1
|
Hu X, Chen J, Dai W, Xiao Y, Chen X, Chen Z, Zhang S, Hu Y. PHLDA1-PRDM1 mediates the effect of lentiviral vectors on fate-determination of human retinal progenitor cells. Cell Mol Life Sci 2024; 81:305. [PMID: 39012348 PMCID: PMC11335229 DOI: 10.1007/s00018-024-05279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
Lentiviral vectors have markedly enhanced gene therapy efficiency in treating congenital diseases, but their long-term safety remains controversial. Most gene therapies for congenital eye diseases need to be carried out at early ages, yet the assessment of related risks to ocular development posed by lentiviral vectors is challenging. Utilizing single-cell transcriptomic profiling on human retinal organoids, this study explored the impact of lentiviral vectors on the retinal development and found that lentiviral vectors can cause retinal precursor cells to shift toward photoreceptor fate through the up-regulation of key fate-determining genes such as PRDM1. Further investigation demonstrated that the intron and intergenic region of PRDM1 was bound by PHLDA1, which was also up-regulated by lentiviral vectors exposure. Importantly, knockdown of PHLDA1 successfully suppressed the lentivirus-induced differentiation bias of photoreceptor cells. The findings also suggest that while lentiviral vectors may disrupt the fate determination of retinal precursor cells, posing risks in early-stage retinal gene therapy, these risks could potentially be reduced by inhibiting the PHLDA1-PRDM1 axis.
Collapse
Affiliation(s)
- Xing Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wangxuan Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yuhua Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zheyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Shuyao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
2
|
Parasrampuria MA, White AA, Chilamkurthy R, Pater AA, El-Azzouzi F, Ovington KN, Jensik PJ, Gagnon KT. Sequencing-guided design of genetically encoded small RNAs targeting CAG repeats for selective inhibition of mutant huntingtin. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102206. [PMID: 38803421 PMCID: PMC11129097 DOI: 10.1016/j.omtn.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Huntington's disease (HD) is an incurable neurodegenerative disorder caused by genetic expansion of a CAG repeat sequence in one allele of the huntingtin (HTT) gene. Reducing expression of the mutant HTT (mutHTT) protein has remained a clear therapeutic goal, but reduction of wild-type HTT (wtHTT) is undesirable, as it compromises gene function and potential therapeutic efficacy. One promising allele-selective approach involves targeting the CAG repeat expansion with steric binding small RNAs bearing central mismatches. However, successful genetic encoding requires consistent placement of mismatches to the target within the small RNA guide sequence, which involves 5' processing precision by cellular enzymes. Here, we used small RNA sequencing (RNA-seq) to monitor the processing precision of a limited set of CAG repeat-targeted small RNAs expressed from multiple scaffold contexts. Small RNA-seq identified expression constructs with high-guide strand 5' processing precision and promising allele-selective inhibition of mutHTT. Transcriptome-wide mRNA-seq also identified an allele-selective small RNA with a favorable off-target profile. These results support continued investigation and optimization of genetically encoded repeat-targeted small RNAs for allele-selective HD gene therapy and underscore the value of sequencing methods to balance specificity with allele selectivity during the design and selection process.
Collapse
Affiliation(s)
- Mansi A. Parasrampuria
- Division of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Adam A. White
- Division of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Ramadevi Chilamkurthy
- Division of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Adrian A. Pater
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
| | - Fatima El-Azzouzi
- Division of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Katy N. Ovington
- Division of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Philip J. Jensik
- Division of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Keith T. Gagnon
- Division of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
3
|
Nowak B, Kozlowska E, Pawlik W, Fiszer A. Atrophin-1 Function and Dysfunction in Dentatorubral-Pallidoluysian Atrophy. Mov Disord 2023; 38:526-536. [PMID: 36809552 DOI: 10.1002/mds.29355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare, incurable genetic disease that belongs to the group of polyglutamine (polyQ) diseases. DRPLA is the most common in the Japanese population; however, its global prevalence is also increasing due to better clinical recognition. It is characterized by cerebellar ataxia, myoclonus, epilepsy, dementia, and chorea. DRPLA is caused by dynamic mutation of CAG repeat expansion in ATN1 gene encoding the atrophin-1 protein. In the cascade of molecular disturbances, the pathological form of atrophin-1 is the initial factor, which has not been precisely characterized so far. Reports indicate that DRPLA is associated with disrupted protein-protein interactions (in which an expanded polyQ tract plays a crucial role), as well as gene expression deregulation. There is a great need to design efficient therapy that would address the underlying neurodegenerative process and thus prevent or alleviate DRPLA symptoms. An in-depth understanding of the normal atrophin-1 function and mutant atrophin-1 dysfunction is crucial for this purpose. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Bartosz Nowak
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Emilia Kozlowska
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Weronika Pawlik
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
4
|
Therapeutic Strategies in Huntington’s Disease: From Genetic Defect to Gene Therapy. Biomedicines 2022; 10:biomedicines10081895. [PMID: 36009443 PMCID: PMC9405755 DOI: 10.3390/biomedicines10081895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago, currently approved therapies provide only limited symptomatic relief and do not influence the age of onset or disease progression rate. Research has identified various intricate pathogenic cascades which lead to neuronal degeneration, but therapies interfering with these mechanisms have been marked by many failures and remain to be validated. Exciting new opportunities are opened by the emerging techniques which target the mutant protein DNA and RNA, allowing for “gene editing”. Although some issues relating to “off-target” effects or immune-mediated side effects need to be solved, these strategies, combined with stem cell therapies and more traditional approaches targeting specific pathogenic cascades, such as excitotoxicity and bioavailability of neurotrophic factors, could lead to significant improvement of the outcomes of treated Huntington’s disease patients.
Collapse
|
5
|
Rook ME, Southwell AL. Antisense Oligonucleotide Therapy: From Design to the Huntington Disease Clinic. BioDrugs 2022; 36:105-119. [PMID: 35254632 PMCID: PMC8899000 DOI: 10.1007/s40259-022-00519-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
Huntington disease (HD) is a fatal progressive neurodegenerative disorder caused by an inherited mutation in the huntingtin (HTT) gene, which encodes mutant HTT protein. Though HD remains incurable, various preclinical studies have reported a favorable response to HTT suppression, emphasizing HTT lowering strategies as prospective disease-modifying treatments. Antisense oligonucleotides (ASOs) lower HTT by targeting transcripts and are well suited for treating neurodegenerative disorders as they distribute broadly throughout the central nervous system (CNS) and are freely taken up by neurons, glia, and ependymal cells. With the FDA approval of an ASO therapy for another disease of the CNS, spinal muscular atrophy, ASOs have become a particularly attractive therapeutic option for HD. However, two types of ASOs were recently assessed in human clinical trials for the treatment of HD, and both were halted early. In this review, we will explore the differences in chemistry, targeting, and specificity of these HTT ASOs as well as preliminary clinical findings and potential reasons for and implications of these halted trials.
Collapse
Affiliation(s)
- Morgan E Rook
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA.
| | - Amber L Southwell
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
6
|
Kolkwitz PE, Mohrlüder J, Willbold D. Inhibition of Polyglutamine Misfolding with D-Enantiomeric Peptides Identified by Mirror Image Phage Display Selection. Biomolecules 2022; 12:biom12020157. [PMID: 35204656 PMCID: PMC8961585 DOI: 10.3390/biom12020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Nine heritable diseases are known that are caused by unphysiologically elongated polyglutamine tracts in human proteins leading to misfolding, aggregation and neurodegeneration. Current therapeutic strategies include efforts to inhibit the expression of the respective gene coding for the polyglutamine-containing proteins. There are, however, concerns that this may interfere with the physiological function of the respective protein. We aim to stabilize the protein’s native conformation by D-enantiomeric peptide ligands to prevent misfolding and aggregation, shift the equilibrium between aggregates and monomers towards monomers and dissolve already existing aggregates into non-toxic and functional monomers. Here, we performed a mirror image phage display selection on the polyglutamine containing a fragment of the androgen receptor. An elongated polyglutamine tract in the androgen receptor causes spinal and bulbar muscular atrophy (SBMA). The selected D-enantiomeric peptides were tested for their ability to inhibit polyglutamine-induced androgen receptor aggregation. We identified D-enantiomeric peptide QF2D-2 (sqsqwstpqGkwshwprrr) as the most promising candidate. It binds to an androgen receptor fragment with 46 consecutive glutamine residues and decelerates its aggregation, even in seeded experiments. Therefore, QF2D-2 may be a promising drug candidate for SBMA treatment or even for all nine heritable polyglutamine diseases, since its aggregation-inhibiting property was shown also for a more general polyglutamine target.
Collapse
Affiliation(s)
- Pauline Elisabeth Kolkwitz
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (P.E.K.); (J.M.)
| | - Jeannine Mohrlüder
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (P.E.K.); (J.M.)
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany; (P.E.K.); (J.M.)
