1
|
Cunha SMF, Willoughby O, Schenkel F, Cánovas Á. Genetic Parameter Estimation and Selection for Resistance to Gastrointestinal Nematode Parasites in Sheep-A Review. Animals (Basel) 2024; 14:613. [PMID: 38396581 PMCID: PMC10886080 DOI: 10.3390/ani14040613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Gastrointestinal nematodes (GINs) are a major problem affecting sheep production systems worldwide. The flocks infected with GINs can undergo significant economic losses due to a decrease in productivity, the animals' deaths, and the costs associated with treatments. The over-reliance on anthelmintics in the past years to eliminate GINs has resulted in the development of resistance against the available commercial anthelmintics. Genetically resistant animals can be used in mating systems to improve the overall flock resistance. This review aimed to summarize the estimated genetic parameters for resistance traits and genetic gains through the use of genetic/genomic selection for resistance to GINs in sheep. Heritability estimates from the literature ranged from 0.00 to 0.46 for fecal egg counts, 0.12 to 0.37 for packed cell volume/hematocrit, 0.07 to 0.26 for FAffa MAlan CHArt (FAMACHA©), from 0.10 to 0.37 for blood parameters, and 0.19 for Immunoglobulin A. Genetic correlations between traits measuring resistance to GINs and production traits ranged from negative to positive values in the literature. Genetic gains are possible when genetic/genomic selection for GIN resistance is applied. Therefore, genetic/genomic selection can be used to improve flocks' resistance to GINs as a sustainable approach in sheep production systems.
Collapse
Affiliation(s)
| | | | | | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (O.W.); (F.S.)
| |
Collapse
|
2
|
Cunha SMF, Lam S, Mallard B, Karrow NA, Cánovas Á. Genomic Regions Associated with Resistance to Gastrointestinal Nematode Parasites in Sheep-A Review. Genes (Basel) 2024; 15:187. [PMID: 38397178 PMCID: PMC10888242 DOI: 10.3390/genes15020187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Gastrointestinal nematodes (GINs) can be a major constraint and global challenge to the sheep industry. These nematodes infect the small intestine and abomasum of grazing sheep, causing symptoms such as weight loss, diarrhea, hypoproteinemia, and anemia, which can lead to death. The use of anthelmintics to treat infected animals has led to GIN resistance, and excessive use of these drugs has resulted in residue traced in food and the environment. Resistance to GINs can be measured using multiple traits, including fecal egg count (FEC), Faffa Malan Chart scores, hematocrit, packed cell volume, eosinophilia, immunoglobulin (Ig), and dagginess scores. Genetic variation among animals exists, and understanding these differences can help identify genomic regions associated with resistance to GINs in sheep. Genes playing important roles in the immune system were identified in several studies in this review, such as the CFI and MUC15 genes. Results from several studies showed overlapping quantitative trait loci (QTLs) associated with multiple traits measuring resistance to GINs, mainly FEC. The discovery of genomic regions, positional candidate genes, and QTLs associated with resistance to GINs can help increase and accelerate genetic gains in sheep breeding programs and reveal the genetic basis and biological mechanisms underlying this trait.
Collapse
Affiliation(s)
- Samla Marques Freire Cunha
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| | - Stephanie Lam
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| | - Bonnie Mallard
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
- Department of Pathobiology, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; (S.M.F.C.); (S.L.); (B.M.); (N.A.K.)
| |
Collapse
|
3
|
Stafuzza NB, Freitas ACD, Mioto MB, Silva RMDO, Fragomeni BDO, Pedrosa VB, Costa RLDD, Paz CCPD. Weighted single-step genome-wide association study and functional enrichment analyses for gastrointestinal nematode resistance traits in Santa Ines sheep. Vet Parasitol 2023; 323:110047. [PMID: 37857178 DOI: 10.1016/j.vetpar.2023.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
This study aimed to identify genomic regions, pathways, and putative candidate genes associated with resistance to gastrointestinal nematode in Santa Ines sheep. The phenotypic information comprised 5529 records from 1703 naturally infected animals. After genomic data quality control, 37,511 SNPs from 589 animals were available. The weighted single-step approach for genome-wide association study was performed to estimate the SNP effects and variances accounted by 10-SNP sliding windows. Confirming the polygenic nature of the studied traits, 20, 22, 21, and 19 genomic windows that explained more than 0.5% of the additive genetic variance were identified for fecal egg counts (FEC), Famacha© (FAM), packed cell volume (PCV), and total plasma protein (TPP), respectively. A total of 81, 122, 106, and 101 protein-coding genes were found in windows associated with FEC, FAM, PCV, and TPP, respectively. Several protein-coding genes related to the immune system and inflammatory response functions were identified within those genomic regions, such as ADCY9, ADRB2, BRAF, CADM1, CCL20, CD70, CREBBP, FNBP1, HTR4, IL16, IL22, IL26, MAPK8, NDFIP1, NLRC3, PAK5, PLCB1, PLCB4, ROCK1, TEK, TNFRSF12A, and VAV1. Functional enrichment analysis by DAVID tool also revealed many significant (P < 0.05) pathways and Gene Ontology terms that could be related to resistance to gastrointestinal nematode in Santa Ines sheep, such as chemokine signaling pathway (oas04062), cAMP signaling pathway (oas04024), cGMP-PKG signaling pathway (Oas04022), platelet activation (Oas04611), Rap1 signaling pathway (oas04015), and oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen (GO:0016705). These results contribute to improving the knowledge of the genetic architecture of resistance to gastrointestinal nematode in Santa Ines sheep.
Collapse
Affiliation(s)
- Nedenia Bonvino Stafuzza
- Sustainable Livestock Research Center, Animal Science Institute, 15130-000 São José do Rio Preto, SP, Brazil.
| | - Ana Claudia de Freitas
- São Paulo Agency of Agribusiness and Technology, Animal Science Institute, 13380-011 Nova Odessa, SP, Brazil; Agricultural Research Agency of the State of Minas Gerais, 38709-899 Patos de Minas, MG, Brazil
| | - Marina B Mioto
- Sustainable Livestock Research Center, Animal Science Institute, 15130-000 São José do Rio Preto, SP, Brazil
| | | | | | - Victor Breno Pedrosa
- Department of Animal Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Ricardo Lopes Dias da Costa
- São Paulo Agency of Agribusiness and Technology, Animal Science Institute, 13380-011 Nova Odessa, SP, Brazil
| | | |
Collapse
|
4
|
Rafeie F, Abdoli R, Hossein-Zadeh NG, Talebi R, Szmatoła T. Interaction networks and pathway analysis of genetic resistance to gastrointestinal nematodes in sheep. Trop Anim Health Prod 2023; 55:34. [PMID: 36609787 DOI: 10.1007/s11250-022-03448-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023]
Abstract
Gastrointestinal nematode (GINs) infections are one of the causative agents of health and economic issues in sheep production systems worldwide. Considerable genetic variations in resistance or susceptibility in different sheep breeds are documented, but published results are conflicting. Recent advances obtained by high-throughput technologies such as commercial SNP chips, whole-genome sequencing, or whole transcriptome profiling provide new insights into breeding for host resistance or nematode control at the genetic levels. This study aimed to identify potential biomarkers associated with the resistance to ovine GINs through a network analysis approach. Comprehensive gene and protein interaction networks were reconstructed for candidate genes involved in the most related immune pathways associated with resistance to ovine GINs using data mining from literature. Generally, 30 genes including CD53, CHIA, RELN, HRH1, EPS15, LRP8, ATP2B1, IL4, IL5, IL13, IL2RA, IL23R, TNFα, IFNγ, TBX21, SH3RF1, HERC2, PTPN1, BIN1, HERC5, C3AR1, NOS2, STAT5B, STAT4, CCL1, CCL8, VIL1, CXCR1, CXCR2, and CXCR4 located on chromosomes 1, 2, 3, 4, 5, 6, 11, 13, 19, and 20 have been found as containing effective regions with the most related pathways to nematode infections. The results obtained by network analysis showed two functional modules, belonging to the interleukins family (IL4, IL5, IL13, IL23R, and IL2RA) and chemokine receptors or ligands family (CXCR1, CXCR2, CXCR4, CCL1, and CCL8). Interleukins are a group of cytokines that are expressed by white blood cells with a major role in the immune system. Chemokines are also a family of chemoattractant cytokines which play a vital role in cell migration that influence the immune system by a process known as chemotaxis. The results provide useful information for the functional annotation of candidate genes related to parasite resistance and add new information towards a consensus on quantitative trait loci (QTLs) related to the incidence of nematode infections.
Collapse
Affiliation(s)
- Farjad Rafeie
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | - Ramin Abdoli
- Iran Silk Research Center, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Guilan, Iran.
| | | | - Reza Talebi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.,Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Tomasz Szmatoła
- Centre of Experimental and Innovative Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059, Kraków, Poland.,Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland
| |
Collapse
|
5
|
Isolation of nematophagous fungi from soil samples collected from three different agro-ecologies of Ethiopia. BMC Microbiol 2022; 22:159. [PMID: 35715731 PMCID: PMC9204992 DOI: 10.1186/s12866-022-02572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Several species of nematophagous fungi exist in nature that can capture and kill nematodes as natural predators of soil-dwelling worms. These are important in agriculture and animal husbandry as biological control agents. The diversity of nematophagous fungi found from soil had not been studied in Ethiopia. Objective This study aimed to isolate Nematophagous Fungi from Soil Samples Collected From three Different Agro-Ecologies of Ethiopia. Methods Cross-sectional study was conducted and samples were collected from three different agro-climatic zones of Ethiopia; Debre-Berhan (highland), Bishoftu (mid-altitude), and Awash (lowland). Twenty-seven soil samples were randomly taken from each of the three different agro-ecological climates (9 from each agro-ecological climatic zone). For each study site, samples were collected from the soil of decomposed animal feces/dung, agricultural/farmlands, and forest lands in triplicates. Results The present study disclosed that nematophagous fungi were widespread from the study area. A total of 33 species of nematophagous fungi belonging to four genera, Arthrobotryes, Paecilomyces, Monacrosporium, and Harposporium were identified. Arthrobotrys were the most commonly isolated genera followed by Paecilomyces. The six identified species were Arthrobotrys oligospora, Paecilomyces lilacinus, Arthrobotryes dactyloides, Monacosporum eudermatum, Harposporium helicoides, and Monacosporum cionopagum. Conclusion This study indicated that Arthrobothryes oligospora was the most common species in Bishoftu and Awash whereas. In Debre-Berhan, Paecilomyces lilacinus was the most prevalent species. Monacosporum cionapagum was not isolated from dung soil and agricultural soil whereas Harposporium helicoides and Arthrobothryes dactyloides were not found from dung and forest soil respectively. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02572-4.
Collapse
|
6
|
Bautista-Garfias CR, Castañeda-Ramírez GS, Estrada-Reyes ZM, Soares FEDF, Ventura-Cordero J, González-Pech PG, Morgan ER, Soria-Ruiz J, López-Guillén G, Aguilar-Marcelino L. A Review of the Impact of Climate Change on the Epidemiology of Gastrointestinal Nematode Infections in Small Ruminants and Wildlife in Tropical Conditions. Pathogens 2022; 11:148. [PMID: 35215092 PMCID: PMC8875231 DOI: 10.3390/pathogens11020148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/10/2022] Open
Abstract
Climate change is causing detrimental changes in living organisms, including pathogens. This review aimed to determine how climate change has impacted livestock system management, and consequently, what factors influenced the gastrointestinal nematodes epidemiology in small ruminants under tropical conditions. The latter is orientated to find out the possible solutions responding to climate change adverse effects. Climate factors that affect the patterns of transmission of gastrointestinal parasites of domesticated ruminants are reviewed. Climate change has modified the behavior of several animal species, including parasites. For this reason, new control methods are required for controlling parasitic infections in livestock animals. After a pertinent literature analysis, conclusions and perspectives of control are given.
