1
|
Hamarsheh O, Guernaoui S, Karakus M, Yaghoobi-Ershadi MR, Kruger A, Amro A, Kenawy MA, Dokhan MR, Shoue DA, McDowell MA. Population structure analysis of Phlebotomus papatasi populations using transcriptome microsatellites: possible implications for leishmaniasis control and vaccine development. Parasit Vectors 2024; 17:410. [PMID: 39358814 PMCID: PMC11448080 DOI: 10.1186/s13071-024-06495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Phlebotomus papatasi is considered the primary vector of Leishmania major parasites that cause zoonotic cutaneous leishmaniasis (ZCL) in the Middle East and North Africa. Phlebotomus papatasi populations have been studied extensively, revealing the existence of different genetic populations and subpopulations over its large distribution range. Genetic diversity and population structure analysis using transcriptome microsatellite markers is important to uncover the vector distribution dynamics, essential for controlling ZCL in endemic areas. METHODS In this study, we investigated the level of genetic variation using expressed sequence tag-derived simple sequence repeats (EST-SSRs) among field and colony P. papatasi samples collected from 25 different locations in 11 countries. A total of 302 P. papatasi sand fly individuals were analyzed, including at least 10 flies from each region. RESULTS The analysis revealed a high-level population structure expressed by five distinct populations A through E, with moderate genetic differentiation among all populations. These genetic differences in expressed genes may enable P. papatasi to adapt to different environmental conditions along its distribution range and likely affect dispersal. CONCLUSIONS Elucidating the population structuring of P. papatasi is essential to L. major containment efforts in endemic countries. Moreover, the level of genetic variation among these populations may improve our understanding of Leishmania-sand fly interactions and contribute to the efforts of vaccine development based on P. papatasi salivary proteins.
Collapse
Affiliation(s)
- Omar Hamarsheh
- Department of Biological Sciences, Faculty of Science and Technology, Al-Quds University, Jerusalem, Palestine.
- Department of Biological Sciences, Galvin Life Science, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46656, USA.
| | - Souad Guernaoui
- Biotechnology, Conservation and Valorization of Natural Resources Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mehmet Karakus
- Faculty of Medicine, Department of Medical Microbiology, University of Health Sciences, Istanbul, Turkey
| | - Mohammad Reza Yaghoobi-Ershadi
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Amro
- Faculty of Pharmacy, Al-Quds University, Jerusalem, Palestine
| | - Mohamed Amin Kenawy
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | | | - Douglas A Shoue
- Department of Biological Sciences, Galvin Life Science, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46656, USA
| | - Mary Ann McDowell
- Department of Biological Sciences, Galvin Life Science, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, 46656, USA.
| |
Collapse
|
2
|
Li XY, Si FL, Zhang XX, Zhang YJ, Chen B. Characteristics of Trypsin genes and their roles in insecticide resistance based on omics and functional analyses in the malaria vector Anopheles sinensis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105883. [PMID: 38685249 DOI: 10.1016/j.pestbp.2024.105883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024]
Abstract
Trypsin is one of the most diverse and widely studied protease hydrolases. However, the diversity and characteristics of the Trypsin superfamily of genes have not been well understood, and their role in insecticide resistance is yet to be investigated. In this study, a total of 342 Trypsin genes were identified and classified into seven families based on homology, characteristic domains and phylogenetics in Anopheles sinensis, and the LY-Domain and CLECT-Domain families are specific to the species. Four Trypsin genes, (Astry2b, Astry43a, Astry90, Astry113c) were identified to be associated with pyrethroid resistance based on transcriptome analyses of three field resistant populations and qRT-PCR validation, and the knock-down of these genes significantly decrease the pyrethroid resistance of Anopheles sinensis based on RNAi. The activity of Astry43a can be reduced by five selected insecticides (indoxacarb, DDT, temephos, imidacloprid and deltamethrin); and however, the Astry43a could not directly metabolize these five insecticides, like the trypsin NYD-Tr did in earlier reports. This study provides the overall information frame of Trypsin genes, and proposes the role of Trypsin genes to insecticide resistance. Further researches are necessary to investigate the metabolism function of these trypsins to insecticides.
Collapse
Affiliation(s)
- Xiang-Ying Li
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Xiao-Xiao Zhang
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Yu-Juan Zhang
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
3
|
Cui L, Sattabongkot J, Aung PL, Brashear A, Cao Y, Kaewkungwal J, Khamsiriwatchara A, Kyaw MP, Lawpoolsri S, Menezes L, Miao J, Nguitragool W, Parker D, Phuanukoonnon S, Roobsoong W, Siddiqui F, Soe MT, Sriwichai P, Yang Z, Zhao Y, Zhong D. Multidisciplinary Investigations of Sustained Malaria Transmission in the Greater Mekong Subregion. Am J Trop Med Hyg 2022; 107:138-151. [PMID: 36228909 DOI: 10.4269/ajtmh.21-1267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
In the course of malaria elimination in the Greater Mekong Subregion (GMS), malaria epidemiology has experienced drastic spatiotemporal changes with residual transmission concentrated along international borders and the rising predominance of Plasmodium vivax. The emergence of Plasmodium falciparum parasites resistant to artemisinin and partner drugs renders artemisinin-based combination therapies less effective while the potential spread of multidrug-resistant parasites elicits concern. Vector behavioral changes and insecticide resistance have reduced the effectiveness of core vector control measures. In recognition of these problems, the Southeast Asian International Center of Excellence for Malaria Research (ICEMR) has been conducting multidisciplinary research to determine how human migration, antimalarial drug resistance, vector behavior, and insecticide resistance sustain malaria transmission at international borders. These efforts allow us to comprehensively understand the ecology of border malaria transmission and develop population genomics tools to identify and track parasite introduction. In addition to employing in vivo, in vitro, and molecular approaches to monitor the emergence and spread of drug-resistant parasites, we also use genomic and genetic methods to reveal novel mechanisms of antimalarial drug resistance of parasites. We also use omics and population genetics approaches to study insecticide resistance in malaria vectors and identify changes in mosquito community structure, vectorial potential, and seasonal dynamics. Collectively, the scientific findings from the ICEMR research activities offer a systematic view of the factors sustaining residual malaria transmission and identify potential solutions to these problems to accelerate malaria elimination in the GMS.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | | - Awtum Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Yaming Cao
- Department of Immunology, China Medical University, Shenyang, China
| | | | | | | | | | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Daniel Parker
- Department of Epidemiology, University of California at Irvine, Irvine, California
| | | | | | - Faiza Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, China Medical University, Shenyang, China
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| |
Collapse
|
4
|
Zhong D, Aung PL, Mya MM, Wang X, Qin Q, Soe MT, Zhou G, Kyaw MP, Sattabongkot J, Cui L, Yan G. Community structure and insecticide resistance of malaria vectors in northern-central Myanmar. Parasit Vectors 2022; 15:155. [PMID: 35505366 PMCID: PMC9062858 DOI: 10.1186/s13071-022-05262-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myanmar is one of the six countries in the Greater Mekong Subregion (GMS) of Southeast Asia. Malaria vectors comprise many Anopheles species, which vary in abundance and importance in malaria transmission among different geographical locations in the GMS. Information about the species composition, abundance, and insecticide resistance status of vectorial systems in Myanmar is scarce, hindering our efforts to effectively control malaria vectors in this region. METHODS During October and November 2019, larvae and adult females of Anopheles mosquitoes were collected in three sentinel villages of Banmauk township in northern Myanmar. Adult female mosquitoes collected by cow-baited tent collection (CBTC) and adults reared from field-collected larvae (RFCL) were used to determine mortality rates and knockdown resistance (kdr) against deltamethrin using the standard WHO susceptibility test. Molecular species identification was performed by multiplex PCR and ITS2 PCR, followed by DNA sequencing. The kdr mutation at position 1014 of the voltage-gated sodium channel gene was genotyped by DNA sequencing for all Anopheles species tested. RESULTS A total of 1596 Anopheles mosquitoes from seven morphologically identified species groups were bioassayed. Confirmed resistance to deltamethrin was detected in the populations of An. barbirostris (s.l.), An. hyrcanus (s.l.), and An. vagus, while possible resistance was detected in An. annularis (s.l.), An. minimus, and An. tessellatus. Anopheles kochi was found susceptible to deltamethrin. Compared to adults collected by CBTC, female adults from RFCL had significantly lower mortality rates in the four species complexes. A total of 1638 individuals from 22 Anopheles species were molecularly identified, with the four most common species being An. dissidens (20.5%) of the Barbirostris group, An. peditaeniatus (19.4%) of the Hyrcanus group, An. aconitus (13.4%) of the Funestus group, and An. nivipes (11.5%) of the Annularis group. The kdr mutation L1014F was only detected in the homozygous state in two An. subpictus (s.l.) specimens and in a heterozygous state in one An. culicifacies (s.l.) specimen. CONCLUSIONS This study provides updated information about malaria vector species composition and insecticide resistance status in northern Myanmar. The confirmed deltamethrin resistance in multiple species groups constitutes a significant threat to malaria vector control. The lack or low frequency of target-site resistance mutations suggests that other mechanisms are involved in resistance. Continual monitoring of the insecticide resistance of malaria vectors is required for effective vector control and insecticide resistance management.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | | | | | - Xiaoming Wang
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | - Qian Qin
- Medical College, Lishui University, Zhejiang, China
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
5
|
Liu C, Cao J, Zhang H, Wu J, Yin J. Profiling of Transcriptome-Wide N6-Methyladenosine (m6A) Modifications and Identifying m6A Associated Regulation in Sperm Tail Formation in Anopheles sinensis. Int J Mol Sci 2022; 23:ijms23094630. [PMID: 35563020 PMCID: PMC9101273 DOI: 10.3390/ijms23094630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Recent discoveries of reversible N6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in many species have revealed potential regulatory functions of this RNA modification by m6A players—writers, readers, and erasers. Here, we first profile transcriptome-wide m6A in female and male Anopheles sinensis and reveal that m6A is also a highly conserved modification of mRNA in mosquitoes. Distinct from mammals and yeast but similar to Arabidopsis thaliana, m6A in An. sinensis is enriched not only around the stop codon and within 3′-untranslated regions but also around the start codon and 5′-UTR. Gene ontology analysis indicates the unique distribution pattern of m6A in An. sinensis is associated with mosquito sex-specific pathways such as tRNA wobble uridine modification and phospholipid-binding in females, and peptidoglycan catabolic process, exosome and signal recognition particle, endoplasmic reticulum targeting, and RNA helicase activity in males. The positive correlation between m6A deposition and mRNA abundance indicates that m6A can play a role in regulating gene expression in mosquitoes. Furthermore, many spermatogenesis-associated genes, especially those related to mature sperm flagellum formation, are positively modulated by m6A methylation. A transcriptional regulatory network of m6A in An. sinensis is first profiled in the present study, especially in spermatogenesis, which may provide a new clue for the control of this disease-transmitting vector.
