Microarray and Deep-Sequencing Core Facility, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
| |
Collapse
|
23
|
Kojima KK, Kobayashi I. Transmission of the PabI family of restriction DNA glycosylase genes: mobility and long-term inheritance. BMC Genomics 2015; 16:817. [PMID: 26481899 PMCID: PMC4615327 DOI: 10.1186/s12864-015-2021-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/07/2015] [Indexed: 02/08/2023] Open
Abstract
Background R.PabI is an exceptional restriction enzyme that functions as a DNA glycosylase. The enzyme excises an unmethylated base from its recognition sequence to generate apurinic/apyrimidinic (AP) sites, and also displays AP lyase activity, cleaving the DNA backbone at the AP site to generate the 3’-phospho alpha, beta-unsaturated aldehyde end in addition to the 5’-phosphate end. The resulting ends are difficult to religate with DNA ligase. The enzyme was originally isolated in Pyrococcus, a hyperthermophilic archaeon, and additional homologs subsequently identified in the epsilon class of the Gram-negative bacterial phylum Proteobacteria, such as Helicobacter pylori. Results Systematic analysis of R.PabI homologs and their neighboring genes in sequenced genomes revealed co-occurrence of R.PabI with M.PabI homolog methyltransferase genes. R.PabI and M.PabI homolog genes are occasionally found at corresponding (orthologous) loci in different species, such as Helicobacter pylori, Helicobacter acinonychis and Helicobacter cetorum, indicating long-term maintenance of the gene pair. One R.PabI and M.PabI homolog gene pair is observed immediately after the GMP synthase gene in both Campylobacter and Helicobacter, representing orthologs beyond genera. The mobility of the PabI family of restriction-modification (RM) system between genomes is evident upon comparison of genomes of sibling strains/species. Analysis of R.PabI and M.PabI homologs in H. pylori revealed an insertion of integrative and conjugative elements (ICE), and replacement with a gene of unknown function that may specify a membrane-associated toxin (hrgC). In view of the similarity of HrgC with toxins in type I toxin-antitoxin systems, we addressed the biological significance of this substitution. Our data indicate that replacement with hrgC occurred in the common ancestor of hspAmerind and hspEAsia. Subsequently, H. pylori with and without hrgC were intermixed at this locus, leading to complex distribution of hrgC in East Asia and the Americas. In Malaysia, hrgC was horizontally transferred from hspEAsia to hpAsia2 strains. Conclusions The PabI family of RM system behaves as a mobile, selfish genetic element, similar to the other families of Type II RM systems. Our analysis additionally revealed some cases of long-term inheritance. The distribution of the hrgC gene replacing the PabI family in the subpopulations of H. pylori, hspAmerind, hspEAsia and hpAsia2, corresponds to the two human migration events, one from East Asia to Americas and the other from China to Malaysia. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2021-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kenji K Kojima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan. .,Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan. .,Genetic Information Research Institute, Los Altos, CA, 94022, USA.
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan. .,Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
24
|
Vorwerk H, Huber C, Mohr J, Bunk B, Bhuju S, Wensel O, Spröer C, Fruth A, Flieger A, Schmidt-Hohagen K, Schomburg D, Eisenreich W, Hofreuter D. A transferable plasticity region in Campylobacter coli allows isolates of an otherwise non-glycolytic food-borne pathogen to catabolize glucose. Mol Microbiol 2015; 98:809-30. [PMID: 26259566 DOI: 10.1111/mmi.13159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 12/31/2022]
Abstract
Thermophilic Campylobacter species colonize the intestine of agricultural and domestic animals commensally but cause severe gastroenteritis in humans. In contrast to other enteropathogenic bacteria, Campylobacter has been considered to be non-glycolytic, a metabolic property originally used for their taxonomic classification. Contrary to this dogma, we demonstrate that several Campylobacter coli strains are able to utilize glucose as a growth substrate. Isotopologue profiling experiments with (13) C-labeled glucose suggested that these strains catabolize glucose via the pentose phosphate and Entner-Doudoroff (ED) pathways and use glucose efficiently for de novo synthesis of amino acids and cell surface carbohydrates. Whole genome sequencing of glycolytic C. coli isolates identified a genomic island located within a ribosomal RNA gene cluster that encodes for all ED pathway enzymes and a glucose permease. We could show in vitro that a non-glycolytic C. coli strain could acquire glycolytic activity through natural transformation with chromosomal DNA of C. coli and C. jejuni subsp. doylei strains possessing the ED pathway encoding plasticity region. These results reveal for the first time the ability of a Campylobacter species to catabolize glucose and provide new insights into how genetic macrodiversity through intra- and interspecies gene transfer expand the metabolic capacity of this food-borne pathogen.