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
7
|
Zhang N, Bewick B, Schultz J, Tiwari A, Krencik R, Zhang A, Adachi K, Xia G, Yun K, Sarkar P, Ashizawa T. DNAzyme Cleavage of CAG Repeat RNA in Polyglutamine Diseases. Neurotherapeutics 2021; 18:1710-1728. [PMID: 34160773 PMCID: PMC8609077 DOI: 10.1007/s13311-021-01075-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 02/05/2023] Open
Abstract
CAG repeat expansion is the genetic cause of nine incurable polyglutamine (polyQ) diseases with neurodegenerative features. Silencing repeat RNA holds great therapeutic value. Here, we developed a repeat-based RNA-cleaving DNAzyme that catalyzes the destruction of expanded CAG repeat RNA of six polyQ diseases with high potency. DNAzyme preferentially cleaved the expanded allele in spinocerebellar ataxia type 1 (SCA1) cells. While cleavage was non-allele-specific for spinocerebellar ataxia type 3 (SCA3) cells, treatment of DNAzyme leads to improved cell viability without affecting mitochondrial metabolism or p62-dependent aggresome formation. DNAzyme appears to be stable in mouse brain for at least 1 month, and an intermediate dosage of DNAzyme in a SCA3 mouse model leads to a significant reduction of high molecular weight ATXN3 proteins. Our data suggest that DNAzyme is an effective RNA silencing molecule for potential treatment of multiple polyQ diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Neuroscience Program, Houston Methodist Research Institute, Houston, TX USA
| | - Brittani Bewick
- Department of Neurology, Neuroscience Program, Houston Methodist Research Institute, Houston, TX USA
| | - Jason Schultz
- Department of Neurology, Neuroscience Program, Houston Methodist Research Institute, Houston, TX USA
| | - Anjana Tiwari
- Department of Neurology, Neuroscience Program, Houston Methodist Research Institute, Houston, TX USA
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX USA
| | - Aijun Zhang
- Center for Bioenergetics, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX USA
| | - Kaho Adachi
- Department of Molecular and Cell Biology, UC-Berkeley, Berkeley, CA USA
| | - Guangbin Xia
- Indiana University School of Medicine-Fort Wayne, Fort Wayne, IN USA
| | - Kyuson Yun
- Department of Neurology, Neuroscience Program, Houston Methodist Research Institute, Houston, TX USA
| | - Partha Sarkar
- Department of Neurology and Department of Neuroscience, Cell Biology and Anatomy, UTMB Health, Galveston, TX USA
| | - Tetsuo Ashizawa
- Department of Neurology, Neuroscience Program, Houston Methodist Research Institute, Houston, TX USA
| |
Collapse
|
8
|
Zwaka TP, Skowronska M, Richman R, Dejosez M. Ronin overexpression induces cerebellar degeneration in a mouse model of ataxia. Dis Model Mech 2021; 14:269269. [PMID: 34165550 PMCID: PMC8246265 DOI: 10.1242/dmm.044834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of genetically heterogeneous inherited neurodegenerative disorders characterized by progressive ataxia and cerebellar degeneration. Here, we used a mouse model to test a possible connection between SCA and Ronin (Thap11), a polyglutamine-containing transcriptional regulator encoded in a region of human chromosome 16q22.1 that has been genetically linked to SCA type 4. We report that transgenic expression of Ronin in mouse cerebellar Purkinje cells leads to detrimental loss of these cells and the development of severe ataxia as early as 10 weeks after birth. Mechanistically, we find that several SCA-causing genes harbor Ronin DNA-binding motifs and are transcriptionally deregulated in transgenic animals. In addition, ectopic expression of Ronin in embryonic stem cells significantly increases the protein level of Ataxin-1, the protein encoded by Atxn1, alterations of which cause SCA type 1. This increase is also seen in the cerebellum of transgenic animals, although the latter was not statistically significant. Hence, our data provide evidence for a link between Ronin and SCAs, and suggest that Ronin may be involved in the development of other neurodegenerative diseases. Summary: Ronin is a polyglutamine protein encoded in a region of human chromosome 16q22.1 linked to spinocerebellar ataxia type 4. Overexpression of Ronin in mouse cerebellar Purkinje cells leads to their loss and ataxia.
Collapse
Affiliation(s)
- Thomas P Zwaka
- Department for Cell, Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Huffington Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Skowronska
- Department for Cell, Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Huffington Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ronald Richman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marion Dejosez
- Department for Cell, Regenerative and Developmental Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Huffington Center for Cell-Based Research in Parkinson's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
A PolyQ Membrane Protein of Vibrio cholerae Acts as the Receptor for Phage Infection. J Virol 2021; 95:JVI.02245-20. [PMID: 33408174 DOI: 10.1128/jvi.02245-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage VP1 is a typing phage used for the phage subtyping of Vibrio cholerae O1 biotype El Tor, but the molecular mechanisms of its receptor recognition and the resistance of its host to infection are mostly unknown. In this study, we aimed to identify the host receptor and its role in resistance in natural VP1-resistant strains. Generating spontaneous resistance mutations and genome sequencing mutant strains found the polyQ protein VcpQ, which carries 46 glutamine residues in its Q-rich region, to be responsible for infection by VP1. VcpQ is a membrane protein and possibly forms homotrimers. VP1 adsorbed to V. cholerae through VcpQ. Sequence comparisons showed that 72% of natural VP1-resistant strains have fewer glutamines in the VcpQ Q-rich stretch than VP1-sensitive strains. This difference did not affect the membrane location and oligomer of VcpQ but abrogated VP1 adsorption. These mutant VcpQs did not recover VP1 infection sensitivity in a V. cholerae strain with vcpQ deleted. Our study revealed that the polyQ protein VcpQ is responsible for the binding of VP1 during its infection of V. cholerae and that glutamine residue reduction in VcpQ affects VP1 adsorption to likely be the main cause of VP1 resistance in natural resistant strains. The physiological functions of this polyQ protein in bacteria need further clarification; however, mutations in the polyQ stretch may endow V. cholerae with phage resistance and enhance survival against VP1 or related phages.IMPORTANCE Receptor recognition and binding by bacteriophage are the first step for its infection of bacterial cells. In this study, we found the Vibrio cholerae subtyping phage VP1 uses a polyQ protein named VcpQ (V. cholerae polyQ protein) as the receptor for VP1 infection. Our study reveals the receptor's recognition of phage VP1 during its adsorption and the VP1 resistance mechanism of the wild resistant V. cholerae strains bearing the mutagenesis in the receptor VcpQ. These mutations may confer the survival advantage on these resistant strains in the environment containing VP1 or its similar phages.
Collapse
|
10
|
Caron NS, Southwell AL, Brouwers CC, Cengio LD, Xie Y, Black HF, Anderson LM, Ko S, Zhu X, van Deventer SJ, Evers MM, Konstantinova P, Hayden MR. Potent and sustained huntingtin lowering via AAV5 encoding miRNA preserves striatal volume and cognitive function in a humanized mouse model of Huntington disease. Nucleic Acids Res 2020; 48:36-54. [PMID: 31745548 PMCID: PMC7145682 DOI: 10.1093/nar/gkz976] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative disease caused by a pathogenic expansion of a CAG repeat in the huntingtin (HTT) gene. There are no disease-modifying therapies for HD. Artificial microRNAs targeting HTT transcripts for degradation have shown preclinical promise and will soon enter human clinical trials. Here, we examine the tolerability and efficacy of non-selective HTT lowering with an AAV5 encoded miRNA targeting human HTT (AAV5-miHTT) in the humanized Hu128/21 mouse model of HD. We show that intrastriatal administration of AAV5-miHTT results in potent and sustained HTT suppression for at least 7 months post-injection. Importantly, non-selective suppression of huntingtin was generally tolerated, however high dose AAV5-miHTT did induce astrogliosis. We observed an improvement of select behavioural and modest neuropathological HD-like phenotypes in Hu128/21 mice, suggesting a potential therapeutic benefit of miRNA-mediated non-selective HTT lowering. Finally, we also observed that potent reduction of wild type HTT (wtHTT) in Hu21 control mice was tolerated up to 7 months post-injection but may induce impairment of motor coordination and striatal atrophy. Taken together, our data suggests that in the context of HD, the therapeutic benefits of mHTT reduction may outweigh the potentially detrimental effects of wtHTT loss following non-selective HTT lowering.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Cynthia C Brouwers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Louisa Dal Cengio
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Yuanyun Xie
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Lisa M Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Xiang Zhu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Sander J van Deventer
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Melvin M Evers
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure biopharma B.V., Amsterdam, the Netherlands
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Kay C, Collins JA, Caron NS, Agostinho LDA, Findlay-Black H, Casal L, Sumathipala D, Dissanayake VHW, Cornejo-Olivas M, Baine F, Krause A, Greenberg JL, Paiva CLA, Squitieri F, Hayden MR. A Comprehensive Haplotype-Targeting Strategy for Allele-Specific HTT Suppression in Huntington Disease. Am J Hum Genet 2019; 105:1112-1125. [PMID: 31708117 PMCID: PMC6904807 DOI: 10.1016/j.ajhg.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/11/2019] [Indexed: 11/20/2022] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder caused by a gain-of-function mutation in HTT. Suppression of mutant HTT has emerged as a leading therapeutic strategy for HD, with allele-selective approaches targeting HTT SNPs now in clinical trials. Haplotypes associated with the HD mutation (A1, A2, A3a) represent panels of allele-specific gene silencing targets for efficient treatment of individuals with HD of Northern European and indigenous South American ancestry. Here we extend comprehensive haplotype analysis of the HD mutation to key populations of Southern European, South Asian, Middle Eastern, and admixed African ancestry. In each of these populations, the HD mutation occurs predominantly on the A2 HTT haplotype. Analysis of HD haplotypes across all affected population groups enables rational selection of candidate target SNPs for development of allele-selective gene silencing therapeutics worldwide. Targeting SNPs on the A1 and A2 haplotypes in parallel is essential to achieve treatment of the most HD-affected subjects in populations where HD is most prevalent. Current allele-specific approaches will leave a majority of individuals with HD untreated in populations where the HD mutation occurs most frequently on the A2 haplotype. We further demonstrate preclinical development of potent and selective ASOs targeting SNPs on the A2 HTT haplotype, representing an allele-specific treatment strategy for these individuals. On the basis of comprehensive haplotype analysis, we show the maximum proportion of HD-affected subjects that may be treated with three or four allele targets in different populations worldwide, informing current allele-specific HTT silencing strategies.
Collapse
Affiliation(s)
- Chris Kay
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Jennifer A Collins
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Nicholas S Caron
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Luciana de Andrade Agostinho
- PPGNEURO, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ 20270-004, Brazil; Centro Universitário UNIFAMINAS, Muriaé, MG 36880-000, Brazil; Hospital do Câncer de Muriaé, Muriaé, MG 36880-000, Brazil
| | - Hailey Findlay-Black
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | - Lorenzo Casal
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada
| | | | | | - Mario Cornejo-Olivas
- Neurogenetics Research Center, Instituto Nacional de Ciencias Neurologicas, Lima 15003, Peru; Center for Global Health, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Fiona Baine
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa; Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa
| | - Jacquie L Greenberg
- Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Carmen Lúcia Antão Paiva
- PPGNEURO, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ 20270-004, Brazil
| | - Ferdinando Squitieri
- Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | - Michael R Hayden
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z4H4, Canada.
| |
Collapse
|
12
|
Southwell AL, Kordasiewicz HB, Langbehn D, Skotte NH, Parsons MP, Villanueva EB, Caron NS, Østergaard ME, Anderson LM, Xie Y, Cengio LD, Findlay-Black H, Doty CN, Fitsimmons B, Swayze EE, Seth PP, Raymond LA, Frank Bennett C, Hayden MR. Huntingtin suppression restores cognitive function in a mouse model of Huntington's disease. Sci Transl Med 2019; 10:10/461/eaar3959. [PMID: 30282695 DOI: 10.1126/scitranslmed.aar3959] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 05/26/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) protein, resulting in acquisition of toxic functions. Previous studies have shown that lowering mutant HTT has the potential to be broadly beneficial. We previously identified HTT single-nucleotide polymorphisms (SNPs) tightly linked to the HD mutation and developed antisense oligonucleotides (ASOs) targeting HD-SNPs that selectively suppress mutant HTT. We tested allele-specific ASOs in a mouse model of HD. Both early and late treatment reduced cognitive and behavioral impairments in mice. To determine the translational potential of the treatment, we examined the effect of ASO administration on HTT brain expression in nonhuman primates. The treatment induced robust HTT suppression throughout the cortex and limbic system, areas implicated in cognition and psychiatric function. The results suggest that ASOs specifically targeting mutated HTT might have therapeutic effects on HD-mediated cognitive impairments.