Collapse
|
6
|
Akoniyon OP, Adewumi TS, Maharaj L, Oyegoke OO, Roux A, Adeleke MA, Maharaj R, Okpeku M. Whole Genome Sequencing Contributions and Challenges in Disease Reduction Focused on Malaria. BIOLOGY 2022; 11:587. [PMID: 35453786 PMCID: PMC9027812 DOI: 10.3390/biology11040587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Malaria elimination remains an important goal that requires the adoption of sophisticated science and management strategies in the era of the COVID-19 pandemic. The advent of next generation sequencing (NGS) is making whole genome sequencing (WGS) a standard today in the field of life sciences, as PCR genotyping and targeted sequencing provide insufficient information compared to the whole genome. Thus, adapting WGS approaches to malaria parasites is pertinent to studying the epidemiology of the disease, as different regions are at different phases in their malaria elimination agenda. Therefore, this review highlights the applications of WGS in disease management, challenges of WGS in controlling malaria parasites, and in furtherance, provides the roles of WGS in pursuit of malaria reduction and elimination. WGS has invaluable impacts in malaria research and has helped countries to reach elimination phase rapidly by providing required information needed to thwart transmission, pathology, and drug resistance. However, to eliminate malaria in sub-Saharan Africa (SSA), with high malaria transmission, we recommend that WGS machines should be readily available and affordable in the region.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Taiye Samson Adewumi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Olukunle Olugbenle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Alexandra Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| |
Collapse
|
7
|
Genomic Variant Analyses in Pyrethroid Resistant and Susceptible Malaria Vector, Anopheles sinensis. G3-GENES GENOMES GENETICS 2020; 10:2185-2193. [PMID: 32423920 PMCID: PMC7341135 DOI: 10.1534/g3.120.401279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Anopheles sinensis is a major malaria vector in Southeast Asia. Resistance to pyrethroid insecticides in this species has impeded malaria control in the region. Previous studies found that An. sinensis populations from Yunnan Province, China were highly resistant to deltamethrin and did not carry mutations in the voltage-gated sodium channel gene that cause knockdown resistance. In this study, we tested the hypothesis that other genomic variants are associated with the resistance phenotype. Using paired-end whole genome sequencing (DNA-seq), we generated 108 Gb of DNA sequence from deltamethrin -resistant and -susceptible mosquito pools with an average coverage of 83.3× depth. Using a stringent filtering method, we identified a total of 916,926 single nucleotide variants (SNVs), including 32,240 non-synonymous mutations. A total of 958 SNVs differed significantly in allele frequency between deltamethrin -resistant and -susceptible mosquitoes. Of these, 43 SNVs were present within 37 genes that code for immunity, detoxification, cuticular, and odorant proteins. A subset of 12 SNVs were randomly selected for genotyping of individual mosquitoes by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and showed consistent allele frequencies with the pooled DNA-seq derived allele frequencies. In addition, copy number variations (CNVs) were detected in 56 genes, including 33 that contained amplification alleles and 23 that contained deletion alleles in resistant mosquitoes compared to susceptible mosquitoes. The genomic variants described here provide a useful resource for future studies on the genetic mechanism of insecticide resistance in this important malaria vector species.
Collapse
|
8
|
Si FL, Qiao L, He QY, Zhou Y, Yan ZT, Chen B. HSP superfamily of genes in the malaria vector Anopheles sinensis: diversity, phylogenetics and association with pyrethroid resistance. Malar J 2019; 18:132. [PMID: 30975215 PMCID: PMC6460852 DOI: 10.1186/s12936-019-2770-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/06/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) are molecular chaperones that are involved in many normal cellular processes and various kinds of environmental stress. There is still no report regarding the diversity and phylogenetics research of HSP superfamily of genes at whole genome level in insects, and the HSP gene association with pyrethroid resistance is also not well known. The present study investigated the diversity, classification, scaffold location, characteristics, and phylogenetics of the superfamily of genes in Anopheles sinensis genome, and the HSP genes associated with pyrethroid resistance. METHODS The present study identified the HSP genes in the An. sinensis genome, analysed their characteristics, and deduced phylogenetic relationships of all HSPs in An. sinensis, Anopheles gambiae, Culex quinquefasciatus and Aedes aegypti by bioinformatic methods. Importantly, the present study screened the HSPs associated with pyrethroid resistance using three field pyrethroid-resistant populations with RNA-seq and RT-qPCR, and looked over the HSP gene expression pattern for the first time in An. sinensis on the time-scale post insecticide treatment with RT-qPCR. RESULTS There are 72 HSP genes in An. sinensis genome, and they are classified into five families and 11 subfamilies based on their molecular weight, homology and phylogenetics. Both RNA-seq and qPCR analysis revealed that the expression of AsHSP90AB, AsHSP70-2 and AsHSP21.7 are significantly upregulated in at least one field pyrethroid-resistant population. Eleven genes are significantly upregulated in different period after pyrethroid exposure. The HSP90, sHSP and HSP70 families are proposed to be involved in pyrethroid stress response based in expression analyses of three field pyrethroid-resistant populations, and expression pattern on the time scale post insecticide treatment. The AsHSP90AB gene is proposed to be the essential HSP gene for pyrethroid stress response in An. sinensis. CONCLUSIONS This study provides the information frame for HSP superfamily of genes, and lays an important basis for the better understanding and further research of HSP function in insect adaptability to diverse environments.
Collapse
Affiliation(s)
- Feng-Ling Si
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Qi-Yi He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Yong Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
9
|
He Q, Yan Z, Si F, Zhou Y, Fu W, Chen B. ATP-Binding Cassette (ABC) Transporter Genes Involved in Pyrethroid Resistance in the Malaria Vector Anopheles sinensis: Genome-Wide Identification, Characteristics, Phylogenetics, and Expression Profile. Int J Mol Sci 2019; 20:ijms20061409. [PMID: 30897799 PMCID: PMC6471920 DOI: 10.3390/ijms20061409] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/27/2022] Open
Abstract
background: The ATP-binding cassette (ABC) transporters family is one of the largest families of membrane proteins existing in all living organisms. Pyrethroid resistance has become the largest unique obstacle for mosquito control worldwide. ABC transporters are thought to be associated with pyrethroid resistance in some agricultural pests, but little information is known for mosquitoes. Herein, we investigated the diversity, location, characteristics, phylogenetics, and evolution of ABC transporter family of genes in the Anopheles sinensis genome, and identified the ABC transporter genes associated with pyrethroid resistance through expression profiles using RNA-seq and qPCR. Results: 61 ABC transporter genes are identified and divided into eight subfamilies (ABCA-H), located on 22 different scaffolds. Phylogenetic and evolution analyses with ABC transporters of A. gambiae, Drosophila melanogaster, and Homo sapiens suggest that the ABCD, ABCG, and ABCH subfamilies are monophyly, and that the ABCC and ABCG subfamilies have experienced a gene duplication event. Both RNA-seq and qPCR analyses show that the AsABCG28 gene is uniquely significantly upregulated gene in all three field pyrethroid-resistant populations (Anhui, Chongqing, and Yunnan provinces) in comparison with a laboratory-susceptible strain from Jiangsu province. The AsABCG28 is significantly upregulated at 12-h and 24-h after deltamethrin exposure in three-day-old female adults. Conclusion: This study provides the information frame for ABC transporter subfamily of genes, and lays an important basis for the better understanding and further research of ABC transporter function in insecticide toxification. The AsABCG28 gene is associated with pyrethroid detoxification, and it functions at later period in the detoxification process for xenobiotics transportation.
