1
|
Mendizábal-Castillero M, Merlo MA, Cross I, Rodríguez ME, Rebordinos L. Genomic Characterization of hox Genes in Senegalese Sole ( Solea senegalensis, Kaup 1858): Clues to Evolutionary Path in Pleuronectiformes. Animals (Basel) 2022; 12:ani12243586. [PMID: 36552509 PMCID: PMC9774920 DOI: 10.3390/ani12243586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The Senegalese sole (Solea senegalensis, Kaup 1858), a marine flatfish, belongs to the Pleuronectiformes order. It is a commercially important species for fisheries and aquaculture. However, in aquaculture, several production bottlenecks have still to be resolved, including skeletal deformities and high mortality during the larval and juvenile phase. The study aims to characterize the hox gene clusters in S. senegalensis to understand better the developmental and metamorphosis process in this species. Using a BAC library, the clones that contain hox genes were isolated, sequenced by NGS and used as BAC-FISH probes. Subsequently the hox clusters were studied by sequence analysis, comparative genomics, and cytogenetic and phylogenetic analysis. Cytogenetic analysis demonstrated the localization of four BAC clones on chromosome pairs 4, 12, 13, and 16 of the Senegalese sole cytogenomic map. Comparative and phylogenetic analysis showed a highly conserved organization in each cluster and different phylogenetic clustering in each hox cluster. Analysis of structural and repetitive sequences revealed accumulations of polymorphisms mediated by repetitive elements in the hoxba cluster, mainly retroelements. Therefore, a possible loss of the hoxb7a gene can be established in the Pleuronectiformes lineage. This work allows the organization and regulation of hox clusters to be understood, and is a good base for further studies of expression patterns.
Collapse
|
2
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
3
|
Simões TR, Vernygora O, Caldwell MW, Pierce SE. Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nat Commun 2020; 11:3322. [PMID: 32620878 PMCID: PMC7335191 DOI: 10.1038/s41467-020-17190-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 06/17/2020] [Indexed: 11/18/2022] Open
Abstract
The origin of phenotypic diversity among higher clades is one of the most fundamental topics in evolutionary biology. However, due to methodological challenges, few studies have assessed rates of evolution and phenotypic disparity across broad scales of time to understand the evolutionary dynamics behind the origin and early evolution of new clades. Here, we provide a total-evidence dating approach to this problem in diapsid reptiles. We find major chronological gaps between periods of high evolutionary rates (phenotypic and molecular) and expansion in phenotypic disparity in reptile evolution. Importantly, many instances of accelerated phenotypic evolution are detected at the origin of major clades and body plans, but not concurrent with previously proposed periods of adaptive radiation. Furthermore, strongly heterogenic rates of evolution mark the acquisition of similarly adapted functional types, and the origin of snakes is marked by the highest rates of phenotypic evolution in diapsid history.
Collapse
Affiliation(s)
- Tiago R Simões
- Department of Organismic and Evolutionary Biology & Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| | - Oksana Vernygora
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Michael W Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Stephanie E Pierce
- Department of Organismic and Evolutionary Biology & Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
4
|
Flasch DA, Macia Á, Sánchez L, Ljungman M, Heras SR, García-Pérez JL, Wilson TE, Moran JV. Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication. Cell 2019; 177:837-851.e28. [PMID: 30955886 DOI: 10.1016/j.cell.2019.02.050] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
L1 retrotransposon-derived sequences comprise approximately 17% of the human genome. Darwinian selective pressures alter L1 genomic distributions during evolution, confounding the ability to determine initial L1 integration preferences. Here, we generated high-confidence datasets of greater than 88,000 engineered L1 insertions in human cell lines that act as proxies for cells that accommodate retrotransposition in vivo. Comparing these insertions to a null model, in which L1 endonuclease activity is the sole determinant dictating L1 integration preferences, demonstrated that L1 insertions are not significantly enriched in genes, transcribed regions, or open chromatin. By comparison, we provide compelling evidence that the L1 endonuclease disproportionately cleaves predominant lagging strand DNA replication templates, while lagging strand 3'-hydroxyl groups may prime endonuclease-independent L1 retrotransposition in a Fanconi anemia cell line. Thus, acquisition of an endonuclease domain, in conjunction with the ability to integrate into replicating DNA, allowed L1 to become an autonomous, interspersed retrotransposon.
Collapse
Affiliation(s)
- Diane A Flasch
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| | - Ángela Macia
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain
| | - Laura Sánchez
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Translational Oncology Program and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, 48109, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Sara R Heras
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain
| | - José L García-Pérez
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Thomas E Wilson
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
5
|
Chen M, Lin JY, Hur J, Pelletier JM, Baden R, Pellegrini M, Harada JJ, Goldberg RB. Seed genome hypomethylated regions are enriched in transcription factor genes. Proc Natl Acad Sci U S A 2018; 115:E8315-E8322. [PMID: 30104383 PMCID: PMC6126732 DOI: 10.1073/pnas.1811017115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The precise mechanisms that control gene activity during seed development remain largely unknown. Previously, we showed that several genes essential for seed development, including those encoding storage proteins, fatty acid biosynthesis enzymes, and transcriptional regulators (e.g., ABI3, FUS3) are located within hypomethylated regions of the soybean genome. These hypomethylated regions are similar to the DNA methylation valleys (DMVs), or canyons, found in mammalian cells. Here, we address the question of the extent to which DMVs are present within seed genomes and what role they might play in seed development. We scanned soybean and Arabidopsis seed genomes from postfertilization through dormancy and germination for regions that contain <5% or <0.4% bulk methylation in CG, CHG, and CHH contexts over all developmental stages. We found that DMVs represent extensive portions of seed genomes, range in size from 5-76 kb, are scattered throughout all chromosomes, and are hypomethylated throughout the plant life cycle. Significantly, DMVs are enriched greatly in transcription factor (TF) genes and other developmental genes that play critical roles in seed formation. Many DMV genes are regulated with respect to seed stage, region, and tissue, and contain H3K4me3, H3K27me3, or bivalent marks that fluctuate during development. Our results indicate that DMVs are a unique regulatory feature of both plant and animal genomes, and that a large number of seed genes are regulated in the absence of methylation changes during development, probably by the action of specific TFs and epigenetic events at the chromatin level.