Collapse
Affiliation(s)
- Carlos Ramón Bautista-Garfias
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, Jiutepec 62550, MR, Mexico; (C.R.B.-G.); (G.S.C.-R.)
| | - Gloria Sarahi Castañeda-Ramírez
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, Jiutepec 62550, MR, Mexico; (C.R.B.-G.); (G.S.C.-R.)
- National Institute of Research for Forestry Agricultural and Livestock (INIFAP), Experimental Station Rosario Izapa, Tuxtla Chico 30780, CS, Mexico;
| | - Zaira Magdalena Estrada-Reyes
- Department of Animal Science, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | | | - Javier Ventura-Cordero
- School of Biological Sciences, Queen’s University Belfast, Chlorine Gardens, Belfast BT9 5BL, UK; (J.V.-C.); (E.R.M.)
| | - Pedro Geraldo González-Pech
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Yucatán, Km 15.5 Road Mérida-Xmatkuil, Mérida 97100, YU, Mexico;
| | - Erick R. Morgan
- School of Biological Sciences, Queen’s University Belfast, Chlorine Gardens, Belfast BT9 5BL, UK; (J.V.-C.); (E.R.M.)
| | - Jesús Soria-Ruiz
- Geomatics Lab, National Institute of Research for Forestry Agricultural and Livestock (INIFAP), Zinacantepec 52107, MX, Mexico;
| | - Guillermo López-Guillén
- National Institute of Research for Forestry Agricultural and Livestock (INIFAP), Experimental Station Rosario Izapa, Tuxtla Chico 30780, CS, Mexico;
| | - Liliana Aguilar-Marcelino
- National Center for Disciplinary Research in Animal Health and Safety (INIFAP), Km 11 Federal Road Cuernavaca-Cuautla, Jiutepec 62550, MR, Mexico; (C.R.B.-G.); (G.S.C.-R.)
| |
Collapse
|
7
|
Casu S, Usai MG, Sechi T, Salaris SL, Miari S, Mulas G, Tamponi C, Varcasia A, Scala A, Carta A. Association analysis and functional annotation of imputed sequence data within genomic regions influencing resistance to gastro-intestinal parasites detected by an LDLA approach in a nucleus flock of Sarda dairy sheep. Genet Sel Evol 2022; 54:2. [PMID: 34979909 PMCID: PMC8722200 DOI: 10.1186/s12711-021-00690-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background Gastroinestinal nematodes (GIN) are one of the major health problem in grazing sheep. Although genetic variability of the resistance to GIN has been documented, traditional selection is hampered by the difficulty of recording phenotypes, usually fecal egg count (FEC). To identify causative mutations or markers in linkage disequilibrium (LD) to be used for selection, the detection of quantitative trait loci (QTL) for FEC based on linkage disequilibrium-linkage analysis (LDLA) was performed on 4097 ewes (from 181 sires) all genotyped with the OvineSNP50 Beadchip. Identified QTL regions (QTLR) were imputed from whole-genome sequences of 56 target animals of the population. An association analysis and a functional annotation of imputed polymorphisms in the identified QTLR were performed to pinpoint functional variants with potential impact on candidate genes identified from ontological classification or differentially expressed in previous studies. Results After clustering close significant locations, ten QTLR were defined on nine Ovis aries chromosomes (OAR) by LDLA. The ratio between the ANOVA estimators of the QTL variance and the total phenotypic variance ranged from 0.0087 to 0.0176. QTL on OAR4, 12, 19, and 20 were the most significant. The combination of association analysis and functional annotation of sequence data did not highlight any putative causative mutations. None of the most significant SNPs showed a functional effect on genes’ transcript. However, in the most significant QTLR, we identified genes that contained polymorphisms with a high or moderate impact, were differentially expressed in previous studies, contributed to enrich the most represented GO process (regulation of immune system process, defense response). Among these, the most likely candidate genes were: TNFRSF1B and SELE on OAR12, IL5RA on OAR19, IL17A, IL17F, TRIM26, TRIM38, TNFRSF21, LOC101118999, VEGFA, and TNF on OAR20. Conclusions This study performed on a large experimental population provides a list of candidate genes and polymorphisms which could be used in further validation studies. The expected advancements in the quality of the annotation of the ovine genome and the use of experimental designs based on sequence data and phenotypes from multiple breeds that show different LD extents and gametic phases may help to identify causative mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00690-7.
Collapse
Affiliation(s)
- Sara Casu
- Genetics and Biotechnology - Agris Sardegna, Olmedo, Italy
| | | | - Tiziana Sechi
- Genetics and Biotechnology - Agris Sardegna, Olmedo, Italy
| | | | - Sabrina Miari
- Genetics and Biotechnology - Agris Sardegna, Olmedo, Italy
| | - Giuliana Mulas
- Genetics and Biotechnology - Agris Sardegna, Olmedo, Italy
| | - Claudia Tamponi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Antonio Varcasia
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Antonio Scala
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | |
Collapse
|
8
|
Kerr CL, Armstrong DR, Anderson AJ. Short communication: A practical farm-based trial to compare ewe nematode control strategies in peri-parturient ewes. PLoS One 2020; 15:e0236143. [PMID: 32790679 PMCID: PMC7425951 DOI: 10.1371/journal.pone.0236143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/29/2020] [Indexed: 12/02/2022] Open
Abstract
The focus of gastro-intestinal parasite control in the sheep industry is increasingly on finding a balance between maintaining productivity of the flock whilst minimising selection for anthelmintic resistance to preserve anthelmintic efficacy for the future. Periparturient ewes represent the major source of gastro-intestinal parasites for growing lambs and are therefore a priority for parasite control. This study examines the impact on ewe faecal egg counts (FECs), lamb FECs, lamb daily live weight gains (DLWGs) and pasture larval counts of treating groups of ewes two weeks prior to lambing with either, a long-acting moxidectin treatment, short-acting doramectin or control. Six groups of twenty ewes were allocated to individual paddocks, two groups allocated to each treatment, and weekly faecal sampling was performed throughout from the ewes and from six weeks after the start of lambing in the lambs. Treatment group was found to have a significant effect on both ewe FEC (p<0.001) and lamb FEC (p = 0.001) with the group receiving the long-acting anthelmintic having the lowest ewe and lamb FECs. There was no significant effect on the DLWGs of the lambs. Pasture larval counts at the end of the study period were lowest in the long-acting wormer treatment group. The use of long-acting moxidectin may be helpful as part of a parasite control programme by reducing the worm burdens of ewes and their lambs, decreasing the number of anthelmintic treatments required in that year and by reducing pasture contamination for those sheep which will graze the pasture in the next year. However, like all anthelmintics, its use should be judicious to avoid selection for resistance.
Collapse
Affiliation(s)
- Charlotte L. Kerr
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
| | | | | |
Collapse
|
9
|
Immunoglobulins as Biomarkers for Gastrointestinal Nematodes Resistance in Small Ruminants: A systematic review. Sci Rep 2020; 10:7765. [PMID: 32385321 PMCID: PMC7210940 DOI: 10.1038/s41598-020-64775-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The rise of anthelmintic resistance worldwide has led to the development of alternative control strategies for gastrointestinal nematodes (GIN) infections, which are one of the main constraints on the health of grazing small ruminants. Presently, breeding schemes rely mainly on fecal egg count (FEC) measurements on infected animals which are time-consuming and requires expertise in parasitology. Identifying and understanding the role of immunoglobulins in the mechanisms of resistance could provide a more efficient and sustainable method of identifying nematode-resistant animals for selection. In this study we review the findings on immunoglobulin response to GIN in the literature published to date (june 2019) and discuss the potential to use immunoglobulins as biomarkers. The literature review revealed 41 studies which measured at least one immunoglobulin: 35 focused on lamb immune response (18 used non-naïve lambs) and 7 on yearlings. In this review we propose a conceptual model summarizing the role of immunoglobulins in resistance to GIN. We highlight the need for more carefully designed and documented studies to allow comparisons across different populations on the immunoglobulin response to GIN infection.
Collapse
|
10
|
Hernández-Montiel W, Martínez-Núñez MA, Ramón-Ugalde JP, Román-Ponce SI, Calderón-Chagoya R, Zamora-Bustillos R. Genome-Wide Association Study Reveals Candidate Genes for Litter Size Traits in Pelibuey Sheep. Animals (Basel) 2020; 10:ani10030434. [PMID: 32143402 PMCID: PMC7143297 DOI: 10.3390/ani10030434] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022] Open
Abstract
The Pelibuey sheep has adaptability to climatic variations, resistance to parasites, and good maternal ability, whereas some ewes present multiple births, which increases the litter size in farm sheep. The litter size in some wool sheep breeds is associated with the presence of mutations, mainly in the family of the transforming growth factor β (TGF-β) genes. To explore genetic mechanisms underlying the variation in litter size, we conducted a genome-wide association study in two groups of Pelibuey sheep (multiparous sheep with two lambs per birth vs. uniparous sheep with a single lamb at birth) using the OvineSNP50 BeadChip. We identified a total of 57 putative SNPs markers (p < 3.0 × 10-3, Bonferroni correction). The candidate genes that may be associated with litter size in Pelibuey sheep are CLSTN2, MTMR2, DLG1, CGA, ABCG5, TRPM6, and HTR1E. Genomic regions were also identified that contain three quantitative trait loci (QTLs) for aseasonal reproduction (ASREP), milk yield (MY), and body weight (BW). These results allowed us to identify SNPs associated with genes that could be involved in the reproductive process related to prolificacy.
Collapse
Affiliation(s)
- Wilber Hernández-Montiel
- TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico; (W.H.-M.); (J.P.R.-U.)
- Departamento de Ciencias Agropecuarias, Universidad del Papaloapan, Loma Bonita Oaxaca 68400, Mexico
| | - Mario Alberto Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico;
| | - Julio Porfirio Ramón-Ugalde
- TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico; (W.H.-M.); (J.P.R.-U.)
| | - Sergio Iván Román-Ponce
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Ajuchitlán Colón, Querétaro 76280, Mexico;
- Correspondence: (S.I.R.-P.); (R.Z.-B.); Tel.: +52-5538718700 (ext. 80208) (S.I.R.-P.); +52-999-341-0860 (ext. 7631) (R.Z.-B.)
| | - Rene Calderón-Chagoya
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, INIFAP, Ajuchitlán Colón, Querétaro 76280, Mexico;
| | - Roberto Zamora-Bustillos
- TecNM/Instituto Tecnológico de Conkal, Av. Tecnológico S/N, Conkal, Yucatán 97345, Mexico; (W.H.-M.); (J.P.R.-U.)
- Correspondence: (S.I.R.-P.); (R.Z.-B.); Tel.: +52-5538718700 (ext. 80208) (S.I.R.-P.); +52-999-341-0860 (ext. 7631) (R.Z.-B.)
| |
Collapse
|
11
|
Sparks AM, Watt K, Sinclair R, Pilkington JG, Pemberton JM, McNeilly TN, Nussey DH, Johnston SE. The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries). PLoS Genet 2019; 15:e1008461. [PMID: 31697674 PMCID: PMC6863570 DOI: 10.1371/journal.pgen.1008461] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/19/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
Abstract
Much of our knowledge of the drivers of immune variation, and how these responses vary over time, comes from humans, domesticated livestock or laboratory organisms. While the genetic basis of variation in immune responses have been investigated in these systems, there is a poor understanding of how genetic variation influences immunity in natural, untreated populations living in complex environments. Here, we examine the genetic architecture of variation in immune traits in the Soay sheep of St Kilda, an unmanaged population of sheep infected with strongyle gastrointestinal nematodes. We assayed IgA, IgE and IgG antibodies against the prevalent nematode Teladorsagia circumcincta in the blood plasma of > 3,000 sheep collected over 26 years. Antibody levels were significantly heritable (h2 = 0.21 to 0.57) and highly stable over an individual’s lifespan. IgA levels were strongly associated with a region on chromosome 24 explaining 21.1% and 24.5% of heritable variation in lambs and adults, respectively. This region was adjacent to two candidate loci, Class II Major Histocompatibility Complex Transactivator (CIITA) and C-Type Lectin Domain Containing 16A (CLEC16A). Lamb IgA levels were also associated with the immunoglobulin heavy constant loci (IGH) complex, and adult IgE levels and lamb IgA and IgG levels were associated with the major histocompatibility complex (MHC). This study provides evidence of high heritability of a complex immunological trait under natural conditions and provides the first evidence from a genome-wide study that large effect genes located outside the MHC region exist for immune traits in the wild. Understanding how immune responses vary in natural populations can give an insight into how infection affects the ability of hosts and parasites to survive and reproduce, and how this drives evolutionary and ecological dynamics. Yet, very little is known about how immune responses vary over an individual’s lifetime and how genes contribute to this variation under natural conditions. Our study investigates the genetic architecture of variation in three antibody types, IgA, IgE and IgG in a wild population of Soay sheep on the St Kilda archipelago in North-West Scotland. Using data collected over 26 years, we show that antibody levels have a heritable basis in lambs and adults and are stable over an individual’s lifetime. We also identify several genomic regions with large effects on immune responses. Our study offers the first insights into the genetic control of immunity in a wild population, which is essential to understand how immune profiles vary in challenging natural conditions and how natural selection maintains genetic variation in complex immune traits.