Collapse
Affiliation(s)
- Qiyi He
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| | - Zhentian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| | - Fengling Si
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| | - Yong Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| | - Wenbo Fu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
10
|
Zhou Y, Fu WB, Si FL, Yan ZT, Zhang YJ, He QY, Chen B. UDP-glycosyltransferase genes and their association and mutations associated with pyrethroid resistance in Anopheles sinensis (Diptera: Culicidae). Malar J 2019; 18:62. [PMID: 30845961 PMCID: PMC6407175 DOI: 10.1186/s12936-019-2705-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/02/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND UDP-glycosyltransferase (UGT) is an important biotransformation superfamily of enzymes. They catalyze the transfer of glycosyl residues from activated nucleotide sugars to acceptor hydrophobic molecules, and function in several physiological processes, including detoxification, olfaction, cuticle formation, pigmentation. The diversity, classification, scaffold location, characteristics, phylogenetics, and evolution of the superfamily of genes at whole genome level, and their association and mutations associated with pyrethroid resistance are still little known. METHODS The present study identified UGT genes in Anopheles sinensis genome, classified UGT genes in An. sinensis, Anopheles gambiae, Aedes aegypti and Drosophila melanogaster genomes, and analysed the scaffold location, characteristics, phylogenetics, and evolution of An. sinensis UGT genes using bioinformatics methods. The present study also identified the UGTs associated with pyrethroid resistance using three field pyrethroid-resistant populations with RNA-seq and RT-qPCR, and the mutations associated with pyrethroid resistance with genome re-sequencing in An. sinensis. RESULTS There are 30 putative UGTs in An. sinensis genome, which are classified into 12 families (UGT301, UGT302, UGT306, UGT308, UGT309, UGT310, UGT313, UGT314, UGT315, UGT36, UGT49, UGT50) and further into 23 sub-families. The UGT308 is significantly expanded in gene number compared with other families. A total of 119 UGTs from An. sinensis, An. gambiae, Aedes aegypti and Drosophila melanogaster genomes are classified into 19 families, of which seven are specific for three mosquito species and seven are specific for Drosophila melanogaster. The UGT308 and UGT302 are proposed to main families involved in pyrethroid resistance. The AsUGT308D3 is proposed to be the essential UGT gene for the participation in biotransformation in pyrethroid detoxification process, which is possibly regulated by eight SNPs in its 3' flanking region. The UGT302A3 is also associated with pyrethroid resistance, and four amino acid mutations in its coding sequences might enhance its catalytic activity and further result in higher insecticide resistance. CONCLUSIONS This study provides the diversity, phylogenetics and evolution of UGT genes, and potential UGT members and mutations involved in pyrethroid resistance in An. sinensis, and lays an important basis for the better understanding and further research on UGT function in defense against insecticide stress.
Collapse
Affiliation(s)
- Yong Zhou
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.,Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Wen-Bo Fu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Yu-Juan Zhang
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Qi-Yi He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
11
|
Xu J, Su X, Bonizzoni M, Zhong D, Li Y, Zhou G, Nguyen H, Tong S, Yan G, Chen XG. Comparative transcriptome analysis and RNA interference reveal CYP6A8 and SNPs related to pyrethroid resistance in Aedes albopictus. PLoS Negl Trop Dis 2018; 12:e0006828. [PMID: 30418967 PMCID: PMC6258463 DOI: 10.1371/journal.pntd.0006828] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/26/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
Wide and improper application of pyrethroid insecticides for mosquito control has resulted in widespread resistance in Aedes albopictus mosquitoes, an important dengue vector. Therefore, understanding the molecular regulation of insecticide resistance is urgently needed to provide a basis for developing novel resistance diagnostic methods and vector control approaches. We investigated the transcriptional profiles of deltamethrin-resistant and -susceptible Ae. albopictus by performing paired-end sequencing for RNA expression analysis. The analysis used 24 independent libraries constructed from 12 wild-caught resistant and 12 susceptible Ae. albopictus female adults. A total of 674,503,592 and 612,512,034 reads were obtained, mapped to the Ae. albopictus genome and assembled into 20,091 Ae. albopictus transcripts. A total of 1,130 significantly differentially expressed genes included 874 up-regulated genes and 256 down-regulated genes in the deltamethrin-resistant individuals. These differentially expressed genes code for cytochrome P450s, cuticle proteins, glutathione S-transferase, serine proteases, heat shock proteins, esterase, and others. We selected three highly differentially expressed candidate genes, CYP6A8 and two genes of unknown function (CCG013931 and CCG000656), to test the association between these 3 genes and deltamethrin resistance using RNAi through microinjection in adult mosquitoes and oral feeding in larval mosquitoes. We found that expression knockdown of these three genes caused significant changes in resistance. Further, we detected 1,162 single nucleotide polymorphisms (SNPs) with a frequency difference of more than 50%. Among them, 5 SNPs in 4 cytochrome P450 gene families were found to be significantly associated with resistance in a genotype-phenotype association study using independent field-collected mosquitoes of known resistance phenotypes. Altogether, a combination of novel individually based transcriptome profiling, RNAi, and genetic association study identified both differentially expressed genes and SNPs associated with pyrethroid resistance in Ae. albopictus mosquitoes, and laid a useful foundation for further studies on insecticide resistance mechanisms.
Collapse
Affiliation(s)
- Jiabao Xu
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xinghua Su
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | | | - Daibin Zhong
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Yiji Li
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
- Key Laboratory of Translational Medicine Tropical Diseases of Ministry of Education and Department of Pathogen Biology, Hainan Medical University, Haikou, Hainan, China
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Hoan Nguyen
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Sarah Tong
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Guiyun Yan
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Xiao-Guang Chen
- Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Liu BQ, Qiao L, He QY, Zhou Y, Ren S, Chen B. Genome-wide identification, characterization and evolution of cuticular protein genes in the malaria vector Anopheles sinensis (Diptera: Culicidae). INSECT SCIENCE 2018; 25:739-750. [PMID: 28544438 DOI: 10.1111/1744-7917.12483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/02/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Thirteen cuticular protein (CP) families have been recognized in arthropods. In this study, 250 Anopheles sinensis CP genes were identified and named based on genome and transcriptome sequences. They were classified into 10 families based on motifs and phylogenetic analyses. In 11 other insect species, nine had CP numbers > 150 while Apis mellifera and Tribolium castaneum had CP numbers less than 52. The CPs of eight species occupied > 1.4% of the total genomic gene number, whereas in three species the CPs occupied < 1%. The phylogenies for each CP family in An. sinensis were constructed and discussed. The 250 CPs each had 1-8 exons with 144 CPs (57.6%) having two exons. The intron length ranged from 66-3888 bp with 174 introns (54.0%) being 66-100 bp long. Except for two CPs on two contigs, 248 CPs were mapped onto 28 scaffolds with 136 genes (54.4%) restricted to five scaffolds. A total of 107 CPs were clustered and located at 27 loci. The CPR family had the conserved motif GSYSLVEPDGTVRTV. The RR-1 subfamily had an additional 21 amino acid (aa) motifs with the YVADENGF sequence that is common in insects. The RR-2 subfamily had an additional 50 aa motifs with two additional regions RDGDVVKG and G-x(3)-VV. A comparison with 115 orthologous counterparts of An. gambiae CPs suggested purifying selection for all of these genes. This study provides basic information useful for further studies on biological functions of An. sinensis CPs as well as for comparative genomics of insect CPs.
Collapse
Affiliation(s)
- Bai-Qi Liu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Qi-Yi He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Yong Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Shuang Ren
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
13
|
The Effect of Permethrin Resistance on Aedes aegypti Transcriptome Following Ingestion of Zika Virus Infected Blood. Viruses 2018; 10:v10090470. [PMID: 30200481 PMCID: PMC6165428 DOI: 10.3390/v10090470] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 01/02/2023] Open
Abstract
Aedes aegypti (L.) is the primary vector of many emerging arboviruses. Insecticide resistance among mosquito populations is a consequence of the application of insecticides for mosquito control. We used RNA-sequencing to compare transcriptomes between permethrin resistant and susceptible strains of Florida Ae. aegypti in response to Zika virus infection. A total of 2459 transcripts were expressed at significantly different levels between resistant and susceptible Ae. aegypti. Gene ontology analysis placed these genes into seven categories of biological processes. The 863 transcripts were expressed at significantly different levels between the two mosquito strains (up/down regulated) more than 2-fold. Quantitative real-time PCR analysis was used to validate the Zika-infection response. Our results suggested a highly overexpressed P450, with AAEL014617 and AAEL006798 as potential candidates for the molecular mechanism of permethrin resistance in Ae. aegypti. Our findings indicated that most detoxification enzymes and immune system enzymes altered their gene expression between the two strains of Ae. aegypti in response to Zika virus infection. Understanding the interactions of arboviruses with resistant mosquito vectors at the molecular level allows for the possible development of new approaches in mitigating arbovirus transmission. This information sheds light on Zika-induced changes in insecticide resistant Ae. aegypti with implications for mosquito control strategies.