Collapse
Affiliation(s)
- Min Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Jer-Young Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Jungim Hur
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Julie M Pelletier
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616
| | - Russell Baden
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - John J Harada
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616
| | - Robert B Goldberg
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095;
| |
Collapse
|
6
|
Halgren C, Nielsen NM, Nazaryan-Petersen L, Silahtaroglu A, Collins RL, Lowther C, Kjaergaard S, Frisch M, Kirchhoff M, Brøndum-Nielsen K, Lind-Thomsen A, Mang Y, El-Schich Z, Boring CA, Mehrjouy MM, Jensen PK, Fagerberg C, Krogh LN, Hansen J, Bryndorf T, Hansen C, Talkowski ME, Bak M, Tommerup N, Bache I. Risks and Recommendations in Prenatally Detected De Novo Balanced Chromosomal Rearrangements from Assessment of Long-Term Outcomes. Am J Hum Genet 2018; 102:1090-1103. [PMID: 29805044 DOI: 10.1016/j.ajhg.2018.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
The 6%-9% risk of an untoward outcome previously established by Warburton for prenatally detected de novo balanced chromosomal rearrangements (BCRs) does not account for long-term morbidity. We performed long-term follow-up (mean 17 years) of a registry-based nationwide cohort of 41 individuals carrying a prenatally detected de novo BCR with normal first trimester screening/ultrasound scan. We observed a significantly higher frequency of neurodevelopmental and/or neuropsychiatric disorders than in a matched control group (19.5% versus 8.3%, p = 0.04), which was increased to 26.8% upon clinical follow-up. Chromosomal microarray of 32 carriers revealed no pathogenic imbalances, illustrating a low prognostic value when fetal ultrasound scan is normal. In contrast, mate-pair sequencing revealed disrupted genes (ARID1B, NPAS3, CELF4), regulatory domains of known developmental genes (ZEB2, HOXC), and complex BCRs associated with adverse outcomes. Seven unmappable autosomal-autosomal BCRs with breakpoints involving pericentromeric/heterochromatic regions may represent a low-risk group. We performed independent phenotype-aware and blinded interpretation, which accurately predicted benign outcomes (specificity = 100%) but demonstrated relatively low sensitivity for prediction of the clinical outcome in affected carriers (sensitivity = 45%-55%). This sensitivity emphasizes the challenges associated with prenatal risk prediction for long-term morbidity in the absence of phenotypic data given the still immature annotation of the morbidity genome and poorly understood long-range regulatory mechanisms. In conclusion, we upwardly revise the previous estimates of Warburton to a morbidity risk of 27% and recommend sequencing of the chromosomal breakpoints as the first-tier diagnostic test in pregnancies with a de novo BCR.
Collapse
|
7
|
Darbellay F, Duboule D. Topological Domains, Metagenes, and the Emergence of Pleiotropic Regulations at Hox Loci. Curr Top Dev Biol 2017; 116:299-314. [PMID: 26970625 DOI: 10.1016/bs.ctdb.2015.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hox gene clusters of jaw vertebrates display a tight genomic organization, which has no equivalent in any other bilateria genomes sequenced thus far. It was previously argued that such a topological consolidation toward a condensed, metagenic structure was due to the accumulation of long-range regulations flanking Hox loci, a phenomenon made possible by the successive genome duplications that occurred at the root of the vertebrate lineage, similar to gene neofunctionalization but applied to a coordinated multigenic system. Here, we propose that the emergence of such large vertebrate regulatory landscapes containing a range of global enhancers was greatly facilitated by the presence of topologically associating domains (TADs). These chromatin domains, mostly constitutive, may have been used as genomic niches where novel regulations could evolve due to both the preexistence of a structural backbone poised to integrate novel regulatory inputs, and a highly adaptive transcriptional readout. We propose a scenario for the coevolution of such TADs and the emergence of pleiotropy at ancestral vertebrate Hox loci.
Collapse
Affiliation(s)
- Fabrice Darbellay
- School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland
| | - Denis Duboule
- School of Life Sciences, Federal Institute of Technology, Lausanne, Switzerland; Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
8
|
Guerreiro I, Gitto S, Novoa A, Codourey J, Nguyen Huynh TH, Gonzalez F, Milinkovitch MC, Mallo M, Duboule D. Reorganisation of Hoxd regulatory landscapes during the evolution of a snake-like body plan. eLife 2016; 5. [PMID: 27476854 PMCID: PMC4969037 DOI: 10.7554/elife.16087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/10/2016] [Indexed: 12/15/2022] Open
Abstract
Within land vertebrate species, snakes display extreme variations in their body plan, characterized by the absence of limbs and an elongated morphology. Such a particular interpretation of the basic vertebrate body architecture has often been associated with changes in the function or regulation of Hox genes. Here, we use an interspecies comparative approach to investigate different regulatory aspects at the snake HoxD locus. We report that, unlike in other vertebrates, snake mesoderm-specific enhancers are mostly located within the HoxD cluster itself rather than outside. In addition, despite both the absence of limbs and an altered Hoxd gene regulation in external genitalia, the limb-associated bimodal HoxD chromatin structure is maintained at the snake locus. Finally, we show that snake and mouse orthologous enhancer sequences can display distinct expression specificities. These results show that vertebrate morphological evolution likely involved extensive reorganisation at Hox loci, yet within a generally conserved regulatory framework.