Collapse
Affiliation(s)
- Alexandra M. Sparks
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| | - Kathryn Watt
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rona Sinclair
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jill G. Pilkington
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Josephine M. Pemberton
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom N. McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, United Kingdom
| | - Daniel H. Nussey
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan E. Johnston
- Institutes of Evolutionary Biology and Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Al Kalaldeh M, Gibson J, Lee SH, Gondro C, van der Werf JHJ. Detection of genomic regions underlying resistance to gastrointestinal parasites in Australian sheep. Genet Sel Evol 2019; 51:37. [PMID: 31269896 PMCID: PMC6609385 DOI: 10.1186/s12711-019-0479-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed at identifying genomic regions that underlie genetic variation of worm egg count, as an indicator trait for parasite resistance in a large population of Australian sheep, which was genotyped with the high-density 600 K Ovine single nucleotide polymorphism array. This study included 7539 sheep from different locations across Australia that underwent a field challenge with mixed gastrointestinal parasite species. Faecal samples were collected and worm egg counts for three strongyle species, i.e. Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis were determined. Data were analysed using genome-wide association studies (GWAS) and regional heritability mapping (RHM). RESULTS Both RHM and GWAS detected a region on Ovis aries (OAR) chromosome 2 that was highly significantly associated with parasite resistance at a genome-wise false discovery rate of 5%. RHM revealed additional significant regions on OAR6, 18, and 24. Pathway analysis revealed 13 genes within these significant regions (SH3RF1, HERC2, MAP3K, CYFIP1, PTPN1, BIN1, HERC3, HERC5, HERC6, IBSP, SPP1, ISG20, and DET1), which have various roles in innate and acquired immune response mechanisms, as well as cytokine signalling. Other genes involved in haemostasis regulation and mucosal defence were also detected, which are important for protection of sheep against invading parasites. CONCLUSIONS This study identified significant genomic regions on OAR2, 6, 18, and 24 that are associated with parasite resistance in sheep. RHM was more powerful in detecting regions that affect parasite resistance than GWAS. Our results support the hypothesis that parasite resistance is a complex trait and is determined by a large number of genes with small effects, rather than by a few major genes with large effects.
Collapse
Affiliation(s)
- Mohammad Al Kalaldeh
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia. .,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
| | - John Gibson
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Sang Hong Lee
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, 5000, Australia
| | - Cedric Gondro
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.,College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Julius H J van der Werf
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
13
|
Al Kalaldeh M, Gibson J, Duijvesteijn N, Daetwyler HD, MacLeod I, Moghaddar N, Lee SH, van der Werf JHJ. Using imputed whole-genome sequence data to improve the accuracy of genomic prediction for parasite resistance in Australian sheep. Genet Sel Evol 2019; 51:32. [PMID: 31242855 PMCID: PMC6595562 DOI: 10.1186/s12711-019-0476-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/18/2019] [Indexed: 01/16/2023] Open
Abstract
Background This study aimed at (1) comparing the accuracies of genomic prediction for parasite resistance in sheep based on whole-genome sequence (WGS) data to those based on 50k and high-density (HD) single nucleotide polymorphism (SNP) panels; (2) investigating whether the use of variants within quantitative trait loci (QTL) regions that were selected from regional heritability mapping (RHM) in an independent dataset improved the accuracy more than variants selected from genome-wide association studies (GWAS); and (3) comparing the prediction accuracies between variants selected from WGS data to variants selected from the HD SNP panel. Results The accuracy of genomic prediction improved marginally from 0.16 ± 0.02 and 0.18 ± 0.01 when using all the variants from 50k and HD genotypes, respectively, to 0.19 ± 0.01 when using all the variants from WGS data. Fitting a GRM from the selected variants alongside a GRM from the 50k SNP genotypes improved the prediction accuracy substantially compared to fitting the 50k SNP genotypes alone. The gain in prediction accuracy was slightly more pronounced when variants were selected from WGS data compared to when variants were selected from the HD panel. When sequence variants that passed the GWAS \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$- log_{10} (p\,value)$$\end{document}-log10(pvalue) threshold of 3 across the entire genome were selected, the prediction accuracy improved by 5% (up to 0.21 ± 0.01), whereas when selection was limited to sequence variants that passed the same GWAS \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$- log_{10} (p\,value)$$\end{document}-log10(pvalue) threshold of 3 in regions identified by RHM, the accuracy improved by 9% (up to 0.25 ± 0.01). Conclusions Our results show that through careful selection of sequence variants from the QTL regions, the accuracy of genomic prediction for parasite resistance in sheep can be improved. These findings have important implications for genomic prediction in sheep.
Collapse
Affiliation(s)
- Mohammad Al Kalaldeh
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia. .,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
| | - John Gibson
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Naomi Duijvesteijn
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Hans D Daetwyler
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Iona MacLeod
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083, Australia
| | - Nasir Moghaddar
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Sang Hong Lee
- Australian Centre for Precision Health, University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, 5000, Australia
| | - Julius H J van der Werf
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.,School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
14
|
Álvarez I, Fernández I, Soudré A, Traoré A, Pérez-Pardal L, Sanou M, Tapsoba SAR, Menéndez-Arias NA, Goyache F. Identification of genomic regions and candidate genes of functional importance for gastrointestinal parasite resistance traits in Djallonké sheep of Burkina Faso. Arch Anim Breed 2019; 62:313-323. [PMID: 31807642 PMCID: PMC6853132 DOI: 10.5194/aab-62-313-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/15/2019] [Indexed: 01/29/2023] Open
Abstract
A total of 184 Djallonké lambs from Burkina Faso with phenotypes for packed-cell volume (PCV), log-transformed fecal egg count (lnFEC), and FAffa MAlan CHArt (FAMACHA©) eye scores were typed with the OvineSNP50 BeadChip of Illumina to contribute to the knowledge of the genetic basis of gastrointestinal (GIN) parasite resistance in sheep. Association analysis identified a total of 22 single-nucleotide polymorphisms (SNPs) related with PCV (6 SNPs), lnFEC (7), and FAMACHA scores (9) distributed among 14 Ovis aries chromosomes (OAR). The identified SNPs accounted for 18.76 % of the phenotypic variance for PCV, 21.24 % for lnFEC, and 34.38 % for FAMACHA scores. Analyses pointed out the importance of OAR2 for PCV, OAR3 for FAMACHA scores, and OAR6 for lnFEC. The 125 kb regions surrounding the identified SNPs overlapped with seven previously reported quantitative trait loci (QTLs) for the traits analyzed in the current work. The only chromosome harboring markers associated with the three traits studied was OAR2. In agreement with the literature, two different chromosomal areas on OAR2 can play a major role in the traits studied. Gene-annotation enrichment analysis allowed us to identify a total of 34 potential candidate genes for PCV (6 genes), lnFEC (4), and FAMACHA scores (24). Annotation analysis allowed us to identify one functional term cluster with a significant enrichment score (1.302). The cluster included five genes (TRIB3, CDK4, CSNK2A1, MARK1, and SPATA5) involved in immunity-related and cell-proliferation processes. Furthermore, this research suggests that the MBL2 gene can underlie a previously reported QTL for immunoglobulin A levels on OAR22 and confirms the importance of genes involved in growth and size (such as the ADAMTS17 gene on OAR18) for GIN resistance traits. Since association studies for the ascertainment of the genetic basis of GIN resistance may be affected by genotype-environment interactions, obtaining information from local sheep populations managed in harsh environments contributes to the identification of novel genomic areas of functional importance for GIN resistance for that trait.
Collapse
Affiliation(s)
- Isabel Álvarez
- SERIDA Deva., Camino de Rioseco 1225, 33394 Gijón (Asturias), Spain
| | - Iván Fernández
- SERIDA Deva., Camino de Rioseco 1225, 33394 Gijón (Asturias), Spain
| | - Albert Soudré
- Université de Koudougou, BP 376 Koudougou, Burkina Faso, Burkina Faso
| | - Amadou Traoré
- Institut de l'Environnement et Recherches Agricoles (INERA), 04 BP 8645 Ouagadougou 04, Burkina Faso
| | | | - Moumouni Sanou
- Institut de l'Environnement et Recherches Agricoles (INERA), 04 BP 8645 Ouagadougou 04, Burkina Faso
| | - Stephane A R Tapsoba
- Institut de l'Environnement et Recherches Agricoles (INERA), 04 BP 8645 Ouagadougou 04, Burkina Faso
| | | | - Félix Goyache
- SERIDA Deva., Camino de Rioseco 1225, 33394 Gijón (Asturias), Spain
| |
Collapse
|
15
|
Ujvari B, Klaassen M, Raven N, Russell T, Vittecoq M, Hamede R, Thomas F, Madsen T. Genetic diversity, inbreeding and cancer. Proc Biol Sci 2019; 285:rspb.2017.2589. [PMID: 29563261 DOI: 10.1098/rspb.2017.2589] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/28/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic diversity is essential for adaptive capacities, providing organisms with the potential of successfully responding to intrinsic and extrinsic challenges. Although a clear reciprocal link between genetic diversity and resistance to parasites and pathogens has been established across taxa, the impact of loss of genetic diversity by inbreeding on the emergence and progression of non-communicable diseases, such as cancer, has been overlooked. Here we provide an overview of such associations and show that low genetic diversity and inbreeding associate with an increased risk of cancer in both humans and animals. Cancer being a multifaceted disease, loss of genetic diversity can directly (via accumulation of oncogenic homozygous mutations) and indirectly (via increased susceptibility to oncogenic pathogens) impact abnormal cell emergence and escape of immune surveillance. The observed link between reduced genetic diversity and cancer in wildlife may further imperil the long-term survival of numerous endangered species, highlighting the need to consider the impact of cancer in conservation biology. Finally, the somewhat incongruent data originating from human studies suggest that the association between genetic diversity and cancer development is multifactorial and may be tumour specific. Further studies are therefore crucial in order to elucidate the underpinnings of the interactions between genetic diversity, inbreeding and cancer.
Collapse
Affiliation(s)
- Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia.,School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Nynke Raven
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Tracey Russell
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marion Vittecoq
- Institut de Recherche de la Tour du Valat, le Sambuc, 13200 Arles, France
| | - Rodrigo Hamede
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia.,School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Frédéric Thomas
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Thomas Madsen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia .,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
16
|
Sweeney T, Hanrahan JP, Ryan MT, Good B. Immunogenomics of gastrointestinal nematode infection in ruminants - breeding for resistance to produce food sustainably and safely. Parasite Immunol 2017; 38:569-86. [PMID: 27387842 DOI: 10.1111/pim.12347] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
Abstract
Gastrointestinal nematode (GIN) infection of ruminants represents a major health and welfare challenge for livestock producers worldwide. The emergence of anthelmintic resistance in important GIN species and the associated animal welfare concerns have stimulated interest in the development of alternative and more sustainable strategies aimed at the effective management of the impact of GINs. These integrative strategies include selective breeding using genetic/genomic tools, grazing management, biological control, nutritional supplementation, vaccination and targeted selective treatment. In this review, the logic of selecting for "resistance" to GIN infection as opposed to "resilience" or "tolerance" is discussed. This is followed by a review of the potential application of immunogenomics to genetic selection for animals that have the capacity to withstand the impact of GIN infection. Advances in relevant genomic technologies are highlighted together with how these tools can be advanced to support the integration of immunogenomic information into ruminant breeding programmes.
