1
|
Saleem F, Li E, Tran KL, Rudra B, Edge TA, Schellhorn HE, Gupta RS. Utilizing novel Escherichia coli-specific conserved signature proteins for enhanced monitoring of recreational water quality. Microbiologyopen 2024; 13:e1410. [PMID: 38682792 PMCID: PMC11057252 DOI: 10.1002/mbo3.1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Escherichia coli serves as a proxy indicator of fecal contamination in aquatic ecosystems. However, its identification using traditional culturing methods can take up to 24 h. The application of DNA markers, such as conserved signature proteins (CSPs) genes (unique to all species/strains of a specific taxon), can form the foundation for novel polymerase chain reaction (PCR) tests that unambiguously identify and detect targeted bacterial taxa of interest. This paper reports the identification of three new highly-conserved CSPs (genes), namely YahL, YdjO, and YjfZ, which are exclusive to E. coli/Shigella. Using PCR primers based on highly conserved regions within these CSPs, we have developed quantitative PCR (qPCR) assays for the evaluation of E. coli/Shigella species in water ecosystems. Both in-silico and experimental PCR testing confirmed the absence of sequence match when tested against other bacteria, thereby confirming 100% specificity of the tested CSPs for E. coli/Shigella. The qPCR assays for each of the three CSPs provided reliable quantification for all tested enterohaemorrhagic and environmental E. coli strains, a requirement for water testing. For recreational water samples, CSP-based quantification showed a high correlation (r > 7, p < 0.01) with conventional viable E. coli enumeration. This indicates that novel CSP-based qPCR assays for E. coli can serve as robust tools for monitoring water ecosystems and other critical areas, including food monitoring.
Collapse
Affiliation(s)
- Faizan Saleem
- Department of BiologyMcMaster UniversityHamiltonOntarioCanada
| | - Enze Li
- Department of BiologyMcMaster UniversityHamiltonOntarioCanada
| | - Kevin L. Tran
- Department of BiologyMcMaster UniversityHamiltonOntarioCanada
| | - Bashudev Rudra
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Thomas A. Edge
- Department of BiologyMcMaster UniversityHamiltonOntarioCanada
| | | | - Radhey S. Gupta
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
2
|
Adam PS, Kolyfetis GE, Bornemann TLV, Vorgias CE, Probst AJ. Genomic remnants of ancestral methanogenesis and hydrogenotrophy in Archaea drive anaerobic carbon cycling. SCIENCE ADVANCES 2022; 8:eabm9651. [PMID: 36332026 PMCID: PMC9635834 DOI: 10.1126/sciadv.abm9651] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/19/2022] [Indexed: 05/19/2023]
Abstract
Anaerobic methane metabolism is among the hallmarks of Archaea, originating very early in their evolution. Here, we show that the ancestor of methane metabolizers was an autotrophic CO2-reducing hydrogenotrophic methanogen that possessed the two main complexes, methyl-CoM reductase (Mcr) and tetrahydromethanopterin-CoM methyltransferase (Mtr), the anaplerotic hydrogenases Eha and Ehb, and a set of other genes collectively called "methanogenesis markers" but could not oxidize alkanes. Overturning recent inferences, we demonstrate that methyl-dependent hydrogenotrophic methanogenesis has emerged multiple times independently, either due to a loss of Mtr while Mcr is inherited vertically or from an ancient lateral acquisition of Mcr. Even if Mcr is lost, Mtr, Eha, Ehb, and the markers can persist, resulting in mixotrophic metabolisms centered around the Wood-Ljungdahl pathway. Through their methanogenesis remnants, Thorarchaeia and two newly reconstructed order-level lineages in Archaeoglobi and Bathyarchaeia act as metabolically versatile players in carbon cycling of anoxic environments across the globe.
Collapse
Affiliation(s)
- Panagiotis S. Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Corresponding author.
