1
|
Somerville V, Thierer N, Schmidt RS, Roetschi A, Braillard L, Haueter M, Berthoud H, Shani N, von Ah U, Mazel F, Engel P. Genomic and phenotypic imprints of microbial domestication on cheese starter cultures. Nat Commun 2024; 15:8642. [PMID: 39366947 PMCID: PMC11452379 DOI: 10.1038/s41467-024-52687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 10/06/2024] Open
Abstract
Domestication - the artificial selection of wild species to obtain variants with traits of human interest - was integral to the rise of complex societies. The oversupply of food was probably associated with the formalization of food preservation strategies through microbial fermentation. While considerable literature exists on the antiquity of fermented food, only few eukaryotic microbes have been studied so far for signs of domestication, less is known for bacteria. Here, we tested if cheese starter cultures harbour typical hallmarks of domestication by characterising over 100 community samples and over 100 individual strains isolated from historical and modern traditional Swiss cheese starter cultures. We find that cheese starter cultures have low genetic diversity both at the species and strain-level and maintained stable phenotypic traits. Molecular clock dating further suggests that the evolutionary origin of the bacteria approximately coincided with the first archaeological records of cheese making. Finally, we find evidence for ongoing genome decay and pseudogenization via transposon insertion related to a reduction of their niche breadth. Future work documenting the prevalence of these hallmarks across diverse fermented food systems and geographic regions will be key to unveiling the joint history of humanity with fermented food microbes.
Collapse
Affiliation(s)
- Vincent Somerville
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
- Agroscope, Liebefeld, Switzerland.
- Université Laval, Quebec, Canada.
- McGill, Montréal, Canada.
| | | | | | | | | | | | | | | | | | - Florent Mazel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Yamane K, Tanizawa Y, Kobayashi H, Kamizono T, Kojima Y, Takagi H, Tohno M. Proposal of Lactobacillus amylovorus subsp. animalis subsp. nov. and an emended description of Lactobacillus amylovorus. Int J Syst Evol Microbiol 2024; 74. [PMID: 39264830 DOI: 10.1099/ijsem.0.006517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Seven novel lactic acid bacterial strains (BF125T, BF186, TKL145, YK3, YK6, YK10 and NSK) were isolated from the fresh faeces of Japanese black beef cattle and weanling piglets, spent mushroom substrates, or steeping water of a corn starch production plant. These strains are rod-shaped, Gram-stain-positive, non-motile, non-spore-forming, catalase-negative, cytochrome oxidase-negative, facultatively anaerobic, and homofermentative. Strain BF125T did not produce any gas from glucose; both d- and l-lactate were produced as end-products of glucose (D/L, 40 : 60). Growth occurred at 30-45 °C (optimum, 37 °C), pH 5.0-8.0 (optimum, pH 6.0), and with NaCl concentration of 1.0-3.0% (w/v). The G+C content of genomic DNA of strain BF125T was 37.8 mol% (whole-genome analysis). The major fatty acids were C16 : 0, C18 : 1 ω9c, C19 cyclopropane 9, 10, and summed feature 10. The 16S rRNA gene in strain BF125T showed high similarity to that of the type strain of Lactobacillus amylovorus (99.93%), and the other isolates were also identified as L. amylovorus based on these similarities. A phylogenetic tree based on the core genomes of L. amylovorus strains (n=54), including the seven isolates, showed that they could be divided into two clusters. Strains YK3, YK6, YK10, and NSK were in the first cluster, along with the type strain DSM 20531T, while the second cluster included isolates BF125T, BF186, TKL145, and other strains isolated from various animal origins. Phenotypic differences in fermentability were observed for lactose, salicin, and gentiobiose between these two groups. The intergroup digital DNA-DNA hybridization values (72.9-78.6%) and intergroup average nucleotide identity values (95.64-96.92%) were comparable to values calculated using datasets of other valid subspecies of the genus (ex-) Lactobacillus. In light of the physiological, genotypic, and phylogenetic evidence, we propose a novel subspecies of L. amylovorus, named Lactobacillus amylovorus subsp. animalis subsp. nov. (type strain BF125T=MAFF 212522T=DSM 115528T). Our findings also led to the automatic creation of Lactobacillus amylovorus subsp. amylovorus subsp. nov. and an emended description of the species L. amylovorus.
Collapse
Affiliation(s)
- Kenji Yamane
- Innovative Animal Production System, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- Nihon Shokuhin Kako Co. LTD, 30, Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hisami Kobayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | - Tomomi Kamizono
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | - Yoichiro Kojima
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
| | - Hiroki Takagi
- Nihon Shokuhin Kako Co. LTD, 30, Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Masanori Tohno
- Innovative Animal Production System, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, Tochigi 329-2793, Japan
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
3
|
Jakaria Al-Mujahidy SM, Kryukov K, Ikeo K, Saito K, Uddin ME, Ibn Sina AA. Functional genomic analysis of the isolated potential probiotic Lactobacillus delbrueckii subsp. indicus TY-11 and its comparison with other Lactobacillus delbrueckii strains. Microbiol Spectr 2024; 12:e0347023. [PMID: 38771133 PMCID: PMC11218508 DOI: 10.1128/spectrum.03470-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Probiotics refer to living microorganisms that exert a variety of beneficial effects on human health. On the contrary, they also can cause infection, produce toxins within the body, and transfer antibiotic-resistant genes to the other microorganisms in the digestive tract necessitating a comprehensive safety assessment. This study aimed to conduct functional genomic analysis and some relevant biochemical tests to uncover the probiotic potentials of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. The strain TY-11 was identified as Lactobacillus delbrueckii subsp. indicus, whose genome (1,916,674 bp) contained 1911 CDS, and no gene was identified for either antibiotic resistance or toxic metabolites. It carried genes for the degradation of toxic metabolites, treatment of lactose intolerance, toll-like receptor 2-dependent innate immune response, heat and cold shock, bile salts tolerance, and acidic pH tolerance. Genes were annotated for inhibiting pathogenic bacteria by inhibitory substances [bacteriocin: Helveticin-J (331 bp) and Enterolysin-A (275 bp), hydrogen peroxide, and acid]; blockage of adhesion sites; and competition for nutrients. The genes involved in its metabolic pathway were detected as suitable for digesting indigestible nutrients in the human gut. The TY-11 genome possessed an additional 37 core genes of subspecies indicus which were deficient in the core genome of the most popular subsp. bulgaricus. During the phenotypic testing, the isolate TY-11 demonstrated high antagonistic activity (inhibition zone of 21.33 ± 1.53 mm) against Escherichia coli ATCC 8739 and was not sensitive to any of the 10 tested antibiotics. This study was the first study to explore the molecular insights into probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus. IMPORTANCE This study aimed to conduct functional genomic analysis to uncover the probiotic potential of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. In our current investigation, we revealed a number of common and unique excellences of the probiotic Lactobacillus delbrueckii subsp. indicus TY-11 that are likely to be important to illustrate its intestinal residence and probiotic roles. This is the first study to explore the molecular insights into intestinal residence and probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus.