Collapse
|
14
|
Yan ZW, He ZB, Yan ZT, Si FL, Zhou Y, Chen B. Genome-wide and expression-profiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae). PEST MANAGEMENT SCIENCE 2018; 74:1810-1820. [PMID: 29393554 DOI: 10.1002/ps.4879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Anopheles sinensis is one of the major malaria vectors. However, pyrethroid resistance in An. sinensis is threatening malaria control. Cytochrome P450-mediated detoxification is an important pyrethroid resistance mechanism that has been unexplored in An. sinensis. In this study, we performed a comprehensive analysis of the An. sinensis P450 gene superfamily with special attention to their role in pyrethroid resistance using bioinformatics and molecular approaches. RESULTS Our data revealed the presence of 112 individual P450 genes in An. sinensis, which were classified into four major clans (mitochondrial, CYP2, CYP3 and CYP4), 18 families and 50 subfamilies. Sixty-seven genes formed nine gene clusters, and genes within the same cluster and the same gene family had a similar gene structure. Phylogenetic analysis showed that most of An. sinensis P450s (82/112) had very close 1: 1 orthology with Anopheles gambiae P450s. Five genes (AsCYP6Z2, AsCYP6P3v1, AsCYP6P3v2, AsCYP9J5 and AsCYP306A1) were significantly upregulated in three pyrethroid-resistant populations in both RNA-seq and RT-qPCR analyses, suggesting that they could be the most important P450 genes involved in pyrethroid resistance in An. sinensis. CONCLUSION Our study provides insight on the diversity of An. sinensis P450 superfamily and basis for further elucidating pyrethroid resistance mechanism in this mosquito species. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zheng-Wen Yan
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zheng-Bo He
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Yong Zhou
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
15
|
Das De T, Thomas T, Verma S, Singla D, Chauhan C, Srivastava V, Sharma P, Kumari S, Tevatiya S, Rani J, Hasija Y, Pandey KC, Dixit R. A Synergistic Transcriptional Regulation of Olfactory Genes Drives Blood-Feeding Associated Complex Behavioral Responses in the Mosquito Anopheles culicifacies. Front Physiol 2018; 9:577. [PMID: 29875685 PMCID: PMC5974117 DOI: 10.3389/fphys.2018.00577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/01/2018] [Indexed: 02/05/2023] Open
Abstract
Decoding the molecular basis of host seeking and blood feeding behavioral evolution/adaptation in the adult female mosquitoes may provide an opportunity to design new molecular strategy to disrupt human-mosquito interactions. Although there is a great progress in the field of mosquito olfaction and chemo-detection, little is known about the sex-specific evolution of the specialized olfactory system of adult female mosquitoes that enables them to drive and manage the complex blood-feeding associated behavioral responses. A comprehensive RNA-Seq analysis of prior and post blood meal olfactory system of An. culicifacies mosquito revealed a minor but unique change in the nature and regulation of key olfactory genes that may play a pivotal role in managing diverse behavioral responses. Based on age-dependent transcriptional profiling, we further demonstrated that adult female mosquito's chemosensory system gradually learned and matured to drive the host-seeking and blood feeding behavior at the age of 5-6 days. A time scale expression analysis of Odorant Binding Proteins (OBPs) unravels unique association with a late evening to midnight peak biting time. Blood meal-induced switching of unique sets of OBP genes and Odorant Receptors (Ors) expression coincides with the change in the innate physiological status of the mosquitoes. Blood meal follows up experiments further provide enough evidence that how a synergistic and concurrent action of OBPs-Ors may drive "prior and post blood meal" associated complex behavioral events. A dominant expression of two sensory appendages proteins (SAP-1 & SAP2) in the legs of An. culicifacies suggests that this mosquito species may draw an extra advantage of having more sensitive appendages than An. stephensi, an urban malarial vector in the Indian subcontinents. Finally, our molecular modeling analysis predicts crucial amino acid residues for future functional characterization of the sensory appendages proteins which may play a central role in regulating multiple behaviors of An. culicifacies mosquito. SIGNIFICANCE Evolution and adaptation of blood feeding behavior not only favored the reproductive success of adult female mosquitoes but also make them important disease-transmitting vectors. An environmental exposure after emergence may favor the broadly tuned olfactory system of mosquitoes to drive complex behavioral responses. But, how these olfactory derived genetic factors manage female specific "pre and post" blood meal associated complex behavioral responses are not well known. Our findings suggest that a synergistic action of olfactory factors may govern an innate to prime learning strategy to facilitate rapid blood meal acquisition and downstream behavioral activities. A species-specific transcriptional profiling and an in-silico analysis predict that "sensory appendages protein" may be a unique target to design disorientation strategy against the mosquito Anopheles culicifacies.
Collapse
Affiliation(s)
- Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, National Institute of Malaria Research, Dwarka, India.,Department of Biotechnology, Delhi Technological University, Rohini, India
| | - Tina Thomas
- Laboratory of Host-Parasite Interaction Studies, National Institute of Malaria Research, Dwarka, India
| | - Sonia Verma
- Laboratory of Host-Parasite Interaction Studies, National Institute of Malaria Research, Dwarka, India
| | - Deepak Singla
- Laboratory of Host-Parasite Interaction Studies, National Institute of Malaria Research, Dwarka, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, National Institute of Malaria Research, Dwarka, India
| | - Vartika Srivastava
- Laboratory of Host-Parasite Interaction Studies, National Institute of Malaria Research, Dwarka, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, National Institute of Malaria Research, Dwarka, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, National Institute of Malaria Research, Dwarka, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, National Institute of Malaria Research, Dwarka, India
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, National Institute of Malaria Research, Dwarka, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Rohini, India
| | - Kailash C Pandey
- Laboratory of Host-Parasite Interaction Studies, National Institute of Malaria Research, Dwarka, India.,Department of Biochemistry, National Institute for Research in Environmental Health, Indian Council of Medical Research, Bhopal, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, National Institute of Malaria Research, Dwarka, India
| |
Collapse
|
16
|
Liao CY, Feng YC, Li G, Shen XM, Liu SH, Dou W, Wang JJ. Antioxidant Role of PcGSTd1 in Fenpropathrin Resistant Population of the Citrus Red Mite, Panonychus citri (McGregor). Front Physiol 2018; 9:314. [PMID: 29651254 PMCID: PMC5884870 DOI: 10.3389/fphys.2018.00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/14/2018] [Indexed: 12/22/2022] Open
Abstract
The citrus red mite, Panonychus citri, a major citrus pest distributed worldwide, has evolved severe resistance to various classes of chemical acaricides/insecticides including pyrethroids. It is well known that the resistance to pyrethroids is mainly caused by point mutations of voltage-gated sodium channel gene in a wide range of pests. However, increasing number of evidences support that pyrethroids resistance might also be resulted from the integrated mechanisms including metabolic mechanisms. In this study, firstly, comparative analysis of RNA-seq data showed that multiple detoxification genes, including a GSTs gene PcGSTd1, were up-regulated in a fenpropathrin-resistant population compared with the susceptible strain (SS). Quantitative real time-PCR results showed that the exposure of fenpropathrin had an induction effect on the transcription of PcGSTd1 in a time-dependent manner. In vitro inhibition and metabolic assay of recombinant PcGSTd1 found that fenpropathrin might not be metabolized directly by this protein. However, its antioxidant role in alleviating the oxidative stress caused by fenpropathrin was demonstrated via the reversely genetic experiment. Our results provide a list of candidate genes which may contribute to a multiple metabolic mechanisms implicated in the evolution of fenpropathrin resistance in the field population of P. citri. Furthermore, during the detoxification process, PcGSTd1 plays an antioxidant role by detoxifying lipid peroxidation products induced by fenpropathrin.