Collapse
Affiliation(s)
- Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | - Douglas Langbehn
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Niels H Skotte
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Matthew P Parsons
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Erika B Villanueva
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | - Lisa M Anderson
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Yuanyun Xie
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Louisa Dal Cengio
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Hailey Findlay-Black
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Crystal N Doty
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | | - Lynn A Raymond
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
13
|
Sorek M, Cohen LRZ, Meshorer E. Open chromatin structure in PolyQ disease-related genes: a potential mechanism for CAG repeat expansion in the normal human population. NAR Genom Bioinform 2019; 1:e3. [PMID: 33575550 PMCID: PMC7671342 DOI: 10.1093/nargab/lqz003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/07/2019] [Accepted: 07/16/2019] [Indexed: 02/05/2023] Open
Abstract
The human genome contains dozens of genes that encode for proteins containing long poly-glutamine repeats (polyQ, usually encoded by CAG codons) of 10Qs or more. However, only nine of these genes have been reported to expand beyond the healthy variation and cause diseases. To address whether these nine disease-associated genes are unique in any way, we compared genetic and epigenetic features relative to other types of genes, especially repeat containing genes that do not cause diseases. Our analyses show that in pluripotent cells, the nine polyQ disease-related genes are characterized by an open chromatin profile, enriched for active chromatin marks and depleted for suppressive chromatin marks. By contrast, genes that encode for polyQ-containing proteins that are not associated with diseases, and other repeat containing genes, possess a suppressive chromatin environment. We propose that the active epigenetic landscape support decreased genomic stability and higher susceptibility for expansion mutations.
Collapse
Affiliation(s)
- Matan Sorek
- Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, Jerusalem, Hebrew University of Jerusalem, 9190401, Israel.,Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Jerusalem, Hebrew University of Jerusalem, 9190401, Israel
| | - Lea R Z Cohen
- Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, Jerusalem, Hebrew University of Jerusalem, 9190401, Israel.,Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Jerusalem, Hebrew University of Jerusalem, 9190401, Israel
| | - Eran Meshorer
- Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, Jerusalem, Hebrew University of Jerusalem, 9190401, Israel.,Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Jerusalem, Hebrew University of Jerusalem, 9190401, Israel
| |
Collapse
|
14
|
Novel MED12 variant in a multiplex Fragile X syndrome family: dual molecular etiology of two X-linked intellectual disabilities with autism in the same family. Mol Biol Rep 2019; 46:4185-4193. [PMID: 31098807 DOI: 10.1007/s11033-019-04869-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
Studies of X-linked pedigrees were the first to identify genes implicated in intellectual disability (ID) and autism spectrum disorder (ASD). However, some pedigrees present a huge clinical variability between the affected members. This intrafamilial heterogeneity may be due to cooccurrence of two disorders. In the present study, we describe a multiplex X-linked pedigree in which three siblings have ID, ASD and dysmorphic features but with variable severity. Through Fragile X syndrome test, we identified the full FMR1 mutation in only two males. Whole exome sequencing allowed us to identify a novel hemizygous variant (p.Gln2080_Gln2083del) in MED12 gene in two males. So, the first patient has FXS, the second has both FMR1 and MED12 mutations while the third has only the MED12 variant. MED12 mutations are implicated in several forms of X-linked ID. Family segregation and genotype-phenotype-correlation were in favor of a cooccurrence of two forms of X-linked ID. Our work provides further evidence of the involvement of MED12 in XLID. Moreover, through these results, it is noteworthy to raise awareness that intrafamilial heterogeneity in FXS multiplex families could result from the cooccurrence of multiple clinical entities involving at least two separate genetic loci. This should be taken into consideration for genetic testing and counselling in patients/families with atypical disease symptoms.
Collapse
|
15
|
Häußermann K, Young G, Kukura P, Dietz H. Dissecting FOXP2 Oligomerization and DNA Binding. Angew Chem Int Ed Engl 2019; 58:7662-7667. [PMID: 30887622 PMCID: PMC6986896 DOI: 10.1002/anie.201901734] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 01/17/2023]
Abstract
Protein–protein and protein–substrate interactions are critical to function and often depend on factors that are difficult to disentangle. Herein, a combined biochemical and biophysical approach, based on electrically switchable DNA biochips and single‐molecule mass analysis, was used to characterize the DNA binding and protein oligomerization of the transcription factor, forkhead box protein P2 (FOXP2). FOXP2 contains domains commonly involved in nucleic‐acid binding and protein oligomerization, such as a C2H2‐zinc finger (ZF), and a leucine zipper (LZ), whose roles in FOXP2 remain largely unknown. We found that the LZ mediates FOXP2 dimerization via coiled‐coil formation but also contributes to DNA binding. The ZF contributes to protein dimerization when the LZ coiled‐coil is intact, but it is not involved in DNA binding. The forkhead domain (FHD) is the key driver of DNA binding. Our data contributes to understanding the mechanisms behind the transcriptional activity of FOXP2.
Collapse
Affiliation(s)
- Katharina Häußermann
- Physik Department & Munich School of Bioengineering, Technische Universität München, Am Coulombwall 4a, 85784, Garching, Germany
| | - Gavin Young
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Philipp Kukura
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Hendrik Dietz
- Physik Department & Munich School of Bioengineering, Technische Universität München, Am Coulombwall 4a, 85784, Garching, Germany
| |
Collapse
|
16
|
Häußermann K, Young G, Kukura P, Dietz H. Dissecting FOXP2 Oligomerization and DNA Binding. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Katharina Häußermann
- Physik Department & Munich School of BioengineeringTechnische Universität München Am Coulombwall 4a 85784 Garching Germany
| | - Gavin Young
- Department of ChemistryPhysical and Theoretical Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Philipp Kukura
- Department of ChemistryPhysical and Theoretical Chemistry LaboratoryUniversity of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Hendrik Dietz
- Physik Department & Munich School of BioengineeringTechnische Universität München Am Coulombwall 4a 85784 Garching Germany
| |
Collapse
|
17
|
Vázquez N, Rocha S, López-Fernández H, Torres A, Camacho R, Fdez-Riverola F, Vieira J, Vieira CP, Reboiro-Jato M. EvoPPI 1.0: a Web Platform for Within- and Between-Species Multiple Interactome Comparisons and Application to Nine PolyQ Proteins Determining Neurodegenerative Diseases. Interdiscip Sci 2019; 11:45-56. [DOI: 10.1007/s12539-019-00317-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/21/2023]
|
18
|
Ohkuni K, Pasupala N, Peek J, Holloway GL, Sclar GD, Levy-Myers R, Baker RE, Basrai MA, Kerscher O. SUMO-Targeted Ubiquitin Ligases (STUbLs) Reduce the Toxicity and Abnormal Transcriptional Activity Associated With a Mutant, Aggregation-Prone Fragment of Huntingtin. Front Genet 2018; 9:379. [PMID: 30279700 PMCID: PMC6154015 DOI: 10.3389/fgene.2018.00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/27/2018] [Indexed: 01/01/2023] Open
Abstract
Cell viability and gene expression profiles are altered in cellular models of neurodegenerative disorders such as Huntington’s Disease (HD). Using the yeast model system, we show that the SUMO-targeted ubiquitin ligase (STUbL) Slx5 reduces the toxicity and abnormal transcriptional activity associated with a mutant, aggregation-prone fragment of huntingtin (Htt), the causative agent of HD. We demonstrate that expression of an aggregation-prone Htt construct with 103 glutamine residues (103Q), but not the non-expanded form (25Q), results in severe growth defects in slx5Δ and slx8Δ cells. Since Slx5 is a nuclear protein and because Htt expression affects gene transcription, we assessed the effect of STUbLs on the transcriptional properties of aggregation-prone Htt. Expression of Htt 25Q and 55Q fused to the Gal4 activation domain (AD) resulted in reporter gene auto-activation. Remarkably, the auto-activation of Htt constructs was abolished by expression of Slx5 fused to the Gal4 DNA-binding domain (BD-Slx5). In support of these observations, RNF4, the human ortholog of Slx5, curbs the aberrant transcriptional activity of aggregation-prone Htt in yeast and a variety of cultured human cell lines. Functionally, we find that an extra copy of SLX5 specifically reduces Htt aggregates in the cytosol as well as chromatin-associated Htt aggregates in the nucleus. Finally, using RNA sequencing, we identified and confirmed specific targets of Htt’s transcriptional activity that are modulated by Slx5. In summary, this study of STUbLs uncovers a conserved pathway that counteracts the accumulation of aggregating, transcriptionally active Htt (and possibly other poly-glutamine expanded proteins) on chromatin in both yeast and in mammalian cells.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nagesh Pasupala
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| | - Jennifer Peek
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| | | | - Gloria D Sclar
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| | - Reuben Levy-Myers
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Oliver Kerscher
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| |
Collapse
|
19
|
A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a Populus ANGUSTIFOLIA Protein. G3-GENES GENOMES GENETICS 2018; 8:2631-2641. [PMID: 29884614 PMCID: PMC6071607 DOI: 10.1534/g3.118.200188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polyglutamine (polyQ) stretches have been reported to occur in proteins across many organisms including animals, fungi and plants. Expansion of these repeats has attracted much attention due their associations with numerous human diseases including Huntington’s and other neurological maladies. This suggests that the relative length of polyQ stretches is an important modulator of their function. Here, we report the identification of a Populus C-terminus binding protein (CtBP) ANGUSTIFOLIA (PtAN1) which contains a polyQ stretch whose functional relevance had not been established. Analysis of 917 resequenced Populus trichocarpa genotypes revealed three allelic variants at this locus encoding 11-, 13- and 15-glutamine residues. Transient expression assays using Populus leaf mesophyll protoplasts revealed that the 11Q variant exhibited strong nuclear localization whereas the 15Q variant was only found in the cytosol, with the 13Q variant exhibiting localization in both subcellular compartments. We assessed functional implications by evaluating expression changes of putative PtAN1 targets in response to overexpression of the three allelic variants and observed allele-specific differences in expression levels of putative targets. Our results provide evidence that variation in polyQ length modulates PtAN1 function by altering subcellular localization.
Collapse
|
20
|
Pearce MMP, Kopito RR. Prion-Like Characteristics of Polyglutamine-Containing Proteins. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024257. [PMID: 28096245 DOI: 10.1101/cshperspect.a024257] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies are infectious neurodegenerative diseases caused by the conversion of prion protein (PrP) into a self-replicating conformation that spreads via templated conversion of natively folded PrP molecules within or between cells. Recent studies provide compelling evidence that prion-like behavior is a general property of most protein aggregates associated with neurodegenerative diseases. Many of these disorders are associated with spontaneous protein aggregation, but genetic mutations can increase the aggregation propensity of specific proteins, including expansion of polyglutamine (polyQ) tracts, which is causative of nine inherited neurodegenerative diseases. Aggregates formed by polyQ-expanded huntingtin (Htt) in Huntington's disease can transfer between cells and seed the aggregation of cytoplasmic wild-type Htt in a prion-like manner. Additionally, prion-like properties of glutamine-rich proteins underlie nonpathological processes in yeast and higher eukaryotes. Here, we review current evidence supporting prion-like characteristics of polyQ and glutamine-rich proteins.