Collapse
Affiliation(s)
- T Sweeney
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | | | - M T Ryan
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - B Good
- Animal & Grassland Research & Innovation Centre, Athenry, Co. Galway, Ireland
| |
Collapse
|
17
|
Berton MP, de Oliveira Silva RM, Peripolli E, Stafuzza NB, Martin JF, Álvarez MS, Gavinã BV, Toro MA, Banchero G, Oliveira PS, Eler JP, Baldi F, Ferraz JBS. Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate. J Anim Sci Biotechnol 2017; 8:73. [PMID: 28878894 PMCID: PMC5584554 DOI: 10.1186/s40104-017-0190-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/12/2017] [Indexed: 12/26/2022] Open
Abstract
Background The aim of this study was to estimate variance components and to identify genomic regions and pathways associated with resistance to gastrointestinal parasites, particularly Haemonchus contortus, in a breed of sheep adapted to tropical climate. Phenotypes evaluations were performed to verify resistance to gastrointestinal parasites, and were divided into two categories: i) farm phenotypes, assessing body condition score (BCS), degree of anemia assessed by the famacha chart (FAM), fur score (FS) and feces consistency (FC); and ii) lab phenotypes, comprising blood analyses for hematocrit (HCT), white blood cell count (WBC), red blood cell count (RBC), hemoglobin (HGB), platelets (PLT) and transformed (log10) egg per gram of feces (EPGlog). A total of 576 animals were genotyped with the Ovine SNP12k BeadChip (Illumina, Inc.), that contains 12,785 bialleleic SNP markers. The variance components were estimated using a single trait model by single step genomic BLUP procedure. Results The overall linkage disequilibrium (LD) mean between pairs of markers measured by r2 was 0.23. The overall LD mean between markers considering windows up to 10 Mb was 0.07. The mean LD between adjacent SNPs across autosomes ranged from 0.02 to 0.10. Heritability estimates were low for EPGlog (0.11), moderate for RBC (0.18), PLT (0.17) HCT (0.20), HGB (0.16) and WBC (0.22), and high for FAM (0.35). A total of 22, 21, 23, 20, 26, 25 and 23 windows for EPGlog for FAM, WBC, RBC, PLT, HCT and HGB traits were identified, respectively. Among the associated windows, 10 were shown to be common to HCT and HGB traits on OAR1, OAR2, OAR3, OAR5, OAR8 and OAR15. Conclusion The traits indicating gastrointestinal parasites resistance presented an adequate genetic variability to respond to selection in Santa Inês breed, and it is expected a higher genetic gain for FAM trait when compared to the others. The level of LD estimated for markers separated by less than 1 Mb indicated that the Ovine SNP12k BeadChip might be a suitable tool for identifying genomic regions associated with traits related to gastrointestinal parasite resistance. Several candidate genes related to immune system development and activation, inflammatory response, regulation of lymphocytes and leukocytes proliferation were found. These genes may help in the selection of animals with higher resistance to parasites. Electronic supplementary material The online version of this article (doi:10.1186/s40104-017-0190-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariana Piatto Berton
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, SP CEP 14884-900 Brazil
| | - Rafael Medeiros de Oliveira Silva
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, SP CEP 14884-900 Brazil
| | - Elisa Peripolli
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, SP CEP 14884-900 Brazil
| | - Nedenia Bonvino Stafuzza
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, SP CEP 14884-900 Brazil
| | - Jesús Fernández Martin
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria INIA, Crta. de la Coruña, km 7,5 -, 28040 Madrid, Spain
| | - Maria Saura Álvarez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria INIA, Crta. de la Coruña, km 7,5 -, 28040 Madrid, Spain
| | - Beatriz Villanueva Gavinã
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria INIA, Crta. de la Coruña, km 7,5 -, 28040 Madrid, Spain
| | - Miguel Angel Toro
- Departamento de Producción Agraria, School of Agricultural, Food and Byosystems Engineering, Universisdad Politécnica de Madrid, Campus Ciudad Universitaria Avda. Complutense 3 - Avda. Puerta Hierro, 28040 Madrid, Spain
| | - Georgget Banchero
- Instituto Nacional de Investigación Agropecuária (INIA), Ruta 50 Km. 12, Colonia, Uruguay
| | - Priscila Silva Oliveira
- Faculdade de Zootecnia e Engenharia de Alimentos, Nucleo de Apoio à Pesquisa em Melhoramento Animal, Biotecnologia e Transgenia, Universidade de São Paulo, Rua Duque de Caxias Norte, 225, Pirassununga, SP CEP 13635-900 Brazil
| | - Joanir Pereira Eler
- Faculdade de Zootecnia e Engenharia de Alimentos, Nucleo de Apoio à Pesquisa em Melhoramento Animal, Biotecnologia e Transgenia, Universidade de São Paulo, Rua Duque de Caxias Norte, 225, Pirassununga, SP CEP 13635-900 Brazil
| | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Via de acesso Prof. Paulo Donato Castellane, s/no, Jaboticabal, SP CEP 14884-900 Brazil
| | - José Bento Sterman Ferraz
- Faculdade de Zootecnia e Engenharia de Alimentos, Nucleo de Apoio à Pesquisa em Melhoramento Animal, Biotecnologia e Transgenia, Universidade de São Paulo, Rua Duque de Caxias Norte, 225, Pirassununga, SP CEP 13635-900 Brazil
| |
Collapse
|
18
|
Guo Y, Fudali S, Gimeno J, DiGennaro P, Chang S, Williamson VM, Bird DM, Nielsen DM. Networks Underpinning Symbiosis Revealed Through Cross-Species eQTL Mapping. Genetics 2017; 206:2175-2184. [PMID: 28642272 PMCID: PMC5560814 DOI: 10.1534/genetics.117.202531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/09/2017] [Indexed: 12/13/2022] Open
Abstract
Organisms engage in extensive cross-species molecular dialog, yet the underlying molecular actors are known for only a few interactions. Many techniques have been designed to uncover genes involved in signaling between organisms. Typically, these focus on only one of the partners. We developed an expression quantitative trait locus (eQTL) mapping-based approach to identify cause-and-effect relationships between genes from two partners engaged in an interspecific interaction. We demonstrated the approach by assaying expression of 98 isogenic plants (Medicago truncatula), each inoculated with a genetically distinct line of the diploid parasitic nematode Meloidogyne hapla With this design, systematic differences in gene expression across host plants could be mapped to genetic polymorphisms of their infecting parasites. The effects of parasite genotypes on plant gene expression were often substantial, with up to 90-fold (P = 3.2 × 10-52) changes in expression levels caused by individual parasite loci. Mapped loci included a number of pleiotropic sites, including one 87-kb parasite locus that modulated expression of >60 host genes. The 213 host genes identified were substantially enriched for transcription factors. We distilled higher-order connections between polymorphisms and genes from both species via network inference. To replicate our results and test whether effects were conserved across a broader host range, we performed a confirmatory experiment using M. hapla-infected tomato. This revealed that homologous genes were similarly affected. Finally, to validate the broader utility of cross-species eQTL mapping, we applied the strategy to data from a Salmonella infection study, successfully identifying polymorphisms in the human genome affecting bacterial expression.
Collapse
Affiliation(s)
- Yuelong Guo
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695
| | - Sylwia Fudali
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Jacinta Gimeno
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Peter DiGennaro
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695
| | - Stella Chang
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695
| | - Valerie M Williamson
- Department of Plant Pathology, University of California, Davis, California 95616
| | - David McK Bird
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695
| | - Dahlia M Nielsen
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
19
|
Chitneedi PK, Arranz JJ, Suarez-Vega A, García-Gámez E, Gutiérrez-Gil B. Estimations of linkage disequilibrium, effective population size and ROH-based inbreeding coefficients in Spanish Churra sheep using imputed high-density SNP genotypes. Anim Genet 2017; 48:436-446. [DOI: 10.1111/age.12564] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 11/28/2022]
Affiliation(s)
- P. K. Chitneedi
- Departamento de Producción Animal; Facultad de Veterinaria; Universidad de León; Campus de Vegazana s/n León 24071 Spain
| | - J. J. Arranz
- Departamento de Producción Animal; Facultad de Veterinaria; Universidad de León; Campus de Vegazana s/n León 24071 Spain
| | - A. Suarez-Vega
- Departamento de Producción Animal; Facultad de Veterinaria; Universidad de León; Campus de Vegazana s/n León 24071 Spain
| | - E. García-Gámez
- Departamento de Producción Animal; Facultad de Veterinaria; Universidad de León; Campus de Vegazana s/n León 24071 Spain
| | - B. Gutiérrez-Gil
- Departamento de Producción Animal; Facultad de Veterinaria; Universidad de León; Campus de Vegazana s/n León 24071 Spain
| |
Collapse
|
20
|
Purfield DC, McParland S, Wall E, Berry DP. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS One 2017; 12:e0176780. [PMID: 28463982 PMCID: PMC5413029 DOI: 10.1371/journal.pone.0176780] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
Domestication and the subsequent selection of animals for either economic or morphological features can leave a variety of imprints on the genome of a population. Genomic regions subjected to high selective pressures often show reduced genetic diversity and frequent runs of homozygosity (ROH). Therefore, the objective of the present study was to use 42,182 autosomal SNPs to identify genomic regions in 3,191 sheep from six commercial breeds subjected to selection pressure and to quantify the genetic diversity within each breed using ROH. In addition, the historical effective population size of each breed was also estimated and, in conjunction with ROH, was used to elucidate the demographic history of the six breeds. ROH were common in the autosomes of animals in the present study, but the observed breed differences in patterns of ROH length and burden suggested differences in breed effective population size and recent management. ROH provided a sufficient predictor of the pedigree inbreeding coefficient, with an estimated correlation between both measures of 0.62. Genomic regions under putative selection were identified using two complementary algorithms; the fixation index and hapFLK. The identified regions under putative selection included candidate genes associated with skin pigmentation, body size and muscle formation; such characteristics are often sought after in modern-day breeding programs. These regions of selection frequently overlapped with high ROH regions both within and across breeds. Multiple yet uncharacterised genes also resided within putative regions of selection. This further substantiates the need for a more comprehensive annotation of the sheep genome as these uncharacterised genes may contribute to traits of interest in the animal sciences. Despite this, the regions identified as under putative selection in the current study provide an insight into the mechanisms leading to breed differentiation and genetic variation in meat production.