Collapse
Affiliation(s)
- Isabel Guerreiro
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Sandra Gitto
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Ana Novoa
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Julien Codourey
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Federico Gonzalez
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Moises Mallo
- Instituto Gulbenkian de Ciência, Lisbon, Portugal
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Makunin IV, Shloma VV, Stephen SJ, Pheasant M, Belyakin SN. Comparison of ultra-conserved elements in drosophilids and vertebrates. PLoS One 2013; 8:e82362. [PMID: 24349264 PMCID: PMC3862641 DOI: 10.1371/journal.pone.0082362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022] Open
Abstract
Metazoan genomes contain many ultra-conserved elements (UCEs), long sequences identical between distant species. In this study we identified UCEs in drosophilid and vertebrate species with a similar level of phylogenetic divergence measured at protein-coding regions, and demonstrated that both the length and number of UCEs are larger in vertebrates. The proportion of non-exonic UCEs declines in distant drosophilids whilst an opposite trend was observed in vertebrates. We generated a set of 2,126 Sophophora UCEs by merging elements identified in several drosophila species and compared these to the eutherian UCEs identified in placental mammals. In contrast to vertebrates, the Sophophora UCEs are depleted around transcription start sites. Analysis of 52,954 P-element, piggyBac and Minos insertions in the D. melanogaster genome revealed depletion of the P-element and piggyBac insertions in and around the Sophophora UCEs. We examined eleven fly strains with transposon insertions into the intergenic UCEs and identified associated phenotypes in five strains. Four insertions behave as recessive lethals, and in one case we observed a suppression of the marker gene within the transgene, presumably by silenced chromatin around the integration site. To confirm the lethality is caused by integration of transposons we performed a phenotype rescue experiment for two stocks and demonstrated that the excision of the transposons from the intergenic UCEs restores viability. Sequencing of DNA after the transposon excision in one fly strain with the restored viability revealed a 47 bp insertion at the original transposon integration site suggesting that the nature of the mutation is important for the appearance of the phenotype. Our results suggest that the UCEs in flies and vertebrates have both common and distinct features, and demonstrate that a significant proportion of intergenic drosophila UCEs are sensitive to disruption.
Collapse
Affiliation(s)
- Igor V. Makunin
- Research Computing Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute of Molecular and Cellular Biology SD RAS, Novosibirsk, Russia
- * E-mail:
| | - Viktor V. Shloma
- Institute of Molecular and Cellular Biology SD RAS, Novosibirsk, Russia
| | - Stuart J. Stephen
- Computational Biology Group, CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia
| | - Michael Pheasant
- Research Computing Centre, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
10
|
Piasecka B, Lichocki P, Moretti S, Bergmann S, Robinson-Rechavi M. The hourglass and the early conservation models--co-existing patterns of developmental constraints in vertebrates. PLoS Genet 2013; 9:e1003476. [PMID: 23637639 PMCID: PMC3636041 DOI: 10.1371/journal.pgen.1003476] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/11/2013] [Indexed: 12/13/2022] Open
Abstract
Developmental constraints have been postulated to limit the space of feasible phenotypes and thus shape animal evolution. These constraints have been suggested to be the strongest during either early or mid-embryogenesis, which corresponds to the early conservation model or the hourglass model, respectively. Conflicting results have been reported, but in recent studies of animal transcriptomes the hourglass model has been favored. Studies usually report descriptive statistics calculated for all genes over all developmental time points. This introduces dependencies between the sets of compared genes and may lead to biased results. Here we overcome this problem using an alternative modular analysis. We used the Iterative Signature Algorithm to identify distinct modules of genes co-expressed specifically in consecutive stages of zebrafish development. We then performed a detailed comparison of several gene properties between modules, allowing for a less biased and more powerful analysis. Notably, our analysis corroborated the hourglass pattern at the regulatory level, with sequences of regulatory regions being most conserved for genes expressed in mid-development but not at the level of gene sequence, age, or expression, in contrast to some previous studies. The early conservation model was supported with gene duplication and birth that were the most rare for genes expressed in early development. Finally, for all gene properties, we observed the least conservation for genes expressed in late development or adult, consistent with both models. Overall, with the modular approach, we showed that different levels of molecular evolution follow different patterns of developmental constraints. Thus both models are valid, but with respect to different genomic features. During development, vertebrate embryos pass through a “phylotypic” stage, during which their morphology is most similar between different species. This gave rise to the hourglass model, which predicts the highest developmental constraints during mid-embryogenesis. In the last decade, a large effort has been made to uncover the relation between developmental constraints and the evolution of genome. Several studies reported gene characteristics that change according to the hourglass model, e.g. sequence conservation, age, or expression. Here, we first show that some of the previous conclusions do not hold out under detailed analysis of the data. Then, we discuss the disadvantages of the standard evo-devo approach, i.e. comparing descriptive statistics of all genes across development. Results of such analysis are biased by genes expressed constantly during development (housekeeping genes). To overcome this limitation, we use a modularization approach, which reduces the complexity of the data and assures independency between the sets of genes which are compared. We identified distinct sets of genes (modules) with time-specific expression in zebrafish development and analyzed their conservation of sequence, gene expression, and regulatory elements, as well as their age and orthology relationships. Interestingly, we found different patterns of developmental constraints for different gene properties. Only conserved regulatory regions follow an hourglass pattern.