Collapse
Affiliation(s)
- Margaret M P Pearce
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
21
|
Hashimoto M, Ho G, Takamatsu Y, Wada R, Sugama S, Takenouchi T, Masliah E, Waragai M. Possible Role of the Polyglutamine Elongation in Evolution of Amyloid-Related Evolvability. J Huntingtons Dis 2018; 7:297-307. [PMID: 30372687 PMCID: PMC6294593 DOI: 10.3233/jhd-180309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The polyglutamine (polyQ) diseases, such as Huntington's disease and the spinocerebellar ataxias, are characterized by the accumulation of elongated polyQ sequences (epolyQ) and mostly occur during midlife. Considering that polyQ disorders have not been selected out in evolution, there might be important physiological functions of epolyQ during development and/or reproduction. In a similar context, the physiological functions of neurodegeneration-associated amyloidogenic proteins (APs), such as β-amyloid in Alzheimer's disease and α-synuclein in Parkinson's disease, remain elusive. In this regard, we recently proposed that evolvability for coping with diverse stressors in the brain, which is beneficial for offspring, might be relevant to the physiological functions of APs. Given analogous properties of APs and epolyQ in terms of neurotoxic amyloid-fibril formation, the objective of this paper is to determine whether evolvability could also be applied to the physiological functions of epolyQ. Indeed, APs and epolyQ are similar in many ways, including functional redundancy of non-amyloidogenic homologues, hormesis conferred by the heterogeneity of the stress-induced protein aggregates, the transgenerational prion-like transmission of the protein aggregates via germ cells, and the antagonistic pleiotropy relationship between evolvability and neurodegenerative disease. Given that epolyQ is widely expressed from microorganisms to human brain, whereas APs are only identified in vertebrates, evolvability of epolyQ is considered to be much more primitive compared to those of APs during evolution. Collectively, epolyQ may be not only be important in the pathophysiology of polyQ diseases, but also in the evolution of amyloid-related evolvability.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, USA
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Ryoko Wada
- Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
22
|
Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules 2017; 22:molecules22122027. [PMID: 29186753 PMCID: PMC6149999 DOI: 10.3390/molecules22122027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure. However, in some cases, the repetitive mRNAs can be translated in a non-canonical manner, generating highly repetitive peptides of different length and amino acid composition. The repeat extension-caused aggregation of a repetitive protein may represent a pivotal step for its transformation into a proteotoxic entity that can lead to pathology. The goals of this article are to systematically analyze molecular mechanisms of the proteinopathies caused by the poly-glutamine and poly-alanine homorepeat expansion, as well as by the polypeptides generated as a result of the microsatellite expansions in non-coding gene regions and to examine the related proteins. We also present results of the analysis of the prevalence and functional roles of intrinsic disorder in proteins associated with pathological repeat expansions.
Collapse
|
23
|
Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington's disease. Lancet Neurol 2017; 16:837-847. [PMID: 28920889 PMCID: PMC5604739 DOI: 10.1016/s1474-4422(17)30280-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/23/2017] [Accepted: 07/12/2017] [Indexed: 01/12/2023]
Abstract
No disease-slowing treatment exists for Huntington's disease, but its monogenic inheritance makes it an appealing candidate for the development of therapies targeting processes close to its genetic cause. Huntington's disease is caused by CAG repeat expansions in the HTT gene, which encodes the huntingtin protein; development of therapies to target HTT transcription and the translation of its mRNA is therefore an area of intense investigation. Huntingtin-lowering strategies include antisense oligonucleotides and RNA interference targeting mRNA, and zinc finger transcriptional repressors and CRISPR-Cas9 methods aiming to reduce transcription by targeting DNA. An intrathecally delivered antisense oligonucleotide that aims to lower huntingtin is now well into its first human clinical trial, with other antisense oligonucleotides expected to enter trials in the next 1-2 years and virally delivered RNA interference and zinc finger transcriptional repressors in advanced testing in animal models. Recent advances in the design and delivery of therapies to target HTT RNA and DNA are expected to improve their efficacy, safety, tolerability, and duration of effect in future studies.
Collapse
Affiliation(s)
- Edward J Wild
- Huntington's Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Sarah J Tabrizi
- Huntington's Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
24
|
Miniarikova J, Zimmer V, Martier R, Brouwers CC, Pythoud C, Richetin K, Rey M, Lubelski J, Evers MM, van Deventer SJ, Petry H, Déglon N, Konstantinova P. AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington's disease. Gene Ther 2017; 24:630-639. [PMID: 28771234 PMCID: PMC5658675 DOI: 10.1038/gt.2017.71] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/16/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is a fatal progressive neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. To date, there is no treatment to halt or reverse the course of HD. Lowering of either total or only the mutant HTT expression is expected to have therapeutic benefit. This can be achieved by engineered micro (mi)RNAs targeting HTT transcripts and delivered by an adeno-associated viral (AAV) vector. We have previously showed a miHTT construct to induce total HTT knock-down in Hu128/21 HD mice, while miSNP50T and miSNP67T constructs induced allele-selective HTT knock-down in vitro. In the current preclinical study, the mechanistic efficacy and gene specificity of these selected constructs delivered by an AAV serotype 5 (AAV5) vector was addressed using an acute HD rat model. Our data demonstrated suppression of mutant HTT messenger RNA, which almost completely prevented mutant HTT aggregate formation, and ultimately resulted in suppression of DARPP-32-associated neuronal dysfunction. The AAV5-miHTT construct was found to be the most efficient, although AAV5-miSNP50T demonstrated the anticipated mutant HTT allele selectivity and no passenger strand expression. Ultimately, AAV5-delivered-miRNA-mediated HTT lowering did not cause activation of microglia or astrocytes suggesting no immune response to the AAV5 vector or therapeutic precursor sequences. These preclinical results suggest that using gene therapy to knock-down HTT may provide important therapeutic benefit for HD patients and raised no safety concerns, which supports our ongoing efforts for the development of an RNA interference-based gene therapy product for HD.
Collapse
Affiliation(s)
- J Miniarikova
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - V Zimmer
- Neurosciences Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital, Lausanne, Switzerland
- Department of Clinical Neurosciences, LCMN, Lausanne University Hospital, Lausanne, Switzerland
| | - R Martier
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - C C Brouwers
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
| | - C Pythoud
- Neurosciences Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital, Lausanne, Switzerland
- Department of Clinical Neurosciences, LCMN, Lausanne University Hospital, Lausanne, Switzerland
| | - K Richetin
- Neurosciences Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital, Lausanne, Switzerland
- Department of Clinical Neurosciences, LCMN, Lausanne University Hospital, Lausanne, Switzerland
| | - M Rey
- Neurosciences Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital, Lausanne, Switzerland
- Department of Clinical Neurosciences, LCMN, Lausanne University Hospital, Lausanne, Switzerland
| | - J Lubelski
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
| | - M M Evers
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
| | - S J van Deventer
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Petry
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
| | - N Déglon
- Neurosciences Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne University Hospital, Lausanne, Switzerland
- Department of Clinical Neurosciences, LCMN, Lausanne University Hospital, Lausanne, Switzerland
| | - P Konstantinova
- Department of Research & Development, uniQure N.V., Amsterdam, The Netherlands
| |
Collapse
|
25
|
Estruch SB, Graham SA, Chinnappa SM, Deriziotis P, Fisher SE. Functional characterization of rare FOXP2 variants in neurodevelopmental disorder. J Neurodev Disord 2016; 8:44. [PMID: 27933109 PMCID: PMC5126810 DOI: 10.1186/s11689-016-9177-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/08/2016] [Indexed: 01/15/2023] Open
Abstract
Background Heterozygous disruption of FOXP2 causes a rare form of speech and language impairment. Screens of the FOXP2 sequence in individuals with speech/language-related disorders have identified several rare protein-altering variants, but their phenotypic relevance is often unclear. FOXP2 encodes a transcription factor with a forkhead box DNA-binding domain, but little is known about the functions of protein regions outside this domain. Methods We performed detailed functional analyses of seven rare FOXP2 variants found in affected cases, including three which have not been previously characterized, testing intracellular localization, transcriptional regulation, dimerization, and interaction with other proteins. To shed further light on molecular functions of FOXP2, we characterized the interaction between this transcription factor and co-repressor proteins of the C-terminal binding protein (CTBP) family. Finally, we analysed the functional significance of the polyglutamine tracts in FOXP2, since tract length variations have been reported in cases of neurodevelopmental disorder. Results We confirmed etiological roles of multiple FOXP2 variants. Of three variants that have been suggested to cause speech/language disorder, but never before been characterized, only one showed functional effects. For the other two, we found no effects on protein function in any assays, suggesting that they are incidental to the phenotype. We identified a CTBP-binding region within the N-terminal portion of FOXP2. This region includes two amino acid substitutions that occurred on the human lineage following the split from chimpanzees. However, we did not observe any effects of these amino acid changes on CTBP binding or other core aspects of FOXP2 function. Finally, we found that FOXP2 variants with reduced polyglutamine tracts did not exhibit altered behaviour in cellular assays, indicating that such tracts are non-essential for core aspects of FOXP2 function, and that tract variation is unlikely to be a highly penetrant cause of speech/language disorder. Conclusions Our findings highlight the importance of functional characterization of novel rare variants in FOXP2 in assessing the contribution of such variants to speech/language disorder and provide further insights into the molecular function of the FOXP2 protein. Electronic supplementary material The online version of this article (doi:10.1186/s11689-016-9177-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara B Estruch
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, the Netherlands
| | - Sarah A Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, the Netherlands
| | - Swathi M Chinnappa
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, the Netherlands
| | - Pelagia Deriziotis
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, the Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
| |
Collapse
|
26
|
Conformational modulation mediated by polyglutamine expansion in CAG repeat expansion disease-associated proteins. Biochem Biophys Res Commun 2016; 478:949-55. [PMID: 27520369 DOI: 10.1016/j.bbrc.2016.08.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022]
Abstract
We have previously reported TR-FRET based immunoassays to detect a conformational change imparted on huntingtin protein by the polyglutamine expansion, which we confirmed using biophysical methodologies. Using these immunoassays, we now report that polyglutamine expansion influences the conformational properties of other polyglutamine disease proteins, exemplified by the androgen receptor (associated with spinal bulbar muscular atrophy) and TATA binding protein (associated with spinocerebellar ataxia 17). Using artificial constructs bearing short or long polyglutamine expansions or a multimerized, unrelated epitope (mimicking the increase in anti-polyglutamine antibody epitopes present in polyglutamine repeats of increasing length) we confirmed that the conformational TR-FRET based immunoassay detects an intrinsic conformational property of polyglutamine repeats. The TR-FRET based conformational immunoassay may represent a rapid, scalable tool to identify modulators of polyglutamine-mediated conformational change in different proteins associated with CAG triplet repeat disorders.