Collapse
Affiliation(s)
- Sk. Md. Jakaria Al-Mujahidy
- DNA Data Analysis Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kirill Kryukov
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kei Saito
- Laboratory of Physics and Cell Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Md. Ekhlas Uddin
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Abu Ali Ibn Sina
- Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
4
|
Harlé O, Niay J, Parayre S, Nicolas A, Henry G, Maillard MB, Valence F, Thierry A, Guédon É, Falentin H, Deutsch SM. Deciphering the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during soy juice fermentation using phenotypic and transcriptional analysis. Appl Environ Microbiol 2024; 90:e0193623. [PMID: 38376234 PMCID: PMC10952386 DOI: 10.1128/aem.01936-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024] Open
Abstract
In the context of sustainable diet, the development of soy-based yogurt fermented with lactic acid bacteria is an attractive alternative to dairy yogurts. To decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during soy juice (SJ) fermentation, the whole genome of the strain CIRM-BIA865 (Ld865) was sequenced and annotated. Then Ld865 was used to ferment SJ. Samples were analyzed throughout fermentation for their cell number, carbohydrate, organic acid, free amino acid, and volatile compound contents. Despite acidification, the number of Ld865 cells did not rise, and microscopic observations revealed the elongation of cells from 3.6 µm (inoculation) to 36.9 µm (end of fermentation). This elongation was observed in SJ but not in laboratory-rich medium MRS. Using transcriptomic analysis, we showed that the biosynthesis genes of peptidoglycan and membrane lipids were stably expressed, in line with the cell elongation observed, whereas no genes implicated in cell division were upregulated. Among the main sugars available in SJ (sucrose, raffinose, and stachyose), Ld865 only used sucrose. The transcriptomic analysis showed that Ld865 implemented the two transport systems that it contains to import sucrose: a PTS system and an ABC transporter. To fulfill its nitrogen needs, Ld865 probably first consumed the free amino acids of the SJ and then implemented different oligopeptide transporters and proteolytic/peptidase enzymes. In conclusion, this study showed that Ld865 enables fast acidification of SJ, despite the absence of cell division, leads to a product rich in free amino acids, and also leads to the production of aromatic compounds of interest. IMPORTANCE To reduce the environmental and health concerns related to food, an alternative diet is recommended, containing 50% of plant-based proteins. Soy juice, which is protein rich, is a relevant alternative to animal milk, for the production of yogurt-like products. However, soy "beany" and "green" off-flavors limit the consumption of such products. The lactic acid bacteria (LAB) used for fermentation can help to improve the organoleptic properties of soy products. But metabolic data concerning LAB adapted to soy juice are lacking. The aim of this study was, thus, to decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during fermentation of a soy juice, based on a multidisciplinary approach. This result will contribute to give tracks for a relevant selection of starter. Indeed, the improvement of the organoleptic properties of these types of products could help to promote plant-based proteins in our diet.
Collapse
Affiliation(s)
- Olivier Harlé
- INRAE, Institut Agro, STLO, Rennes, France
- Olga-Triballat Noyal, R&D UF, Noyal-sur-Vilaine, France
| | - Jérôme Niay
- Olga-Triballat Noyal, R&D UF, Noyal-sur-Vilaine, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bendig T, Ulmer A, Luzia L, Müller S, Sahle S, Bergmann FT, Lösch M, Erdemann F, Zeidan AA, Mendoza SN, Teusink B, Takors R, Kummer U, Figueiredo AS. The pH-dependent lactose metabolism of Lactobacillus delbrueckii subsp. bulgaricus: An integrative view through a mechanistic computational model. J Biotechnol 2023; 374:90-100. [PMID: 37572793 DOI: 10.1016/j.jbiotec.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The fermentation process of milk to yoghurt using Lactobacillus delbrueckii subsp. bulgaricus in co-culture with Streptococcus thermophilus is hallmarked by the breakdown of lactose to organic acids such as lactate. This leads to a substantial decrease in pH - both in the medium, as well as cytosolic. The latter impairs metabolic activities due to the pH-dependence of enzymes, which compromises microbial growth. To quantitatively elucidate the impact of the acidification on metabolism of L. bulgaricus in an integrated way, we have developed a proton-dependent computational model of lactose metabolism and casein degradation based on experimental data. The model accounts for the influence of pH on enzyme activities as well as cellular growth and proliferation of the bacterial population. We used a machine learning approach to quantify the cell volume throughout fermentation. Simulation results show a decrease in metabolic flux with acidification of the cytosol. Additionally, the validated model predicts a similar metabolic behaviour within a wide range of non-limiting substrate concentrations. This computational model provides a deeper understanding of the intricate relationships between metabolic activity and acidification and paves the way for further optimization of yoghurt production under industrial settings.
Collapse
Affiliation(s)
- Tamara Bendig
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Andreas Ulmer
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Laura Luzia
- Systems Biology Lab, Vrije Universiteit, Amsterdam, the Netherlands
| | - Susanne Müller
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Sven Sahle
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Frank T Bergmann
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Maren Lösch
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Florian Erdemann
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ahmad A Zeidan
- Systems Biology, R&D Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | | | - Bas Teusink
- Systems Biology Lab, Vrije Universiteit, Amsterdam, the Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ursula Kummer
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| | - Ana Sofia Figueiredo
- BioQuant, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
6
|
Luo R, Liu C, Li Y, Liu Q, Su X, Peng Q, Lei X, Li W, Menghe B, Bao Q, Liu W. Comparative Genomics Analysis of Habitat Adaptation by Lactobacillus kefiranofaciens. Foods 2023; 12:foods12081606. [PMID: 37107402 PMCID: PMC10137885 DOI: 10.3390/foods12081606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Lactobacillus kefiranofaciens is often found in fermented dairy products. Many strains of this species have probiotic properties, contributing to the regulation of immune metabolism and intestinal flora. This species was added to the list of lactic acid bacteria that can be added to food in China, in 2020. However, research on the genomics of this species is scarce. In this study we undertook whole genome sequencing analysis of 82 strains of L. kefiranofaciens from different habitats, of which 9 strains were downloaded from the NCBI RefSeq (National Center for Biotechnology Information RefSeq). The mean genome size of the 82 strains was 2.05 ± 0.25 Mbp, and the mean DNA G + C content was 37.47 ± 0.42%. The phylogenetic evolutionary tree for the core genes showed that all strains belonged to five clades with clear aggregation in relation to the isolation habitat; this indicated that the genetic evolution of L. kefiranofaciens was correlated to the isolation habitat. Analysis of the annotation results identified differences in the functional genes, carbohydrate active enzymes (CAZy) and bacteriocins amongst different isolated strains, which were related to the environment. Isolates from kefir grains had more enzymes for cellulose metabolism and a better ability to use vegetative substrates for fermentation, which could be used in feed production. Isolates from kefir grains also had fewer kinds of bacteriocin than isolates from sour milk and koumiss; helveticin J and lanthipeptide class I were not found in the isolates from kefir grains. The genomic characteristics and evolutionary process of L. kefiranofaciens were analyzed by comparative genomics and this paper explored the differences in the functional genes amongst the strains, aiming to provide a theoretical basis for the research and development of L. kefiranofaciens.
Collapse
Affiliation(s)
- Rui Luo
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Chen Liu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yu Li
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qing Liu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xin Su
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qingting Peng
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xueyan Lei
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
- Collaborative Innovative Center of Ministry of Education for Lactic Acid Bacteria and Fermented Dairy Products, Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
7
|
Subspecies-level genome comparison of Lactobacillus delbrueckii. Sci Rep 2023; 13:3171. [PMID: 36823299 PMCID: PMC9950072 DOI: 10.1038/s41598-023-29404-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Lactobacillus delbrueckii comprises six subspecies, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. jakobsenii, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. sunkii, and L. delbrueckii subsp. indicus. We investigated the evolution of the six subspecies of L. delbrueckii using comparative genomics. While the defining feature of the species was the gene number increment driven by mobile elements and gene fragmentation, the repertoire of subspecies-specific gene gains and losses differed among the six subspecies. The horizontal gene transfer analyses indicated that frequent gene transfers between different subspecies had occurred when the six subspecies first diverged from the common ancestor, but recent gene exchange was confined to a subspecies implying independent evolution of the six subspecies. The subspecies bulgaricus is a homogeneous group that diverged from the other subspecies a long time ago and underwent convergent evolution. The subspecies lactis, jakobsenii, delbrueckii, and sunkii were more closely related to each other than to other subspecies. The four subspecies commonly show increasing genetic variability with increasing genome size. However, the four subspecies were distinguished by specific gene contents. The subspecies indicus forms a branch distant from the other subspecies and shows an independent evolutionary trend. These results could explain the differences in the habitat and nutritional requirements of the subspecies of L. delbrueckii.