| | - George E. Kolyfetis
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Till L. V. Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Constantinos E. Vorgias
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
| | - Alexander J. Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Environmental Metagenomics, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| |
Collapse
|
3
|
Tinker K, Lipus D, Gardiner J, Stuckman M, Gulliver D. The Microbial Community and Functional Potential in the Midland Basin Reveal a Community Dominated by Both Thiosulfate and Sulfate-Reducing Microorganisms. Microbiol Spectr 2022; 10:e0004922. [PMID: 35695567 PMCID: PMC9430316 DOI: 10.1128/spectrum.00049-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 11/20/2022] Open
Abstract
The Permian Basin is the highest producing oil and gas reservoir in the United States. Hydrocarbon resources in this region are often accessed by unconventional extraction methods, including horizontal drilling and hydraulic fracturing. Despite the importance of the Permian Basin, there is no publicly available microbiological data from this region. We completed an analysis of Permian produced water samples to understand the dynamics present in hydraulically fractured wells in this region. We analyzed produced water samples taken from 10 wells in the Permian region of the Midland Basin using geochemical measurements, 16S rRNA gene sequencing, and metagenomic sequencing. Compared to other regions, we found that Permian Basin produced water was characterized by higher sulfate and lower total dissolved solids (TDS) concentrations, with a median of 1,110 mg/L and 107,000 mg/L. Additionally, geochemical measurements revealed the presence of frac hits, or interwell communication events where an established well is affected by the pumping of fracturing fluid into a new well. The occurrence of frac hits was supported by correlations between the microbiome and the geochemical parameters. Our 16S rRNA gene sequencing identified a produced water microbiome characterized by anaerobic, halophilic, and sulfur reducing taxa. Interestingly, sulfate and thiosulfate reducing taxa including Halanaerobium, Orenia, Marinobacter, and Desulfohalobium were the most prevalent microbiota in most wells. We further investigated the metabolic potential of microorganisms in the Permian Basin with metagenomic sequencing. We recovered 15 metagenome assembled genomes (MAGs) from seven different samples representing 6 unique well sites. These MAGs corroborated the high presence of sulfate and thiosulfate reducing genes across all wells, especially from key taxa including Halanaerobium and Orenia. The observed microbiome composition and metabolic capabilities in conjunction with the high sulfate concentrations demonstrate a high potential for hydrogen sulfide production in the Permian Basin. Additionally, evidence of frac hits suggests the possibility for the exchange of microbial cells and/or genetic information between wells. This exchange would increase the likelihood of hydrogen sulfide production and has implications for the oil and gas industry. IMPORTANCE The Permian Basin is the largest producing oil and gas region in the United States and plays a critical role supplying national energy needs. Previous work in other basins has demonstrated that the geochemistry and microbiology of hydrocarbon regions can have a major impact on well infrastructure and production. Despite that, little work has been done to understand the complex dynamics present in the Permian Basin. This study characterizes and analyzes 10 unique wells and one groundwater sample in the Permian Basin using geochemical and microbial techniques. Across all wells we found a high number of classic and thiosulfate reducers, suggesting that hydrogen sulfide production may be especially prevalent in the Permian Basin. Additionally, our analysis revealed a biogeochemical signal impacted by the presence of frac hits, or interwell communication events where an established well is affected by the pumping of fracturing fluid into a new well. This information can be utilized by the oil and gas industry to improve oil recovery efforts and minimize commercial and environmental costs.
Collapse
Affiliation(s)
- Kara Tinker
- National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA
- NETL Support Contractor, Pittsburgh, Pennsylvania, USA
| | - Daniel Lipus
- National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA
- Oakridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - James Gardiner
- National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA
- NETL Support Contractor, Pittsburgh, Pennsylvania, USA
| | - Mengling Stuckman
- National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA
- NETL Support Contractor, Pittsburgh, Pennsylvania, USA
| | - Djuna Gulliver
- National Energy Technology Laboratory (NETL), Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Garcia PS, Gribaldo S, Borrel G. Diversity and Evolution of Methane-Related Pathways in Archaea. Annu Rev Microbiol 2022; 76:727-755. [PMID: 35759872 DOI: 10.1146/annurev-micro-041020-024935] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methane is one of the most important greenhouse gases on Earth and holds an important place in the global carbon cycle. Archaea are the only organisms that use methanogenesis to produce energy and rely on the methyl-coenzyme M reductase (Mcr) complex. Over the last decade, new results have significantly reshaped our view of the diversity of methane-related pathways in the Archaea. Many new lineages that synthesize or use methane have been identified across the whole archaeal tree, leading to a greatly expanded diversity of substrates and mechanisms. In this review, we present the state of the art of these advances and how they challenge established scenarios of the origin and evolution of methanogenesis, and we discuss the potential trajectories that may have led to this strikingly wide range of metabolisms.Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pierre Simon Garcia
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Evolutionary Biology of the Microbial Cell, Paris, France; ,
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Evolutionary Biology of the Microbial Cell, Paris, France; ,
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Evolutionary Biology of the Microbial Cell, Paris, France; ,
| |
Collapse
|
5
|
Identifying active rumen epithelial associated bacteria and archaea in beef cattle divergent in feed efficiency using total RNA-seq. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100064. [PMID: 34841354 PMCID: PMC8610342 DOI: 10.1016/j.crmicr.2021.100064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
The most active archaea in the epimural community were different from that of the liquid and content-associated community, but the exact taxonomy requires further identification. Rumen epithelial attached methanogens may not contribute to differences in CH4 production and variations in feed efficiency. Families Campylobacteraceae and Neisseriaceae, which contain oxygen scavenging bacteria were significantly more active on the epithelium of efficient cattle.