Collapse
|
27
|
Zhemkov VA, Kulminskaya AA, Bezprozvanny IB, Kim M. The 2.2-Angstrom resolution crystal structure of the carboxy-terminal region of ataxin-3. FEBS Open Bio 2016; 6:168-78. [PMID: 27047745 PMCID: PMC4794786 DOI: 10.1002/2211-5463.12029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 01/15/2023] Open
Abstract
An expansion of polyglutamine (polyQ) sequence in ataxin‐3 protein causes spinocerebellar ataxia type 3, an inherited neurodegenerative disorder. The crystal structure of the polyQ‐containing carboxy‐terminal fragment of human ataxin‐3 was solved at 2.2‐Å resolution. The Atxn3 carboxy‐terminal fragment including 14 glutamine residues adopts both random coil and α‐helical conformations in the crystal structure. The polyQ sequence in α‐helical structure is stabilized by intrahelical hydrogen bonds mediated by glutamine side chains. The intrahelical hydrogen‐bond interactions between glutamine side chains along the axis of the polyQ α‐helix stabilize the secondary structure. Analysis of this structure furthers our understanding of the polyQ‐structural characteristics that likely underlie the pathogenesis of polyQ‐expansion disorders.
Collapse
Affiliation(s)
- Vladimir A Zhemkov
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Laboratory of Enzymology National Research Center «Kurchatov Institute»B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Russia
| | - Anna A Kulminskaya
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Laboratory of Enzymology National Research Center «Kurchatov Institute»B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Department of Physiology University of Texas Southwestern Medical Center Dallas TX USA
| | - Meewhi Kim
- Laboratory of Molecular Neurodegeneration St Petersburg State Polytechnical University Russia; Department of Physiology University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
28
|
Nagai MA. Pleckstrin homology-like domain, family A, member 1 ( PHLDA1) and cancer. Biomed Rep 2016; 4:275-281. [PMID: 26998263 DOI: 10.3892/br.2016.580] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022] Open
Abstract
Pleckstrin homology-like domain, family A, member 1 (PHLDA1) encodes a member of an evolutionarily conserved pleckstrin homology-related domain protein family. It was first identified as a potential transcription factor required for Fas expression and activation-induced apoptosis in mouse T cell hybridomas. The exact molecular and biological functions of PHLDA1 remain to be elucidated. However, its expression is induced by a variety of external stimuli and there is evidence that it may function as a transcriptional activator that acts as a mediator of apoptosis, proliferation, differentiation and cell migration dependent on the cellular type and context. Recently, PHLDA1 has received attention due to its association with cancer. In the present review, the current knowledge of PHLDA1 protein structure, expression regulation and function is summarized. In addition, the current data in the literature is reviewed with regards to the role of PHLDA1 in cancer pathogenesis.
Collapse
Affiliation(s)
- Maria Aparecida Nagai
- Discipline of Oncology, Department of Radiology, Faculty of Medicine, University of São Paulo, Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo, SP 01246-000, Brazil
| |
Collapse
|
29
|
Zhao Y, Liu X, Sun H, Wang Y, Yang W, Ma H. Contactin‑associated protein‑like 2 expression in SH‑SY5Y cells is upregulated by a FOXP2 mutant with a shortened poly‑glutamine tract. Mol Med Rep 2015; 12:8162-8. [PMID: 26497390 DOI: 10.3892/mmr.2015.4483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/14/2015] [Indexed: 11/06/2022] Open
Abstract
The forkhead box protein P2 (FOXP2) gene encodes an important transcription factor that contains a polyglutamine (poly‑Q) tract and a forkhead DNA binding domain. It has been observed that FOXP2 is associated with speech sound disorder (SSD), and mutations that decrease the length of the poly‑Q tract were identified in the FOXP2 gene of SSD patients. However, the exact role of poly‑Q reduction is not well understood. In the present study, constructs expressing wild‑type and poly‑Q reduction mutants of FOXP2 were generated by polymerase chain reaction (PCR) using lentiviral vectors and transfected into the SH‑SY5Y neuronal cell line. Quantitative reverse transcription (qRT)‑PCR and western blotting indicated that infected cells stably expressed high levels of FOXP2. Using this cell model, the impact of FOXP2 on the expression of contactin‑associated protein‑like 2 (CNTNAP2) were investigated, and CNTNAP2 mRNA expression levels were observed to be significantly higher in cells expressing poly‑Q‑reduced FOXP2. In addition, the expression level of CASPR2, a mammalian homolog of Drosophila Neurexin IV, was increased in cells expressing the FOXP2 mutant. Demonstration of regulation by FOXP2 indicates that CNTNAP2 may also be involved in SSD.
Collapse
Affiliation(s)
- Yunjing Zhao
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaoliang Liu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hongwei Sun
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yueping Wang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Wenzhu Yang
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Hongwei Ma
- Department of Developmental Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
30
|
Wang L, Aasly JO, Annesi G, Bardien S, Bozi M, Brice A, Carr J, Chung SJ, Clarke C, Crosiers D, Deutschländer A, Eckstein G, Farrer MJ, Goldwurm S, Garraux G, Hadjigeorgiou GM, Hicks AA, Hattori N, Klein C, Jeon B, Kim YJ, Lesage S, Lin JJ, Lynch T, Lichtner P, Lang AE, Mok V, Jasinska-Myga B, Mellick GD, Morrison KE, Opala G, Pihlstrøm L, Pramstaller PP, Park SS, Quattrone A, Rogaeva E, Ross OA, Stefanis L, Stockton JD, Silburn PA, Theuns J, Tan EK, Tomiyama H, Toft M, Van Broeckhoven C, Uitti RJ, Wirdefeldt K, Wszolek Z, Xiromerisiou G, Yueh KC, Zhao Y, Gasser T, Maraganore DM, Krüger R, Sharma M. Large-scale assessment of polyglutamine repeat expansions in Parkinson disease. Neurology 2015; 85:1283-92. [PMID: 26354989 DOI: 10.1212/wnl.0000000000002016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/21/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES We aim to clarify the pathogenic role of intermediate size repeat expansions of SCA2, SCA3, SCA6, and SCA17 as risk factors for idiopathic Parkinson disease (PD). METHODS We invited researchers from the Genetic Epidemiology of Parkinson's Disease Consortium to participate in the study. There were 12,346 cases and 8,164 controls genotyped, for a total of 4 repeats within the SCA2, SCA3, SCA6, and SCA17 genes. Fixed- and random-effects models were used to estimate the summary risk estimates for the genes. We investigated between-study heterogeneity and heterogeneity between different ethnic populations. RESULTS We did not observe any definite pathogenic repeat expansions for SCA2, SCA3, SCA6, and SCA17 genes in patients with idiopathic PD from Caucasian and Asian populations. Furthermore, overall analysis did not reveal any significant association between intermediate repeats and PD. The effect estimates (odds ratio) ranged from 0.93 to 1.01 in the overall cohort for the SCA2, SCA3, SCA6, and SCA17 loci. CONCLUSIONS Our study did not support a major role for definite pathogenic repeat expansions in SCA2, SCA3, SCA6, and SCA17 genes for idiopathic PD. Thus, results of this large study do not support diagnostic screening of SCA2, SCA3, SCA6, and SCA17 gene repeats in the common idiopathic form of PD. Likewise, this largest multicentered study performed to date excludes the role of intermediate repeats of these genes as a risk factor for PD.
Collapse
Affiliation(s)
- Lisa Wang
- Authors' affiliations are listed at the end of the article
| | - Jan O Aasly
- Authors' affiliations are listed at the end of the article
| | - Grazia Annesi
- Authors' affiliations are listed at the end of the article
| | - Soraya Bardien
- Authors' affiliations are listed at the end of the article
| | - Maria Bozi
- Authors' affiliations are listed at the end of the article
| | - Alexis Brice
- Authors' affiliations are listed at the end of the article
| | - Jonathan Carr
- Authors' affiliations are listed at the end of the article
| | - Sun J Chung
- Authors' affiliations are listed at the end of the article
| | - Carl Clarke
- Authors' affiliations are listed at the end of the article
| | - David Crosiers
- Authors' affiliations are listed at the end of the article
| | | | | | | | | | - Gaetan Garraux
- Authors' affiliations are listed at the end of the article
| | | | - Andrew A Hicks
- Authors' affiliations are listed at the end of the article
| | | | | | - Beom Jeon
- Authors' affiliations are listed at the end of the article
| | - Yun J Kim
- Authors' affiliations are listed at the end of the article
| | - Suzanne Lesage
- Authors' affiliations are listed at the end of the article
| | - Juei-Jueng Lin
- Authors' affiliations are listed at the end of the article
| | - Timothy Lynch
- Authors' affiliations are listed at the end of the article
| | - Peter Lichtner
- Authors' affiliations are listed at the end of the article
| | - Anthony E Lang
- Authors' affiliations are listed at the end of the article
| | - Vincent Mok
- Authors' affiliations are listed at the end of the article
| | | | | | | | - Grzegorz Opala
- Authors' affiliations are listed at the end of the article
| | | | | | - Sung S Park
- Authors' affiliations are listed at the end of the article
| | - Aldo Quattrone
- Authors' affiliations are listed at the end of the article
| | | | - Owen A Ross
- Authors' affiliations are listed at the end of the article
| | | | | | | | - Jessie Theuns
- Authors' affiliations are listed at the end of the article
| | - Eng K Tan
- Authors' affiliations are listed at the end of the article
| | | | - Mathias Toft
- Authors' affiliations are listed at the end of the article
| | | | - Ryan J Uitti
- Authors' affiliations are listed at the end of the article
| | | | | | | | - Kuo-Chu Yueh
- Authors' affiliations are listed at the end of the article
| | - Yi Zhao
- Authors' affiliations are listed at the end of the article
| | - Thomas Gasser
- Authors' affiliations are listed at the end of the article
| | | | - Rejko Krüger
- Authors' affiliations are listed at the end of the article
| | - Manu Sharma
- Authors' affiliations are listed at the end of the article.
| | | |
Collapse
|
31
|
Owens GE, New DM, West AP, Bjorkman PJ. Anti-PolyQ Antibodies Recognize a Short PolyQ Stretch in Both Normal and Mutant Huntingtin Exon 1. J Mol Biol 2015; 427:2507-2519. [PMID: 26047735 DOI: 10.1016/j.jmb.2015.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 11/24/2022]
Abstract
Huntington's disease is caused by expansion of a polyglutamine (polyQ) repeat in the huntingtin protein. A structural basis for the apparent transition between normal and disease-causing expanded polyQ repeats of huntingtin is unknown. The "linear lattice" model proposed random-coil structures for both normal and expanded polyQ in the preaggregation state. Consistent with this model, the affinity and stoichiometry of the anti-polyQ antibody MW1 increased with the number of glutamines. An opposing "structural toxic threshold" model proposed a conformational change above the pathogenic polyQ threshold resulting in a specific toxic conformation for expanded polyQ. Support for this model was provided by the anti-polyQ antibody 3B5H10, which was reported to specifically recognize a distinct pathologic conformation of soluble expanded polyQ. To distinguish between these models, we directly compared binding of MW1 and 3B5H10 to normal and expanded polyQ repeats within huntingtin exon 1 fusion proteins. We found similar binding characteristics for both antibodies. First, both antibodies bound to normal, as well as expanded, polyQ in huntingtin exon 1 fusion proteins. Second, an expanded polyQ tract contained multiple epitopes for fragments antigen-binding (Fabs) of both antibodies, demonstrating that 3B5H10 does not recognize a single epitope specific to expanded polyQ. Finally, small-angle X-ray scattering and dynamic light scattering revealed similar binding modes for MW1 and 3B5H10 Fab-huntingtin exon 1 complexes. Together, these results support the linear lattice model for polyQ binding proteins, suggesting that the hypothesized pathologic conformation of soluble expanded polyQ is not a valid target for drug design.