Collapse
|
8
|
De Jesus LCL, Aburjaile FF, Sousa TDJ, Felice AG, Soares SDC, Alcantara LCJ, Azevedo VADC. Genomic Characterization of Lactobacillus delbrueckii Strains with Probiotics Properties. FRONTIERS IN BIOINFORMATICS 2022; 2:912795. [PMID: 36304288 PMCID: PMC9580953 DOI: 10.3389/fbinf.2022.912795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 01/22/2023] Open
Abstract
Probiotics are health-beneficial microorganisms with mainly immunomodulatory and anti-inflammatory properties. Lactobacillus delbrueckii species is a common bacteria used in the dairy industry, and their benefits to hosting health have been reported. This study analyzed the core genome of nine strains of L. delbrueckii species with documented probiotic properties, focusing on genes related to their host health benefits. For this, a combined methodology including several software and databases (BPGA, SPAAN, BAGEL4, BioCyc, KEEG, and InterSPPI) was used to predict the most important characteristics related to L. delbrueckii strains probiose. Comparative genomics analyses revealed that L. delbrueckii probiotic strains shared essential genes related to acid and bile stress response and antimicrobial activity. Other standard features shared by these strains are surface layer proteins and extracellular proteins-encoding genes, with high adhesion profiles that interacted with human proteins of the inflammatory signaling pathways (TLR2/4-MAPK, TLR2/4-NF-κB, and NOD-like receptors). Among these, the PrtB serine protease appears to be a strong candidate responsible for the anti-inflammatory properties reported for these strains. Furthermore, genes with high proteolytic and metabolic activity able to produce beneficial metabolites, such as acetate, bioactive peptides, and B-complex vitamins were also identified. These findings suggest that these proteins can be essential in biological mechanisms related to probiotics’ beneficial effects of these strains in the host.
Collapse
Affiliation(s)
- Luís Cláudio Lima De Jesus
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago De Jesus Sousa
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andrei Giacchetto Felice
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Siomar De Castro Soares
- Department of Immunology, Microbiology and Parasitology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Luiz Carlos Junior Alcantara
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Flavivirus Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Luiz Carlos Junior Alcantara, ; Vasco Ariston De Carvalho Azevedo,
| | - Vasco Ariston De Carvalho Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Luiz Carlos Junior Alcantara, ; Vasco Ariston De Carvalho Azevedo,
| |
Collapse
|
9
|
Gholamhosseinpour A, Hashemi SMB. Optimization of fermentation process of date syrup by
Lactobacillus delbrueckii
and
Lactobacillus acidophilus
: Microbial growth, carbohydrate metabolism and peptide content. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
IWAMOTO D, ISHIZAKI M, MIURA T, SASAKI Y. Novel shuttle vector pGMβ1 for conjugative chromosomal manipulation of <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i>. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:20-29. [PMID: 35036250 PMCID: PMC8727053 DOI: 10.12938/bmfh.2021-014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/22/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Daiki IWAMOTO
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Megumi ISHIZAKI
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Taiki MIURA
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Yasuko SASAKI
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
11
|
Shani N, Oberhaensli S, Berthoud H, Schmidt RS, Bachmann HP. Antimicrobial Susceptibility of Lactobacillus delbrueckii subsp. lactis from Milk Products and Other Habitats. Foods 2021; 10:foods10123145. [PMID: 34945696 PMCID: PMC8701367 DOI: 10.3390/foods10123145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
As components of many cheese starter cultures, strains of Lactobacillus delbrueckii subsp. lactis (LDL) must be tested for their antimicrobial susceptibility to avoid the potential horizontal transfer of antibiotic resistance (ABR) determinants in the human body or in the environment. To this end, a phenotypic test, as well as a screening for antibiotic resistance genes (ARGs) in genome sequences, is commonly performed. Historically, microbiological cutoffs (MCs), which are used to classify strains as either 'sensitive' or 'resistant' based on the minimal inhibitory concentrations (MICs) of a range of clinically-relevant antibiotics, have been defined for the whole group of the obligate homofermentative lactobacilli, which includes LDL among many other species. This often leads to inaccuracies in the appreciation of the ABR status of tested LDL strains and to false positive results. To define more accurate MCs for LDL, we analyzed the MIC profiles of strains originating from various habitats by using the broth microdilution method. These strains' genomes were sequenced and used to complement our analysis involving a search for ARGs, as well as to assess the phylogenetic proximity between strains. Of LDL strains, 52.1% displayed MICs that were higher than the defined MCs for kanamycin, 9.9% for chloramphenicol, and 5.6% for tetracycline, but no ARG was conclusively detected. On the other hand, all strains displayed MICs below the defined MCs for ampicillin, gentamycin, erythromycin, and clindamycin. Considering our results, we propose the adaptation of the MCs for six of the tested clinically-relevant antibiotics to improve the accuracy of phenotypic antibiotic testing.
Collapse
Affiliation(s)
- Noam Shani
- Competence Division Methods Development and Analytics, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland;
- Correspondence:
| | - Simone Oberhaensli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland;
| | - Hélène Berthoud
- Competence Division Methods Development and Analytics, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland;
| | - Remo S. Schmidt
- Research Division Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; (R.S.S.); (H.-P.B.)
| | - Hans-Peter Bachmann
- Research Division Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; (R.S.S.); (H.-P.B.)
| |
Collapse
|
12
|
Comparative Peptidomics Analysis of Fermented Milk by Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus delbrueckii ssp. lactis. Foods 2021; 10:foods10123028. [PMID: 34945579 PMCID: PMC8701751 DOI: 10.3390/foods10123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
Few studies have investigated the peptidomics of fermented milk by Lactobacillus delbrueckii. The aim of the present study was to interpret the peptidomic pattern of the fermented milk by five strains of L. delbrueckii ssp. bulgaricus and ssp. lactis prior to and after the simulated gastrointestinal digestion in vitro. The results indicated variations in the peptidomics among the samples, particularly between the samples of different subspecies. The peptides originating from β-casein were abundant in the samples of ssp. bulgaricus, whereas the peptides derived from αs1-casein and αs2-casein were more likely to dominate in those of ssp. lactis. For β-casein, the strains of ssp. bulgaricus displayed extensive hydrolysis in the regions of (73–97), (100–120), and (130–209), whereas ssp. lactis mainly focused on (160–209). The digestion appears to reduce the variations of the peptidomics profile in general. Among the five strains, L. delbrueckii ssp. bulgaricus DQHXNS8L6 was the most efficient in the generation of bioactive peptides prior to and after digestion. This research provided an approach for evaluating the peptide profile of the strains during fermentation and digestion.
Collapse
|
13
|
Giraffa G. The Microbiota of Grana Padano Cheese. A Review. Foods 2021; 10:2632. [PMID: 34828913 PMCID: PMC8621370 DOI: 10.3390/foods10112632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Grana Padano (GP) is the most appreciated and marketed cheese with Protected Designation of Origin in the world. The use of raw milk, the addition of undefined cultures (defined as 'sieroinnesto naturale'), the peculiar manufacturing proces, and the long ripening make the cheese microbiota play a decisive role in defining the quality and the organoleptic properties of the product. The knowledge on the microbial diversity associated with GP has been the subject, in recent years, of several studies aimed at understanding its composition and characteristics in order, on the one hand, to improve its technological performances and, on the other hand, to indirectly enhance the nutritional quality of the product. This review aims to briefly illustrate the main available knowledge on the composition and properties of the GP microbiota, inferred from dozens of studies carried out by both classical microbiology techniques and metagenomic analysis. The paper will essentially, but not exclusively, be focused on the lactic acid bacteria (LAB) derived from starter (SLAB) and the non-starter bacteria, both lactic (NSLAB) and non-lactic, of milk origin.