Collapse
Affiliation(s)
- Barbara Piasecka
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paweł Lichocki
- Laboratory of Intelligent Systems, EPFL, Lausanne, Switzerland
| | - Sébastien Moretti
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Laboratory of Intelligent Systems, EPFL, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
11
|
Piskurek O, Jackson DJ. Transposable elements: from DNA parasites to architects of metazoan evolution. Genes (Basel) 2012; 3:409-22. [PMID: 24704977 PMCID: PMC3899998 DOI: 10.3390/genes3030409] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 06/19/2012] [Accepted: 06/25/2012] [Indexed: 01/22/2023] Open
Abstract
One of the most unexpected insights that followed from the completion of the human genome a decade ago was that more than half of our DNA is derived from transposable elements (TEs). Due to advances in high throughput sequencing technologies it is now clear that TEs comprise the largest molecular class within most metazoan genomes. TEs, once categorised as "junk DNA", are now known to influence genomic structure and function by increasing the coding and non-coding genetic repertoire of the host. In this way TEs are key elements that stimulate the evolution of metazoan genomes. This review highlights several lines of TE research including the horizontal transfer of TEs through host-parasite interactions, the vertical maintenance of TEs over long periods of evolutionary time, and the direct role that TEs have played in generating morphological novelty.
Collapse
Affiliation(s)
- Oliver Piskurek
- Courant Research Centre Geobiology, Georg-August-University of Göttingen, Goldschmidtstr. 3, Göttingen 37077, Germany.
| | - Daniel J Jackson
- Courant Research Centre Geobiology, Georg-August-University of Göttingen, Goldschmidtstr. 3, Göttingen 37077, Germany.
| |
Collapse
|
12
|
Wang D, Su Y, Wang X, Lei H, Yu J. Transposon-derived and satellite-derived repetitive sequences play distinct functional roles in Mammalian intron size expansion. Evol Bioinform Online 2012; 8:301-19. [PMID: 22807622 PMCID: PMC3396637 DOI: 10.4137/ebo.s9758] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Repetitive sequences (RSs) are redundant, complex at times, and often lineage-specific, representing significant “building” materials for genes and genomes. According to their origins, sequence characteristics, and ways of propagation, repetitive sequences are divided into transposable elements (TEs) and satellite sequences (SSs) as well as related subfamilies and subgroups hierarchically. The combined changes attributable to the repetitive sequences alter gene and genome architectures, such as the expansion of exonic, intronic, and intergenic sequences, and most of them propagate in a seemingly random fashion and contribute very significantly to the entire mutation spectrum of mammalian genomes. Principal findings Our analysis is focused on evolutional features of TEs and SSs in the intronic sequence of twelve selected mammalian genomes. We divided them into four groups—primates, large mammals, rodents, and primary mammals—and used four non-mammalian vertebrate species as the out-group. After classifying intron size variation in an intron-centric way based on RS-dominance (TE-dominant or SS-dominant intron expansions), we observed several distinct profiles in intron length and positioning in different vertebrate lineages, such as retrotransposon-dominance in mammals and DNA transposon-dominance in the lower vertebrates, amphibians and fishes. The RS patterns of mouse and rat genes are most striking, which are not only distinct from those of other mammals but also different from that of the third rodent species analyzed in this study—guinea pig. Looking into the biological functions of relevant genes, we observed a two-dimensional divergence; in particular, genes that possess SS-dominant and/or RS-free introns are enriched in tissue-specific development and transcription regulation in all mammalian lineages. In addition, we found that the tendency of transposons in increasing intron size is much stronger than that of satellites, and the combined effect of both RSs is greater than either one of them alone in a simple arithmetic sum among the mammals and the opposite is found among the four non-mammalian vertebrates. Conclusions TE- and SS-derived RSs represent major mutational forces shaping the size and composition of vertebrate genes and genomes, and through natural selection they either fine-tune or facilitate changes in size expansion, position variation, and duplication, and thus in functions and evolutionary paths for better survival and fitness. When analyzed globally, not only are such changes significantly diversified but also comprehensible in lineages and biological implications.