Collapse
Affiliation(s)
- Gwen E Owens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Graduate Option in Biochemistry and Molecular Biophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Danielle M New
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA.
| |
Collapse
|
32
|
Cens T, Rousset M, Collet C, Charreton M, Garnery L, Le Conte Y, Chahine M, Sandoz JC, Charnet P. Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 58:12-27. [PMID: 25602183 DOI: 10.1016/j.ibmb.2015.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 06/04/2023]
Abstract
Voltage-gated Ca(2+) channels allow the influx of Ca(2+) ions from the extracellular space upon membrane depolarization and thus serve as a transducer between membrane potential and cellular events initiated by Ca(2+) transients. Most insects are predicted to possess three genes encoding Cavα, the main subunit of Ca(2+) channels, and several genes encoding the two auxiliary subunits, Cavβ and Cavα2δ; however very few of these genes have been cloned so far. Here, we cloned three full-length cDNAs encoding the three Cavα subunits (AmelCav1a, AmelCav2a and AmelCav3a), a cDNA encoding a novel variant of the Cavβ subunit (AmelCavβc), and three full-length cDNAs encoding three Cavα2δ subunits (AmelCavα2δ1 to 3) of the honeybee Apis mellifera. We identified several alternative or mutually exclusive exons in the sequence of the AmelCav2 and AmelCav3 genes. Moreover, we detected a stretch of glutamine residues in the C-terminus of the AmelCav1 subunit that is reminiscent of the motif found in the human Cav2.1 subunit of patients with Spinocerebellar Ataxia type 6. All these subunits contain structural domains that have been identified as functionally important in their mammalian homologues. For the first time, we could express three insect Cavα subunits in Xenopus oocytes and we show that AmelCav1a, 2a and 3a form Ca(2+) channels with distinctive properties. Notably, the co-expression of AmelCav1a or AmelCav2a with AmelCavβc and AmCavα2δ1 produces High Voltage-Activated Ca(2+) channels. On the other hand, expression of AmelCav3a alone leads to Low Voltage-Activated Ca(2+) channels.
Collapse
Affiliation(s)
- Thierry Cens
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Place Eugène Bataillon, 34095 Montpellier cedex 5, France; Centre de Recherche de Biochimie Macromoléculaire (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier cedex 5, France; Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | - Matthieu Rousset
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Place Eugène Bataillon, 34095 Montpellier cedex 5, France; Centre de Recherche de Biochimie Macromoléculaire (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier cedex 5, France; Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | - Claude Collet
- INRA UR 406 Abeilles et Environnement, 228 Route de l'aérodrome, Domaine Saint Paul, Site Agroparc, CS40509, 84914 Avignon cedex 9, France.
| | - Mercedes Charreton
- INRA UR 406 Abeilles et Environnement, 228 Route de l'aérodrome, Domaine Saint Paul, Site Agroparc, CS40509, 84914 Avignon cedex 9, France.
| | - Lionel Garnery
- Laboratoire Evolution Génome et Spéciation (LEGS), CNRS UPR 9034, Avenue de la Terrasse, Bâtiment 13, 91198 Gif sur Yvette, France.
| | - Yves Le Conte
- INRA UR 406 Abeilles et Environnement, 228 Route de l'aérodrome, Domaine Saint Paul, Site Agroparc, CS40509, 84914 Avignon cedex 9, France.
| | - Mohamed Chahine
- Centre de recherche, Institut universitaire en santé mentale de Québec, 2601 Chemin de la Canardière, Québec Québec G1J 2G3, Canada.
| | - Jean-Christophe Sandoz
- Laboratoire Evolution Génome et Spéciation (LEGS), CNRS UPR 9034, Avenue de la Terrasse, Bâtiment 13, 91198 Gif sur Yvette, France.
| | - Pierre Charnet
- Institut des Biomolécules Max Mousseron (IBMM), CNRS UMR 5247, Place Eugène Bataillon, 34095 Montpellier cedex 5, France; Centre de Recherche de Biochimie Macromoléculaire (CRBM), CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier cedex 5, France; Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| |
Collapse
|
33
|
Southwell AL, Skotte NH, Kordasiewicz HB, Østergaard ME, Watt AT, Carroll JB, Doty CN, Villanueva EB, Petoukhov E, Vaid K, Xie Y, Freier SM, Swayze EE, Seth PP, Bennett CF, Hayden MR. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol Ther 2014; 22:2093-2106. [PMID: 25101598 PMCID: PMC4429695 DOI: 10.1038/mt.2014.153] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/23/2014] [Indexed: 11/08/2022] Open
Abstract
Huntington disease (HD) is a dominant, genetic neurodegenerative disease characterized by progressive loss of voluntary motor control, psychiatric disturbance, and cognitive decline, for which there is currently no disease-modifying therapy. HD is caused by the expansion of a CAG tract in the huntingtin (HTT) gene. The mutant HTT protein (muHTT) acquires toxic functions, and there is significant evidence that muHTT lowering would be therapeutically efficacious. However, the wild-type HTT protein (wtHTT) serves vital functions, making allele-specific muHTT lowering strategies potentially safer than nonselective strategies. CAG tract expansion is associated with single nucleotide polymorphisms (SNPs) that can be targeted by gene silencing reagents such as antisense oligonucleotides (ASOs) to accomplish allele-specific muHTT lowering. Here we evaluate ASOs targeted to HD-associated SNPs in acute in vivo studies including screening, distribution, duration of action and dosing, using a humanized mouse model of HD, Hu97/18, that is heterozygous for the targeted SNPs. We have identified four well-tolerated lead ASOs that potently and selectively silence muHTT at a broad range of doses throughout the central nervous system for 16 weeks or more after a single intracerebroventricular (ICV) injection. With further validation, these ASOs could provide a therapeutic option for individuals afflicted with HD.
Collapse
Affiliation(s)
- Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Niels H Skotte
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | - Jeffrey B Carroll
- Behavioral Neuroscience Program, Department of Psychology, Western Washington University, Bellingham, Washington, USA
| | - Crystal N Doty
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erika B Villanueva
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eugenia Petoukhov
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kuljeet Vaid
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuanyun Xie
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
34
|
Cui Y, Zhao S, Zhao H, Lv Y, Yu M, Wang Y, Chen ZJ. Mutational analysis of TOX3 in Chinese Han women with polycystic ovary syndrome. Reprod Biomed Online 2014; 29:752-5. [PMID: 25311971 DOI: 10.1016/j.rbmo.2014.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
Abstract
A previous genome-wide association study of polycystic ovary syndrome (PCOS) identified several susceptibility loci. TOX3 is the nearest gene to signal rs4784165. In the present study, all exons and exon-intron boundaries of TOX3 were amplified and sequenced in 200 Chinese women with PCOS. A 3-bp nucleotide deletion of CAG repeat and two known single nucleotide polymorphisms were identified. No plausible pathogenic mutations were detected. The results suggest that mutations in TOX3 are not common in Chinese Han women with PCOS.
Collapse
Affiliation(s)
- Yuqian Cui
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China; Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, 324 Jingwu Road, Jinan 250021, China; The Key Laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan 250021, China; Shandong Provincial Key Laboratory of Reproductive Medicine, 324 Jingwu Road, Jinan 250021, China; Center for Reproductive Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China; Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, 324 Jingwu Road, Jinan 250021, China; The Key Laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan 250021, China; Shandong Provincial Key Laboratory of Reproductive Medicine, 324 Jingwu Road, Jinan 250021, China
| | - Han Zhao
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, 324 Jingwu Road, Jinan 250021, China; The Key Laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan 250021, China; Shandong Provincial Key Laboratory of Reproductive Medicine, 324 Jingwu Road, Jinan 250021, China
| | - Yue Lv
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, 324 Jingwu Road, Jinan 250021, China; The Key Laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan 250021, China; Shandong Provincial Key Laboratory of Reproductive Medicine, 324 Jingwu Road, Jinan 250021, China
| | - Mengru Yu
- Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, 324 Jingwu Road, Jinan 250021, China; The Key Laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan 250021, China; Shandong Provincial Key Laboratory of Reproductive Medicine, 324 Jingwu Road, Jinan 250021, China
| | - Yu Wang
- Institute of Obstetrics and Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China; Center for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan 250021, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, 324 Jingwu Road, Jinan 250021, China; The Key Laboratory for Reproductive Endocrinology of Ministry of Education, 324 Jingwu Road, Jinan 250021, China; Shandong Provincial Key Laboratory of Reproductive Medicine, 324 Jingwu Road, Jinan 250021, China.
| |
Collapse
|
35
|
Sun X, Marque LO, Cordner Z, Pruitt JL, Bhat M, Li PP, Kannan G, Ladenheim EE, Moran TH, Margolis RL, Rudnicki DD. Phosphorodiamidate morpholino oligomers suppress mutant huntingtin expression and attenuate neurotoxicity. Hum Mol Genet 2014; 23:6302-17. [PMID: 25035419 DOI: 10.1093/hmg/ddu349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. Disease pathogenesis derives, at least in part, from the long polyglutamine tract encoded by mutant HTT. Therefore, considerable effort has been dedicated to the development of therapeutic strategies that significantly reduce the expression of the mutant HTT protein. Antisense oligonucleotides (ASOs) targeted to the CAG repeat region of HTT transcripts have been of particular interest due to their potential capacity to discriminate between normal and mutant HTT transcripts. Here, we focus on phosphorodiamidate morpholino oligomers (PMOs), ASOs that are especially stable, highly soluble and non-toxic. We designed three PMOs to selectively target expanded CAG repeat tracts (CTG22, CTG25 and CTG28), and two PMOs to selectively target sequences flanking the HTT CAG repeat (HTTex1a and HTTex1b). In HD patient-derived fibroblasts with expanded alleles containing 44, 77 or 109 CAG repeats, HTTex1a and HTTex1b were effective in suppressing the expression of mutant and non-mutant transcripts. CTGn PMOs also suppressed HTT expression, with the extent of suppression and the specificity for mutant transcripts dependent on the length of the targeted CAG repeat and on the CTG repeat length and concentration of the PMO. PMO CTG25 reduced HTT-induced cytotoxicity in vitro and suppressed mutant HTT expression in vivo in the N171-82Q transgenic mouse model. Finally, CTG28 reduced mutant HTT expression and improved the phenotype of Hdh(Q7/Q150) knock-in HD mice. These data demonstrate the potential of PMOs as an approach to suppressing the expression of mutant HTT.