To date, the role of ruminal epithelial attached microbiota in cattle feed efficiency is undefined. In this study, we aimed to characterize transcriptionally active bacteria and archaea attached to the rumen epithelial wall and to determine whether they differ in cattle with varied feed efficiency. RNA-sequencing was performed to obtain the rumen epithelial transcriptomes from 9 of the most efficient (low RFI) and 9 of the most inefficient (high RFI) animals. The bacteria and archaea 16S rRNA transcripts were identified using an in-house developed pipeline, enriched from filtered reads that did not map to the bovine genome. Archaea from unclassified genera belonging to the Euryarchaeota phylum showed the most activity on the rumen epithelium of low RFI (81.3 ± 1.9%) and high RFI (76.4 ± 3.0%) steers. Bacteria from the Succinivibrionaceae family showed the greatest activity of bacteria on the low RFI (28.7 ± 9.0%) and high RFI (33.9± 8.8%) epithelium. Of the bacterial families, Campylobacteraceae and Neisseriaceae had significantly greater activity on the low RFI epithelium (p < 0.05) and are known to play a role in oxygen scavenging. Greater activity of rumen epithelial attached oxygen scavenging bacteria may provide more optimal feed fermentation conditions, which contributes to high fermentation efficiency in the rumen.
Collapse
|
6
|
A Rapid, Sensitive, Low-Cost Assay for Detecting Hydrogenotrophic Methanogens in Anaerobic Digesters Using Loop-Mediated Isothermal Amplification. Microorganisms 2020; 8:microorganisms8050740. [PMID: 32429197 PMCID: PMC7284894 DOI: 10.3390/microorganisms8050740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
Understanding how the presence, absence, and abundance of different microbial genera supply specific metabolic functions for anaerobic digestion (AD) and how these impact on gas production is critical for a long-term understanding and optimization of the AD process. The strictly anaerobic methanogenic archaea are essential for methane production within AD microbial communities. Methanogens are a phylogenetically diverse group that can be classified into three metabolically distinct lineages based on the substrates they use to produce methane. While process optimization based on physicochemical parameters is well established in AD, measurements that could allow manipulation of the underlying microbial community are seldom used as they tend to be non-specific, expensive, or time-consuming, or a combination of all three. Loop-mediated isothermal amplification (LAMP) assays combine a simple, rapid, low-cost detection technique with high sensitivity and specificity. Here, we describe the optimization of LAMP assays for the detection of four different genera of hydrogenotrophic methanogens: Methanoculleus, Methanothermobacter, Methanococcus, and Methanobrevibacter spp. By targeting archaeal elongation factor 2 (aEF2), these LAMP assays provide a rapid, low-cost, presence/absence indication of hydrogenotrophic methanogens that could be used as a real-time measure of process conditions. The assays were shown to be sensitive to 1 pg of DNA from most tested methanogen species, providing a route to a quantitative measure through simple serial dilution of samples. The LAMP assays described here offer a simple, fast, and affordable method for the specific detection of four different genera of hydrogenotrophic methanogens. Our results indicate that this approach could be developed into a quantitative measure that could provide rapid, low-cost insight into the functioning and optimization of AD and related systems.
Collapse
|
7
|
Biderre-Petit C, Taib N, Gardon H, Hochart C, Debroas D. New insights into the pelagic microorganisms involved in the methane cycle in the meromictic Lake Pavin through metagenomics. FEMS Microbiol Ecol 2020; 95:5092586. [PMID: 30203066 DOI: 10.1093/femsec/fiy183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
Advances in metagenomics have given rise to the possibility of obtaining genome sequences from uncultured microorganisms, even for those poorly represented in the microbial community, thereby providing an important means to study their ecology and evolution. In this study, metagenomic sequencing was carried out at four sampling depths having different oxygen concentrations or environmental conditions in the water column of Lake Pavin. By analyzing the sequenced reads and matching the contigs to the proxy genomes of the closest cultivated relatives, we evaluated the metabolic potential of the dominant planktonic species involved in the methane cycle. We demonstrated that methane-producing communities were dominated by the genus Methanoregula while methane-consuming communities were dominated by the genus Methylobacter, thus confirming prior observations. Our work allowed the reconstruction of a draft of their core metabolic pathways. Hydrogenotrophs, the genes required for acetate activation in the methanogen genome, were also detected. Regarding methanotrophy, Methylobacter was present in the same areas as the non-methanotrophic, methylotrophic Methylotenera, which could suggest a relationship between these two groups. Furthermore, the presence of a large gene inventory for nitrogen metabolism (nitrate transport, denitrification, nitrite assimilation and nitrogen fixation, for instance) was detected in the Methylobacter genome.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Najwa Taib
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Hélène Gardon
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Corentin Hochart
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol 2019; 4:603-613. [PMID: 30833729 PMCID: PMC6453112 DOI: 10.1038/s41564-019-0363-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022]
Abstract
Methanogenesis is an ancient metabolism of key ecological relevance, with direct impact on the evolution of Earth’s climate. Recent results suggest that the diversity of methane metabolisms and their derivations have probably been vastly underestimated. Here, by probing thousands of publicly available metagenomes for homologues of methyl-coenzyme M reductase complex (MCR), we have obtained ten metagenome-assembled genomes (MAGs) belonging to potential methanogenic, anaerobic methanotrophic and short-chain alkane oxidizing archaea. Five of these MAGs represent under-sampled (e.g., Verstraetearchaeota, Methanonatronarchaeia, ANME-1) or previously genomically undescribed (ANME-2c) archaeal lineages. The remaining five MAGs correspond to lineages that are only distantly related to previously known methanogens and span the entire archaeal phylogeny. Comprehensive comparative annotation significantly expands the metabolic diversity and energy conservation systems of MCR-bearing archaea. It also suggests the potential existence of a yet uncharacterized type of methanogenesis linked to short-chain alkane/fatty acid oxidation in a previously undescribed class of archaea (‘Ca. Methanoliparia’). We redefine a common core of marker genes specific to methanogenic, anaerobic methanotrophic and short-chain alkane-oxidizing archaea, and propose a possible scenario for the evolutionary and functional transitions that led to the emergence of such metabolic diversity.