Collapse
Affiliation(s)
- Chong-Yu Liao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ying-Cai Feng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiao-Min Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shi-Huo Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Wang TT, Si FL, He ZB, Chen B. Genome-wide identification, characterization and classification of ionotropic glutamate receptor genes (iGluRs) in the malaria vector Anopheles sinensis (Diptera: Culicidae). Parasit Vectors 2018; 11:34. [PMID: 29334982 PMCID: PMC5769321 DOI: 10.1186/s13071-017-2610-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ionotropic glutamate receptors (iGluRs) are conserved ligand-gated ion channel receptors, and ionotropic receptors (IRs) were revealed as a new family of iGluRs. Their subdivision was unsettled, and their characteristics are little known. Anopheles sinensis is a major malaria vector in eastern Asia, and its genome was recently well sequenced and annotated. METHODS We identified iGluR genes in the An. sinensis genome, analyzed their characteristics including gene structure, genome distribution, domains and specific sites by bioinformatic methods, and deduced phylogenetic relationships of all iGluRs in An. sinensis, Anopheles gambiae and Drosophila melanogaster. Based on the characteristics and phylogenetics, we generated the classification of iGluRs, and comparatively analyzed the intron number and selective pressure of three iGluRs subdivisions, iGluR group, Antenna IR and Divergent IR subfamily. RESULTS A total of 56 iGluR genes were identified and named in the whole-genome of An. sinensis. These genes were located on 18 scaffolds, and 31 of them (29 being IRs) are distributed into 10 clusters that are suggested to form mainly from recent gene duplication. These iGluRs can be divided into four groups: NMDA, non-NMDA, Antenna IR and Divergent IR based on feature comparison and phylogenetic analysis. IR8a and IR25a were suggested to be monophyletic, named as Putative in the study, and moved from the Antenna subfamily in the IR family to the non-NMDA group as a sister of traditional non-NMDA. The generated iGluRs of genes (including NMDA and regenerated non-NMDA) are relatively conserved, and have a more complicated gene structure, smaller ω values and some specific functional sites. The iGluR genes in An. sinensis, An. gambiae and D. melanogaster have amino-terminal domain (ATD), ligand binding domain (LBD) and Lig_Chan domains, except for IR8a that only has the LBD and Lig_Chan domains. However, the new concept IR family of genes (including regenerated Antenna IR, and Divergent IR), especially for Divergent IR are more variable, have a simpler gene structure (intron loss phenomenon) and larger ω values, and lack specific functional sites. These IR genes have no other domains except for Antenna IRs that only have the Lig_Chan domain. CONCLUSIONS This study provides a comprehensive information framework for iGluR genes in An. sinensis, and generated the classification of iGluRs by feature and bioinformatics analyses. The work lays the foundation for further functional study of these genes.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Zheng-Bo He
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People’s Republic of China
| |
Collapse
|
18
|
Wu XM, Xu BY, Si FL, Li J, Yan ZT, Yan ZW, He X, Chen B. Identification of carboxylesterase genes associated with pyrethroid resistance in the malaria vector Anopheles sinensis (Diptera: Culicidae). PEST MANAGEMENT SCIENCE 2018; 74:159-169. [PMID: 28731595 DOI: 10.1002/ps.4672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/03/2017] [Accepted: 07/16/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Carboxylesterases (CCEs) are one of three large detoxification enzyme families. Some CCEs are active on synthetic insecticides with ester structures. Anopheles sinensis is an important malaria vector in eastern Asia. This study identified and characterized the CCE genes in the A. sinensis genome and determined CCE genes associated with pyrethroid resistance using RNA sequencing (RNA-seq) and quantitative reverse transcription - polymerase chain reaction (qRT-PCR), in A. sinensis from Anhui, Chongqing, and Yunnan in China. RESULTS Fifty-seven putative CCEs were identified and placed into three classes, 12 subfamilies and 14 clades through phylogenetic and homology analyses. Exon sizes ranged from 31 to 4317 bp, with 49 CCEs having two to five exons and eight having six to 11 exons. A total of 183 introns were recognized with sizes ranging from 31 to 4317 bp. The 57 CCEs were located on 14 scaffolds, with 70% located on four scaffolds. The alpha-esterase subfamily was significantly expanded compared with that of Anopheles gambiae. In a pyrethroid-resistant strain, RNA-seq detected five upregulated CCE genes and qRT-PCR detected 12 upregulated CCE genes. The α-esterase 10 (AsAe10) and acetylcholinesterase 1 (AsAce1) genes were the main CCE genes associated with pyrethroid resistance. CONCLUSION This information will be useful for further study of the CCE gene family and pyrethroid resistance mechanisms mediated by CCEs. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue-Mei Wu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bo-Ying Xu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Jianyong Li
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zhen-Tian Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zheng-Wen Yan
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Xiu He
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
19
|
Viana-Medeiros PF, Bellinato DF, Martins AJ, Valle D. Insecticide resistance, associated mechanisms and fitness aspects in two Brazilian Stegomyia aegypti (= Aedes aegypti) populations. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:340-350. [PMID: 28752548 DOI: 10.1111/mve.12241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
In Brazil, insecticide resistance in Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) populations to pyrethroids and to the organophosphate (OP) temephos is disseminated. Currently, insect growth regulators (IGRs) and the OP malathion are employed against larvae and adults, respectively. Bioassays with mosquitoes from two northeast municipalities, Crato and Aracaju, revealed, in both populations, susceptibility to IGRs and malathion (RR95 ≤ 2.0), confirming the effectiveness of these compounds. By contrast, temephos and deltamethrin (pyrethroid) resistance levels were high (RR95 > 10), which is consistent with the use of intense chemical control. In Crato, RR95 values were > 50 for both compounds. Knock-down-resistant (kdr) mutants in the voltage-gated sodium channel, the pyrethroid target site, were found in 43 and 32%, respectively, of Aracaju and Crato mosquitoes. Biochemical assays revealed higher metabolic resistance activity (esterases, mixed function oxidases and glutathione-S-transferases) at Aracaju. With respect to fitness aspects, mating effectiveness was equivalently impaired in both populations, but Aracaju mosquitoes showed more damaging effects in terms of longer larval development, decreased bloodmeal acceptance, reduced engorgement and lower numbers of eggs laid per female. Compared with mosquitoes in Crato, Aracaju mosquitoes exhibited lower OP and pyrethroid RR95 , increased activity of detoxifying enzymes and greater effect on fitness. The potential relationship between insecticide resistance mechanisms and mosquito viability is discussed.
Collapse
Affiliation(s)
- P F Viana-Medeiros
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - D F Bellinato
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - A J Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - D Valle
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Feng X, Zhang S, Huang F, Zhang L, Feng J, Xia Z, Zhou H, Hu W, Zhou S. Biology, Bionomics and Molecular Biology of Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), Main Malaria Vector in China. Front Microbiol 2017; 8:1473. [PMID: 28848504 PMCID: PMC5552724 DOI: 10.3389/fmicb.2017.01473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/20/2017] [Indexed: 01/06/2023] Open
Abstract
China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis. The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies.
Collapse
Affiliation(s)
- Xinyu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and PreventionShanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health and Family Planning CommissionShanghai, China
- WHO Collaborating Center for Tropical DiseasesShanghai, China
- National Center for International Research on Tropical DiseasesShanghai, China
- Joint Research Laboratory of Genetics and Ecology on Parasites-Hosts Interaction, National Institute of Parasitic Diseases – Fudan UniversityShanghai, China
| | - Shaosen Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and PreventionShanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health and Family Planning CommissionShanghai, China
- WHO Collaborating Center for Tropical DiseasesShanghai, China
- National Center for International Research on Tropical DiseasesShanghai, China
- Université de Montpellier, IES – Institut d’Electronique et des Systèmes, UMR 5214, CNRS-UMMontpellier, France
- Cirad, UMR 17, Intertryp, Campus International de BaillarguetMontpellier, France
- Institut de Recherche pour le Développement (IRD France), LIPMC, UMR-MD3, Faculté de PharmacieMontpellier, France
| | - Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and PreventionShanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health and Family Planning CommissionShanghai, China
- WHO Collaborating Center for Tropical DiseasesShanghai, China
- National Center for International Research on Tropical DiseasesShanghai, China
| | - Li Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and PreventionShanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health and Family Planning CommissionShanghai, China
- WHO Collaborating Center for Tropical DiseasesShanghai, China
- National Center for International Research on Tropical DiseasesShanghai, China
| | - Jun Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and PreventionShanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health and Family Planning CommissionShanghai, China
- WHO Collaborating Center for Tropical DiseasesShanghai, China
- National Center for International Research on Tropical DiseasesShanghai, China
| | - Zhigui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and PreventionShanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health and Family Planning CommissionShanghai, China
- WHO Collaborating Center for Tropical DiseasesShanghai, China
- National Center for International Research on Tropical DiseasesShanghai, China
| | - Hejun Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and PreventionShanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health and Family Planning CommissionShanghai, China
- WHO Collaborating Center for Tropical DiseasesShanghai, China
- National Center for International Research on Tropical DiseasesShanghai, China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and PreventionShanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health and Family Planning CommissionShanghai, China
- WHO Collaborating Center for Tropical DiseasesShanghai, China
- National Center for International Research on Tropical DiseasesShanghai, China
- Joint Research Laboratory of Genetics and Ecology on Parasites-Hosts Interaction, National Institute of Parasitic Diseases – Fudan UniversityShanghai, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan UniversityShanghai, China
| | - Shuisen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and PreventionShanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health and Family Planning CommissionShanghai, China
- WHO Collaborating Center for Tropical DiseasesShanghai, China
- National Center for International Research on Tropical DiseasesShanghai, China
| |
Collapse
|
21
|
Chen Q, Pei D, Li J, Jing C, Wu W, Man Y. The antenna transcriptome changes in mosquito Anopheles sinensis, pre- and post- blood meal. PLoS One 2017; 12:e0181399. [PMID: 28715466 PMCID: PMC5513552 DOI: 10.1371/journal.pone.0181399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/02/2017] [Indexed: 12/14/2022] Open
Abstract
Antenna is the main chemosensory organ in mosquitoes. Characterization of the transcriptional changes after blood meal, especially those related to chemoreception, may help to explain mosquito blood sucking behavior and to identify novel targets for mosquito control. Anopheles sinensis is an Asiatic mosquito species which transmits malaria and lymphatic filariasis. However, studies on chemosensory biology in female An. sinensis are quite lacking. Here we report a transcriptome analysis of An. sinensis female antennae pre- and post- blood meal. We created six An. sinensis antenna RNA-seq libraries, three from females without blood meal and three from females five hours after a blood meal. Illumina sequencing was conducted to analyze the transcriptome differences between the two groups. In total, the sequenced fragments created 21,643 genes, 1,828 of them were novel. 12,861 of these genes were considered to be expressed (FPKM >1.0) in at least one of the two groups, with 12,159 genes expressed in both groups. 548 genes were differentially expressed in the blood-fed group, with 331 genes up-regulated and 217 genes down-regulated. GO enrichment analysis of the differentially expressed genes suggested that there were no statistically over represented GO terms among down-regulated genes in blood-fed mosquitoes, while the enriched GO terms of the up-regulated genes occurred mainly in metabolic process. For the chemosensory gene families, a subtle distinction in the expression levels can be observed according to our statistical analysis. However, the firstly comprehensive identification of these chemosensory gene families in An. sinensis antennae will help to characterize the precise function of these proteins in odor recognition in mosquitoes. This study provides a first global view in the changes of transcript accumulation elicited by blood meal in An. sinensis female antennae.