Collapse
Affiliation(s)
- Dapeng Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, P.R. China
| | | | | | | | | |
Collapse
|
13
|
Boudinot P, van der Aa LM, Jouneau L, Du Pasquier L, Pontarotti P, Briolat V, Benmansour A, Levraud JP. Origin and evolution of TRIM proteins: new insights from the complete TRIM repertoire of zebrafish and pufferfish. PLoS One 2011; 6:e22022. [PMID: 21789205 PMCID: PMC3137616 DOI: 10.1371/journal.pone.0022022] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/12/2011] [Indexed: 11/19/2022] Open
Abstract
Tripartite motif proteins (TRIM) constitute a large family of proteins containing a RING-Bbox-Coiled Coil motif followed by different C-terminal domains. Involved in ubiquitination, TRIM proteins participate in many cellular processes including antiviral immunity. The TRIM family is ancient and has been greatly diversified in vertebrates and especially in fish. We analyzed the complete sets of trim genes of the large zebrafish genome and of the compact pufferfish genome. Both contain three large multigene subsets--adding the hsl5/trim35-like genes (hltr) to the ftr and the btr that we previously described--all containing a B30.2 domain that evolved under positive selection. These subsets are conserved among teleosts. By contrast, most human trim genes of the other classes have only one or two orthologues in fish. Loss or gain of C-terminal exons generated proteins with different domain organizations; either by the deletion of the ancestral domain or, remarkably, by the acquisition of a new C-terminal domain. Our survey of fish trim genes in fish identifies subsets with different evolutionary dynamics. trims encoding RBCC-B30.2 proteins show the same evolutionary trends in fish and tetrapods: they evolve fast, often under positive selection, and they duplicate to create multigenic families. We could identify new combinations of domains, which epitomize how new trim classes appear by domain insertion or exon shuffling. Notably, we found that a cyclophilin-A domain replaces the B30.2 domain of a zebrafish fintrim gene, as reported in the macaque and owl monkey antiretroviral TRIM5α. Finally, trim genes encoding RBCC-B30.2 proteins are preferentially located in the vicinity of MHC or MHC gene paralogues, which suggests that such trim genes may have been part of the ancestral MHC.
Collapse
Affiliation(s)
- Pierre Boudinot
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Lieke M. van der Aa
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Luc Jouneau
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Louis Du Pasquier
- Institute of Zoology and Evolutionary Biology, University of Basel, Basel, Switzerland
| | - Pierre Pontarotti
- Equipe Evolution Biologique et Modélisation UMR 6632 Université de Aix Marseille I/CNRS, Centre St Charles, Marseille, France
| | - Valérie Briolat
- Unité Macrophages et Développement de l'Immunité, Institut Pasteur, Paris, France
- URA 2578 du Centre National de la Recherche Scientifique, Paris, France
| | - Abdenour Benmansour
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Jean-Pierre Levraud
- Unité Macrophages et Développement de l'Immunité, Institut Pasteur, Paris, France
- URA 2578 du Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
14
|
Zhang Y, Romanish MT, Mager DL. Distributions of transposable elements reveal hazardous zones in mammalian introns. PLoS Comput Biol 2011; 7:e1002046. [PMID: 21573203 PMCID: PMC3088655 DOI: 10.1371/journal.pcbi.1002046] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/25/2011] [Indexed: 11/20/2022] Open
Abstract
Comprising nearly half of the human and mouse genomes, transposable elements (TEs) are found within most genes. Although the vast majority of TEs in introns are fixed in the species and presumably exert no significant effects on the enclosing gene, some markedly perturb transcription and result in disease or a mutated phenotype. Factors determining the likelihood that an intronic TE will affect transcription are not clear. In this study, we examined intronic TE distributions in both human and mouse and found several factors that likely contribute to whether a particular TE can influence gene transcription. Specifically, we observed that TEs near exons are greatly underrepresented compared to random distributions, but the size of these “underrepresentation zones” differs between TE classes. Compared to elsewhere in introns, TEs within these zones are shorter on average and show stronger orientation biases. Moreover, TEs in extremely close proximity (<20 bp) to exons show a strong bias to be near splice-donor sites. Interestingly, disease-causing intronic TE insertions show the opposite distributional trends, and by examining expressed sequence tag (EST) databases, we found that the proportion of TEs contributing to chimeric TE-gene transcripts is significantly higher within their underrepresentation zones. In addition, an analysis of predicted splice sites within human long terminal repeat (LTR) elements showed a significantly lower total number and weaker strength for intronic LTRs near exons. Based on these factors, we selectively examined a list of polymorphic mouse LTR elements in introns and showed clear evidence of transcriptional disruption by LTR element insertions in the Trpc6 and Kcnh6 genes. Taken together, these studies lend insight into the potential selective forces that have shaped intronic TE distributions and enable identification of TEs most likely to exert transcriptional effects on genes. Sequences derived from transposable elements (TEs) are major constituents of mammalian genomes and are found within introns of most genes. While nearly all TEs within introns appear harmless, some de novo intronic TE insertions do disrupt gene transcription and splicing and cause disease. It is unclear why some intronic TEs perturb gene transcription whereas most do not. Here, we examined intronic TE distributions in both human and mouse genes to gain insight into which TEs may be more likely to affect transcription. We found evidence that TEs near exons are likely subject to strong negative selection but the size of the region under selection or “underrepresentation zone” differs for different TE classes. Strikingly, all reported human disease-causing intronic TE insertions fall within these underrepresentation zones, and the proportion of TEs contributing to chimeric TE-gene transcripts is significantly higher when TEs are located in these zones. We also examined insertionally polymorphic mouse TEs located within underrepresentation zones and found evidence of transcriptional disruption in two genes. Given the growing appreciation for ongoing activity of TEs in human, our results should be of value in prioritizing insertionally polymorphic TEs for study of their potential contributions to gene expression differences and phenotypic variability.