Collapse
|
9
|
Muñoz-Velasco I, García-Ferris C, Hernandez-Morales R, Lazcano A, Peretó J, Becerra A. Methanogenesis on Early Stages of Life: Ancient but Not Primordial. ORIGINS LIFE EVOL B 2018; 48:407-420. [PMID: 30612264 DOI: 10.1007/s11084-018-9570-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
Of the six known autotrophic pathways, the Wood-Ljungdahl pathway (WL) is the only one present in both the acetate producing Bacteria (homoacetogens) and the methane producing Archaea (hydrogenotrophic methanogens), and it has been suggested that WL is one of the oldest metabolic pathways. However, only the so-called carbonyl branch is shared by Archaea and Bacteria, while the methyl branch is different, both in the number of reactions and enzymes, which are not homologous among them. In this work we show that some parts of the methyl branch of archaeal Wood-Ljungdahl pathway (MBWL) are present in bacteria as well as in non-methanogen archaea, although the tangled evolutionary history of MBWL cannot be traced back to the Last Common Ancestor. We have also analyzed the different variants of methanogenesis (hydrogenotrophic, acetoclastic and methylotrophic pathways), and concluded that each of these pathways, and every different enzyme or subunit (in the case of multimeric enzymes), has their own intricate evolutionary history. Our study supports the scenario of hydrogenotrophic methanogenesis being older than the other variants, albeit not old enough to be present in the last archaeal common ancestor.
Collapse
Affiliation(s)
- Israel Muñoz-Velasco
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P., 04510, Ciudad de México, Mexico
| | - Carlos García-Ferris
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Apartat Postal 22085, 46071, València, Spain
- Institute for Integrative Systems Biology, (I2SysBio, Universitat de València-CSIC), Apartat Postal 22085, 46071, València, Spain
| | - Ricardo Hernandez-Morales
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico
- Miembro de El Colegio Nacional, El Colegio Nacional, Donceles 104, Centro Histórico, 06020, Ciudad de México, Mexico
| | - Juli Peretó
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Apartat Postal 22085, 46071, València, Spain
- Institute for Integrative Systems Biology, (I2SysBio, Universitat de València-CSIC), Apartat Postal 22085, 46071, València, Spain
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Aouad M, Taib N, Oudart A, Lecocq M, Gouy M, Brochier-Armanet C. Extreme halophilic archaea derive from two distinct methanogen Class II lineages. Mol Phylogenet Evol 2018; 127:46-54. [DOI: 10.1016/j.ympev.2018.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/12/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
11
|
Kundu S, Sharma R. Origin, evolution, and divergence of plant class C GH9 endoglucanases. BMC Evol Biol 2018; 18:79. [PMID: 29848310 PMCID: PMC5977491 DOI: 10.1186/s12862-018-1185-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycoside hydrolases of the GH9 family encode cellulases that predominantly function as endoglucanases and have wide applications in the food, paper, pharmaceutical, and biofuel industries. The partitioning of plant GH9 endoglucanases, into classes A, B, and C, is based on the differential presence of transmembrane, signal peptide, and the carbohydrate binding module (CBM49). There is considerable debate on the distribution and the functions of these enzymes which may vary in different organisms. In light of these findings we examined the origin, emergence, and subsequent divergence of plant GH9 endoglucanases, with an emphasis on elucidating the role of CBM49 in the digestion of crystalline cellulose by class C members. RESULTS Since, the digestion of crystalline cellulose mandates the presence of a well-defined set of aromatic and polar amino acids and/or an attributable domain that can mediate this conversion, we hypothesize a vertical mode of transfer of genes that could favour the emergence of class C like GH9 endoglucanase activity in land plants from potentially ancestral non plant taxa. We demonstrated the concomitant occurrence of a GH9 domain with CBM49 and other homologous carbohydrate binding modules, in putative endoglucanase sequences from several non-plant taxa. In the absence of comparable full length CBMs, we have characterized several low strength patterns that could approximate the CBM49, thereby, extending support for digestion of crystalline cellulose to other segments of the protein. We also provide data suggestive of the ancestral role of putative class C GH9 endoglucanases in land plants, which includes detailed phylogenetics and the presence and subsequent loss of CBM49, transmembrane, and signal peptide regions in certain populations of early land plants. These findings suggest that classes A and B of modern vascular land plants may have emerged by diverging directly from CBM49 encompassing putative class C enzymes. CONCLUSION Our detailed phylogenetic and bioinformatics analysis of putative GH9 endoglucanase sequences across major taxa suggests that plant class C enzymes, despite their recent discovery, could function as the last common ancestor of classes A and B. Additionally, research into their ability to digest or inter-convert crystalline and amorphous forms of cellulose could make them lucrative candidates for engineering biofuel feedstock.