Collapse
Affiliation(s)
- Qian Chen
- College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Di Pei
- College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Jianyong Li
- College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Chengyu Jing
- College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Wenjian Wu
- College of Science, National University of Defense Technology, Changsha, Hunan, China
- State Key Lab on NBC Protection for Civilian, Research Institute of Chemical Defense, Beijing, China
| | - Yahui Man
- College of Science, National University of Defense Technology, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
22
|
Chaumeau V, Cerqueira D, Zadrozny J, Kittiphanakun P, Andolina C, Chareonviriyaphap T, Nosten F, Corbel V. Insecticide resistance in malaria vectors along the Thailand-Myanmar border. Parasit Vectors 2017; 10:165. [PMID: 28359289 PMCID: PMC5374572 DOI: 10.1186/s13071-017-2102-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a paucity of data about the susceptibility status of malaria vectors to Public Health insecticides along the Thailand-Myanmar border. This lack of data is a limitation to guide malaria vector-control in this region. The aim of this study was to assess the susceptibility status of malaria vectors to deltamethrin, permethrin and DDT and to validate a simple molecular assay for the detection of knock-down resistance (kdr) mutations in the study area. METHODS Anopheles mosquitoes were collected in four sentinel villages during August and November 2014 and July 2015 using human landing catch and cow bait collection methods. WHO susceptibility tests were carried out to measure the mortality and knock-down rates of female mosquitoes to deltamethrin (0.05%), permethrin (0.75%) and DDT (4%). DNA sequencing of a fragment of the voltage-gated sodium channel gene was carried out to identify knock-down resistance (kdr) mutations at position 1014 in mosquitoes surviving exposure to insecticides. RESULTS A total of 6295 Anopheles belonging to ten different species were bioassayed. Resistance or suspected resistance to pyrethroids was detected in An. barbirostris (s.l.) (72 and 84% mortality to deltamethrin (n = 504) and permethrin (n = 493) respectively), An. hyrcanus (s.l.) (33 and 48% mortality to deltamethrin (n = 172) and permethrin (n = 154), respectively), An. jamesii (87% mortality to deltamethrin, n = 111), An. maculatus (s.l.) (85 and 97% mortality to deltamethrin (n = 280) and permethrin (n = 264), respectively), An. minimus (s.l.) (92% mortality, n = 370) and An. vagus (75 and 95% mortality to deltamethrin (n =148) and permethrin (n = 178), respectively). Resistance or suspected resistance to DDT was detected in An. barbirostris (s.l.) (74% mortality, n = 435), An. hyrcanus (s.l.) (57% mortality, n = 91) and An. vagus (97% mortality, n = 133). The L1014S kdr mutation at both heterozygous and homozygous state was detected only in An. peditaeniatus (Hyrcanus Group). CONCLUSION Resistance to pyrethroids is present along the Thailand-Myanmar border, and it represents a threat for malaria vector control. Further investigations are needed to better understand the molecular basis of insecticide resistance in malaria vectors in this area.
Collapse
Affiliation(s)
- Victor Chaumeau
- Centre hospitalier universitaire de Montpellier, Montpellier, France. .,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, France. .,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand. .,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand.
| | - Dominique Cerqueira
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - John Zadrozny
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Praphan Kittiphanakun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, France. .,Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
23
|
Gong Y, Diao Q. Current knowledge of detoxification mechanisms of xenobiotic in honey bees. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1-12. [PMID: 27819118 DOI: 10.1007/s10646-016-1742-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 05/25/2023]
Abstract
The western honey bee Apis mellifera is the most important managed pollinator species in the world. Multiple factors have been implicated as potential causes or factors contributing to colony collapse disorder, including honey bee pathogens and nutritional deficiencies as well as exposure to pesticides. Honey bees' genome is characterized by a paucity of genes associated with detoxification, which makes them vulnerable to specific pesticides, especially to combinations of pesticides in real field environments. Many studies have investigated the mechanisms involved in detoxification of xenobiotics/pesticides in honey bees, from primal enzyme assays or toxicity bioassays to characterization of transcript gene expression and protein expression in response to xenobiotics/insecticides by using a global transcriptomic or proteomic approach, and even to functional characterizations. The global transcriptomic and proteomic approach allowed us to learn that detoxification mechanisms in honey bees involve multiple genes and pathways along with changes in energy metabolism and cellular stress response. P450 genes, is highly implicated in the direct detoxification of xenobiotics/insecticides in honey bees and their expression can be regulated by honey/pollen constitutes, resulting in the tolerance of honey bees to other xenobiotics or insecticides. P450s is also a key detoxification enzyme that mediate synergism interaction between acaricides/insecticides and fungicides through inhibition P450 activity by fungicides or competition for detoxification enzymes between acaricides. With the wide use of insecticides in agriculture, understanding the detoxification mechanism of insecticides in honey bees and how honeybees fight with the xenobiotis or insecticides to survive in the changing environment will finally benefit honeybees' management.
Collapse
Affiliation(s)
- Youhui Gong
- Department of Honeybee Protection and Biosafety, Institute of apicultural Research, Chinese Academy of Agricultural Sciences, No.1 Beigou Xiangshan, Haidian District, Beijing, 100093, P.R. China
| | - Qingyun Diao
- Department of Honeybee Protection and Biosafety, Institute of apicultural Research, Chinese Academy of Agricultural Sciences, No.1 Beigou Xiangshan, Haidian District, Beijing, 100093, P.R. China.
| |
Collapse
|
24
|
Wei X, Yan G, Zhou G, Zhong D, Fang Q, Yang X, Hu D, Chang X. A neural network prediction of environmental determinants of Anopheles sinensis knockdown resistance mutation to pyrethroids in China. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:295-302. [PMID: 27860007 DOI: 10.1111/jvec.12226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Selection pressure caused by long-term intensive use of insecticides is the key driving force in resistance development. Additional parameters such as environmental conditions may affect both the mosquito response to insecticides and the selection of resistance mechanisms. In this context, we analyzed the environmental determinants of kdr prevalence in Anopheles sinensis across China. We collected kdr frequency from 48 sites across central and southern China, together with key environmental factors including long-term climatic data, topographic features, main crops, and land cover types. Trend surface analysis found that the distribution of kdr frequency can be partitioned into three regions, namely central China (kdr frequency >80%), western China (kdr frequency varies from 0% to 60%), and southern China (kdr frequency <10%). Seven predictor variables were selected based on a radial basis function neural network model. A multilayer perceptron (MLP) network model revealed that the number of crops in a year was the most important predictor for the kdr mutation rate. Topography, long-term mean climate and land cover all contributed to the kdr mutation rate. The observed mean kdr frequency was 53.0% and the MLP network model-predicted mean was 52.6%, a 0.1% relative error. Predicted kdr frequencies closely matched the observed values. The model explained 92% of the total variance in kdr frequency. The results indicated that kdr was associated with the intensity of pesticide usage. Crop cultivation information, together with environmental factors, may well predict the spatial heterogeneity of kdr mutations in An. sinensis in China.
Collapse
Affiliation(s)
- Xing Wei
- Institute of Information Security and Big Data, Central South University, Changsha 410083, Hunan, China
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233000, Anhui, China
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, California 92697, U.S.A
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, California 92697, U.S.A
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, California 92697, U.S.A
| | - Qiang Fang
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233000, Anhui, China
| | - Xiaodi Yang
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233000, Anhui, China
| | - Dehua Hu
- Institute of Information Security and Big Data, Central South University, Changsha 410083, Hunan, China
| | - Xuelian Chang
- Department of Microbiology and Parasitology, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu 233000, Anhui, China
| |
Collapse
|
25
|
He X, He ZB, Zhang YJ, Zhou Y, Xian PJ, Qiao L, Chen B. Genome-wide identification and characterization of odorant-binding protein (OBP) genes in the malaria vector Anopheles sinensis (Diptera: Culicidae). INSECT SCIENCE 2016; 23:366-376. [PMID: 26970073 DOI: 10.1111/1744-7917.12333] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Anopheles sinensis is a major malaria vector. Insect odorant-binding proteins (OBPs) may function in the reception of odorants in the olfactory system. The classification and characterization of the An. sinensis OBP genes have not been systematically studied. In this study, 64 putative OBP genes were identified at the whole-genome level of An. sinensis based on the comparison between OBP conserved motifs, PBP_GOBP, and phylogenetic analysis with An. gambiae OBPs. The characterization of An. sinensis OBPs, including the motif's conservation, gene structure, genomic organization and classification, were investigated. A new gene, AsOBP73, belonging to the Plus-C subfamily, was identified with the support of transcript and conservative motifs. These An. sinensis OBP genes were classified into three subfamilies with 37, 15 and 12 genes in the subfamily Classic, Atypical and Plus-C, respectively. The genomic organization of An. sinensis OBPs suggests a clustered distribution across nine different scaffolds. Eight genes (OBP23-28, OBP63-64) might originate from a single gene through a series of historic duplication events at least before divergence of Anopheles, Culex and Aedes. The microsynteny analyses indicate a very high synteny between An. sinensis and An. gambiae OBPs. OBP70 and OBP71 earlier classified under Plus-C in An. gambiae are recognized as belonging to the group Obp59a of the Classic subfamily, and OBP69 earlier classified under Plus-C has been moved to the Atypical subfamily in this study. The study established a basic information frame for further study of the OBP genes in insects as well as in An. sinensis.