Collapse
Affiliation(s)
- Ying Zhang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark T. Romanish
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dixie L. Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
15
|
Han KL, Braun EL, Kimball RT, Reddy S, Bowie RCK, Braun MJ, Chojnowski JL, Hackett SJ, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T. Are transposable element insertions homoplasy free?: an examination using the avian tree of life. Syst Biol 2011; 60:375-86. [PMID: 21303823 DOI: 10.1093/sysbio/syq100] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Kin-Lan Han
- Department of Biology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mannaert A, Amemiya CT, Bossuyt F. Comparative analyses of vertebrate posterior HoxD clusters reveal atypical cluster architecture in the caecilian Typhlonectes natans. BMC Genomics 2010; 11:658. [PMID: 21106068 PMCID: PMC3091776 DOI: 10.1186/1471-2164-11-658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 11/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The posterior genes of the HoxD cluster play a crucial role in the patterning of the tetrapod limb. This region is under the control of a global, long-range enhancer that is present in all vertebrates. Variation in limb types, as is the case in amphibians, can probably not only be attributed to variation in Hox genes, but is likely to be the product of differences in gene regulation. With a collection of vertebrate genome sequences available today, we used a comparative genomics approach to study the posterior HoxD cluster of amphibians. A frog and a caecilian were included in the study to compare coding sequences as well as to determine the gain and loss of putative regulatory sequences. RESULTS We sequenced the posterior end of the HoxD cluster of a caecilian and performed comparative analyses of this region using HoxD clusters of other vertebrates. We determined the presence of conserved non-coding sequences and traced gains and losses of these footprints during vertebrate evolution, with particular focus on amphibians. We found that the caecilian HoxD cluster is almost three times larger than its mammalian counterpart. This enlargement is accompanied with the loss of one gene and the accumulation of repeats in that area. A similar phenomenon was observed in the coelacanth, where a different gene was lost and expansion of the area where the gene was lost has occurred. At least one phylogenetic footprint present in all vertebrates was lost in amphibians. This conserved region is a known regulatory element and functions as a boundary element in neural tissue to prevent expression of Hoxd genes. CONCLUSION The posterior part of the HoxD cluster of Typhlonectes natans is among the largest known today. The loss of Hoxd-12 and the expansion of the intergenic region may exert an influence on the limb enhancer, by having to bypass a distance seven times that of regular HoxD clusters. Whether or not there is a correlation with the loss of limbs remains to be investigated. These results, together with data on other vertebrates show that the tetrapod Hox clusters are more variable than previously thought.
Collapse
Affiliation(s)
- An Mannaert
- Biology Department, ECOL, Amphibian Evolution Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Chris T Amemiya
- Benaroya Research Institute at Virginia Mason and University of Washington, Seattle, USA
| | - Franky Bossuyt
- Biology Department, ECOL, Amphibian Evolution Lab, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
17
|
Mortada H, Vieira C, Lerat E. Genes devoid of full-length transposable element insertions are involved in development and in the regulation of transcription in human and closely related species. J Mol Evol 2010; 71:180-91. [PMID: 20798934 DOI: 10.1007/s00239-010-9376-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 07/26/2010] [Indexed: 02/04/2023]
Abstract
Transposable elements (TEs) are major components of mammalian genomes, and their impact on genome evolution is now well established. In recent years several findings have shown that they are associated with the expression level and function of genes. In this study, we analyze the relationships between human genes and full-length TE copies in terms of three factors (gene function, expression level, and selective pressure). We classified human genes according to their TE density, and found that TE-free genes are involved in important functions such as development, transcription, and the regulation of transcription, whereas TE-rich genes are involved in functions such as transport and metabolism. This trend is conserved through evolution. We show that this could be explained by a stronger selection pressure acting on both the coding and non-coding regions of TE-free genes than on those of TE-rich genes. The higher level of expression found for TE-rich genes in tumor and immune system tissues suggests that TEs play an important role in gene regulation.
Collapse
|
18
|
Babenko VN, Makunin IV, Brusentsova IV, Belyaeva ES, Maksimov DA, Belyakin SN, Maroy P, Vasil'eva LA, Zhimulev IF. Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome. BMC Genomics 2010; 11:318. [PMID: 20492674 PMCID: PMC2887417 DOI: 10.1186/1471-2164-11-318] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/21/2010] [Indexed: 01/17/2023] Open
Abstract
Background Eukaryotic genomes are organized in extended domains with distinct features intimately linking genome structure, replication pattern and chromatin state. Recently we identified a set of long late replicating euchromatic regions that are underreplicated in salivary gland polytene chromosomes of D. melanogaster. Results Here we demonstrate that these underreplicated regions (URs) have a low density of P-element and piggyBac insertions compared to the genome average or neighboring regions. In contrast, Minos-based transposons show no paucity in URs but have a strong bias to testis-specific genes. We estimated the suppression level in 2,852 stocks carrying a single P-element by analysis of eye color determined by the mini-white marker gene and demonstrate that the proportion of suppressed transgenes in URs is more than three times higher than in the flanking regions or the genomic average. The suppressed transgenes reside in intergenic, genic or promoter regions of the annotated genes. We speculate that the low insertion frequency of P-elements and piggyBacs in URs partially results from suppression of transgenes that potentially could prevent identification of transgenes due to complete suppression of the marker gene. In a similar manner, the proportion of suppressed transgenes is higher in loci replicating late or very late in Kc cells and these loci have a lower density of P-elements and piggyBac insertions. In transgenes with two marker genes suppression of mini-white gene in eye coincides with suppression of yellow gene in bristles. Conclusions Our results suggest that the late replication domains have a high inactivation potential apparently linked to the silenced or closed chromatin state in these regions, and that such inactivation potential is largely maintained in different tissues.