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, Government of NCT of Delhi, Dr. Baba Saheb Ambedkar Medical College & Hospital, New Delhi, 110085, India. .,Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Hu D, Cha G, Gao B. A Phylogenomic and Molecular Markers Based Analysis of the Class Acidimicrobiia. Front Microbiol 2018; 9:987. [PMID: 29867887 PMCID: PMC5962788 DOI: 10.3389/fmicb.2018.00987] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/27/2018] [Indexed: 01/22/2023] Open
Abstract
Recent metagenomic surveys of microbial community suggested that species associated with the class Acidimicrobiia are abundant in diverse aquatic environments such as acidic mine water, waste water sludge, freshwater, or marine habitats, but very few species have been cultivated and characterized. The current taxonomic framework of Acidimicrobiia is solely based on 16S rRNA sequence analysis of few cultivable representatives, and no molecular, biochemical, or physiological characteristics are known that can distinguish species of this class from the other bacteria. This study reports the phylogenomic analysis for 20 sequenced members of this class and reveals another three major lineages in addition to the two recognized families. Comparative analysis of the sequenced Acidimicrobiia species identified 15 conserved signature indels (CSIs) in widely distributed proteins and 26 conserved signature proteins (CSPs) that are either specific to this class as a whole or to its major lineages. This study represents the most comprehensive phylogenetic analysis of the class Acidimicrobiia and the identified CSIs and CSPs provide useful molecular markers for the identification and delineation of species belonging to this class or its subgroups.
Collapse
Affiliation(s)
- Danyu Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guihong Cha
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Horizontal gene transfer constrains the timing of methanogen evolution. Nat Ecol Evol 2018; 2:897-903. [DOI: 10.1038/s41559-018-0513-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/20/2018] [Indexed: 11/08/2022]
|
14
|
Barbour AG, Adeolu M, Gupta RS. Division of the genus Borrelia into two genera (corresponding to Lyme disease and relapsing fever groups) reflects their genetic and phenotypic distinctiveness and will lead to a better understanding of these two groups of microbes (Margos et al. (2016) There is inadequate evidence to support the division of the genus Borrelia. Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijsem.0.001717). Int J Syst Evol Microbiol 2017; 67:2058-2067. [PMID: 28141502 DOI: 10.1099/ijsem.0.001815] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Alan G Barbour
- Departments of Medicine, Microbiology & Molecular Genetics, and Ecology & Evolutionary Biology, University of California, Irvine, California, USA
| | - Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Ho J, Adeolu M, Khadka B, Gupta RS. Identification of distinctive molecular traits that are characteristic of the phylum "Deinococcus-Thermus" and distinguish its main constituent groups. Syst Appl Microbiol 2016; 39:453-463. [PMID: 27506333 DOI: 10.1016/j.syapm.2016.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 12/30/2022]
Abstract
The phylum "Deinococcus-Thermus" contains two heavily researched groups of extremophilic bacteria: the highly radioresistant order Deinococcales and the thermophilic order Thermales. Very few characteristics are known that are uniquely shared by members of the phylum "Deinococcus-Thermus". Comprehensive phylogenetic and comparative analyses of >65 "Deinococcus-Thermus" genomes reported here have identified numerous molecular signatures in the forms of conserved signature insertions/deletions (CSIs) and conserved signature proteins (CSPs), which provide distinguishing characteristics of the phylum "Deinococcus-Thermus" and its main groups. We have identified 58 unique CSIs and 155 unique CSPs that delineate different phylogenetic groups within the phylum. Of these identified traits, 24 CSIs and 29 CSPs are characteristic of the phylum "Deinococcus-Thermus" and they provide novel and reliable means to circumscribe/describe this phylum. An additional 3 CSIs and 3 CSPs are characteristic of the order Deinococcales, and 6 CSIs and 51 CSPs are characteristic of the order Thermales. The remaining 25 CSIs and 72 CSPs identified in this study are distinctive traits of genus level groups within the phylum "Deinococcus-Thermus". The molecular characteristics identified in this work provide novel and independent support for the common ancestry of the members of the phylum "Deinococcus-Thermus" and provide a new means to distinguish the main constituent clades of the phylum. Additionally, the CSIs and CSPs identified in this work may play a role in the unique extremophilic adaptations of the members of this phylum and further functional analyses of these characteristics could provide novel biochemical insights into the unique adaptations found within the phylum "Deinococcus-Thermus".