Collapse
Affiliation(s)
- Giorgio Giraffa
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Lombardo 11, 26900 Lodi, Italy
| |
Collapse
|
14
|
Sun L, D’Amico DJ. Composition, Succession, and Source Tracking of Microbial Communities throughout the Traditional Production of a Farmstead Cheese. mSystems 2021; 6:e0083021. [PMID: 34581601 PMCID: PMC8547439 DOI: 10.1128/msystems.00830-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
Prior to the advent of milk pasteurization and the use of defined-strain starter cultures, the production and ripening of cheese relied on the introduction and growth of adventitious microbes from the environment. This study characterized microbial community structures throughout a traditional farmstead cheese production continuum and evaluated the role of the environment in microbial transfer. In total, 118 samples (e.g., raw milk, cheese, and environmental surfaces) were collected from milk harvesting through cheese ripening. Microbial communities were characterized based on amplicon sequencing of bacterial 16S rRNA and fungal internal transcribed spacer genes using the Illumina MiSeq platform. Results indicated that the environment in each processing room harbored unique microbial ecosystems and consistently contributed microbes to milk, curd, and cheese. The diverse microbial composition of milk was initially attributed to milker hands and cow teats and then changed substantially following overnight ripening in a wooden vat to one dominated by lactic acid bacteria, including Lactococcus lactis, Lactobacillus, and Leuconostoc, as well as fungi such as Exophiala, Kluyveromyces, and Candida. Additional microbial contributions were attributed to processing tools, but the composition of the cheese paste remained relatively stable over 60 days of ripening. In contrast, rind communities that were largely influenced by direct contact with bamboo aging mats showed a distinct succession pattern compared to the interior sections. Overall, these findings highlight the critical role of traditional tools and practices in shaping the microbial composition of cheese and broaden our understanding of processing environments as important sources of microbes in food. IMPORTANCE Throughout the 20th century, especially in the United States, sanitation practices, pasteurization of milk, and the use of commercial defined-strain starter cultures have enhanced the safety and consistency of cheese. However, these practices can reduce cheese microbial diversity. The rapid growth of the artisanal cheese industry in the United States has renewed interest in recapturing the diversity of dairy products and the microbes involved in their production. Here, we demonstrate the essential role of the environment, including the use of wooden tools and cheesemaking equipment, as sources of dominant microbes that shape the fermentation and ripening processes of a traditional farmstead cheese produced without the addition of starter cultures or direct inoculation of any other bacteria or fungi. These data enrich our understanding of the microbial interactions between products and the environment and identify taxa that contribute to the microbial diversity of cheese and cheese production.
Collapse
Affiliation(s)
- Lang Sun
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Dennis J. D’Amico
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
15
|
|
16
|
de Jesus LCL, Drumond MM, Aburjaile FF, Sousa TDJ, Coelho-Rocha ND, Profeta R, Brenig B, Mancha-Agresti P, Azevedo V. Probiogenomics of Lactobacillus delbrueckii subsp. lactis CIDCA 133: In Silico, In Vitro, and In Vivo Approaches. Microorganisms 2021; 9:microorganisms9040829. [PMID: 33919849 PMCID: PMC8070793 DOI: 10.3390/microorganisms9040829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA 133 (CIDCA 133) has been reported as a potential probiotic strain, presenting immunomodulatory properties. This study investigated the possible genes and molecular mechanism involved with a probiotic profile of CIDCA 133 through a genomic approach associated with in vitro and in vivo analysis. Genomic analysis corroborates the species identification carried out by the classical microbiological method. Phenotypic assays demonstrated that the CIDCA 133 strain could survive acidic, osmotic, and thermic stresses. In addition, this strain shows antibacterial activity against Salmonella Typhimurium and presents immunostimulatory properties capable of upregulating anti-inflammatory cytokines Il10 and Tgfb1 gene expression through inhibition of Nfkb1 gene expression. These reported effects can be associated with secreted, membrane/exposed to the surface and cytoplasmic proteins, and bacteriocins-encoding genes predicted in silico. Furthermore, our results showed the genes and the possible mechanisms used by CIDCA 133 to produce their beneficial host effects and highlight its use as a probiotic microorganism.
Collapse
Affiliation(s)
- Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Mariana Martins Drumond
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte 31421-169, Brazil;
| | - Flávia Figueira Aburjaile
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Thiago de Jesus Sousa
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Nina Dias Coelho-Rocha
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Rodrigo Profeta
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, D-37077 Göttingen, Germany;
| | | | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Correspondence:
| |
Collapse
|
17
|
Song Y, Zhao J, Liu W, Li W, Sun Z, Cui Y, Zhang H. Exploring the industrial potential of Lactobacillus delbrueckii ssp. bulgaricus by population genomics and genome-wide association study analysis. J Dairy Sci 2021; 104:4044-4055. [PMID: 33663860 DOI: 10.3168/jds.2020-19467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 01/26/2023]
Abstract
Lactobacillus delbrueckii ssp. bulgaricus is one of the most commonly used starter cultures for yogurt production. However, how its genetic background affects acid production capacity is unclear. This study investigated the industrial potential of L. delbrueckii ssp. bulgaricus using population genomics and GWAS analysis. To meet our goal, population genetics and functional genomics analyses were performed on 188 newly sequenced L. delbrueckii ssp. bulgaricus strains isolated from naturally fermented dairy products together with 19 genome sequences retrieved from the NCBI database. Four distinct clusters were identified, and they were correlated with the geographical sites where the samples were collected. The GWAS analysis about acidification fermentation results with sucrose-fortified reconstituted skim milk revealed a significant association between l-lactate dehydrogenase (lldD; Ldb2036) and the bacterial acid production rate. Our study has broadened the understanding of the population structure and genetic diversity of L. delbrueckii ssp. bulgaricus by identifying potential targets for further research, development, and use of lactic acid bacteria in the dairy industry.
Collapse
Affiliation(s)
- Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jie Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
18
|
Kim E, Cho EJ, Yang SM, Kim HY. Identification and Monitoring of Lactobacillus delbrueckii Subspecies Using Pangenomic-Based Novel Genetic Markers. J Microbiol Biotechnol 2021; 31:280-289. [PMID: 33144553 PMCID: PMC9705890 DOI: 10.4014/jmb.2009.09034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Genetic markers currently used for the discrimination of Lactobacillus delbrueckii subspecies have low efficiency for identification at subspecies level. Therefore, our objective in this study was to select novel genetic markers for accurate identification and discrimination of six L. delbrueckii subspecies based on pangenome analysis. We evaluated L. delbrueckii genomes to avoid making incorrect conclusions in the process of selecting genetic markers due to mislabeled genomes. Genome analysis showed that two genomes of L. delbrueckii subspecies deposited at NCBI were misidentified. Based on these results, subspecies-specific genetic markers were selected by comparing the core and pangenomes. Genetic markers were confirmed to be specific for 59,196,562 genome sequences via in silico analysis. They were found in all strains of the same subspecies, but not in other subspecies or bacterial strains. These genetic markers also could be used to accurately identify genomes at the subspecies level for genomes known at the species level. A real-time PCR method for detecting three main subspecies (L. delbrueckii subsp. delbrueckii, lactis, and bulgaricus) was developed to cost-effectively identify them using genetic markers. Results showed 100% specificity for each subspecies. These genetic markers could differentiate each subspecies from 44 other lactic acid bacteria. This real-time PCR method was then applied to monitor 26 probiotics and dairy products. It was also used to identify 64 unknown strains isolated from raw milk samples and dairy products. Results confirmed that unknown isolates and subspecies contained in the product could be accurately identified using this real-time PCR method.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun-Ji Cho
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea,Corresponding author Phone: +82-31-201-2123 Fax: +82-31-204-8116 E-mail:
| |
Collapse
|
19
|
Wiersema ML, Koester LR, Schmitz-Esser S, Koltes DA. Comparison of intestinal permeability, morphology, and ileal microbial communities of commercial hens housed in conventional cages and cage-free housing systems. Poult Sci 2021; 100:1178-1191. [PMID: 33518076 PMCID: PMC7858161 DOI: 10.1016/j.psj.2020.10.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal health of poultry can be impacted by a variety of factors including their environment. As egg production moves from conventional cage housing (CC) toward cage-free housing (CF), it is important to understand this impact on intestinal health. This study was conducted to determine if housing type impacted intestinal permeability, morphology, and microbial communities in commercial hens across housing systems. Hens were randomly selected from 2 rooms of CC (n = 25) and CF (n = 25) at a commercial facility. Birds were given fluorescein isothiocyanate dextran (FITC-D) by oral gavage to measure intestinal permeability. Jejunal and ileal samples were collected to evaluate villus height, crypt depth, and their ratio. Ileal contents were collected for bacterial DNA isolation and 16S rRNA gene sequencing. Serum FITC-D was similar between housing type (P = 0.709). Hens housed in the CF had increased jejunal villus height and crypt depth compared with hens from the CC (P < 0.002). Hens from the CC tended to have a greater villus height to crypt depth ratio in both the jejunum and ileum compared with the CF (P = 0.064; P = 0.091, respectively). Microbial community diversity measurements favored hens housed in the CC as ileal contents tended to have increased species richness (P = 0.059), had greater alpha diversity (P = 0.044), and had an increased number of over represented operational taxonomic units (46/64), including Romboutsia sp. (30.80%), Lactobacillus kitasatonis (17.16%), and Lactobacillus aviarius (11.15%). Correlations between microbial communities with intestinal traits identified significant association with the greatest number of correlations with FITC-D and ileal morphology. Many of these correlations identified microbial communities associated with expected traits; thus, providing limited functional data to microbial communities with limited information. The greater number of correlations of ileal morphology with ileal microbial communities suggesting local microbial communities contribute to the intestinal environment distant. In this limited study, several parameters favored hens from CC suggesting an advantage of this system for intestinal health. However, the lower intestinal health parameters observed in CF were not at levels to indicate detrimental effects.