Collapse
Affiliation(s)
- Xiu He
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zheng-Bo He
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yu-Juan Zhang
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yong Zhou
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Peng-Jie Xian
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Liang Qiao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
26
|
Esquivel CJ, Cassone BJ, Piermarini PM. A de novo transcriptome of the Malpighian tubules in non-blood-fed and blood-fed Asian tiger mosquitoes Aedes albopictus: insights into diuresis, detoxification, and blood meal processing. PeerJ 2016; 4:e1784. [PMID: 26989622 PMCID: PMC4793337 DOI: 10.7717/peerj.1784] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/19/2016] [Indexed: 01/17/2023] Open
Abstract
Background. In adult female mosquitoes, the renal (Malpighian) tubules play an important role in the post-prandial diuresis, which removes excess ions and water from the hemolymph of mosquitoes following a blood meal. After the post-prandial diuresis, the roles that Malpighian tubules play in the processing of blood meals are not well described. Methods. We used a combination of next-generation sequencing (paired-end RNA sequencing) and physiological/biochemical assays in adult female Asian tiger mosquitoes (Aedes albopictus) to generate molecular and functional insights into the Malpighian tubules and how they may contribute to blood meal processing (3–24 h after blood ingestion). Results/Discussion. Using RNA sequencing, we sequenced and assembled the first de novo transcriptome of Malpighian tubules from non-blood-fed (NBF) and blood-fed (BF) mosquitoes. We identified a total of 8,232 non-redundant transcripts. The Malpighian tubules of NBF mosquitoes were characterized by the expression of transcripts associated with active transepithelial fluid secretion/diuresis (e.g., ion transporters, water channels, V-type H+-ATPase subunits), xenobiotic detoxification (e.g., cytochrome P450 monoxygenases, glutathione S-transferases, ATP-binding cassette transporters), and purine metabolism (e.g., xanthine dehydrogenase). We also detected the expression of transcripts encoding sodium calcium exchangers, G protein coupled-receptors, and septate junctional proteins not previously described in mosquito Malpighian tubules. Within 24 h after a blood meal, transcripts associated with active transepithelial fluid secretion/diuresis exhibited a general downregulation, whereas those associated with xenobiotic detoxification and purine catabolism exhibited a general upregulation, suggesting a reinvestment of the Malpighian tubules’ molecular resources from diuresis to detoxification. Physiological and biochemical assays were conducted in mosquitoes and isolated Malpighian tubules, respectively, to confirm that the transcriptomic changes were associated with functional consequences. In particular, in vivo diuresis assays demonstrated that adult female mosquitoes have a reduced diuretic capacity within 24 h after a blood meal. Moreover, biochemical assays in isolated Malpighian tubules showed an increase in glutathione S-transferase activity and the accumulation of uric acid (an end product of purine catabolism) within 24 h after a blood meal. Our data provide new insights into the molecular physiology of Malpighian tubules in culicine mosquitoes and reveal potentially important molecular targets for the development of chemical and/or gene-silencing insecticides that would disrupt renal function in mosquitoes.
Collapse
Affiliation(s)
- Carlos J Esquivel
- Department of Entomology, The Ohio State University/Ohio Agricultural Research and Development Center , Wooster, OH , United States
| | - Bryan J Cassone
- Department of Biology, Brandon University , Brandon, Manitoba , Canada
| | - Peter M Piermarini
- Department of Entomology, The Ohio State University/Ohio Agricultural Research and Development Center , Wooster, OH , United States
| |
Collapse
|
27
|
Lv Y, Wang W, Hong S, Lei Z, Fang F, Guo Q, Hu S, Tian M, Liu B, Zhang D, Sun Y, Ma L, Shen B, Zhou D, Zhu C. Comparative transcriptome analyses of deltamethrin-susceptible and -resistant Culex pipiens pallens by RNA-seq. Mol Genet Genomics 2015; 291:309-21. [PMID: 26377942 DOI: 10.1007/s00438-015-1109-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 08/21/2015] [Indexed: 11/26/2022]
Abstract
The widespread and improper use of pyrethroid insecticides, such as deltamethrin, has resulted in the evolution of resistance in many mosquito species, including Culex pipiens pallens. With the development of high-throughput sequencing, it is possible to massively screen pyrethroid resistance-associated gene. In this study, we used Illumina-Solexa transcriptome sequencing to identify genes that are expressed differently in deltamethrin-susceptible and -resistant strains of Culex pipiens pallens as a critical knowledge base for further studies. A total of 4,961,197,620 base pairs and 55,124,418 reads were sequenced, mapped to the Culex quinquefasciatus genome and assembled into 17,679 known genes. We recorded 1826 significantly differentially expressed genes (DEGs). Among them, 1078 genes were up-regulated and 748 genes were down-regulated in the deltamethrin-resistant strain compared to -susceptible strain. These DEGs contained cytochrome P450 s, cuticle proteins, UDP-glucuronosyltransferases, lipases, serine proteases, heat shock proteins, esterases and others. Among the 1826 DEGs, we found that the transcriptional levels of CYP6AA9 in the laboratory populations was elevated as the levels of deltamethrin resistance increased. Moreover, the expression levels of the CYP6AA9 were significantly higher in the resistant strains than the susceptible strains in three different field populations. We further confirmed the association between the CYP6AA9 gene and deltamethrin resistance in mosquitoes by RNA interfering (RNAi). Altogether, we explored massive potential pyrethroid resistance-associated genes and demonstrated that CYP6AA9 participated in the pyrethroid resistance in mosquitoes.
Collapse
Affiliation(s)
- Yuan Lv
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weijie Wang
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Shanchao Hong
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Zhentao Lei
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Fujin Fang
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Qin Guo
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Shengli Hu
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Mengmeng Tian
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Bingqian Liu
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Donghui Zhang
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, 210029, Nanjing, Jiangsu, China.
| |
Collapse
|
28
|
Wang B, Pakpour N, Napoli E, Drexler A, Glennon EKK, Surachetpong W, Cheung K, Aguirre A, Klyver JM, Lewis EE, Eigenheer R, Phinney BS, Giulivi C, Luckhart S. Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during Plasmodium falciparum infection. Parasit Vectors 2015; 8:424. [PMID: 26283222 PMCID: PMC4539710 DOI: 10.1186/s13071-015-1016-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/21/2015] [Indexed: 01/30/2023] Open
Abstract
Background Fruit flies and mammals protect themselves against infection by mounting immune and metabolic responses that must be balanced against the metabolic needs of the pathogens. In this context, p38 mitogen-activated protein kinase (MAPK)-dependent signaling is critical to regulating both innate immunity and metabolism during infection. Accordingly, we asked to what extent the Asian malaria mosquito Anopheles stephensi utilizes p38 MAPK signaling during infection with the human malaria parasite Plasmodium falciparum. Methods A. stephensi p38 MAPK (AsP38 MAPK) was identified and patterns of signaling in vitro and in vivo (midgut) were analyzed using phospho-specific antibodies and small molecule inhibitors. Functional effects of AsP38 MAPK inhibition were assessed using P. falciparum infection, quantitative real-time PCR, assays for reactive oxygen species and survivorship under oxidative stress, proteomics, and biochemical analyses. Results The genome of A. stephensi encodes a single p38 MAPK that is activated in the midgut in response to parasite infection. Inhibition of AsP38 MAPK signaling significantly reduced P. falciparum sporogonic development. This phenotype was associated with AsP38 MAPK regulation of mitochondrial physiology and stress responses in the midgut epithelium, a tissue critical for parasite development. Specifically, inhibition of AsP38 MAPK resulted in reduction in mosquito protein synthesis machinery, a shift in glucose metabolism, reduced mitochondrial metabolism, enhanced production of mitochondrial reactive oxygen species, induction of an array of anti-parasite effector genes, and decreased resistance to oxidative stress-mediated damage. Hence, P. falciparum-induced activation of AsP38 MAPK in the midgut facilitates parasite infection through a combination of reduced anti-parasite immune defenses and enhanced host protein synthesis and bioenergetics to minimize the impact of infection on the host and to maximize parasite survival, and ultimately, transmission. Conclusions These observations suggest that, as in mammals, innate immunity and mitochondrial responses are integrated in mosquitoes and that AsP38 MAPK-dependent signaling facilitates mosquito survival during parasite infection, a fact that may attest to the relatively longer evolutionary relationship of these parasites with their invertebrate compared to their vertebrate hosts. On a practical level, improved understanding of the balances and trade-offs between resistance and metabolism could be leveraged to generate fit, resistant mosquitoes for malaria control. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1016-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Wang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Anna Drexler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Elizabeth K K Glennon
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Win Surachetpong
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Kong Cheung
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Alejandro Aguirre
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - John M Klyver
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Edwin E Lewis
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA.
| | - Richard Eigenheer
- Genome and Biomedical Sciences Center, University of California Davis, Davis, CA, USA.
| | - Brett S Phinney
- Genome and Biomedical Sciences Center, University of California Davis, Davis, CA, USA.
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA. .,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Davis, CA, USA.