Collapse
Affiliation(s)
- Deirdre C. Purfield
- Animal & Grassland Research and Innovation Center, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
- * E-mail:
| | - Sinead McParland
- Animal & Grassland Research and Innovation Center, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Eamon Wall
- Sheep Ireland, Bandon, Co. Cork, Ireland
| | - Donagh P. Berry
- Animal & Grassland Research and Innovation Center, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
21
|
Zvinorova PI, Halimani TE, Muchadeyi FC, Matika O, Riggio V, Dzama K. Breeding for resistance to gastrointestinal nematodes - the potential in low-input/output small ruminant production systems. Vet Parasitol 2016; 225:19-28. [PMID: 27369571 PMCID: PMC4938797 DOI: 10.1016/j.vetpar.2016.05.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 04/28/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023]
Abstract
The control of gastrointestinal nematodes (GIN) is mainly based on the use of drugs, grazing management, use of copper oxide wire particles and bioactive forages. Resistance to anthelmintic drugs in small ruminants is documented worldwide. Host genetic resistance to parasites, has been increasingly used as a complementary control strategy, along with the conventional intervention methods mentioned above. Genetic diversity in resistance to GIN has been well studied in experimental and commercial flocks in temperate climates and more developed economies. However, there are very few report outputs from the more extensive low-input/output smallholder systems in developing and emerging countries. Furthermore, results on quantitative trait loci (QTL) associated with nematode resistance from various studies have not always been consistent, mainly due to the different nematodes studied, different host breeds, ages, climates, natural infections versus artificial challenges, infection level at sampling periods, among others. The increasing use of genetic markers (Single Nucleotide Polymorphisms, SNPs) in GWAS or the use of whole genome sequence data and a plethora of analytic methods offer the potential to identify loci or regions associated nematode resistance. Genomic selection as a genome-wide level method overcomes the need to identify candidate genes. Benefits in genomic selection are now being realised in dairy cattle and sheep under commercial settings in the more advanced countries. However, despite the commercial benefits of using these tools, there are practical problems associated with incorporating the use of marker-assisted selection or genomic selection in low-input/output smallholder farming systems breeding schemes. Unlike anthelmintic resistance, there is no empirical evidence suggesting that nematodes will evolve rapidly in response to resistant hosts. The strategy of nematode control has evolved to a more practical manipulation of host-parasite equilibrium in grazing systems by implementation of various strategies, in which improvement of genetic resistance of small ruminant should be included. Therefore, selection for resistant hosts can be considered as one of the sustainable control strategy, although it will be most effective when used to complement other control strategies such as grazing management and improving efficiency of anthelmintics currently.
Collapse
Affiliation(s)
- P I Zvinorova
- Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa; Department of Para-clinical Veterinary Studies, University of Zimbabwe, P.O. MP167, Mt. Pleasant, Harare, Zimbabwe.
| | - T E Halimani
- Department of Animal Science, University of Zimbabwe, P.O. MP167, Mt. Pleasant, Harare, Zimbabwe.
| | - F C Muchadeyi
- Biotechnology Platform, Agriculture Research Council Private Bag X5, Onderstepoort, 0110, South Africa.
| | - O Matika
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, MidlothianEH25 9RG, UK.
| | - V Riggio
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, MidlothianEH25 9RG, UK.
| | - K Dzama
- Department of Animal Sciences, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
22
|
Benavides MV, Sonstegard TS, Van Tassell C. Genomic Regions Associated with Sheep Resistance to Gastrointestinal Nematodes. Trends Parasitol 2016; 32:470-480. [PMID: 27183838 DOI: 10.1016/j.pt.2016.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/14/2016] [Accepted: 03/16/2016] [Indexed: 12/18/2022]
Abstract
Genetic markers for sheep resistance to gastrointestinal parasites have long been sought by the livestock industry as a way to select more resistant individuals and to help farmers reduce parasite transmission by identifying and removing high egg shedders from the flock. Polymorphisms related to the major histocompatibility complex and interferon (IFN)-γ genes have been the most frequently reported markers associated with infection. Recently, a new picture is emerging from genome-wide studies, showing that not only immune mechanisms are important determinants of host resistance but that gastrointestinal mucus production and hemostasis pathways may also play a role.
Collapse
Affiliation(s)
| | | | - Curtis Van Tassell
- Animal Genomics and Improvement Laboratory, US Department of Agriculture (USDA)/Agricultural Research Service (ARS) Beltsville Agricultural Research Center, Beltsville, MD, USA
| |
Collapse
|
23
|
Atlija M, Arranz JJ, Martinez-Valladares M, Gutiérrez-Gil B. Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array. Genet Sel Evol 2016; 48:4. [PMID: 26791855 PMCID: PMC4719203 DOI: 10.1186/s12711-016-0182-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Persistence of gastrointestinal nematode (GIN) infection and the related control methods have major impacts on the sheep industry worldwide. Based on the information generated with the Illumina OvineSNP50 BeadChip (50 K chip), this study aims at confirming quantitative trait loci (QTL) that were previously identified by microsatellite-based genome scans and identifying new QTL and allelic variants that are associated with indicator traits of parasite resistance in adult sheep. We used a commercial half-sib population of 518 Spanish Churra ewes with available data for fecal egg counts (FEC) and serum levels of immunoglobulin A (IgA) to perform different genome scan QTL mapping analyses based on classical linkage analysis (LA), a combined linkage disequilibrium and linkage analysis (LDLA) and a genome-wide association study (GWAS). RESULTS For the FEC and IgA traits, we detected a total of three 5 % chromosome-wise significant QTL by LA and 63 significant regions by LDLA, of which 13 reached the 5 % genome-wise significance level. The GWAS also revealed 10 significant SNPs associated with IgAt, although no significant associations were found for LFEC. Some of the significant QTL for LFEC that were detected by LA and LDLA on OAR6 overlapped with a highly significant QTL that was previously detected in a different half-sib population of Churra sheep. In addition, several new QTL and SNP associations were identified, some of which show correspondence with effects that were reported for different populations of young sheep. Other significant associations that did not coincide with previously reported associations could be related to the specific immune response of adult animals. DISCUSSION Our results replicate a FEC-related QTL located on OAR6 that was previously reported in Churra sheep and provide support for future research on the identification of the allelic variant that underlies this QTL. The small proportion of genetic variance explained by the detected QTL and the large number of functional candidate genes identified here are consistent with the hypothesis that GIN resistance/susceptibility is a complex trait that is not determined by individual genes acting alone but rather by complex multi-gene interactions. Future studies that combine genomic variation analysis and functional genomic information may help elucidate the biology of GIN disease resistance in sheep.
Collapse
Affiliation(s)
- Marina Atlija
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain.
| | - Juan-Jose Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain.
| | - María Martinez-Valladares
- Instituto de Ganadería de Montaña, CSIC-ULE, Grulleros, León, 24346, Spain. .,Departamento de Sanidad Animal, Universidad de León, León, 24071, Spain.
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain.
| |
Collapse
|
24
|
Pickering NK, Auvray B, Dodds KG, McEwan JC. Genomic prediction and genome-wide association study for dagginess and host internal parasite resistance in New Zealand sheep. BMC Genomics 2015; 16:958. [PMID: 26576677 PMCID: PMC4650926 DOI: 10.1186/s12864-015-2148-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/26/2015] [Indexed: 01/12/2023] Open
Abstract
Background Dagginess (faecal soiling of the perineum region) and host nematode parasite resistance are important animal welfare traits in New Zealand sheep. Genomic prediction (GP) estimates the genetic merit, as a molecular breeding value (mBV), for each trait based on many SNPs. The additional information the mBV provides (as determined by its accuracy) has led to its incorporation into breeding schemes. Some GP methods give SNP effects, which provide additional information to identify genome-wide associations (GWAS) for a trait of interest. Here we report results from a GP and GWAS study for dagginess and host nematode parasite resistance in a New Zealand sheep industry resource. Results Genomic prediction analysis was performed using 50K SNP chip data and parent average-removed, de-regressed BVs for five traits, from a resource of 8705 pedigree recorded animals. The five traits were dag score at three and eight months (DAG3, DAG8) and nematode faecal egg count in summer (FEC1), autumn (FEC2) and as an adult (AFEC). The resource consisted of Romney, Coopworth, Perendale, Texel and various breed crosses (designated: CompRCP, CompRCPT and CompCRP). The pure breeds, apart from Texel, plus CompRCP were used to develop the GP. The resulting SNP effects were used to identify genetic regions associated with dagginess and parasite resistance. Accuracies of the weighted correlation between mBV and true BV ranged between −0.07 (Texel) and 0.56 (Coopworth) for DAG3 and DAG8. For FEC1, FEC2 and AFEC accuracies ranged between −0.22 (CompRCPT) and 0.69 (Coopworth). The weighted average individual accuracy (calculated from theory) ranges were 0.13 (Texel) to 0.52 (Coopworth) and 0.11 (Texel) to 0.55 (Coopworth) respectively, for dagginess and parasite traits. There was one SNP for DAG8 that reached Bonferroni significance threshold (P < 1 × 10−6) on OAR15, the same two SNPs for each of the parasite traits (OAR26) and none for DAG3. A notable peak was also observed on OAR7 for all the parasite traits, however, it did not reach the Bonferroni significance threshold. Conclusions This study presents the first results of a GWAS on dagginess and faecal egg count traits in New Zealand sheep. The results suggest that there are quantitative trait loci on OAR 15 for dagginess and on OAR26 and seven for faecal egg count. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2148-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalie K Pickering
- Invermay Agricultural Centre, AgResearch Limited, Puddle Alley, Private Bag 50034, Mosgiel, 9053, New Zealand. .,Focus Genetics Ltd, PO Box 12075, Ahuriri, Napier, 4144, New Zealand.
| | - Benoit Auvray
- Invermay Agricultural Centre, AgResearch Limited, Puddle Alley, Private Bag 50034, Mosgiel, 9053, New Zealand. .,Department of Mathematics and Statistics, University of Otago, Dunedin, 9058, New Zealand.
| | - Ken G Dodds
- Invermay Agricultural Centre, AgResearch Limited, Puddle Alley, Private Bag 50034, Mosgiel, 9053, New Zealand.
| | - John C McEwan
- Invermay Agricultural Centre, AgResearch Limited, Puddle Alley, Private Bag 50034, Mosgiel, 9053, New Zealand.
| |
Collapse
|
25
|
Driscoll CC, Driscoll JG, Hazekamp C, Mitton JB, Wehausen JD. A tale of two markers: Population genetics of colorado rocky mountain bighorn sheep estimated from microsatellite and mitochondrial data. J Wildl Manage 2015. [DOI: 10.1002/jwmg.895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Catherine C. Driscoll
- Department of Ecology and Evolutionary Biology; University of Colorado; Campus Box 224, Boulder CO 80309-0334
| | | | - Corey Hazekamp
- University of Massachusetts; 100 Morrissey Boulevard, Boston MA 02125-3393
| | - Jeffry B. Mitton
- Department of Ecology and Evolutionary Biology; University of Colorado; Campus Box 224, Boulder CO 80309-0334
| | - John D. Wehausen
- University of California San Diego; White Mountain Research Station; 3000 East Line Street, Bishop CA 93514
| |
Collapse
|
26
|
Kim ES, Sonstegard TS, da Silva MVGB, Gasbarre LC, Van Tassell CP. Genome-wide scan of gastrointestinal nematode resistance in closed Angus population selected for minimized influence of MHC. PLoS One 2015; 10:e0119380. [PMID: 25803687 PMCID: PMC4372334 DOI: 10.1371/journal.pone.0119380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/30/2015] [Indexed: 12/03/2022] Open
Abstract
Genetic markers associated with parasite indicator traits are ideal targets for study of marker assisted selection aimed at controlling infections that reduce herd use of anthelminthics. For this study, we collected gastrointestinal (GI) nematode fecal egg count (FEC) data from post-weaning animals of an Angus resource population challenged to a 26 week natural exposure on pasture. In all, data from 487 animals was collected over a 16 year period between 1992 and 2007, most of which were selected for a specific DRB1 allele to reduce the influence of potential allelic variant effects of the MHC locus. A genome-wide association study (GWAS) based on BovineSNP50 genotypes revealed six genomic regions located on bovine Chromosomes 3, 5, 8, 15 and 27; which were significantly associated (-log10 p=4.3) with Box-Cox transformed mean FEC (BC-MFEC). DAVID analysis of the genes within the significant genomic regions suggested a correlation between our results and annotation for genes involved in inflammatory response to infection. Furthermore, ROH and selection signature analyses provided strong evidence that the genomic regions associated BC-MFEC have not been affected by local autozygosity or recent experimental selection. These findings provide useful information for parasite resistance prediction for young grazing cattle and suggest new candidate gene targets for development of disease-modifying therapies or future studies of host response to GI parasite infection.