Collapse
Affiliation(s)
| | - Lucas R Koester
- Vet Microbiology & Preventive Medicine and Interdepartmental Microbiology Graduate Program, Iowa State University, Ames
| | | | - Dawn A Koltes
- Department of Animal Science, Iowa State University, Ames.
| |
Collapse
|
20
|
Hallajzadeh J, Eslami RD, Tanomand A. Effect of Lactobacillus delbrueckii Subsp. lactis PTCC1057 on Serum Glucose, Fetuin-A ,and Sestrin 3 Levels in Streptozotocin-Induced Diabetic Mice. Probiotics Antimicrob Proteins 2020; 13:383-389. [PMID: 32862395 DOI: 10.1007/s12602-020-09693-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intake of probiotic bacteria may improve or preserve insulin sensitivity. Fetuin-A and sestrin 3 have emerged as promising candidate biomarkers for crucial roles in insulin signaling pathway. Therefore, the effect of oral supplementation with the probiotic bacterium Lactobacillus delbrueckii subsp. lactis PTCC1057 on proteins involved in insulin signaling pathway was investigated in normal and streptozotocin (STZ)-induced diabetic mice. The 6-8-week-old female mice were divided into a non-diabetic control, diabetic control, and diabetic experimental and non-diabetic experimental groups (5 mice each group). Diabetic and non-diabetic experimental groups treated with 3 × 107 CFU mL-1 L. delbrueckii subsp. lactis PTCC1057 by gavage feeding approach daily for 28 days. Serum glucose, fetuin-A, and sestrin 3 levels were measured by standard methods. The result showed that oral administration of L. delbrueckii significantly decreased serum glucose in comparison to diabetic control group (P = 0.01). Serum fetuin-A level was higher in diabetic control group than non-diabetic group and oral administration of L. delbrueckii subsp. lactis PTCC1057 significantly decreased fetuin-A level in diabetic experimental group in comparison with non-diabetic groups (P = 0.001). Sestrin 3 level significantly was lower in diabetic control group than non-diabetic control group (P = 0.03) and it significantly increased in diabetic experimental group in comparison with diabetic control group after intervention of L. delbrueckii subsp. lactis PTCC1057 (P = 0.02). The results show that feeding the STZ-induced diabetic mice with L. delbrueckii subsp. lactis PTCC1057 terminated to decrease in fasting blood glucose and fetuin-A level and increase in serum sestrin 3 level. Therefore, the L. delbrueckii subsp. lactis PTCC1057 can be considered as excellent candidate for future studies on diabetes mellitus.
Collapse
Affiliation(s)
- Jamal Hallajzadeh
- Department of Clinical Biochemistry, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Reza Dolatyari Eslami
- Department of Microbiology, Higher Education Institute of Rabe Rashid, East Azerbaijan, Tabriz, Iran
| | - Asghar Tanomand
- Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
21
|
Modification of the functional and bioactive properties of camel milk casein and whey proteins by ultrasonication and fermentation with Lactobacillus delbrueckii subsp. lactis. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109501] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Fang X, Duan Q, Wang Z, Li F, Du J, Ke W, Liu D, Beier RC, Guo X, Zhang Y. Products of Lactobacillus delbrueckii subsp. bulgaricus Strain F17 and Leuconostoc lactis Strain H52 Are Biopreservatives for Improving Postharvest Quality of 'Red Globe' Grapes. Microorganisms 2020; 8:E656. [PMID: 32365911 PMCID: PMC7285285 DOI: 10.3390/microorganisms8050656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
'Red Globe' table grapes are large, edible, seeded fruit with firm flesh that tastes good, but can have poor postharvest shelf-life. This study was conducted to explore the effects of products of Lactobacillus delbrueckii subsp. bulgaricus strain F17 and Leuconostoc lactis strain H52 on 'Red Globe' table grapes for the enhancement of shelf-life and improvement of grape quality characteristics during postharvest storage. Strains F17 and H52 were isolated from traditional fermented yak milk obtained in the Qinghai-Tibetan Plateau. Samples from untreated and treated grapes were analyzed for physicochemical, biochemical, and microbiological properties (weight loss, decay rate, pH, total soluble solids content, titratable acidity, total phenols, sensory evaluation, and microbial growth) for 20 days. The results demonstrated that supernatants from both strains significantly reduced weight loss, decay rate, aerobic mesophilic bacteria, and coliform bacteria counts; delayed maturity and senescence of table grapes; and reduced titratable acidity and total phenols. However, the supernatant of strain F17 was more effective and resulted in better sensory evaluations and had a significant inhibitory effect on yeast and molds by day 5. Meanwhile, the supernatant from strain H52 had a significant inhibitory effect on fungi over the whole storage period. In addition, the results of the Pearson correlation analysis suggested that weight loss, decay rate, total soluble solids content, and microorganisms were highly correlated with the sensory evaluation data and quality of postharvest grapes when treated with the products of strain F17. On the basis of these data and sensory organoleptic qualities, the supernatant containing products from strain F17 had the best potential as a biopreservative to improve the postharvest quality of 'Red Globe' table grapes.
Collapse
Affiliation(s)
- Xiang Fang
- College of Public Health, Lanzhou University, Lanzhou 730000, China; (X.F.); (Z.W.); (F.L.); (D.L.)
| | - Qinchun Duan
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Q.D.); (J.D.); (W.K.); (X.G.)
| | - Zhuo Wang
- College of Public Health, Lanzhou University, Lanzhou 730000, China; (X.F.); (Z.W.); (F.L.); (D.L.)
| | - Fuyun Li
- College of Public Health, Lanzhou University, Lanzhou 730000, China; (X.F.); (Z.W.); (F.L.); (D.L.)
| | - Jianxiong Du
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Q.D.); (J.D.); (W.K.); (X.G.)
| | - Wencan Ke
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Q.D.); (J.D.); (W.K.); (X.G.)
| | - Diru Liu
- College of Public Health, Lanzhou University, Lanzhou 730000, China; (X.F.); (Z.W.); (F.L.); (D.L.)
| | - Ross C. Beier
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA;
| | - Xusheng Guo
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Q.D.); (J.D.); (W.K.); (X.G.)
| | - Ying Zhang
- College of Public Health, Lanzhou University, Lanzhou 730000, China; (X.F.); (Z.W.); (F.L.); (D.L.)