Collapse
Affiliation(s)
- Xin Sun
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Leonard O Marque
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Zachary Cordner
- Behavioral Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences
| | - Jennifer L Pruitt
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Manik Bhat
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Geetha Kannan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Ellen E Ladenheim
- Behavioral Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences
| | - Timothy H Moran
- Behavioral Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Department of Neurology, and Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dobrila D Rudnicki
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
36
|
Tan EC, Tan HS, Chua TE, Lee T, Ng J, Ch'ng YC, Choo CH, Chen HY. Association of premenstrual/menstrual symptoms with perinatal depression and a polymorphic repeat in the polyglutamine tract of the retinoic acid induced 1 gene. J Affect Disord 2014; 161:43-6. [PMID: 24751306 DOI: 10.1016/j.jad.2014.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Depression during pregnancy or after childbirth is the most frequent perinatal illness affecting women. We investigated the length distribution of a trinucleotide repeat in RAI1, which has not been studied in perinatal depression or in the Chinese population. METHODS Cases (n=139) with confirmed diagnosis of clinical (major) depression related to pregnancy/postpartum were recruited from the outpatient clinic. Controls were patients who came to the obstetrics clinics and scored <7 on the Edinburgh Postnatal Depression Scale (EPDS) (n=540). Saliva samples for DNA analysis, demographic information and self-reported frequency of occurrence of various premenstrual/menstrual symptoms were collected from all participants. Genomic DNA was extracted from saliva and relevant region sequenced to determine the number of CAG/CAA repeats that encodes the polyglutamine tract in the N terminal of the protein. Difference between groups was assessed by chi-square analysis for categorical variables and analysis of variance for quantitative scores. RESULTS Compared to control subjects, patients with perinatal depression reported more frequent mood changes, cramps, nausea, vomiting, diarrhoea, and headache during premenstrual/menstrual periods (p=0.000). For the RAI1 gene CAG/CAA repeat, there was a statistically significant difference in the genotypic distribution between cases and controls (p=0.031). There was also a statistically significant association between the 14-repeat allele and perinatal depression (p=0.016). LIMITATIONS Family history, previous mental illness, and physical and psychological symptoms during the premenstrual/menstrual periods were self-reported. EPDS screening was done only once for controls. CONCLUSIONS The RAI1 gene polyglutamine repeat has a different distribution in our population. The 14-repeat allele is associated with perinatal depression and more frequent experience of physical and psychological symptoms during menstrual period.
Collapse
Affiliation(s)
- Ene-Choo Tan
- KK Research Centre, KK Women׳s and Children׳s Hospital, Singapore; Office of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore.
| | - Hui-San Tan
- KK Research Centre, KK Women׳s and Children׳s Hospital, Singapore
| | - Tze-Ern Chua
- Department of Psychological Medicine, KK Women׳s and Children׳s Hospital, Singapore
| | - Theresa Lee
- Office of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore; Department of Psychological Medicine, KK Women׳s and Children׳s Hospital, Singapore
| | - Jasmine Ng
- KK Research Centre, KK Women׳s and Children׳s Hospital, Singapore
| | - Ying-Chia Ch'ng
- Department of Psychological Medicine, KK Women׳s and Children׳s Hospital, Singapore
| | - Chih-Huei Choo
- Office of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore; Department of Psychological Medicine, KK Women׳s and Children׳s Hospital, Singapore
| | - Helen Y Chen
- Office of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore; Department of Psychological Medicine, KK Women׳s and Children׳s Hospital, Singapore
| |
Collapse
|
37
|
Kay C, Skotte N, Southwell A, Hayden M. Personalized gene silencing therapeutics for Huntington disease. Clin Genet 2014; 86:29-36. [DOI: 10.1111/cge.12385] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 01/14/2023]
Affiliation(s)
- C. Kay
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute; University of British Columbia; Vancouver Canada
| | - N.H. Skotte
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute; University of British Columbia; Vancouver Canada
| | - A.L. Southwell
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute; University of British Columbia; Vancouver Canada
| | - M.R. Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute; University of British Columbia; Vancouver Canada
| |
Collapse
|
38
|
Almeida B, Fernandes S, Abreu IA, Macedo-Ribeiro S. Trinucleotide repeats: a structural perspective. Front Neurol 2013; 4:76. [PMID: 23801983 PMCID: PMC3687200 DOI: 10.3389/fneur.2013.00076] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/04/2013] [Indexed: 11/29/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions are present in a wide range of genes involved in several neurological disorders, being directly involved in the molecular mechanisms underlying pathogenesis through modulation of gene expression and/or the function of the RNA or protein it encodes. Structural and functional information on the role of TNR sequences in RNA and protein is crucial to understand the effect of TNR expansions in neurodegeneration. Therefore, this review intends to provide to the reader a structural and functional view of TNR and encoded homopeptide expansions, with a particular emphasis on polyQ expansions and its role at inducing the self-assembly, aggregation and functional alterations of the carrier protein, which culminates in neuronal toxicity and cell death. Detail will be given to the Machado-Joseph Disease-causative and polyQ-containing protein, ataxin-3, providing clues for the impact of polyQ expansion and its flanking regions in the modulation of ataxin-3 molecular interactions, function, and aggregation.
Collapse
Affiliation(s)
- Bruno Almeida
- Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| | | | | | | |
Collapse
|
39
|
Petrakis S, Schaefer MH, Wanker EE, Andrade-Navarro MA. Aggregation of polyQ-extended proteins is promoted by interaction with their natural coiled-coil partners. Bioessays 2013; 35:503-7. [PMID: 23483542 PMCID: PMC3674527 DOI: 10.1002/bies.201300001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polyglutamine (polyQ) diseases are genetically inherited neurodegenerative disorders. They are caused by mutations that result in polyQ expansions of particular proteins. Mutant proteins form intranuclear aggregates, induce cytotoxicity and cause neuronal cell death. Protein interaction data suggest that polyQ regions modulate interactions between coiled-coil (CC) domains. In the case of the polyQ disease spinocerebellar ataxia type-1 (SCA1), interacting proteins with CC domains further enhance aggregation and toxicity of mutant ataxin-1 (ATXN1). Here, we suggest that CC partners interacting with the polyQ region of a mutant protein, increase its aggregation while partners that interact with a different region reduce the formation of aggregates. Computational analysis of genetic screens revealed that CC-rich proteins are highly enriched among genes that enhance pathogenicity of polyQ proteins, supporting our hypothesis. We therefore suggest that blocking interactions between mutant polyQ proteins and their CC partners might constitute a promising preventive strategy against neurodegeneration.
Collapse
Affiliation(s)
- Spyros Petrakis
- Neuroproteomics, Max Delbrueck, Center for Molecular Medicine, Berlin, Germany.
| | | | | | | |
Collapse
|
40
|
Assessing the genome-wide effect of promoter region tandem repeat natural variation on gene expression. G3-GENES GENOMES GENETICS 2012; 2:1643-9. [PMID: 23275886 PMCID: PMC3516485 DOI: 10.1534/g3.112.004663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/24/2012] [Indexed: 12/23/2022]
Abstract
Copy number polymorphisms of nucleotide tandem repeat (TR) regions, such as microsatellites and minisatellites, are mutationally reversible and highly abundant in eukaryotic genomes. Studies linking TR polymorphism to phenotypic variation have led some to suggest that TR variation modulates and majorly contributes to phenotypic variation; however, studies in which the authors assess the genome-wide impact of TR variation on phenotype are lacking. To address this question, we quantified relationships between polymorphism levels in 143 genome-wide promoter region TRs across 16 isolates of the filamentous fungus Aspergillus flavus and its ecotype Aspergillus oryzae with expression levels of their downstream genes. We found that only 4.3% of relationships tested were significant; these findings were consistent with models in which TRs act as “tuning,” “volume,” or “optimality” “knobs” of phenotype but not with “switch” models. Furthermore, the promoter regions of differentially expressed genes between A. oryzae and A. flavus did not show TR enrichment, suggesting that genome-wide differences in molecular phenotype between the two species are not significantly associated with TRs. Although in some cases TR polymorphisms do contribute to transcript abundance variation, these results argue that at least in this case, TRs might not be major modulators of variation in phenotype.
Collapse
|
41
|
Southwell AL, Skotte NH, Bennett CF, Hayden MR. Antisense oligonucleotide therapeutics for inherited neurodegenerative diseases. Trends Mol Med 2012; 18:634-43. [PMID: 23026741 DOI: 10.1016/j.molmed.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/25/2012] [Accepted: 09/07/2012] [Indexed: 12/12/2022]
Abstract
The rising median age of our population and the age-dependent risk of neurodegeneration translate to exponentially increasing numbers of afflicted individuals in the coming years. Although symptomatic treatments are available for some neurodegenerative diseases, most are only moderately efficacious and are often associated with significant side effects. The development of small molecule, disease-modifying drugs has been hindered by complex pathogenesis and a failure to clearly define the rate-limiting steps in disease progression. An alternative approach is to directly target the mutant gene product or a defined causative protein. Antisense oligonucleotides (ASOs) - with their diverse functionality, high target specificity, and relative ease of central nervous system (CNS) delivery - are uniquely positioned as potential therapies for neurological diseases. Here we review the development of ASOs for the treatment of inherited neurodegenerative diseases.
Collapse
Affiliation(s)
- Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, V5Z 4H4, Canada.
| | | | | | | |
Collapse
|
42
|
Southwell AL, Warby SC, Carroll JB, Doty CN, Skotte NH, Zhang W, Villanueva EB, Kovalik V, Xie Y, Pouladi MA, Collins JA, Yang XW, Franciosi S, Hayden MR. A fully humanized transgenic mouse model of Huntington disease. Hum Mol Genet 2012; 22:18-34. [PMID: 23001568 DOI: 10.1093/hmg/dds397] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Silencing the mutant huntingtin gene (muHTT) is a direct and simple therapeutic strategy for the treatment of Huntington disease (HD) in principle. However, targeting the HD mutation presents challenges because it is an expansion of a common genetic element (a CAG tract) that is found throughout the genome. Moreover, the HTT protein is important for neuronal health throughout life, and silencing strategies that also reduce the wild-type HTT allele may not be well tolerated during the long-term treatment of HD. Several HTT silencing strategies are in development that target genetic sites in HTT that are outside of the CAG expansion, including HD mutation-linked single-nucleotide polymorphisms and the HTT promoter. Preclinical testing of these genetic therapies has required the development of a new mouse model of HD that carries these human-specific genetic targets. To generate a fully humanized mouse model of HD, we have cross-bred BACHD and YAC18 on the Hdh(-/-) background. The resulting line, Hu97/18, is the first murine model of HD that fully genetically recapitulates human HD having two human HTT genes, no mouse Hdh genes and heterozygosity of the HD mutation. We find that Hu97/18 mice display many of the behavioral changes associated with HD including motor, psychiatric and cognitive deficits, as well as canonical neuropathological abnormalities. This mouse line will be useful for gaining additional insights into the disease mechanisms of HD as well as for testing genetic therapies targeting human HTT.