Collapse
Affiliation(s)
- Eui-Soo Kim
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Tad S. Sonstegard
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
- * E-mail:
| | | | - Louis C. Gasbarre
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Curtis P. Van Tassell
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| |
Collapse
|
27
|
McManus C, do Prado Paim T, de Melo CB, Brasil BSAF, Paiva SR. Selection methods for resistance to and tolerance of helminths in livestock. ACTA ACUST UNITED AC 2014; 21:56. [PMID: 25350972 PMCID: PMC4211276 DOI: 10.1051/parasite/2014055] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022]
Abstract
Helminthiases are among the most important livestock diseases worldwide, in particular for small ruminants, which are the focus of this review. Resource Allocation Theory implies that high-productivity farm animals proportionate insufficient resources for adequate coping with stressful conditions. Significant differences between breeds and within breeds are seen, as well as genotype vs. environment interactions. With improvement of genetic host resistance to infection, transmission of infection will be impacted. On the other hand, genetic improvement of resilience can lead to a reduction in clinical signs of disease, but not necessarily reduce transmission of infection to other animals. Faecal egg count (FEC) is the main measurement used to evaluate helminthiasis load, despite the fact that the protocols and analytical methods can affect the results, and the FEC data frequently shows aggregative, negative skewed distribution, and a high coefficient of variation. Mass selection where heritability is generally medium to low generally produces slow results and low economic returns. Many studies have been published linking resistance to nematodes in livestock to Quantitative Trait Loci and most studies have concentrated on chromosomes where the major histocompatibility complex region is located. Nevertheless, these complex traits have been seen to be affected by thousands of variants that each has a small effect. More recent studies have shown that genome-wide selection strategies can be useful in selecting animals for improved production and resistance traits in this case.
Collapse
Affiliation(s)
- Concepta McManus
- Vice-Coordinator INCT-Pecuaria, Universidade Federal do Rio Grande do Sul, Departamento de Zootecnia, Av. Bento Gonçalves, CEP 91540-000 Porto Alegre, Rio Grande do Sul, Brazil - Universidade de Brasília, Campus Darcy Ribeiro, 70910-900 Asa Norte, Brasilia, Distrito Federal, Brazil
| | - Tiago do Prado Paim
- INCT - Pecuaria, Universidade Federal de Minas Gerais, 30161-970 Belo Horizonte, Brazil - Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Iporá, Avenida Oeste s/n, saída para Piranhas, CEP 76.200-000 Iporá, Goiás, Brazil
| | - Cristiano Barros de Melo
- Universidade de Brasília, Campus Darcy Ribeiro, 70910-900 Asa Norte, Brasilia, Distrito Federal, Brazil - INCT - Pecuaria, Universidade Federal de Minas Gerais, 30161-970 Belo Horizonte, Brazil
| | | | - Samuel R Paiva
- Secretaria de Relações Internacionais, Embrapa, Final W5 Norte, 70770-901 Brasília, Brazil - EMBRAPA Recursos Genéticos e Biotecnologia, Final W5 Norte, 70770-901 Brasília, Brazil
| |
Collapse
|
28
|
Abstract
Parasite burden varies widely between individuals within a population, and can covary with multiple aspects of individual phenotype. Here we investigate the sources of variation in faecal strongyle eggs counts, and its association with body weight and a suite of haematological measures, in a cohort of indigenous zebu calves in Western Kenya, using relatedness matrices reconstructed from single nucleotide polymorphism (SNP) genotypes. Strongyle egg count was heritable (h2 = 23·9%, s.e. = 11·8%) and we also found heritability of white blood cell counts (WBC) (h2 = 27·6%, s.e. = 10·6%). All the traits investigated showed negative phenotypic covariances with strongyle egg count throughout the first year: high worm counts were associated with low values of WBC, red blood cell count, total serum protein and absolute eosinophil count. Furthermore, calf body weight at 1 week old was a significant predictor of strongyle EPG at 16–51 weeks, with smaller calves having a higher strongyle egg count later in life. Our results indicate a genetic basis to strongyle EPG in this population, and also reveal consistently strong negative associations between strongyle infection and other important aspects of the multivariate phenotype.
Collapse
|
29
|
Xu L, Hou Y, Bickhart DM, Song J, Van Tassell CP, Sonstegard TS, Liu GE. A genome-wide survey reveals a deletion polymorphism associated with resistance to gastrointestinal nematodes in Angus cattle. Funct Integr Genomics 2014; 14:333-9. [PMID: 24718732 DOI: 10.1007/s10142-014-0371-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/17/2023]
Abstract
Gastrointestinal (GI) nematode infections are a worldwide threat to human health and animal production. In this study, we performed a genome-wide association study between copy number variations (CNVs) and resistance to GI nematodes in an Angus cattle population. Using a linear regression analysis, we identified one deletion CNV which reaches genome-wide significance after Bonferroni correction. With multiple mapped human olfactory receptor genes but no annotated bovine genes in the region, this significantly associated CNV displays high population frequencies (58.26 %) with a length of 104.8 kb on chr7. We further investigated the linkage disequilibrium (LD) relationships between this CNV and its nearby single nucleotide polymorphisms (SNPs) and genes. The underlining haplotype blocks contain immune-related genes such as ZNF496 and NLRP3. As this CNV co-segregates with linked SNPs and associated genes, we suspect that it could contribute to the detected variations in gene expression and thus differences in host parasite resistance.
Collapse
Affiliation(s)
- Lingyang Xu
- GEL: Bovine Functional Genomics Laboratory, BARC, USDA-ARS, Building 306, Room 111, BARC-East, Beltsville, MD, 20705, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Riggio V, Pong-Wong R, Sallé G, Usai MG, Casu S, Moreno CR, Matika O, Bishop SC. A joint analysis to identify loci underlying variation in nematode resistance in three European sheep populations. J Anim Breed Genet 2014; 131:426-36. [PMID: 24397290 PMCID: PMC4258091 DOI: 10.1111/jbg.12071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 11/22/2013] [Indexed: 11/27/2022]
Abstract
Gastrointestinal nematode infections are one of the main health/economic issues in sheep industries, worldwide. Indicator traits for resistance such as faecal egg count (FEC) are commonly used in genomic studies; however, published results are inconsistent among breeds. Meta (or joint)-analysis is a tool for aggregating information from multiple independent studies. The aim of this study was to identify loci underlying variation in FEC, as an indicator of nematode resistance, in a joint analysis using data from three populations (Scottish Blackface, Sarda × Lacaune and Martinik Black-Belly × Romane), genotyped with the ovine 50k SNP chip. The trait analysed was the average animal effect for Strongyles and Nematodirus FEC data. Analyses were performed with regional heritability mapping (RHM), fitting polygenic effects with either the whole genomic relationship matrix or matrices excluding the chromosome being interrogated. Across-population genomic covariances were set to zero. After quality control, 4123 animals and 38 991 SNPs were available for the analysis. RHM identified genome-wide significant regions on OAR4, 12, 14, 19 and 20, with the latter being the most significant. The OAR20 region is close to the major histocompatibility complex, which has often been proposed as a functional candidate for nematode resistance. This region was significant only in the Sarda × Lacaune population. Several other regions, on OAR1, 3, 4, 5, 7, 12, 19, 20 and 24, were significant at the suggestive level.
Collapse
Affiliation(s)
- V Riggio
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Laurenson YCSM, Kyriazakis I, Bishop SC. Can we use genetic and genomic approaches to identify candidate animals for targeted selective treatment. Vet Parasitol 2013; 197:379-83. [PMID: 23683653 DOI: 10.1016/j.vetpar.2013.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/11/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
Abstract
Estimated breeding values (EBV) for faecal egg count (FEC) and genetic markers for host resistance to nematodes may be used to identify resistant animals for selective breeding programmes. Similarly, targeted selective treatment (TST) requires the ability to identify the animals that will benefit most from anthelmintic treatment. A mathematical model was used to combine the concepts and evaluate the potential of using genetic-based methods to identify animals for a TST regime. EBVs obtained by genomic prediction were predicted to be the best determinant criterion for TST in terms of the impact on average empty body weight and average FEC, whereas pedigree-based EBVs for FEC were predicted to be marginally worse than using phenotypic FEC as a determinant criterion. Whilst each method has financial implications, if the identification of host resistance is incorporated into a wider genomic selection indices or selective breeding programmes, then genetic or genomic information may be plausibly included in TST regimes.
Collapse
Affiliation(s)
- Yan C S M Laurenson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
| | | | | |
Collapse
|
32
|
Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs. Heredity (Edinb) 2013; 110:420-9. [PMID: 23512009 DOI: 10.1038/hdy.2012.90] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The genetic architecture underlying nematode resistance and body weight in Blackface lambs was evaluated comparing genome-wide association (GWA) and regional heritability mapping (RHM) approaches. The traits analysed were faecal egg count (FEC) and immunoglobulin A activity against third-stage larvae from Teladorsagia circumcincta, as indicators of nematode resistance, and body weight in a population of 752 Scottish Blackface lambs, genotyped with the 50k single-nucleotide polymorphism (SNP) chip. FEC for both Nematodirus and Strongyles nematodes (excluding Nematodirus), as well as body weight were collected at approximately 16, 20 and 24 weeks of age. In addition, a weighted average animal effect was estimated for both FEC and body weight traits. After quality control, 44 388 SNPs were available for the GWA analysis and 42 841 for the RHM, which utilises only mapped SNPs. The same fixed effects were used in both analyses: sex, year, management group, litter size and age of dam, with day of birth as covariate. Some genomic regions of interest for both nematode resistance and body weight traits were identified, using both GWA and RHM approaches. For both methods, strong evidence for association was found on chromosome 14 for Nematodirus average animal effect, chromosome 6 for Strongyles FEC at 16 weeks and chromosome 6 for body weight at 16 weeks. Across the entire data set, RHM identified more regions reaching the suggestive level than GWA, suggesting that RHM is capable of capturing some of the variation not detected by GWA analyses.