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
29
|
Berdan EL, Mazzoni CJ, Waurick I, Roehr JT, Mayer F. A population genomic scan in Chorthippus grasshoppers unveils previously unknown phenotypic divergence. Mol Ecol 2015; 24:3918-30. [PMID: 26081018 DOI: 10.1111/mec.13276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 12/30/2022]
Abstract
Understanding the genetics of speciation and the processes that drive it is a central goal of evolutionary biology. Grasshoppers of the Chorthippus species group differ strongly in calling song (and corresponding female preferences) but are exceedingly similar in other characteristics such as morphology. Here, we performed a population genomic scan on three Chorthippus species (Chorthippus biguttulus, C. mollis and C. brunneus) to gain insight into the genes and processes involved in divergence and speciation in this group. Using an RNA-seq approach, we examined functional variation between the species by calling SNPs for each of the three species pairs and using FST -based approaches to identify outliers. We found approximately 1% of SNPs in each comparison to be outliers. Between 37% and 40% of these outliers were nonsynonymous SNPs (as opposed to a global level of 17%) indicating that we recovered loci under selection. Among the outliers were several genes that may be involved in song production and hearing as well as genes involved in other traits such as food preferences and metabolism. Differences in food preferences between species were confirmed with a behavioural experiment. This indicates that multiple phenotypic differences implicating multiple evolutionary processes (sexual selection and natural selection) are present between the species.
Collapse
Affiliation(s)
- Emma L Berdan
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany
| | - Camila J Mazzoni
- Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str 6-8, 14195, Berlin, Germany.,Leibniz-Institut für Zoo- und Wildtierforschung (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Isabelle Waurick
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany
| | - Johannes T Roehr
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstraße 6, 14195, Berlin, Germany
| |
Collapse
|
30
|
Lv Y, Lei Z, Hong S, Wang W, Zhang D, Zhou D, Sun Y, Ma L, Shen B, Zhu C. Venom allergen 5 is Associated With Deltamethrin Resistance in Culex pipiens pallens (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:672-82. [PMID: 26335474 PMCID: PMC4592351 DOI: 10.1093/jme/tjv059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/28/2015] [Indexed: 05/20/2023]
Abstract
The mosquito, Culex pipiens pallens (L.), is an important vector of encephalitis and filariasis in northern China. The control of these mosquitoes occurs primarily via the use of pyrethroid insecticides, such as deltamethrin. The widespread and improper application of pyrethroid has resulted in the evolution of pyrethroid resistance amongst many mosquito populations, including Cx. pipiens pallens. Previous studies using high-throughput transcriptome sequencing have identified that the venom allergen 5 gene is differentially expressed between deltamethrin-susceptible and deltamethrin-resistant Cx. pipiens pallens. In this study, quantitative real-time polymerase chain reaction analyses revealed that venom allergen 5 was significantly overexpressed in adult females of both deltamethrin-resistant laboratory populations and two field populations. The transcriptional level of venom allergen 5 in the laboratory populations was elevated as the levels of deltamethrin resistance increased. Full-length cDNAs of the venom allergen 5 gene were cloned from Cx. pipiens pallens, and contained an open reading frame of 765 bp, encoding a protein with 254 amino acids. The deduced amino acid sequence shared 100% identity with the ortholog in Culex quinquefasciatus Say. The overexpression of venom allergen 5 decreased the susceptibility of mosquito cells to deltamethrin, while knockdown of this gene by RNAi increased the susceptibility of mosquitoes to deltamethrin. This study provides the first evidence of the association between the venom allergen 5 gene and deltamethrin resistance in mosquitoes.
Collapse
Affiliation(s)
- Yuan Lv
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Zhentao Lei
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Shanchao Hong
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Weijie Wang
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Donghui Zhang
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China. Jiangsu Province Key Laboratory of Modern Pathogen Biology, 140 Hanzhong Rd., Nanjing, Jiangsu 210029, China.
| |
Collapse
|
31
|
Zhu G, Zhou H, Li J, Tang J, Bai L, Wang W, Gu Y, Liu Y, Lu F, Cao Y, Zhang C, Xu S, Cao J, Gao Q. The colonization of pyrethroid resistant strain from wild Anopheles sinensis, the major Asian malaria vector. Parasit Vectors 2014; 7:582. [PMID: 25499700 PMCID: PMC4272531 DOI: 10.1186/s13071-014-0582-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/30/2014] [Indexed: 01/06/2023] Open
Abstract
Background Anopheles sinensis is one of the most important malaria vectors in Asian countries. The rapid spread of insecticide resistance has become a major obstacle for insecticide-based strategies for vector control. Therefore, it is necessary to prepare an insecticide-resistant strain of An. sinensis to further understand the insecticide resistance mechanisms in this species to facilitate genetic approaches to targeting the insecticide-resistant population of this important malaria vector. Methods An. sinensis mosquitoes were collected from regions where pyrethroid resistance had been reported. The mosquitoes were subjected to continuous pyrethroid selection after species confirmation, and the forced copulation method was used to increase the mating rate. In addition, the knockdown-resistance (kdr) mutation frequencies of each generation of An. sinensis were measured; and the metabolic enzyme activities of cytochrome P450 monoxygenases (P450s) and glutathione S-transferases (GSTs) were detected. Results The identification of field-captured An. sinensis was confirmed by both morphological and molecular methods. The population of An. sinensis exhibited stable resistance to pyrethroid after continuous generations of pyrethroid selection in the laboratory with high kdr mutation frequencies; and elevated levels of both P450s and GSTs were significantly found in field selected populations comparing with the laboratory susceptible strain. So far, the colonised strain has reached its eleventh generation and culturing well in the laboratory. Conclusions We colonised a pyrethroid-resistant population of An. sinensis in the laboratory, which provides a fundamental model for genetic studies of this important malaria vector.
Collapse
Affiliation(s)
- Guoding Zhu
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China. .,Department of Parasitology, Medical College of Soochow University, Suzhou, 215123, People's Republic of China.
| | - Huayun Zhou
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Julin Li
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Jianxia Tang
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Liang Bai
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Weiming Wang
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Yaping Gu
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Yaobao Liu
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Feng Lu
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Yuanyuan Cao
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Chao Zhang
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Sui Xu
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | - Jun Cao
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China. .,Public Health Research Center, Jiangnan University, Wuxi, People's Republic of China.
| | - Qi Gao
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China. .,Department of Parasitology, Medical College of Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
32
|
Yin C, Ji Q, Li K, Mu H, Zhu B, Yan J, Yu Y, Wang J, Chen F. Analysis of 19 STR loci reveals genetic characteristic of eastern Chinese Han population. Forensic Sci Int Genet 2014; 14:108-9. [PMID: 25450780 DOI: 10.1016/j.fsigen.2014.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 09/08/2014] [Accepted: 09/15/2014] [Indexed: 11/17/2022]
Affiliation(s)
- Caiyong Yin
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qiang Ji
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Kai Li
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Haofang Mu
- Center of Forensic Sciences, Beijing Genomics Institute, Beijing 101300, China
| | - Bofeng Zhu
- School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiangwei Yan
- Key Laboratory of Genome Sciences, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jianwen Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Vascular Biology Center, Georgia Regents University, Augusta, GA 30912, United States.
| |
Collapse
|
33
|
Bai L, Zhu GD, Zhou HY, Tang JX, Li JL, Xu S, Zhang MH, Yao LN, Huang GQ, Wang YB, Zhang HW, Wang SB, Cao J, Gao Q. Development and application of an AllGlo probe-based qPCR assay for detecting knockdown resistance (kdr) mutations in Anopheles sinensis. Malar J 2014; 13:379. [PMID: 25245258 PMCID: PMC4182860 DOI: 10.1186/1475-2875-13-379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/20/2014] [Indexed: 01/12/2023] Open
Abstract
Background Anopheles sinensis is one of the most important malaria vectors in China and other Southeast Asian countries. High levels of resistance have been reported in this species due to the long-term use of insecticides, especially pyrethroids, for public health and agricultural purposes. Knockdown resistance (kdr) caused by a single base pair mutation in the gene encoding the sodium channel is strongly associated with pyrethroid insecticide resistance in many Anopheles mosquitoes. There are few methods currently available for detecting kdr mutations in An. sinensis. Methods A novel AllGlo probe-based qPCR (AllGlo-qPCR) method was developed to screen for the predominant kdr mutations in An. sinensis mosquitoes from the Jiangsu Province. The results from AllGlo-qPCR, allele-specific PCR (AS-PCR), and TaqMan-MGB probe-based qPCR (TaqMan-qPCR) were compared. A comparative analysis of the equipment required, ease of use and cost of the available methods was also performed. Finally, the AllGlo-qPCR method was used to detect the frequencies of kdr mutations from the other four provinces in central China. Results Six kdr genotypes were detected in An. sinensis from the Jiangsu Province by DNA sequencing. The AllGlo-qPCR method detected all of the kdr genotypes with a high level of accuracy (97% sensitivity and 98% specificity). AllGlo-qPCR correctly determined the kdr genotypes of 98.73% of 158 An. sinensis samples, whereas TaqMan-qPCR and AS-PCR correctly identified 96.84% and 88.61% of mutations, respectively. Furthermore, the AllGlo-qPCR method is simpler to perform, requires less equipment, and exhibits a moderate expense cost comparing with the other tested methods of kdr mutation detection. Samples collected from four of the other provinces in central China showed a high frequency of kdr mutation in An. sinensis, as detected by the established AllGlo-qPCR method. Conclusion The novel AllGlo-qPCR method developed for kdr mutation detection in An. sinensis exhibits greater specificity and sensitivity than currently available methods and is more cost-effective; therefore, it represents a useful tool for entomological surveillance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jun Cao
- Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), and Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, People's Republic of China.
| | | |
Collapse
|