Collapse
Affiliation(s)
- Amber L Southwell
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pellegrini M, Renda ME, Vecchio A. Tandem repeats discovery service (TReaDS) applied to finding novel cis-acting factors in repeat expansion diseases. BMC Bioinformatics 2012; 13 Suppl 4:S3. [PMID: 22536970 PMCID: PMC3303744 DOI: 10.1186/1471-2105-13-s4-s3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Tandem repeats are multiple duplications of substrings in the DNA that occur contiguously, or at a short distance, and may involve some mutations (such as substitutions, insertions, and deletions). Tandem repeats have been extensively studied also for their association with the class of repeat expansion diseases (mostly affecting the nervous system). Comparative studies on the output of different tools for finding tandem repeats highlighted significant differences among the sets of detected tandem repeats, while many authors pointed up how critical it is the right choice of parameters. Results In this paper we present TReaDS - Tandem Repeats Discovery Service, a tandem repeat meta search engine. TReaDS forwards user requests to several state of the art tools for finding tandem repeats and merges their outcome into a single report, providing a global, synthetic, and comparative view of the results. In particular, TReaDS allows the user to (i) simultaneously run different algorithms on the same data set, (ii) choose for each algorithm a different setting of parameters, and (iii) obtain a report that can be downloaded for further, off-line, investigations. We used TReaDS to investigate sequences associated with repeat expansion diseases. Conclusions By using the tool TReaDS we discover that, for 27 repeat expansion diseases out of a currently known set of 29, long fuzzy tandem repeats are covering the expansion loci. Tests with control sets confirm the specificity of this association. This finding suggests that long fuzzy tandem repeats can be a new class of cis-acting elements involved in the mechanisms leading to the expansion instability. We strongly believe that biologists can be interested in a tool that, not only gives them the possibility of using multiple search algorithm at the same time, with the same effort exerted in using just one of the systems, but also simplifies the burden of comparing and merging the results, thus expanding our capabilities in detecting important phenomena related to tandem repeats.
Collapse
Affiliation(s)
- Marco Pellegrini
- Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa I-56124, Italy
| | | | | |
Collapse
|
44
|
Schaefer MH, Wanker EE, Andrade-Navarro MA. Evolution and function of CAG/polyglutamine repeats in protein-protein interaction networks. Nucleic Acids Res 2012; 40:4273-87. [PMID: 22287626 PMCID: PMC3378862 DOI: 10.1093/nar/gks011] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions.
Collapse
Affiliation(s)
- Martin H. Schaefer
- Computational Biology and Data Mining and Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Erich E. Wanker
- Computational Biology and Data Mining and Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Miguel A. Andrade-Navarro
- Computational Biology and Data Mining and Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- *To whom correspondence should be addressed. Tel: +49 30 9406 4250; Fax: +49 30 9406 4240;
| |
Collapse
|
45
|
Wetzel R. Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 2012; 421:466-90. [PMID: 22306404 DOI: 10.1016/j.jmb.2012.01.030] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 01/08/2023]
Abstract
Polyglutamine (polyQ) sequences of unknown normal function are present in a significant number of proteins, and their repeat expansion is associated with a number of genetic neurodegenerative diseases. PolyQ solution structure and properties are important not only because of the normal and abnormal biology associated with these sequences but also because they represent an interesting case of a biologically relevant homopolymer. As the common thread in expanded polyQ repeat diseases, it is important to understand the structure and properties of simple polyQ sequences. At the same time, experience has shown that sequences attached to polyQ, whether in artificial constructs or in disease proteins, can influence structure and properties. The two major contenders for the molecular source of the neurotoxicity implicit in polyQ expansion within disease proteins are a populated toxic conformation in the monomer ensemble and a toxic aggregated species. This review summarizes experimental and computational studies on the solution structure and aggregation properties of both simple and complex polyQ sequences, and their repeat-length dependence. As a representative of complex polyQ proteins, the behavior of huntingtin N-terminal fragments, such as exon-1, receives special attention.
Collapse
Affiliation(s)
- Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
46
|
Laffita-Mesa JM, Velázquez-Pérez LC, Santos Falcón N, Cruz-Mariño T, González Zaldívar Y, Vázquez Mojena Y, Almaguer-Gotay D, Almaguer Mederos LE, Rodríguez Labrada R. Unexpanded and intermediate CAG polymorphisms at the SCA2 locus (ATXN2) in the Cuban population: evidence about the origin of expanded SCA2 alleles. Eur J Hum Genet 2011; 20:41-9. [PMID: 21934711 DOI: 10.1038/ejhg.2011.154] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The role of short, large or intermediate normal alleles (ANs) of the ataxin-2 gene in generating expanded alleles (EAs) causing spinocerebellar ataxia type 2 (SCA2) is poorly understood. It has been postulated that SCA2 prevalence is related to the frequency of large ANs. SCA2 shows the highest worldwide prevalence in Cuban population, which is therefore a unique source for studying the relationship between the frequency of large and intermediate alleles and the frequency of SCA2 mutation. Through genetic polymorphism analyses in a comprehensive sample (~3000 chromosomes), we show that the frequency of large ANs in the ataxin-2 gene is the highest worldwide, although short ANs are also frequent. This highly polymorphic population displayed also high variability in the CAG sequence, featured by loss of the anchor CAA interruption(s). In addition, large ANs showed germinal and somatic instability. Our study also includes related genotypic, genealogical and haplotypic data and provides substantial evidence with regard to the role of large and intermediate alleles in the generation of pathological EAs.
Collapse
Affiliation(s)
- José Miguel Laffita-Mesa
- Laboratory of Molecular Neurobiology, Centre for the Research and Rehabilitation of Hereditary Ataxias, Holguín, Cuba. mails:
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Krzyzosiak WJ, Sobczak K, Wojciechowska M, Fiszer A, Mykowska A, Kozlowski P. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res 2011; 40:11-26. [PMID: 21908410 PMCID: PMC3245940 DOI: 10.1093/nar/gkr729] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases.
Collapse
Affiliation(s)
- Wlodzimierz J Krzyzosiak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
48
|
Ren J, Jegga AG, Zhang M, Deng J, Liu J, Gordon CB, Aronow BJ, Lu LJ, Zhang B, Ma J. A Drosophila model of the neurodegenerative disease SCA17 reveals a role of RBP-J/Su(H) in modulating the pathological outcome. Hum Mol Genet 2011; 20:3424-36. [PMID: 21653638 DOI: 10.1093/hmg/ddr251] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expanded polyglutamine (polyQ) tract in the human TATA-box-binding protein (hTBP) causes the neurodegenerative disease spinocerebellar ataxia 17 (SCA17). To investigate the pathological effects of polyQ expansion, we established a SCA17 model in Drosophila. Similar to SCA17 patients, transgenic flies expressing a mutant hTBP protein with an expanded polyQ tract (hTBP80Q) exhibit progressive neurodegeneration, late-onset locomotor impairment and shortened lifespan. Microarray analysis reveals that hTBP80Q causes widespread and time-dependent transcriptional dysregulation in Drosophila. In a candidate screen for genetic modifiers, we identified RBP-J/Su(H), a transcription factor that contains Q/N-rich domains and participates in Notch signaling. Knockdown of Su(H) by RNAi further enhances hTBP80Q-induced eye defects, whereas overexpression of Su(H) suppresses such defects. While the Su(H) transcript level is not significantly altered in hTBP80Q-expressing flies, genes that contain Su(H)-binding sites are among those that are dysregulated. We further show that hTBP80Q interacts more efficiently with Su(H) than wild-type hTBP, suggesting that a reduction in the fraction of Su(H) available for its normal cellular functions contributes to hTBP80Q-induced phenotypes. While the Notch signaling pathway has been implicated in several neurological disorders, our study suggests a possibility that the activity of its nuclear component RBP-J/Su(H) may modulate the pathological progression in SCA17 patients.
Collapse
Affiliation(s)
- Jie Ren
- Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, Center of Developmental Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Unstable genes unstable mind: beyond the central dogma of molecular biology. Med Hypotheses 2011; 77:165-70. [PMID: 21507580 DOI: 10.1016/j.mehy.2011.03.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 03/22/2011] [Accepted: 03/26/2011] [Indexed: 11/21/2022]
Abstract
Schizophrenia has a polygenic mode of inheritance and an estimated heritability of over 80%, but success in understanding its genetic underpinnings to date has been modest. Unlike in trinucleotide neurodegenerative disorders, the phenomenon of genetic anticipation observed in schizophrenia or bipolar disorder has not been explained. For the first time, we provide a plausible molecular explanation of genetic anticipation and pathophysiology of schizophrenia, at least in part, with supporting evidence. We postulate that abnormally increased numbers of CAG repeats in many genes being expressed in the brain, coding for glutamine, cumulatively press for higher demand of glutamine in the respective brain cells, resulting in a metabolic crisis and dysregulation of the glutamate-glutamine cycle. This can adversely affect the functioning of both glutamate and GABA receptors, which are known to be involved in psychosis, and may also affect glutathione levels, increasing oxidative stress. The resulting psychosis (gain in function), originating from unstable genes, is described as an effect "beyond the central dogma of molecular biology". The hypothesis explains genetic anticipation, as further expansions in subsequent generations may result in increased severity and earlier occurrence. Many other well described findings provide proof of concept. This is a testable hypothesis, does not deny any known facts and opens up new avenues of research.
Collapse
|
50
|
Haerty W, Golding GB. Low-complexity sequences and single amino acid repeats: not just "junk" peptide sequences. Genome 2011; 53:753-62. [PMID: 20962881 DOI: 10.1139/g10-063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For decades proteins were thought to interact in a "lock and key" system, which led to the definition of a paradigm linking stable three-dimensional structure to biological function. As a consequence, any non-structured peptide was considered to be nonfunctional and to evolve neutrally. Surprisingly, the most commonly shared peptides between eukaryotic proteomes are low-complexity sequences that in most conditions do not present a stable three-dimensional structure. However, because these sequences evolve rapidly and because the size variation of a few of them can have deleterious effects, low-complexity sequences have been suggested to be the target of selection. Here we review evidence that supports the idea that these simple sequences should not be considered just "junk" peptides and that selection drives the evolution of many of them.
Collapse
Affiliation(s)
- Wilfried Haerty
- Biology Department, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|