| |
Collapse
|
23
|
Sousa MAD, Rama GR, Volken de Souza CF, Granada CE. Acid lactic lactobacilli as a biotechnological toll to improve food quality and human health. Biotechnol Prog 2020; 36:e2937. [DOI: 10.1002/btpr.2937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Márcio A. de Sousa
- University of Taquari Valley ‐ Univates Lajeado Rio Grande do Sul Brazil
| | | | | | - Camille E. Granada
- University of Taquari Valley ‐ Univates Lajeado Rio Grande do Sul Brazil
| |
Collapse
|
24
|
Bancalari E, Alinovi M, Bottari B, Caligiani A, Mucchetti G, Gatti M. Ability of a Wild Weissella Strain to Modify Viscosity of Fermented Milk. Front Microbiol 2020; 10:3086. [PMID: 32047483 PMCID: PMC6997433 DOI: 10.3389/fmicb.2019.03086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Despite the fact that strains belonging to Weissella species have not yet been approved for use as starter culture, recent toxicological studies open new perspectives on their potential employment. The aim of this study was to evaluate the ability of a wild Weissella minor (W4451) strain to modify milk viscosity compared to Lactobacillus delbrueckii subsp. bulgaricus, which is commonly used for this purpose in dairy products. To reach this goal, milk viscosity has been evaluated by means of two very different instruments: one rotational viscometer and the Ford cup. Moreover, water holding capacity was evaluated. W4451, previously isolated from sourdough, was able to acidify milk, to produce polysaccharides in situ and thus improve milk viscosity. The ability of W4451 to produce at the same time lactic acid and high amounts of polysaccharides makes it a good candidate to improve the composition of starters for dairy products. Ford cup turned out to be a simple method to measure fermented milk viscosity by small- or medium-sized dairies.
Collapse
Affiliation(s)
- Elena Bancalari
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | | | | | - Monica Gatti
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
25
|
Zuluaga-Dominguez CM, Quicazan M. Effect of Fermentation on Structural Characteristics and Bioactive Compounds of Bee-Pollen Based Food. JOURNAL OF APICULTURAL SCIENCE 2019; 63:209-222. [DOI: 10.2478/jas-2019-0016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Bee-pollen is a product of the hive which has had a growth in consumption in recent years due to the recognition of its nutritional and bioactive potential. However, several reports have shown that the external structure of the grain limits the absorption of nutrients in the human gastrointestinal tract. A structural modification could be achieved through fermentative processes, favoring the release of compounds found inside this food, in addition to obtaining a product with potential probiotic characteristics. The objective of this work was to evaluate how fermentation through the inclusion of yeasts of the species Saccharomyces cerevisiae, bacteria of species Lactobacillus plantarum or a commercial culture Choozit® affeccted such parameters as Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), phenolic compounds, flavonoids and antioxidant activity. The results found that the use of consortia between yeast and lactic acid bacteria significantly increased in such characteristics as total phenolics and antioxidant activity by 31% and 39% respectively. The analysis by DSC showed an increase in the heat flow of the fermented products compared to fresh bee-pollen, which could indicate structural modification caused by the activity of microorganisms, a fact made visible through micrographs obtained by Scanning Electron Microscopy.
Collapse
|
26
|
Pseudofructophilic Leuconostoc citreum Strain F192-5, Isolated from Satsuma Mandarin Peel. Appl Environ Microbiol 2019; 85:AEM.01077-19. [PMID: 31399409 DOI: 10.1128/aem.01077-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/04/2019] [Indexed: 01/05/2023] Open
Abstract
Fructophilic lactic acid bacteria (FLAB), composed of Fructobacillus spp., Lactobacillus kunkeei, and Lactobacillus apinorum, are unique in that they prefer d-fructose over d-glucose as a carbon source. Strain F192-5, isolated from the peel of a satsuma mandarin and identified as Leuconostoc citreum, grows well on d-fructose but poorly on d-glucose and produces mainly lactate and acetate, with trace amounts of ethanol, from the metabolism of d-glucose. These characteristics are identical to those of obligate FLAB. However, strain F192-5 ferments a greater variety of carbohydrates than known FLAB. Comparative analyses of the genomes of strain F192-5 and reference strains of L. citreum revealed no signs of specific gene reductions, especially genes involved in carbohydrate transport and metabolism, in the genome of F192-5. The bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) is conserved in strain F192-5 but is not transcribed. This is most likely due to a deletion in the promoter region upstream of the adhE gene. Strain F192-5 did, however, ferment d-glucose when transformed with a plasmid containing the allochthonous adhE gene. L. citreum F192-5 is an example of a pseudo-FLAB strain with a deficiency in d-glucose metabolism. This unique phenotypic characteristic appears to be strain specific within the species L. citreum This might be one of the strategies lactic acid bacteria use to adapt to diverse environmental conditions.IMPORTANCE Obligate fructophilic lactic acid bacteria (FLAB) lack the metabolic pathways used in the metabolism of most carbohydrates and differ from other lactic acid bacteria in that they prefer to ferment d-fructose instead of d-glucose. These characteristics are well conserved at the genus or species level. Leuconostoc citreum F192-5 shows similar growth characteristics. However, the strain is metabolically and genomically different from obligate FLAB. This is an example of a strain that evolved a pseudo-FLAB phenotype to adapt to a fructose-rich environment.
Collapse
|
27
|
Alexandraki V, Kazou M, Pot B, Tsakalidou E, Papadimitriou K. Whole-genome sequence data and analysis of Lactobacillus delbrueckii subsp. lactis ACA-DC 178 isolated from Greek Kasseri cheese. Data Brief 2019; 25:104282. [PMID: 31388525 PMCID: PMC6676233 DOI: 10.1016/j.dib.2019.104282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022] Open
Abstract
Lactobacillus delbrueckii subsp. lactis is employed in the production of various types of cheese. Here, we report the complete genome sequence of L. lactis ACA-DC 178 isolated from Greek Kasseri cheese. The chromosome of ACA-DC 178 contains 2,050,316 bp with a GC content of 49.6%. A total of 2,112 genes were identified in the genome sequence including 1,752 protein-coding genes, 239 putative pseudogenes, 94 tRNA and 27 rRNA genes. According to the COG annotation, about 80% of the protein-coding genes (1,417 proteins) were assigned to at least one functional category. Approximately the 1/3 of these proteins were distributed among three categories, namely replication, recombination and repair (category L: 10.6%), translation, ribosomal structure and biogenesis (category J: 7.5%) and amino acid transport and metabolism (category E: 7.2%). Fourteen integrated GIs with a total of 159 genes were found in ACA-DC 178 genome. Several of these genes encode proteins associated with exopolysaccharide biosynthesis, amino acid transport and subunits of restriction-modification systems. One large CRISPR array of 3,197 bp containing 52 spacers, several of which are identical to phage sequences having hosts in the genus Lactobacillus, was also identified. The annotated genome sequence of L. lactis ACA-DC 178 is deposited at the European Nucleotide Archive under the accession number LS991409. Raw reads are deposited in the Sequence Read Archive (SRR8866601-3).
Collapse
Affiliation(s)
- Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
- Corresponding author.
| |
Collapse
|
28
|
Gänzle MG, Zheng J. Lifestyles of sourdough lactobacilli – Do they matter for microbial ecology and bread quality? Int J Food Microbiol 2019; 302:15-23. [DOI: 10.1016/j.ijfoodmicro.2018.08.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022]
|
29
|
Rossi F, Amadoro C, Colavita G. Members of the Lactobacillus Genus Complex (LGC) as Opportunistic Pathogens: A Review. Microorganisms 2019; 7:E126. [PMID: 31083452 PMCID: PMC6560513 DOI: 10.3390/microorganisms7050126] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
Microorganisms belonging to the Lactobacillus genus complex (LGC) are naturally associated or deliberately added to fermented food products and are widely used as probiotic food supplements. Moreover, these bacteria normally colonize the mouth, gastrointestinal (GI) tract, and female genitourinary tract of humans. They exert multiple beneficial effects and are regarded as safe microorganisms. However, infections caused by lactobacilli, mainly endocarditis, bacteremia, and pleuropneumonia, occasionally occur. The relevance of Lactobacillus spp. and other members of the LGC as opportunistic pathogens in humans and related risk factors and predisposing conditions are illustrated in this review article with more emphasis on the species L. rhamnosus that has been more often involved in infection cases. The methods used to identify this species in clinical samples, to distinguish strains and to evaluate traits that can be associated to pathogenicity, as well as future perspectives for improving the identification of potentially pathogenic strains, are outlined.