Collapse
Affiliation(s)
- Vladimir N Babenko
- Department of Molecular and Cellular Biology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Barrio AM, Lagercrantz E, Sperber GO, Blomberg J, Bongcam-Rudloff E. Annotation and visualization of endogenous retroviral sequences using the Distributed Annotation System (DAS) and eBioX. BMC Bioinformatics 2009; 10 Suppl 6:S18. [PMID: 19534743 PMCID: PMC2697641 DOI: 10.1186/1471-2105-10-s6-s18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background The Distributed Annotation System (DAS) is a widely used network protocol for sharing biological information. The distributed aspects of the protocol enable the use of various reference and annotation servers for connecting biological sequence data to pertinent annotations in order to depict an integrated view of the data for the final user. Results An annotation server has been devised to provide information about the endogenous retroviruses detected and annotated by a specialized in silico tool called RetroTector. We describe the procedure to implement the DAS 1.5 protocol commands necessary for constructing the DAS annotation server. We use our server to exemplify those steps. Data distribution is kept separated from visualization which is carried out by eBioX, an easy to use open source program incorporating multiple bioinformatics utilities. Some well characterized endogenous retroviruses are shown in two different DAS clients. A rapid analysis of areas free from retroviral insertions could be facilitated by our annotations. Conclusion The DAS protocol has shown to be advantageous in the distribution of endogenous retrovirus data. The distributed nature of the protocol is also found to aid in combining annotation and visualization along a genome in order to enhance the understanding of ERV contribution to its evolution. Reference and annotation servers are conjointly used by eBioX to provide visualization of ERV annotations as well as other data sources. Our DAS data source can be found in the central public DAS service repository, , or at .
Collapse
Affiliation(s)
- Alvaro Martínez Barrio
- The Linnaeus Centre for Bioinformatics, Uppsala University, Biomedical centre, P,O, Box 598, SE-75124 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
20
|
Di-Poï N, Montoya-Burgos JI, Duboule D. Atypical relaxation of structural constraints in Hox gene clusters of the green anole lizard. Genome Res 2009; 19:602-10. [PMID: 19228589 DOI: 10.1101/gr.087932.108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hox genes control many aspects of embryonic development in metazoans. Previous analyses of this gene family revealed a surprising diversity in terms of gene number and organization between various animal species. In vertebrates, Hox genes are grouped into tightly organized clusters, claimed to be devoid of repetitive sequences. Here, we report the genomic organization of the four Hox loci present in the green anole lizard and show that they have massively accumulated retrotransposons, leading to gene clusters larger in size when compared to other vertebrates. In addition, similar repeats are present in many other development-related gene-containing regions, also thought to be refractory to such repetitive elements. Transposable elements are major sources of genetic variations, including alterations of gene expression, and hence this situation, so far unique among vertebrates, may have been associated with the evolution of the spectacular realm of morphological variations in the body plans of Squamata. Finally, sequence alignments highlight some divergent evolution in highly conserved DNA regions between vertebrate Hox clusters, which may coincide with the emergence of mammalian-specific features.
Collapse
Affiliation(s)
- Nicolas Di-Poï
- National Research Center "Frontiers in Genetics," Department of Zoology and Animal Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
21
|
Huda A, Mariño-Ramírez L, Landsman D, Jordan IK. Repetitive DNA elements, nucleosome binding and human gene expression. Gene 2009; 436:12-22. [PMID: 19393174 DOI: 10.1016/j.gene.2009.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 11/26/2022]
Abstract
We evaluated the epigenetic contributions of repetitive DNA elements to human gene regulation. Human proximal promoter sequences show distinct distributions of transposable elements (TEs) and simple sequence repeats (SSRs). TEs are enriched distal from transcriptional start sites (TSSs) and their frequency decreases closer to TSSs, being largely absent from the core promoter region. SSRs, on the other hand, are found at low frequency distal to the TSS and then increase in frequency starting approximately 150 bp upstream of the TSS. The peak of SSR density is centered around the -35 bp position where the basal transcriptional machinery assembles. These trends in repetitive sequence distribution are strongly correlated, positively for TEs and negatively for SSRs, with relative nucleosome binding affinities along the promoters. Nucleosomes bind with highest probability distal from the TSS and the nucleosome binding affinity steadily decreases reaching its nadir just upstream of the TSS at the same point where SSR frequency is at its highest. Promoters that are enriched for TEs are more highly and broadly expressed, on average, than promoters that are devoid of TEs. In addition, promoters that have similar repetitive DNA profiles regulate genes that have more similar expression patterns and encode proteins with more similar functions than promoters that differ with respect to their repetitive DNA. Furthermore, distinct repetitive DNA promoter profiles are correlated with tissue-specific patterns of expression. These observations indicate that repetitive DNA elements mediate chromatin accessibility in proximal promoter regions and the repeat content of promoters is relevant to both gene expression and function.