Collapse
Affiliation(s)
- Hanne Vorwerk
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie, Technische Universität München, Garching, Germany
| | - Juliane Mohr
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Sabin Bhuju
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Olga Wensel
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella (FG11), German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institute, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella (FG11), German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institute, Wernigerode, Germany
| | - Kerstin Schmidt-Hohagen
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dietmar Schomburg
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Dirk Hofreuter
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Pearson BM, Louwen R, van Baarlen P, van Vliet AHM. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments. Genome Biol Evol 2015; 7:2663-79. [PMID: 26338188 PMCID: PMC4607530 DOI: 10.1093/gbe/evv174] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli.
Collapse
Affiliation(s)
- Bruce M Pearson
- Institute of Food Research, Gut Health and Food Safety Programme, Norwich Research Park, Norwich, United Kingdom
| | - Rogier Louwen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Arnoud H M van Vliet
- Institute of Food Research, Gut Health and Food Safety Programme, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
26
|
Kivistö RI, Kovanen S, Skarp-de Haan A, Schott T, Rahkio M, Rossi M, Hänninen ML. Evolution and comparative genomics of Campylobacter jejuni ST-677 clonal complex. Genome Biol Evol 2014; 6:2424-38. [PMID: 25193305 PMCID: PMC4202330 DOI: 10.1093/gbe/evu194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Campylobacter is the most common bacterial cause of gastroenteritis in the European Union with over 200,000 laboratory-confirmed cases reported annually. This is the first study to describe findings related to comparative genomics analyses of the sequence type (ST)-677 clonal complex (CC), a Campylobacter jejuni lineage associated with bacteremia cases in humans. We performed whole-genome sequencing, using Illumina HiSeq sequencing technology, on five related ST-677 CC isolates from two chicken farms to identify microevolution taking place at the farms. Our further aim was to identify novel putative virulence determinants from the ST-677 CC genomes. For this purpose, clinical isolates of the same CC were included in comparative genomic analyses against well-known reference strains of C. jejuni. Overall, the ST-677 CC was recognized as a highly clonal lineage with relatively small differences between the genomes. Among the farm isolates differences were identified mainly in the lengths of the homopolymeric tracts in genes related to the capsule, lipo-oligosaccharide, and flagella. We identified genomic features shared with C. jejuni subsp. doylei, which has also been shown to be associated with bacteremia in humans. These included the degradation of the cytolethal distending toxin operon and similarities between the capsular polysaccharide biosynthesis loci. The phase-variable GDP-mannose 4,6-dehydratase (EC 4.2.1.47) (wcbK, CAMP1649), associated with the capsular polysaccharide biosynthesis locus, may play a central role in ST-677 CC conferring acid and serum resistance during different stages of infection. Homology-based searches revealed several additional novel features and characteristics, including two putative type Vb secretion systems and a novel restriction modification/methyltransferase gene cluster, putatively associated with pathogenesis and niche adaptation.
Collapse
Affiliation(s)
- Rauni I Kivistö
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland
| | - Sara Kovanen
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland
| | - Astrid Skarp-de Haan
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland Present address: Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Thomas Schott
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland Present address: Biology Oceanography, Leibniz Institute for Baltic Sea Research, Rostock-Warnemünde, Germany
| | - Marjatta Rahkio
- Finnish Meat Research Institute, Hämeenlinna, Finland Present address: Finnish Association for Milk Hygiene, Helsinki, Finland
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland
| |
Collapse
|
27
|
Iraola G, Pérez R, Naya H, Paolicchi F, Pastor E, Valenzuela S, Calleros L, Velilla A, Hernández M, Morsella C. Genomic evidence for the emergence and evolution of pathogenicity and niche preferences in the genus Campylobacter. Genome Biol Evol 2014; 6:2392-405. [PMID: 25193310 PMCID: PMC4202331 DOI: 10.1093/gbe/evu195] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The genus Campylobacter includes some of the most relevant pathogens for human and animal health; the continuous effort in their characterization has also revealed new species putatively involved in different kind of infections. Nowadays, the available genomic data for the genus comprise a wide variety of species with different pathogenic potential and niche preferences. In this work, we contribute to enlarge this available information presenting the first genome for the species Campylobacter sputorum bv. sputorum and use this and the already sequenced organisms to analyze the emergence and evolution of pathogenicity and niche preferences among Campylobacter species. We found that campylobacters can be unequivocally distinguished in established and putative pathogens depending on their repertory of virulence genes, which have been horizontally acquired from other bacteria because the nonpathogenic Campylobacter ancestor emerged, and posteriorly interchanged between some members of the genus. Additionally, we demonstrated the role of both horizontal gene transfers and diversifying evolution in niche preferences, being able to distinguish genetic features associated to the tropism for oral, genital, and gastrointestinal tissues. In particular, we highlight the role of nonsynonymous evolution of disulphide bond proteins, the invasion antigen B (CiaB), and other secreted proteins in the determination of niche preferences. Our results arise from assessing the previously unmet goal of considering the whole available Campylobacter diversity for genome comparisons, unveiling notorious genetic features that could explain particular phenotypes and set the basis for future research in Campylobacter biology.