Collapse
|
33
|
Sallé G, Jacquiet P, Gruner L, Cortet J, Sauvé C, Prévot F, Grisez C, Bergeaud JP, Schibler L, Tircazes A, François D, Pery C, Bouvier F, Thouly JC, Brunel JC, Legarra A, Elsen JM, Bouix J, Rupp R, Moreno CR. A genome scan for QTL affecting resistance to Haemonchus contortus in sheep1. J Anim Sci 2012; 90:4690-705. [DOI: 10.2527/jas.2012-5121] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- G. Sallé
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes, BP 87614, F-31076 Toulouse, France
| | - P. Jacquiet
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes, BP 87614, F-31076 Toulouse, France
| | - L. Gruner
- INRA, UR1282, Infectiologie Animale et Santé Publique, F-37880 Nouzilly, France
| | - J. Cortet
- INRA, UR1282, Infectiologie Animale et Santé Publique, F-37880 Nouzilly, France
| | - C. Sauvé
- INRA, UR1282, Infectiologie Animale et Santé Publique, F-37880 Nouzilly, France
| | - F. Prévot
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes, BP 87614, F-31076 Toulouse, France
| | - C. Grisez
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes, BP 87614, F-31076 Toulouse, France
| | - J. P. Bergeaud
- INRA, UMR1225, Interactions Hôtes—Agents Pathogènes, BP 87614, F-31076 Toulouse, France
| | - L. Schibler
- INRA, UMR1313, Laboratoire de Génétique Biochimique et de Cytogénétique, F-78252 Jouy-en-Josas, France
| | - A. Tircazes
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| | - D. François
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| | - C. Pery
- INRA, UE332, Domaine de la Sapinière, F-18390, Osmoy, France
| | - F. Bouvier
- INRA, UE332, Domaine de la Sapinière, F-18390, Osmoy, France
| | - J. C. Thouly
- INRA, UE332, Domaine de la Sapinière, F-18390, Osmoy, France
| | - J. C. Brunel
- INRA, UE332, Domaine de la Sapinière, F-18390, Osmoy, France
| | - A. Legarra
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| | - J. M. Elsen
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| | - J. Bouix
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| | - R. Rupp
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| | - C. R. Moreno
- INRA, UR631, Station d'Amélioration Génétique des Animaux, BP 27, F-31326, Castanet-Tolosan, France
| |
Collapse
|
34
|
Marshall K, Mugambi JM, Nagda S, Sonstegard TS, Van Tassell CP, Baker RL, Gibson JP. Quantitative trait loci for resistance toHaemonchus contortusartificial challenge in Red Maasai and Dorper sheep of East Africa. Anim Genet 2012; 44:285-95. [DOI: 10.1111/j.1365-2052.2012.02401.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2012] [Indexed: 11/30/2022]
Affiliation(s)
- K. Marshall
- The International Livestock Research Institute; P.O. Box 30709-00100; Nairobi; Kenya
| | - J. M. Mugambi
- Veterinary Research Centre KARI; Muguga; P.O. Box 32-00902; Kikuyu; Kenya
| | - S. Nagda
- The International Livestock Research Institute; P.O. Box 30709-00100; Nairobi; Kenya
| | - T. S. Sonstegard
- Bovine Functional Genomics Laboratory; Agricultural Research Service; USDA; Beltsville; MD; 20705; USA
| | - C. P. Van Tassell
- Bovine Functional Genomics Laboratory; Agricultural Research Service; USDA; Beltsville; MD; 20705; USA
| | - R. L. Baker
- P. O. Box 238; Whangamata; 3643; New Zealand
| | - J. P. Gibson
- Centre for Genetic Analysis and Applications; C.J. Hawkins Homestead University of New England; Armidale; NSW; 2351; Australia
| |
Collapse
|
35
|
Brown EA, Pilkington JG, Nussey DH, Watt KA, Hayward AD, Tucker R, Graham AL, Paterson S, Beraldi D, Pemberton JM, Slate J. Detecting genes for variation in parasite burden and immunological traits in a wild population: testing the candidate gene approach. Mol Ecol 2012; 22:757-73. [PMID: 22998224 DOI: 10.1111/j.1365-294x.2012.05757.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/05/2012] [Indexed: 11/30/2022]
Abstract
Identifying the genes underlying phenotypic variation in natural populations can provide novel insight into the evolutionary process. The candidate gene approach has been applied to studies of a number of traits in various species, in an attempt to elucidate their genetic basis. Here, we test the application of the candidate gene approach to identify the loci involved in variation in gastrointestinal parasite burden, a complex trait likely to be controlled by many loci, in a wild population of Soay sheep. A comprehensive literature review, Gene Ontology databases, and comparative genomics resources between cattle and sheep were used to generate a list of candidate genes. In a pilot study, these candidates, along with 50 random genes, were then sequenced in two pools of Soay sheep; one with low gastrointestinal nematode burden and the other high, using a NimbleGen sequence capture experiment. Further candidates were identified from single nucleotide polymorphisms (SNPs) that were highly differentiated between high- and low-resistance sheep breeds. A panel of 192 candidate and control SNPs were then typed in 960 individual Soay sheep to examine whether they individually explained variation in parasite burden, as measured as faecal egg count, as well as two immune measures (Teladorsagia circumcincta-specific antibodies and antinuclear antibodies). The cumulative effect of the candidate and control SNPs were estimated by fitting genetic relationship matrices (GRMs) as random effects in animal models of the three traits. No more significant SNPs were identified in the pilot sequencing experiment and association study than expected by chance. Furthermore, no significant difference was found between the proportions of candidate or control SNPs that were found to be significantly associated with parasite burden/immune measures. No significant effect of the candidate or control gene GRMs was found. There is thus little support for the candidate gene approach to the identification of loci explaining variation in parasitological and immunological traits in this population. However, a number of SNPs explained significant variation in multiple traits and significant correlations were found between the proportions of variance explained by individual SNPs across multiple traits. The significant SNPs identified in this study may still, therefore, merit further investigation.
Collapse
Affiliation(s)
- E A Brown
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li RW, Choudhary RK, Capuco AV, Urban JF. Exploring the host transcriptome for mechanisms underlying protective immunity and resistance to nematode infections in ruminants. Vet Parasitol 2012; 190:1-11. [PMID: 22819588 DOI: 10.1016/j.vetpar.2012.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/08/2012] [Accepted: 06/15/2012] [Indexed: 12/11/2022]
Abstract
Nematode infections in ruminants are a major impediment to the profitable production of meat and dairy products, especially for small farms. Gastrointestinal parasitism not only negatively impacts weight gain and milk yield, but is also a major cause of mortality in small ruminants. The current parasite control strategy involves heavy use of anthelmintics that has resulted in the emergence of drug-resistant parasite strains. This, in addition to increasing consumer demand for animal products that are free of drug residues has stimulated development of alternative strategies, including selective breeding of parasite resistant ruminants. The development of protective immunity and manifestations of resistance to nematode infections relies upon the precise expression of the host genome that is often confounded by mechanisms simultaneously required to control multiple nematode species as well as ecto- and protozoan parasites, and microbial and viral pathogens. Understanding the molecular mechanisms underlying these processes represents a key step toward development of effective new parasite control strategies. Recent progress in characterizing the transcriptome of both hosts and parasites, utilizing high-throughput microarrays and RNA-seq technology, has led to the recognition of unique interactions and the identification of genes and biological pathways involved in the response to parasitism. Innovative use of the knowledge gained by these technologies should provide a basis for enhancing innate immunity while limiting the polarization of acquired immunity can negatively affect optimal responses to co-infection. Strategies for parasite control that use diet and vaccine/adjuvant combination could be evaluated by monitoring the host transcriptome for induction of appropriate mechanisms for imparting parasite resistance. Knowledge of different mechanisms of host immunity and the critical regulation of parasite development, physiology, and virulence can also selectively identify targets for parasite control. Comparative transcriptome analysis, in concert with genome-wide association (GWS) studies to identify quantitative trait loci (QTLs) affecting host resistance, represents a promising molecular technology to evaluate integrated control strategies that involve breed and environmental factors that contribute to parasite resistance and improved performance. Tailoring these factors to control parasitism without severely affecting production qualities, management efficiencies, and responses to pathogenic co-infection will remain a challenge. This review summarizes recent progress and limitations of understanding regulatory genetic networks and biological pathways that affect host resistance and susceptibility to nematode infection in ruminants.
Collapse
Affiliation(s)
- Robert W Li
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, MD, USA.
| | | | | | | |
Collapse
|
37
|
Confirmation of two quantitative trait loci regions for nematode resistance in commercial British terminal sire breeds. Animal 2012; 5:1149-56. [PMID: 22440166 DOI: 10.1017/s175173111100022x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Sheep internal parasites (nematodes) remain a major health challenge and are costly for pasture-based production systems. Most current breeding programmes for nematode resistance are based on indicator traits such as faecal egg counts (FEC), which are costly and laborious to collect. Hence, genetic markers for resistance would be advantageous. However, although some quantitative trait loci (QTL) have been identified, these QTL are often not consistent across breeds and few breeding strategies for nematode resistance in sheep are currently using molecular information. In this study, QTL for nematode resistance on ovine chromosomes (OAR) 3 and 14, previously identified in the Blackface breed, were explored using commercial Suffolk (n = 336) and Texel lambs (n = 879) sampled from terminal sire breeder flocks in the United Kingdom. FEC were used as the indicator trait for nematode resistance, and these were counted separately for Nematodirus and Strongyles genera. Microsatellite markers were used to map the QTL and the data were analysed using interval mapping regression techniques and variance component analysis. QTL for Nematodirus and Strongyles FEC were found to be segregating on OAR3 at 5% chromosome region-wide significance threshold in both Suffolk and Texel sheep, and Nematodirus FEC QTL were segregating on OAR14 in both breeds. In addition, QTL for growth traits were also found to be segregating at 5% chromosome region-wide on OAR3 and OAR14. The confirmation that FEC QTL segregate in the same position in three widely used breeds widens their potential applicability to purebred Blackface, Suffolk and Texel sheep, with benefits likely to be observed in their commercial crossbred progeny.
Collapse
|
38
|
de la Chevrotière C, C. Bishop S, Arquet R, Bambou JC, Schibler L, Amigues Y, Moreno C, Mandonnet N. Detection of quantitative trait loci for resistance to gastrointestinal nematode infections in Creole goats. Anim Genet 2012; 43:768-75. [DOI: 10.1111/j.1365-2052.2012.02341.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2011] [Indexed: 11/28/2022]
Affiliation(s)
- C. de la Chevrotière
- INRA, UR143, Unité de Recherches Zootechniques; Domaine Duclos; 97170 Petit-Bourg; France
| | - S. C. Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies; University of Edinburgh; Midlothian EH25 9RG; UK
| | - R. Arquet
- INRA, UE1294, Plateforme Tropicale d'Expérimentation sur l'Animal; Domaine Duclos; 97170 Petit-Bourg; France
| | - J. C. Bambou
- INRA, UR143, Unité de Recherches Zootechniques; Domaine Duclos; 97170 Petit-Bourg; France
| | - L. Schibler
- INRA; UMR1313 Génétique Animale et Biologie Intégrative; 78252 Jouy-en-Josas; France
| | - Y. Amigues
- GIE LABOGENA; 78352 Jouy-en-Josas; France
| | - C. Moreno
- INRA, UR631; Station d'Amélioration Génétique des Animaux; 31326 Castanet-Tolosan; France
| | - N. Mandonnet
- INRA, UR143, Unité de Recherches Zootechniques; Domaine Duclos; 97170 Petit-Bourg; France
| |
Collapse
|
39
|
Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle. Funct Integr Genomics 2011; 12:81-92. [PMID: 21928070 DOI: 10.1007/s10142-011-0252-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 12/11/2022]
Abstract
Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to gastrointestinal nematodes. In this study, we performed a large-scale analysis of CNVs using SNP genotyping data from 472 animals of the same population. We detected 811 candidate CNV regions, which represent 141.8 Mb (~4.7%) of the genome. To investigate the functional impacts of CNVs, we created 2 groups of 100 individual animals with extremely low or high estimated breeding values of eggs per gram of feces and referred to these groups as parasite resistant (PR) or parasite susceptible (PS), respectively. We identified 297 (~51 Mb) and 282 (~48 Mb) CNV regions from PR and PS groups, respectively. Approximately 60% of the CNV regions were specific to the PS group or PR group of animals. Selected PR- or PS-specific CNVs were further experimentally validated by quantitative PCR. A total of 297 PR CNV regions overlapped with 437 Ensembl genes enriched in immunity and defense, like WC1 gene which uniquely expresses on gamma/delta T cells in cattle. Network analyses indicated that the PR-specific genes were predominantly involved in gastrointestinal disease, immunological disease, inflammatory response, cell-to-cell signaling and interaction, lymphoid tissue development, and cell death. By contrast, the 282 PS CNV regions contained 473 Ensembl genes which are overrepresented in environmental interactions. Network analyses indicated that the PS-specific genes were particularly enriched for inflammatory response, immune cell trafficking, metabolic disease, cell cycle, and cellular organization and movement.
Collapse
|
40
|
Sayre BL, Harris GC. Systems genetics approach reveals candidate genes for parasite resistance from quantitative trait loci studies in agricultural species. Anim Genet 2011; 43:190-8. [PMID: 22404355 DOI: 10.1111/j.1365-2052.2011.02231.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A systems genetics approach combining pathway analysis of quantitative trait loci (QTL) and gene expression information has provided strong evidence for common pathways associated with genetic resistance to internal parasites. Gene data, collected from published QTL regions in sheep, cattle, mice, rats and humans, and microarray data from sheep, were converted to human Entrez Gene IDs and compared to the KEGG pathway database. Selection of pathways from QTL data was based on a selection index that ensured that the selected pathways were in all species and the majority of the projects overall and within species. Pathways with either up- and down-regulated genes, primarily up-regulated genes or primarily down-regulated genes, were selected from gene expression data. After comparing the data sets independently, the pathways from each data set were compared and the common set of pathways and genes was identified. Comparisons within data sets identified 21 pathways from QTL data and 66 pathways from gene expression data. Both selected sets were enriched with pathways involved in immune functions, disease and cell responses to signals. The analysis identified 14 pathways that were common between QTL and gene expression data, and four directly associated with IFNγ or MHCII, with 31 common genes, including three MHCII genes. In conclusion, a systems genetics approach combining data from multiple QTL and gene expression projects led to the discovery of common pathways associated with genetic resistance to internal parasites. This systems genetics approach may prove significant for the discovery of candidate genes for many other multifactorial, economically important traits.