Collapse
Affiliation(s)
- Franca Rossi
- Diagnostica Specialistica, Sezione di Isernia, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", C.da Breccelle Snc, 86170 Isernia, Italy.
| | - Carmela Amadoro
- Medicine and Health Science Department "V. Tiberio", University of Molise, Via de Santis, 86100 Campobasso, Italy.
| | - Giampaolo Colavita
- Medicine and Health Science Department "V. Tiberio", University of Molise, Via de Santis, 86100 Campobasso, Italy.
| |
Collapse
|
30
|
Andersen JM, Pedersen CM, Bang-Berthelsen CH. Omics-based comparative analysis of putative mobile genetic elements in Lactococcus lactis. FEMS Microbiol Lett 2019; 366:5487889. [PMID: 31074793 DOI: 10.1093/femsle/fnz102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/09/2019] [Indexed: 12/29/2022] Open
Abstract
Lactococcus lactis is globally used in food fermentation. Genomics is useful to investigate speciation and differential occurrence of (un)desired gene functions, often related to mobile DNA. This study investigates L. lactis for putative chromosomal mobile genetic elements through comparative genomics, and analyses how they contribute to chromosomal variation at strain level. Our work identified 95 loci that may range over 10% of the chromosome size when including prophages, and the loci display a marked differential occurrence in the analysed strains. Analysis of differential transcriptomics data revealed how mobile genetic elements may impact the host physiology in response to conditional changes. This insight in the genetic variation of mobile genetic elements in L. lactis holds potential to further identify important functions related to food and biotechnology applications within this important species.
Collapse
Affiliation(s)
- Joakim Mark Andersen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Christine Møller Pedersen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
31
|
McAuliffe O, Kilcawley K, Stefanovic E. Symposium review: Genomic investigations of flavor formation by dairy microbiota. J Dairy Sci 2018; 102:909-922. [PMID: 30343908 DOI: 10.3168/jds.2018-15385] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/24/2018] [Indexed: 01/15/2023]
Abstract
Flavor is one of the most important attributes of any fermented dairy product. Dairy consumers are known to be willing to experiment with different flavors; thus, many companies producing fermented dairy products have looked at culture manipulation as a tool for flavor diversification. The development of flavor is a complex process, originating from a combination of microbiological, biochemical, and technological aspects. A key driver of flavor is the enzymatic activities of the deliberately inoculated starter cultures, in addition to the environmental or "nonstarter" microbiota. The contribution of microbial metabolism to flavor development in fermented dairy products has been exploited for thousands of years, but the availability of the whole genome sequences of the bacteria and yeasts involved in the fermentation process and the possibilities now offered by next-generation sequencing and downstream "omics" technologies is stimulating a more knowledge-based approach to the selection of desirable cultures for flavor development. By linking genomic traits to phenotypic outputs, it is now possible to mine the metabolic diversity of starter cultures, analyze the metabolic routes to flavor compound formation, identify those strains with flavor-forming potential, and select them for possible commercial application. This approach also allows for the identification of species and strains not previously considered as potential flavor-formers, the blending of strains with complementary metabolic pathways, and the potential improvement of key technological characteristics in existing strains, strains that are at the core of the dairy industry. An in-depth knowledge of the metabolic pathways of individual strains and their interactions in mixed culture fermentations can allow starter blends to be custom-made to suit industry needs. Applying this knowledge to starter culture research programs is enabling research and development scientists to develop superior starters, expand flavor profiles, and potentially develop new products for future market expansion.
Collapse
Affiliation(s)
- Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996.
| | - Kieran Kilcawley
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - Ewelina Stefanovic
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| |
Collapse
|
32
|
The effect of starters with a functional arginine deiminase pathway on cheese ripening and quality. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Vázquez-Velázquez R, Salvador-Figueroa M, Adriano-Anaya L, DeGyves–Córdova G, Vázquez-Ovando A. Use of starter culture of native lactic acid bacteria for producing an artisanal Mexican cheese safe and sensory acceptable. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2017.1420694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Robinson Vázquez-Velázquez
- Instituto de Biociencias, Universidad Autónoma de Chiapas, Tapachula, Chiapas, Mexico
- División Agroalimentaria, Universidad Tecnológica de la Selva, Ocosingo, Chiapas, Mexico
| | | | - Lourdes Adriano-Anaya
- Instituto de Biociencias, Universidad Autónoma de Chiapas, Tapachula, Chiapas, Mexico
| | | | | |
Collapse
|
34
|
Horizontal Gene Transfer and Ecosystem Function Dynamics. Trends Microbiol 2017; 25:699-700. [DOI: 10.1016/j.tim.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 11/23/2022]
|
35
|
Zanni E, Schifano E, Motta S, Sciubba F, Palleschi C, Mauri P, Perozzi G, Uccelletti D, Devirgiliis C, Miccheli A. Combination of Metabolomic and Proteomic Analysis Revealed Different Features among Lactobacillus delbrueckii Subspecies bulgaricus and lactis Strains While In Vivo Testing in the Model Organism Caenorhabditis elegans Highlighted Probiotic Properties. Front Microbiol 2017; 8:1206. [PMID: 28702021 PMCID: PMC5487477 DOI: 10.3389/fmicb.2017.01206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022] Open
Abstract
Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus, lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans, with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis. Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates.
Collapse
Affiliation(s)
- Elena Zanni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of RomeRome, Italy
| | - Emily Schifano
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of RomeRome, Italy
| | - Sara Motta
- Institute of Biomedical Technologies, National Research CouncilMilan, Italy
| | - Fabio Sciubba
- Department of Chemistry, Sapienza University of RomeRome, Italy
| | - Claudio Palleschi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of RomeRome, Italy
| | - Pierluigi Mauri
- Institute of Biomedical Technologies, National Research CouncilMilan, Italy
| | - Giuditta Perozzi
- Food and Nutrition Research Center, Council for Agricultural Research and EconomicsRome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of RomeRome, Italy
| | - Chiara Devirgiliis
- Food and Nutrition Research Center, Council for Agricultural Research and EconomicsRome, Italy
| | | |
Collapse
|
36
|
Salvetti E, O'Toole PW. The Genomic Basis of Lactobacilli as Health-Promoting Organisms. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0011-2016. [PMID: 28643623 PMCID: PMC11687495 DOI: 10.1128/microbiolspec.bad-0011-2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 12/11/2022] Open
Abstract
Lactobacilli occupy a unique position in human culture and scientific history. Like brewer's and baker's yeast, lactobacilli have been associated with food production and preservation for thousands of years. Lactobacillus species are used in mixed microbial cultures, such as the classical Lactobacillus bulgaricus/Streptococcus thermophilus inoculum for yogurt fermentation, or combinations of diverse lactobacilli/yeasts in kefir grains. The association of lactobacilli consumption with greater longevity and improved health formed the basis for developing lactobacilli as probiotics, whose market has exploded worldwide in the past 10 years. The decade that followed the determination of the first genome sequence of a food-associated species, Lactobacillus plantarum, saw the application to lactobacilli of a full range of functional genomics methods to identify the genes and gene products that govern their distinctive phenotypes and health associations. In this review, we will briefly remind the reader of the range of beneficial effects attributed to lactobacilli, and then explain the phylogenomic basis for the distribution of these traits across the genus. Recognizing the strain specificity of probiotic effects, we review studies of intraspecific genomic variation and their contributions to identifying probiotic traits. Finally we offer a perspective on classification of lactobacilli into new genera in a scheme that will make attributing probiotic properties to clades, taxa, and species more logical and more robust.