Collapse
Affiliation(s)
- Gregorio Iraola
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay Sección Genética Evolutiva, Facultad de Ciencias, Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Facultad de Ciencias, Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Montevideo, Uruguay
| | - Fernando Paolicchi
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Eugenia Pastor
- Unidad de Bioinformática, Institut Pasteur Montevideo, Montevideo, Uruguay
| | | | - Lucía Calleros
- Sección Genética Evolutiva, Facultad de Ciencias, Montevideo, Uruguay
| | - Alejandra Velilla
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Martín Hernández
- Sección Genética Evolutiva, Facultad de Ciencias, Montevideo, Uruguay
| | - Claudia Morsella
- Laboratorio de Bacteriología, Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Argentina
| |
Collapse
|
28
|
Floch P, Pey V, Castroviejo M, Dupuy JW, Bonneu M, de la Guardia AH, Pitard V, Mégraud F, Lehours P. Role of Campylobacter jejuni gamma-glutamyl transpeptidase on epithelial cell apoptosis and lymphocyte proliferation. Gut Pathog 2014; 6:20. [PMID: 24995041 PMCID: PMC4080688 DOI: 10.1186/1757-4749-6-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Background A gamma-glutamyl transpeptidase (GGT) is produced by up to 31% of strains of Campylobacter jejuni isolates. C. jejuni GGT is close to Helicobacter pylori GGT suggesting a conserved activity but unlike the latter, C. jejuni GGT has not been studied extensively. In line with the data available for H. pylori, our objectives were to purify C. jejuni GGT from the bacteria, and to evaluate its inhibitory and proapoptotic activities on epithelial cells and human lymphocytes. Methods C. jejuni GGT was purified from culture supernatants by chromatography. After verification of the purity by using mass spectrometry of the purified enzyme, its action on two epithelial cell lines and human lymphocytes was investigated. Cell culture as well as flow cytometry experiments were developed for these purposes. Results This study demonstrated that C. jejuni GGT is related to Helicobacter GGTs and inhibits the proliferation of epithelial cells with no proapoptotic activity. C. jejuni GGT also inhibits lymphocyte proliferation by causing a cell cycle arrest in the G0/G1 phase. These effects are abolished in the presence of a specific pharmacological inhibitor of GGT. Conclusion C. jejuni GGT activity is comparable to that of other Epsilonproteobacteria GGTs and more generally to Helicobacter bilis (inhibition of epithelial cell and lymphocyte proliferation, however with no proapoptotic activity). It could therefore be considered as a pathogenicity factor and promote, via the inhibition of lymphocyte proliferation, the persistence of the bacteria in the host. These observations are consistent with a role of this enzyme in the pathophysiology of chronic infections associated with C. jejuni.
Collapse
Affiliation(s)
- Pauline Floch
- Bacteriology Laboratory, University of Bordeaux, F-33000 Bordeaux, France ; INSERM U853, F-33000 Bordeaux, France
| | - Vincent Pey
- Bacteriology Laboratory, University of Bordeaux, F-33000 Bordeaux, France ; INSERM U853, F-33000 Bordeaux, France
| | | | - Jean William Dupuy
- Centre de Génomique Fonctionnelle, Plateforme Protéome, University of Bordeaux, F-33000 Bordeaux, France
| | - Marc Bonneu
- Centre de Génomique Fonctionnelle, Plateforme Protéome, University of Bordeaux, F-33000 Bordeaux, France
| | - Anaïs Hocès de la Guardia
- Bacteriology Laboratory, University of Bordeaux, F-33000 Bordeaux, France ; INSERM U853, F-33000 Bordeaux, France
| | - Vincent Pitard
- CNRS, UMR 5164, CIRID, University of Bordeaux, F-33000 Bordeaux, France
| | - Francis Mégraud
- Bacteriology Laboratory, University of Bordeaux, F-33000 Bordeaux, France ; INSERM U853, F-33000 Bordeaux, France
| | - Philippe Lehours
- Bacteriology Laboratory, University of Bordeaux, F-33000 Bordeaux, France ; INSERM U853, F-33000 Bordeaux, France ; INSERM U853, Bacteriology Laboratory, Université de Bordeaux (site Carreire), F-33076 Bordeaux, France
| |
Collapse
|