Collapse
Affiliation(s)
- B L Sayre
- Department of Biology, Virginia State University, Petersburg, VA 23806, USA.
| | | |
Collapse
|
41
|
Structural and functional characterisation of the ovine interferon gamma (IFNG) gene: Its role in nematode resistance in Rasa Aragonesa ewes. Vet Immunol Immunopathol 2011; 141:100-8. [DOI: 10.1016/j.vetimm.2011.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/11/2011] [Accepted: 02/18/2011] [Indexed: 11/21/2022]
|
42
|
Silva MVB, Sonstegard TS, Hanotte O, Mugambi JM, Garcia JF, Nagda S, Gibson JP, Iraqi FA, McClintock AE, Kemp SJ, Boettcher PJ, Malek M, Van Tassell CP, Baker RL. Identification of quantitative trait loci affecting resistance to gastrointestinal parasites in a double backcross population of Red Maasai and Dorper sheep. Anim Genet 2011; 43:63-71. [PMID: 22221026 DOI: 10.1111/j.1365-2052.2011.02202.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A genome-wide scan for quantitative trait loci (QTL) affecting gastrointestinal nematode resistance in sheep was completed using a double backcross population derived from Red Maasai and Dorper ewes bred to F(1) rams. This design provided an opportunity to map potentially unique genetic variation associated with a parasite-tolerant breed like Red Maasai, a breed developed to survive East African grazing conditions. Parasite indicator phenotypes (blood packed cell volume - PCV and faecal egg count - FEC) were collected on a weekly basis from 1064 lambs during a single 3-month post-weaning grazing challenge on infected pastures. The averages of last measurements for FEC (AVFEC) and PCV (AVPCV), along with decline in PCV from challenge start to end (PCVD), were used to select lambs (N = 371) for genotyping that represented the tails (10% threshold) of the phenotypic distributions. Marker genotypes for 172 microsatellite loci covering 25 of 26 autosomes (1560.7 cm) were scored and corrected by Genoprob prior to qxpak analysis that included Box-Cox transformed AVFEC and arcsine transformed PCV statistics. Significant QTL for AVFEC and AVPCV were detected on four chromosomes, and this included a novel AVFEC QTL on chromosome 6 that would have remained undetected without Box-Cox transformation methods. The most significant P-values for AVFEC, AVPCV and PCVD overlapped the same marker interval on chromosome 22, suggesting the potential for a single causative mutation, which remains unknown. In all cases, the favourable QTL allele was always contributed from Red Maasai, providing support for the idea that future marker-assisted selection for genetic improvement of production in East Africa will rely on markers in linkage disequilibrium with these QTL.
Collapse
Affiliation(s)
- M V B Silva
- Bovine Functional Genomics Laboratory, Agricultural Research Service, USDA Beltsville, 10300 Baltimore Ave., Beltsville, MD 20705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The influence of MHC and immunoglobulins a and e on host resistance to gastrointestinal nematodes in sheep. J Parasitol Res 2011; 2011:101848. [PMID: 21584228 PMCID: PMC3092517 DOI: 10.1155/2011/101848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal nematode parasites in farmed animals are of particular importance due to their effects on production. In Australia, it is estimated that the direct and indirect effects of parasite infestation cost the animal production industries hundreds of millions of dollars each year. The main factors considered by immunologists when studying gastrointestinal nematode infections are the effects the host's response has on the parasite, which immunological components are responsible for these effects, genetic factors involved in controlling immunological responses, and the interactions between these forming an interconnecting multilevel relationship. In this paper, we describe the roles of immunoglobulins, in particular IgA and IgE, and the major histocompatibility complex in resistance to gastrointestinal parasites in sheep. We also draw evidence from other animal models to support the involvement of these immune components. Finally, we examine how IgA and IgE exert their influence and how methods may be developed to manage susceptible animals.
Collapse
|
44
|
Luikart G, Amish SJ, Winnie J, Beja-Pereira A, Godinho R, Allendorf FW, Harris RB. High connectivity among argali sheep from Afghanistan and adjacent countries: Inferences from neutral and candidate gene microsatellites. CONSERV GENET 2011. [DOI: 10.1007/s10592-011-0195-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Pemberton JM, Beraldi D, Craig BH, Hopkins J. Digital gene expression analysis of gastrointestinal helminth resistance in Scottish blackface lambs. Mol Ecol 2011; 20:910-9. [PMID: 21324010 DOI: 10.1111/j.1365-294x.2010.04992.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Digital gene expression (DGE) analysis offers a route to gene discovery which by-passes the need to develop bespoke arrays for nonmodel species, and is therefore a potentially valuable tool for molecular ecologists. Scottish blackface sheep, which vary in resistance to the common abomasal parasitic nematode Teladorsagia circumcincta, were trickle-infected with L3 larvae over 3 months to mimic the natural progression of infection. DGE was performed on abomasal lymph node tissue after the resolution of infection in resistant animals. Susceptible (low resistance) animals showed a large number of differentially expressed genes associated with inflammation and cell activation, but generally few differentially regulated genes in either the susceptible or the resistant group were directly involved in the adaptive immune function. Our results are consistent with the hypothesis that both resistance and susceptibility are active responses to infection and that susceptibility is associated with dysfunction in T cell differentiation and regulation.
Collapse
Affiliation(s)
- J M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | | | |
Collapse
|
46
|
Initial analysis of copy number variations in cattle selected for resistance or susceptibility to intestinal nematodes. Mamm Genome 2010; 22:111-21. [DOI: 10.1007/s00335-010-9308-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 11/11/2010] [Indexed: 01/10/2023]
|
47
|
Piedrafita D, Raadsma HW, Gonzalez J, Meeusen E. Increased production through parasite control: can ancient breeds of sheep teach us new lessons? Trends Parasitol 2010; 26:568-73. [DOI: 10.1016/j.pt.2010.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/27/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
|
48
|
Detection of quantitative trait loci for internal parasite resistance in sheep. I. Linkage analysis in a Romney×Merino sheep backcross population. Parasitology 2010; 137:1275-82. [DOI: 10.1017/s003118201000020x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThis study aimed to identify putative quantitative trait loci (QTL) that significantly affect internal parasite resistance in a backcross sheep population. A Romney×Merino backcross (to Merino) flock was challenged in 3 separate infections withTrichostrongylus colubriformis(primary and secondary) andHaemonchus contortus(tertiary). Haematological parameters were measured and faecal worm egg counts (FWEC) were established to estimate parasite burden. QTL mapping was conducted for FWEC and for the changes in haematocrit followingH. contortuschallenge and in eosinophil numbers followingT. colubriformischallenge. Animals were genotyped for 55 microsatellite markers on selected chromosomes 2, 3, 6, 11, 13, 15, 21, and 22. Four putative quantitative trait loci were found; these being for eosinophil change in the primary infection (OAR 21), for FWEC in the first infection and eosinophil change in the secondary infection (OAR 3) and for FWEC in the secondary infection (OAR 22). No significant quantitative trait loci were detected for FWEC or haematocrit change during theHaemonchus contortusinfection. The position of the putative quantitative trait loci for eosinophil change on OAR 3 is consistent with other reports of parasite resistance quantitative trait loci, implying some commonality between studies.
Collapse
|
49
|
Gutiérrez-Gil B, Pérez J, Álvarez L, Martínez-Valladares M, de la Fuente LF, Bayón Y, Meana A, Primitivo FS, Rojo-Vázquez FA, Arranz JJ. Quantitative trait loci for resistance to trichostrongylid infection in Spanish Churra sheep. Genet Sel Evol 2009; 41:46. [PMID: 19863786 PMCID: PMC2776584 DOI: 10.1186/1297-9686-41-46] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/28/2009] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND For ruminants reared on grazing systems, gastrointestinal nematode (GIN) parasite infections represent the class of diseases with the greatest impact on animal health and productivity. Among the many possible strategies for controlling GIN infection, the enhancement of host resistance through the selection of resistant animals has been suggested by many authors. Because of the difficulty of routinely collecting phenotypic indicators of parasite resistance, information derived from molecular markers may be used to improve the efficiency of classical genetic breeding. METHODS A total of 181 microsatellite markers evenly distributed along the 26 sheep autosomes were used in a genome scan analysis performed in a commercial population of Spanish Churra sheep to detect chromosomal regions associated with parasite resistance. Following a daughter design, we analysed 322 ewes distributed in eight half-sib families. The phenotypes studied included two faecal egg counts (LFEC0 and LFEC1), anti-Teladorsagia circumcincta LIV IgA levels (IgA) and serum pepsinogen levels (Peps). RESULTS The regression analysis revealed one QTL at the 5% genome-wise significance level on chromosome 6 for LFEC1 within the marker interval BM4621-CSN3. This QTL was found to be segregating in three out of the eight families analysed. Four other QTL were identified at the 5% chromosome-wise level on chromosomes 1, 10 and 14. Three of these QTL influenced faecal egg count, and the other one had an effect on IgA levels. CONCLUSION This study has successfully identified segregating QTL for parasite resistance traits in a commercial population. For some of the QTL detected, we have identified interesting coincidences with QTL previously reported in sheep, although most of those studies have been focused on young animals. Some of these coincidences might indicate that some common underlying loci affect parasite resistance traits in different sheep breeds. The identification of new QTL may suggest the existence of complex host-parasite relationships that have unique features depending on the host-parasite combination, perhaps due to the different mechanisms underlying resistance in adult sheep (hypersensitivity reactions) and lambs (immunity). The most significant QTL identified on chromosome 6 for LFEC(1) may be the target for future fine-mapping research efforts.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Jorge Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | | | - Maria Martínez-Valladares
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
- Instituto de Ganadería de Montaña, Centro Mixto Universidad de León-CSIC Finca Marzanas s/n - CP 24346 - Grulleros, León, Spain
| | | | - Yolanda Bayón
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Aranzazu Meana
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Fermin San Primitivo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Francisco-Antonio Rojo-Vázquez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
- Instituto de Ganadería de Montaña, Centro Mixto Universidad de León-CSIC Finca Marzanas s/n - CP 24346 - Grulleros, León, Spain
| | - Juan-José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| |
Collapse
|
50
|
Zarlenga DS, Gasbarre LC. From parasite genomes to one healthy world: Are we having fun yet? Vet Parasitol 2009; 163:235-49. [PMID: 19560277 DOI: 10.1016/j.vetpar.2009.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In 1990, the Human Genome Sequencing Project was established. This laid the ground work for an explosion of sequence data that has since followed. As a result of this effort, the first complete genome of an animal, Caenorhabditis elegans was published in 1998. The sequence of Drosophila melanogaster was made available in March, 2000 and in the following year, working drafts of the human genome were generated with the completed sequence (92%) being released in 2003. Recent advancements and next-generation technologies have made sequencing common place and have infiltrated every aspect of biological research, including parasitology. To date, sequencing of 32 apicomplexa and 24 nematode genomes are either in progress or near completion, and over 600k nematode EST and 200k apicomplexa EST submissions fill the databases. However, the winds have shifted and efforts are now refocusing on how best to store, mine and apply these data to problem solving. Herein we tend not to summarize existing X-omics datasets or present new technological advances that promise future benefits. Rather, the information to follow condenses up-to-date-applications of existing technologies to problem solving as it relates to parasite research. Advancements in non-parasite systems are also presented with the proviso that applications to parasite research are in the making.
Collapse
Affiliation(s)
- Dante S Zarlenga
- USDA, ARS, ANRI Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA.
| | | |
Collapse
|