1
|
Biswal DP, Panigrahi KCS. Light- and hormone-mediated development in non-flowering plants: An overview. PLANTA 2020; 253:1. [PMID: 33245411 DOI: 10.1007/s00425-020-03501-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Light, hormones and their interaction regulate different aspects of development in non-flowering plants. They might have played a role in the evolution of different plant groups by conferring specific adaptive evolutionary changes. Plants are sessile organisms. Unlike animals, they lack the opportunity to abandon their habitat in unfavorable conditions. They respond to different environmental cues and adapt accordingly to control their growth and developmental pattern. While phytohormones are known to be internal regulators of plant development, light is a major environmental signal that shapes plant processes. It is plausible that light-hormone crosstalk might have played an important role in plant evolution. But how the crosstalk between light and phytohormone signaling pathways might have shaped the plant evolution is unclear. One of the possible reasons is that flowering plants have been studied extensively in context of plant development, which cannot serve the purpose of evolutionary comparisons. In order to elucidate the role of light, hormone and their crosstalk in the evolutionary adaptation in plant kingdom, one needs to understand various light- and hormone-mediated processes in diverse non-flowering plants. This review is an attempt to outline major light- and phytohormone-mediated responses in non-flowering plant groups such as algae, bryophytes, pteridophytes and gymnosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India.
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
2
|
Tanno Y, Kato S, Takahashi S, Tamaki S, Takaichi S, Kodama Y, Sonoike K, Shinomura T. Light dependent accumulation of β-carotene enhances photo-acclimation of Euglena gracilis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111950. [PMID: 32682285 DOI: 10.1016/j.jphotobiol.2020.111950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
Abstract
Carotenoids are essential components of photosynthetic organisms including land plants, algae, cyanobacteria, and photosynthetic bacteria. Although the light-mediated regulation of carotenoid biosynthesis, including the light/dark cycle as well as the dependence of carotenoid biosynthesis-related gene translation on light wavelength, has been investigated in land plants, these aspects have not been studied in microalgae. Here, we investigated carotenoid biosynthesis in Euglena gracilis and found that zeaxanthin accumulates in the dark. The major carotenoid species in E. gracilis, namely β-carotene, neoxanthin, diadinoxanthin and diatoxanthin, accumulated corresponding to the duration of light irradiation under the light/dark cycle, although the translation of carotenoid biosynthesis genes hardly changed. Irradiation with either blue or red-light (3 μmol photons m-2 s-1) caused a 1.3-fold increase in β-carotene content compared with the dark control. Blue-light irradiation (300 μmol photons m-2 s-1) caused an increase in the cellular content of both zeaxanthin and all trans-diatoxanthin, and this increase was proportional to blue-light intensity. In addition, pre-irradiation with blue-light of 3 or 30 μmol photons m-2 s-1 enhanced the photosynthetic activity and tolerance to high-light stress. These findings suggest that the accumulation of β-carotene is regulated by the intensity of light, which may contribute to the acclimation of E. gracilis to the light environment in day night conditions.
Collapse
Affiliation(s)
- Yuri Tanno
- Plant Molecular and Cellular Biology Laboratory, Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University Graduate Schools, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Shota Kato
- Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan; Laboratory of Complex Biology, Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 42988, Republic of Korea; Center for Bioscience Research and Education, Utsunomiya University, 350 mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Senji Takahashi
- Plant Molecular and Cellular Biology Laboratory, Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University Graduate Schools, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan; Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Shun Tamaki
- Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Tokyo University of Agriculture, 1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, 350 mine-machi, Utsunomiya, Tochigi 321-8505, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tomoko Shinomura
- Plant Molecular and Cellular Biology Laboratory, Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University Graduate Schools, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan; Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan.
| |
Collapse
|
4
|
Abstract
A substantial proportion of the dazzling diversity of colors displayed by living organisms throughout the tree of life is determined by the presence of carotenoids, which most often provide distinctive yellow, orange and red hues. These metabolites play fundamental roles in nature that extend far beyond their importance as pigments. In photosynthetic lineages, carotenoids are essential to sustain life, since they have been exploited to maximize light harvesting and protect the photosynthetic machinery from photooxidative stress. Consequently, photosynthetic organisms have evolved several mechanisms that adjust the carotenoid metabolism to efficiently cope with constantly fluctuating light environments. This chapter will focus on the current knowledge concerning the regulation of the carotenoid biosynthetic pathway in leaves, which are the primary photosynthetic organs of most land plants.
Collapse
|
5
|
Kianianmomeni A, Hallmann A. Algal Photobiology: A Rich Source of Unusual Light Sensitive Proteins for Synthetic Biology and Optogenetics. Methods Mol Biol 2016; 1408:37-54. [PMID: 26965114 DOI: 10.1007/978-1-4939-3512-3_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The light absorption system in eukaryotic (micro)algae includes highly sensitive photoreceptors, which change their conformation in response to different light qualities on a subsecond time scale and induce physiological and behavioral responses. Some of the light sensitive modules are already in use to engineer and design photoswitchable tools for control of cellular and physiological activities in living organisms with various degrees of complexity. Thus, identification of new light sensitive modules will not only extend the source material for the generation of optogenetic tools but also foster the development of new light-based strategies in cell signaling research. Apart from searching for new proteins with suitable light-sensitive modules, smaller variants of existing light-sensitive modules would be helpful to simplify the construction of hybrid genes and facilitate the generation of mutated and chimerized modules. Advances in genome and transcriptome sequencing as well as functional analysis of photoreceptors and their interaction partners will help to discover new light sensitive modules.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany.