Collapse
Affiliation(s)
- Ahsan Huda
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
22
|
Distribution of ancestral proto-Actinopterygian chromosome arms within the genomes of 4R-derivative salmonid fishes (Rainbow trout and Atlantic salmon). BMC Genomics 2008; 9:557. [PMID: 19032764 PMCID: PMC2632648 DOI: 10.1186/1471-2164-9-557] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 11/25/2008] [Indexed: 11/23/2022] Open
Abstract
Background Comparative genomic studies suggest that the modern day assemblage of ray-finned fishes have descended from an ancestral grouping of fishes that possessed 12–13 linkage groups. All jawed vertebrates are postulated to have experienced two whole genome duplications (WGD) in their ancestry (2R duplication). Salmonids have experienced one additional WGD (4R duplication event) compared to most extant teleosts which underwent a further 3R WGD compared to other vertebrates. We describe the organization of the 4R chromosomal segments of the proto-ray-finned fish karyotype in Atlantic salmon and rainbow trout based upon their comparative syntenies with two model species of 3R ray-finned fishes. Results Evidence is presented for the retention of large whole-arm affinities between the ancestral linkage groups of the ray-finned fishes, and the 50 homeologous chromosomal segments in Atlantic salmon and rainbow trout. In the comparisons between the two salmonid species, there is also evidence for the retention of large whole-arm homeologous affinities that are associated with the retention of duplicated markers. Five of the 7 pairs of chromosomal arm regions expressing the highest level of duplicate gene expression in rainbow trout share homologous synteny to the 5 pairs of homeologs with the greatest duplicate gene expression in Atlantic salmon. These regions are derived from proto-Actinopterygian linkage groups B, C, E, J and K. Conclusion Two chromosome arms in Danio rerio and Oryzias latipes (descendants of the 3R duplication) can, in most instances be related to at least 4 whole or partial chromosomal arms in the salmonid species. Multiple arm assignments in the two salmonid species do not clearly support a 13 proto-linkage group model, and suggest that a 12 proto-linkage group arrangement (i.e., a separate single chromosome duplication and ancestral fusion/fissions/recombination within the putative G/H/I groupings) may have occurred in the more basal soft-rayed fishes. We also found evidence supporting the model that ancestral linkage group M underwent a single chromosome duplication following the 3R duplication. In the salmonids, the M ancestral linkage groups are localized to 5 whole arm, and 3 partial arm regions (i.e., 6 whole arm regions expected). Thus, 3 distinct ancestral linkage groups are postulated to have existed in the G/H and M lineage chromosomes in the ancestor of the salmonids.
Collapse
|
23
|
Does selection against transcriptional interference shape retroelement-free regions in mammalian genomes? PLoS One 2008; 3:e3760. [PMID: 19018283 PMCID: PMC2582637 DOI: 10.1371/journal.pone.0003760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 10/31/2008] [Indexed: 11/29/2022] Open
Abstract
Background Eukaryotic genomes are scattered with retroelements that proliferate through retrotransposition. Although retroelements make up around 40 percent of the human genome, large regions are found to be completely devoid of retroelements. This has been hypothesised to be a result of genomic regions being intolerant to insertions of retroelements. The inadvertent transcriptional activity of retroelements may affect neighbouring genes, which in turn could be detrimental to an organism. We speculate that such retroelement transcription, or transcriptional interference, is a contributing factor in generating and maintaining retroelement-free regions in the human genome. Methodology/Principal Findings Based on the known transcriptional properties of retroelements, we expect long interspersed elements (LINEs) to be able to display a high degree of transcriptional interference. In contrast, we expect short interspersed elements (SINEs) to display very low levels of transcriptional interference. We find that genomic regions devoid of long interspersed elements (LINEs) are enriched for protein-coding genes, but that this is not the case for regions devoid of short interspersed elements (SINEs). This is expected if genes are subject to selection against transcriptional interference. We do not find microRNAs to be associated with genomic regions devoid of either SINEs or LINEs. We further observe an increased relative activity of genes overlapping LINE-free regions during early embryogenesis, where activity of LINEs has been identified previously. Conclusions/Significance Our observations are consistent with the notion that selection against transcriptional interference has contributed to the maintenance and/or generation of retroelement-free regions in the human genome.
Collapse
|
24
|
von Schalburg KR, Yazawa R, de Boer J, Lubieniecki KP, Goh B, Straub CA, Beetz-Sargent MR, Robb A, Davidson WS, Devlin RH, Koop BF. Isolation, characterization and comparison of Atlantic and Chinook salmon growth hormone 1 and 2. BMC Genomics 2008; 9:522. [PMID: 18980692 PMCID: PMC2584663 DOI: 10.1186/1471-2164-9-522] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 11/03/2008] [Indexed: 12/04/2022] Open
Abstract
Background Growth hormone (GH) is an important regulator of skeletal growth, as well as other adapted processes in salmonids. The GH gene (gh) in salmonids is represented by duplicated, non-allelic isoforms designated as gh1 and gh2. We have isolated and characterized gh-containing bacterial artificial chromosomes (BACs) of both Atlantic and Chinook salmon (Salmo salar and Oncorhynchus tshawytscha) in order to further elucidate our understanding of the conservation and regulation of these loci. Results BACs containing gh1 and gh2 from both Atlantic and Chinook salmon were assembled, annotated, and compared to each other in their coding, intronic, regulatory, and flanking regions. These BACs also contain the genes for skeletal muscle sodium channel oriented in the same direction. The sequences of the genes for interferon alpha-1, myosin alkali light chain and microtubule associated protein Tau were also identified, and found in opposite orientations relative to gh1 and gh2. Viability of each of these genes was examined by PCR. We show that transposon insertions have occurred differently in the promoters of gh, within and between each species. Other differences within the promoters and intronic and 3'-flanking regions of the four gh genes provide evidence that they have distinct regulatory modes and possibly act to function differently and/or during different times of salmonid development. Conclusion A core proximal promoter for transcription of both gh1 and gh2 is conserved between the two species of salmon. Nevertheless, transposon integration and regulatory element differences do exist between the promoters of gh1 and gh2. Additionally, organization of transposon families into the BACs containing gh1 and for the BACs containing gh2, are very similar within orthologous regions, but much less clear conservation is apparent in comparisons between the gh1- and gh2-containing paralogous BACs for the two fish species. This is consistent with the hypothesis that a burst of transposition activity occurred during the speciation events which led to Atlantic and Pacific salmon. The Chinook and other Oncorhynchus GH1s are strikingly different in comparison to the other GHs and this change is not apparent in the surrounding non-coding sequences.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2008. [DOI: 10.1089/zeb.2008.9995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|