Collapse
Affiliation(s)
- Jonathan Ho
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z, Canada
| | - Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z, Canada
| | - Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z, Canada.
| |
Collapse
|
16
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
17
|
Zamani-Dahaj SA, Okasha M, Kosakowski J, Higgs PG. Estimating the Frequency of Horizontal Gene Transfer Using Phylogenetic Models of Gene Gain and Loss. Mol Biol Evol 2016; 33:1843-57. [DOI: 10.1093/molbev/msw062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
18
|
Costa TF, Lima APC. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family. Biochimie 2016; 122:197-207. [DOI: 10.1016/j.biochi.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022]
|
19
|
Gupta RS, Naushad S, Fabros R, Adeolu M. A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov. Antonie van Leeuwenhoek 2016; 109:565-87. [PMID: 26837779 DOI: 10.1007/s10482-016-0660-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
Abstract
The evolutionary interrelationships between the archaeal organisms which comprise the class Halobacteria have proven difficult to elucidate using traditional phylogenetic tools. The class currently contains three orders. However, little is known about the family level relationships within these orders. In this work, we have completed a comprehensive comparative analysis of 129 sequenced genomes from members of the class Halobacteria in order to identify shared molecular characteristics, in the forms of conserved signature insertions/deletions (CSIs) and conserved signature proteins (CSPs), which can provide reliable evidence, independent of phylogenetic trees, that the species from the groups in which they are found are specifically related to each other due to common ancestry. Here we present 20 CSIs and 31 CSPs which are unique characteristics of infra-order level groups of genera within the class Halobacteria. We also present 40 CSIs and 234 CSPs which are characteristic of Haloarcula, Halococcus, Haloferax, or Halorubrum. Importantly, the CSIs and CSPs identified here provide evidence that the order Haloferacales contains two main groups, one consisting of Haloferax and related genera supported by four CSIs and five CSPs and the other consisting of Halorubrum and related genera supported by four CSPs. We have also identified molecular characteristics that suggest that the polyphyletic order Halobacteriales contains at least two large monophyletic clusters of organisms in addition to the polyphyletic members of the order, one cluster consisting of Haloarcula and related genera supported by ten CSIs and nineteen CSPs and the other group consisting of the members of the genus Halococcus supported by nine CSIs and 23 CSPs. We have also produced a highly robust phylogenetic tree based on the concatenated sequences of 766 proteins which provide additional support for the relationships identified by the CSIs and CSPs. On the basis of the phylogenetic analyses and the identified conserved molecular characteristics presented here, we propose a division of the order Haloferacales into two families, an emended family Haloferacaceae and Halorubraceae fam. nov. and a division of the order Halobacteriales into three families, an emended family Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | - Sohail Naushad
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Reena Fabros
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
20
|
Long-Lasting Gene Conversion Shapes the Convergent Evolution of the Critical Methanogenesis Genes. G3-GENES GENOMES GENETICS 2015; 5:2475-86. [PMID: 26384370 PMCID: PMC4632066 DOI: 10.1534/g3.115.020180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Methanogenesis and its key small-molecule methyltransferase Mtr complex are poorly understood despite their pivotal role in Earth’s global carbon cycle. Mtr complex is encoded by a conserved mtrEDCBAFGH operon in most methanogens. Here we report that two discrete lineages, Methanococcales and Methanomicrobiales, have a noncanonical mtr operon carrying two copies of mtrA resulting from an ancient duplication. Compared to mtrA-1, mtrA-2 acquires a distinct transmembrane domain through domain shuffling and gene fusion. However, the nontransmembrane domains (MtrA domain) of mtrA-1 and mtrA-2 are homogenized by gene conversion events lasting throughout the long history of these extant methanogens (over 2410 million years). Furthermore, we identified a possible recruitment of ancient nonmethanogenic methyltransferase genes to establish the methanogenesis pathway. These results not only provide novel evolutionary insight into the methanogenesis pathway and methyltransferase superfamily but also suggest an unanticipated long-lasting effect of gene conversion on gene evolution in a convergent pattern.
Collapse
|
21
|
Martínez-Fernández G, Abecia L, Martín-García AI, Ramos-Morales E, Denman SE, Newbold CJ, Molina-Alcaide E, Yáñez-Ruiz DR. Response of the rumen archaeal and bacterial populations to anti-methanogenic organosulphur compounds in continuous-culture fermenters. FEMS Microbiol Ecol 2015; 91:fiv079. [DOI: 10.1093/femsec/fiv079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 11/14/2022] Open
|
22
|
Dziewit L, Pyzik A, Romaniuk K, Sobczak A, Szczesny P, Lipinski L, Bartosik D, Drewniak L. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities. Front Microbiol 2015. [PMID: 26217325 PMCID: PMC4493836 DOI: 10.3389/fmicb.2015.00694] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Methanogenic Archaea produce approximately one billion tons of methane annually, but their biology remains largely unknown. This is partially due to the large phylogenetic and phenotypic diversity of this group of organisms, which inhabit various anoxic environments including peatlands, freshwater sediments, landfills, anaerobic digesters and the intestinal tracts of ruminants. Research is also hampered by the inability to cultivate methanogenic Archaea. Therefore, biodiversity studies have relied on the use of 16S rRNA and mcrA [encoding the α subunit of the methyl coenzyme M (methyl-CoM) reductase] genes as molecular markers for the detection and phylogenetic analysis of methanogens. Here, we describe four novel molecular markers that should prove useful in the detailed analysis of methanogenic consortia, with a special focus on methylotrophic methanogens. We have developed and validated sets of degenerate PCR primers for the amplification of genes encoding key enzymes involved in methanogenesis: mcrB and mcrG (encoding β and γ subunits of the methyl-CoM reductase, involved in the conversion of methyl-CoM to methane), mtaB (encoding methanol-5-hydroxybenzimidazolylcobamide Co-methyltransferase, catalyzing the conversion of methanol to methyl-CoM) and mtbA (encoding methylated [methylamine-specific corrinoid protein]:coenzyme M methyltransferase, involved in the conversion of mono-, di- and trimethylamine into methyl-CoM). The sensitivity of these primers was verified by high-throughput sequencing of PCR products amplified from DNA isolated from microorganisms present in anaerobic digesters. The selectivity of the markers was analyzed using phylogenetic methods. Our results indicate that the selected markers and the PCR primer sets can be used as specific tools for in-depth diversity analyses of methanogenic consortia.