Collapse
Affiliation(s)
- Elisa Salvetti
- School of Microbiology and APC Microbiome Institute, University College Cork, Ireland
| | - Paul W O'Toole
- School of Microbiology and APC Microbiome Institute, University College Cork, Ireland
| |
Collapse
|
37
|
El Kafsi H, Loux V, Mariadassou M, Blin C, Chiapello H, Abraham AL, Maguin E, van de Guchte M. Unprecedented large inverted repeats at the replication terminus of circular bacterial chromosomes suggest a novel mode of chromosome rescue. Sci Rep 2017; 7:44331. [PMID: 28281695 PMCID: PMC5345009 DOI: 10.1038/srep44331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/07/2017] [Indexed: 12/29/2022] Open
Abstract
The first Lactobacillus delbrueckii ssp. bulgaricus genome sequence revealed the presence of a very large inverted repeat (IR), a DNA sequence arrangement which thus far seemed inconceivable in a non-manipulated circular bacterial chromosome, at the replication terminus. This intriguing observation prompted us to investigate if similar IRs could be found in other bacteria. IRs with sizes varying from 38 to 76 kbp were found at the replication terminus of all 5 L. delbrueckii ssp. bulgaricus chromosomes analysed, but in none of 1373 other chromosomes. They represent the first naturally occurring very large IRs detected in circular bacterial genomes. A comparison of the L. bulgaricus replication terminus regions and the corresponding regions without IR in 5 L. delbrueckii ssp. lactis genomes leads us to propose a model for the formation and evolution of the IRs. The DNA sequence data are consistent with a novel model of chromosome rescue after premature replication termination or irreversible chromosome damage near the replication terminus, involving mechanisms analogous to those proposed in the formation of very large IRs in human cancer cells. We postulate that the L. delbrueckii ssp. bulgaricus-specific IRs in different strains derive from a single ancestral IR of at least 93 kbp.
Collapse
Affiliation(s)
- Hela El Kafsi
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Valentin Loux
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Camille Blin
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Hélène Chiapello
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Anne-Laure Abraham
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Emmanuelle Maguin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Maarten van de Guchte
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
38
|
Wu C, Huang J, Zhou R. Genomics of lactic acid bacteria: Current status and potential applications. Crit Rev Microbiol 2017; 43:393-404. [PMID: 28502225 DOI: 10.1080/1040841x.2016.1179623] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lactic acid bacteria (LAB) are widely used for the production of a variety of foods and feed raw materials where they contribute to flavor and texture of the fermented products. In addition, specific LAB strains are considered as probiotic due to their health-promoting effects in consumers. Recently, the genome sequencing of LAB is booming and the increased amount of published genomics data brings unprecedented opportunity for us to reveal the important traits of LAB. This review describes the recent progress on LAB genomics and special emphasis is placed on understanding the industry-related physiological features based on genomics analysis. Moreover, strategies to engineer metabolic capacity and stress tolerance of LAB with improved industrial performance are also discussed.
Collapse
Affiliation(s)
- Chongde Wu
- a College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu , China.,b Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University , Chengdu , China
| | - Jun Huang
- a College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu , China.,b Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University , Chengdu , China
| | - Rongqing Zhou
- a College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu , China.,b Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University , Chengdu , China
| |
Collapse
|
39
|
Stefanovic E, Fitzgerald G, McAuliffe O. Advances in the genomics and metabolomics of dairy lactobacilli: A review. Food Microbiol 2017; 61:33-49. [DOI: 10.1016/j.fm.2016.08.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 01/21/2023]
|
40
|
Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, Gillet B, Kleerebezem M, van Hijum SA, Leulier F. Nomadic lifestyle of Lactobacillus plantarum
revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol 2016; 18:4974-4989. [DOI: 10.1111/1462-2920.13455] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/13/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Maria Elena Martino
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242; Université Claude Bernard Lyon 1, Lyon France
| | - Jumamurat R. Bayjanov
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences; Radboud UMC, P.O. Box 9101 6500 HB Nijmegen The Netherlands
| | - Brian E. Caffrey
- Max Planck Institute for Molecular Genetics; Ihnestrasse 63-73 Berlin 14195 Germany
| | - Michiel Wels
- NIZO food research; P.O. Box 20, 6710 BA Ede The Netherlands
| | - Pauline Joncour
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242; Université Claude Bernard Lyon 1, Lyon France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242; Université Claude Bernard Lyon 1, Lyon France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242; Université Claude Bernard Lyon 1, Lyon France
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University; De Elst 1 6708WD Wageningen The Netherlands
| | - Sacha A.F.T. van Hijum
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences; Radboud UMC, P.O. Box 9101 6500 HB Nijmegen The Netherlands
- NIZO food research; P.O. Box 20, 6710 BA Ede The Netherlands
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, CNRS UMR 5242; Université Claude Bernard Lyon 1, Lyon France
| |
Collapse
|
41
|
Lysozyme affects the microbial catabolism of free arginine in raw-milk hard cheeses. Food Microbiol 2016; 57:16-22. [PMID: 27052697 DOI: 10.1016/j.fm.2015.11.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022]
Abstract
Lysozyme (LZ) is used in several cheese varieties to prevent late blowing which results from fermentation of lactate by Clostridium tyrobutyricum. Side effects of LZ on lactic acid bacteria population and free amino acid pattern were studied in 16 raw-milk hard cheeses produced in eight parallel cheese makings conducted at four different dairies using the same milk with (LZ+) or without (LZ-) addition of LZ. The LZ-cheeses were characterized by higher numbers of cultivable microbial population and lower amount of DNA arising from lysed bacterial cells with respect to LZ + cheeses. At both 9 and 16 months of ripening, Lactobacillus delbrueckii and Lactobacillus fermentum proved to be the species mostly affected by LZ. The total content of free amino acids indicated the proteolysis extent to be characteristic of the dairy, regardless to the presence of LZ. In contrast, the relative patterns showed the microbial degradation of arginine to be promoted in LZ + cheeses. The data demonstrated that the arginine-deiminase pathway was only partially adopted since citrulline represented the main product and only trace levels of ornithine were found. Differences in arginine degradation were considered for starter and non-starter lactic acid bacteria, at different cheese ripening stages.
Collapse
|
42
|
Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1. Appl Environ Microbiol 2016; 81:1319-26. [PMID: 25501478 DOI: 10.1128/aem.03413-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.
Collapse
|
43
|
Ma C, Cheng G, Liu Z, Gong G, Chen Z. Determination of the essential nutrients required for milk fermentation by Lactobacillus plantarum. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Delorme C, Abraham AL, Renault P, Guédon E. Genomics of Streptococcus salivarius, a major human commensal. INFECTION GENETICS AND EVOLUTION 2014; 33:381-92. [PMID: 25311532 DOI: 10.1016/j.meegid.2014.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The salivarius group of streptococci is of particular importance for humans. This group consists of three genetically similar species, Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus. S. salivarius and S. vestibularis are commensal organisms that may occasionally cause opportunistic infections in humans, whereas S. thermophilus is a food bacterium widely used in dairy production. We developed Multilocus sequence typing (MLST) and comparative genomic analysis to confirm the clear separation of these three species. These analyses also identified a subgroup of four strains, with a core genome diverging by about 10%, in terms of its nucleotide sequence, from that of S. salivarius sensu stricto. S. thermophilus species displays a low level of nucleotide variability, due to its recent emergence with the development of agriculture. By contrast, nucleotide variability is high in the other two species of the salivarius group, reflecting their long-standing association with humans. The species of the salivarius group have genome sizes ranging from the smallest (∼ 1.7 Mb for S. thermophilus) to the largest (∼ 2.3 Mb for S. salivarius) among streptococci, reflecting genome reduction linked to a narrow, nutritionally rich environment for S. thermophilus, and natural, more competitive niches for the other two species. Analyses of genomic content have indicated that the core genes of S. salivarius account for about two thirds of the genome, indicating considerable variability of gene content and differences in potential adaptive features. Furthermore, we showed that the genome of this species is exceptionally rich in genes encoding surface factors, glycosyltransferases and response regulators. Evidence of widespread genetic exchanges was obtained, probably involving a natural competence system and the presence of diverse mobile elements. However, although the S. salivarius strains studied were isolated from several human body-related sites (all levels of the digestive tract, skin, breast milk, and body fluids) and included clinical strains, no genetic or genomic niche-specific features could be identified to discriminate specific group.
Collapse
Affiliation(s)
- Christine Delorme
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Anne-Laure Abraham
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Pierre Renault
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Eric Guédon
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France.
| |
Collapse
|