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
7
|
Varela JC, Pereira H, Vila M, León R. Production of carotenoids by microalgae: achievements and challenges. PHOTOSYNTHESIS RESEARCH 2015; 125:423-36. [PMID: 25921207 DOI: 10.1007/s11120-015-0149-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/21/2015] [Indexed: 05/26/2023]
Abstract
Carotenoids are a wide group of lipophylic isoprenoids synthesized by all photosynthetic organisms and also by some non-photosynthetic bacteria and fungi. Animals, which cannot synthesize carotenoids de novo, must include them in their diet to fulfil essential provitamin, antioxidant, or colouring requirements. Carotenoids are indispensable in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. In this review, we outline the factors inducing carotenoid accumulation in microalgae, the knowledge acquired on the metabolic pathways responsible for their biosynthesis, and the recent achievements in the genetic engineering of this pathway. Despite the considerable progress achieved in understanding and engineering algal carotenogenesis, many aspects remain to be elucidated. The increasing number of sequenced microalgal genomes and the data generated by high-throughput technologies will enable a better understanding of carotenoid biosynthesis in microalgae. Moreover, the growing number of industrial microalgal species genetically modified will allow the production of novel strains with enhanced carotenoid contents.
Collapse
Affiliation(s)
- João C Varela
- Centre of Marine Science, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | | | | | |
Collapse
|
8
|
Kianianmomeni A. Potential impact of gene regulatory mechanisms on the evolution of multicellularity in the volvocine algae. Commun Integr Biol 2015; 8:e1017175. [PMID: 26479715 PMCID: PMC4594364 DOI: 10.1080/19420889.2015.1017175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 01/23/2023] Open
Abstract
A fundamental question in biology is how multicellular organisms can arise from their single-celled precursors. The evolution of multicellularity requires the adoption of new traits in unicellular ancestors that allows the generation of form by, for example, increasing the size and developing new cell types. But what are the genetic, cellular and biochemical bases underlying the evolution of multicellularity? Recent advances in evolutionary developmental biology suggest that the regulation of gene expression by cis-regulatory factors, gene duplication and alternative splicing contribute to phenotypic evolution. These mechanisms enable different degrees of phenotypic divergence and complexity with variation in traits from genomes with similar gene contents. In addition, signaling pathways specific to cell types are developed to guarantee the modulation of cellular and developmental processes matched to the cell types as well as the maintenance of multicellularity.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants; University of Bielefeld ; Bielefeld, Germany
| |
Collapse
|
9
|
von der Heyde EL, Klein B, Abram L, Hallmann A. The inducible nitA promoter provides a powerful molecular switch for transgene expression in Volvox carteri. BMC Biotechnol 2015; 15:5. [PMID: 25888095 PMCID: PMC4339647 DOI: 10.1186/s12896-015-0122-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/06/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The multicellular green alga Volvox carteri represents an attractive model system to study various aspects of multicellularity like cellular differentiation, morphogenesis, epithelial folding and ECM biogenesis. However, functional and molecular analyses of such processes require a wide array of molecular tools for genetic engineering. So far there are only a limited number of molecular tools available in Volvox. RESULTS Here, we show that the promoter of the V. carteri nitrate reductase gene (nitA) is a powerful molecular switch for induction of transgene expression. Strong expression is triggered by simply changing the nitrogen source from ammonium to nitrate. We also show that the luciferase (g-luc) gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of the unicellular alga Chlamydomonas reinhardtii, is a suitable reporter gene in V. carteri. Emitted light of the chemiluminescent reaction can be easily detected and quantified with a luminometer. Long-term stability of inducible expression of the chimeric nitA/g-luc transgenes after stable nuclear transformation was demonstrated by transcription analysis and bioluminescence assays. CONCLUSION Two novel molecular tools for genetic engineering of Volvox are now available: the nitrate-inducible nitA promoter of V. carteri and the codon-adapted luciferase reporter gene of G. princeps. These novel tools will be useful for future molecular research in V. carteri.
Collapse
Affiliation(s)
- Eva Laura von der Heyde
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | - Benjamin Klein
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | - Lars Abram
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| | - Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| |
Collapse
|
10
|
Kianianmomeni A. Cell-type specific photoreceptors and light signaling pathways in the multicellular green alga Volvox carteri and their potential role in cellular differentiation. PLANT SIGNALING & BEHAVIOR 2015; 10:e1010935. [PMID: 25874475 PMCID: PMC4623044 DOI: 10.1080/15592324.2015.1010935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 12/26/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
The formation of multicellular organisms requires genetically predefined signaling pathways in various cell types. Besides differences in size, energy balance and life time, cell types should be enable to modulate appropriate developmental and adaptive responses in ever-changing surrounding environment. One of the most important environmental cues is light which regulates a variety of physiological and cellular processes. During evolution, diverse light-sensitive proteins, so-called photoreceptors, and corresponding signaling pathways have evolved, in almost all kingdoms of life, to monitor light continuously and adjust their growth and development accordingly. However, considering the fact that different cell types should be enable to trigger distinct light signaling pathways according to their needs, cell-type specific light signaling pathways are required to guarantee cell type-matched modulation of cellular and developmental processes in response to different light signals. The multicellular green alga Volvox carteri, which has only 2 cell types with clear division of labor, possesses cell-type specific photoreceptors and light signaling pathways which allow differential regulation of genes involved in various cellular and metabolic pathways in response to environmental light. The existence of cell-type specific light signaling pathways in multicellular organism like Volvox reflects an early development of cell-type specific signaling mechanisms during evolution to ensure maintenance of differentiation.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants; University of Bielefeld; Bielefeld, Germany
| |
Collapse
|