Collapse
Affiliation(s)
- Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Adam Pyzik
- Laboratory of RNA Metabolism and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences Warsaw, Poland
| | - Krzysztof Romaniuk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Adam Sobczak
- Laboratory of RNA Metabolism and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences Warsaw, Poland ; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Pawel Szczesny
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences Warsaw, Poland ; Department of Systems Biology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Leszek Lipinski
- Laboratory of RNA Metabolism and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
23
|
Garushyants SK, Kazanov MD, Gelfand MS. Horizontal gene transfer and genome evolution in Methanosarcina. BMC Evol Biol 2015; 15:102. [PMID: 26044078 PMCID: PMC4455057 DOI: 10.1186/s12862-015-0393-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/29/2015] [Indexed: 12/29/2022] Open
Abstract
Background Genomes of Methanosarcina spp. are among the largest archaeal genomes. One suggested reason for that is massive horizontal gene transfer (HGT) from bacteria. Genes of bacterial origin may be involved in the central metabolism and solute transport, in particular sugar synthesis, sulfur metabolism, phosphate metabolism, DNA repair, transport of small molecules etc. Horizontally transferred (HT) genes are considered to play the key role in the ability of Methanosarcina spp. to inhabit diverse environments. At the moment, genomes of three Methanosarcina spp. have been sequenced, and while these genomes vary in length and number of protein-coding genes, they all have been shown to accumulate HT genes. However, previous estimates had been made when fewer archaeal genomes were known. Moreover, several Methanosarcinaceae genomes from other genera have been sequenced recently. Here, we revise the census of genes of bacterial origin in Methanosarcinaceae. Results About 5 % of Methanosarcina genes have been shown to be horizontally transferred from various bacterial groups to the last common ancestor either of Methanosarcinaceae, or Methanosarcina, or later in the evolution. Simulation of the composition of the NCBI protein non-redundant database for different years demonstrates that the estimates of the HGT rate have decreased drastically since 2002, the year of publication of the first Methanosarcina genome. The phylogenetic distribution of HT gene donors is non-uniform. Most HT genes were transferred from Firmicutes and Proteobacteria, while no HGT events from Actinobacteria to the common ancestor of Methanosarcinaceae were found. About 50 % of HT genes are involved in metabolism. Horizontal transfer of transcription factors is not common, while 46 % of horizontally transferred genes have demonstrated differential expression in a variety of conditions. HGT of complete operons is relatively infrequent and half of HT genes do not belong to operons. Conclusions While genes of bacterial origin are still more frequent in Methanosarcinaceae than in other Archaea, most HGT events described earlier as Methanosarcina-specific seem to have occurred before the divergence of Methanosarcinaceae. Genes horizontally transferred from bacteria to archaea neither tend to be transferred with their regulators, nor in long operons. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0393-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofya K Garushyants
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoi Karetny per. 19, build.1, Moscow, 127051, Russia.
| | - Marat D Kazanov
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoi Karetny per. 19, build.1, Moscow, 127051, Russia.
| | - Mikhail S Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, RAS, Bolshoi Karetny per. 19, build.1, Moscow, 127051, Russia. .,Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Vorobievy Gory 1-73, Moscow, 119991, Russia.
| |
Collapse
|
24
|
Campbell C, Adeolu M, Gupta RS. Genome-based taxonomic framework for the class Negativicutes: division of the class Negativicutes into the orders Selenomonadales emend., Acidaminococcales ord. nov. and Veillonellales ord. nov. Int J Syst Evol Microbiol 2015; 65:3203-3215. [PMID: 25999592 DOI: 10.1099/ijs.0.000347] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The class Negativicutes is currently divided into one order and two families on the basis of 16S rRNA gene sequence phylogenies. We report here comprehensive comparative genomic analyses of the sequenced members of the class Negativicutes to demarcate its different evolutionary groups in molecular terms, independently of phylogenetic trees. Our comparative genomic analyses have identified 14 conserved signature indels (CSIs) and 48 conserved signature proteins (CSPs) that either are specific for the entire class or differentiate four main groups within the class. Two CSIs and nine CSPs are shared uniquely by all or most members of the class Negativicutes, distinguishing this class from all other sequenced members of the phylum Firmicutes. Four other CSIs and six CSPs were specific characteristics of the family Acidaminococcaceae, two CSIs and four CSPs were uniquely present in the family Veillonellaceae, six CSIs and eight CSPs were found only in Selenomonas and related genera, and 17 CSPs were identified uniquely in Sporomusa and related genera. Four additional CSPs support a pairing of the groups containing the genera Selenomonas and Sporomusa. We also report detailed phylogenetic analyses for the Negativicutes based on core protein sequences and 16S rRNA gene sequences, which strongly support the four main groups identified by CSIs and by CSPs. Based on the results from different lines of investigation, we propose a division of the class Negativicutes into an emended order Selenomonadales containing the new families Selenomonadaceae fam. nov. and Sporomusaceae fam. nov. and two new orders, Acidaminococcales ord. nov. and Veillonellales ord. nov., respectively containing the families Acidaminococcaceae and Veillonellaceae.
Collapse
Affiliation(s)
- Chantal Campbell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
25
|
Li J, Wong CF, Wong MT, Huang H, Leung FC. Modularized evolution in archaeal methanogens phylogenetic forest. Genome Biol Evol 2014; 6:3344-59. [PMID: 25502908 PMCID: PMC4986457 DOI: 10.1093/gbe/evu259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2014] [Indexed: 11/13/2022] Open
Abstract
Methanogens are methane-producing archaea that plays a key role in the global carbon cycle. To date, the evolutionary history of methanogens and closely related nonmethanogen species remains unresolved among studies conducted upon different genetic markers, attributing to horizontal gene transfers (HGTs). With an effort to decipher both congruent and conflicting evolutionary events, reconstruction of coevolved gene clusters and hierarchical structure in the archaeal methanogen phylogenetic forest, comprehensive evolution, and network analyses were performed upon 3,694 gene families from 41 methanogens and 33 closely related archaea. Our results show that 1) greater than 50% of genes are in topological dissonance with others; 2) the prevalent interorder HGTs, even for core genes, in methanogen genomes led to their scrambled phylogenetic relationships; 3) most methanogenesis-related genes have experienced at least one HGT; 4) greater than 20% of the genes in methanogen genomes were transferred horizontally from other archaea, with genes involved in cell-wall synthesis and defense system having been transferred most frequently; 5) the coevolution network contains seven statistically robust modules, wherein the central module has the highest average node strength and comprises a majority of the core genes; 6) different coevolutionary module genes boomed in different time and evolutionary lineage, constructing diversified pan-genome structures; 7) the modularized evolution is also closely related to the vertical evolution signals and the HGT rate of the genes. Overall, this study presented a modularized phylogenetic forest that describes a combination of complicated vertical and nonvertical evolutionary processes for methanogenic archaeal species.
Collapse
Affiliation(s)
- Jun Li
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, China
| | - Chi-Fat Wong
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, China School of Biological Sciences, Faculty of Science, The University of Hong Kong, China
| | - Mabel Ting Wong
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, China Present address: Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - He Huang
- Center for Marine Environmental Studies, Ehime University, Japan
| | - Frederick C Leung
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, China Bioinformatics Center, Nanjing Agricultural University, People's Republic of China
| |
Collapse
|
26
|
Gupta RS, Naushad S, Baker S. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 2014; 65:1050-1069. [PMID: 25428416 DOI: 10.1099/ijs.0.070136-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Halobacteria constitute one of the largest groups within the Archaea. The hierarchical relationship among members of this large class, which comprises a single order and a single family, has proven difficult to determine based upon 16S rRNA gene trees and morphological and physiological characteristics. This work reports detailed phylogenetic and comparative genomic studies on >100 halobacterial (haloarchaeal) genomes containing representatives from 30 genera to investigate their evolutionary relationships. In phylogenetic trees reconstructed on the basis of 32 conserved proteins, using both neighbour-joining and maximum-likelihood methods, two major clades (clades A and B) encompassing nearly two-thirds of the sequenced haloarchaeal species were strongly supported. Clades grouping the same species/genera were also supported by the 16S rRNA gene trees and trees for several individual highly conserved proteins (RpoC, EF-Tu, UvrD, GyrA, EF-2/EF-G). In parallel, our comparative analyses of protein sequences from haloarchaeal genomes have identified numerous discrete molecular markers in the form of conserved signature indels (CSI) in protein sequences and conserved signature proteins (CSPs) that are found uniquely in specific groups of haloarchaea. Thirteen CSIs in proteins involved in diverse functions and 68 CSPs that are uniquely present in all or most genome-sequenced haloarchaea provide novel molecular means for distinguishing members of the class Halobacteria from all other prokaryotes. The members of clade A are distinguished from all other haloarchaea by the unique shared presence of two CSIs in the ribose operon protein and small GTP-binding protein and eight CSPs that are found specifically in members of this clade. Likewise, four CSIs in different proteins and five other CSPs are present uniquely in members of clade B and distinguish them from all other haloarchaea. Based upon their specific clustering in phylogenetic trees for different gene/protein sequences and the unique shared presence of large numbers of molecular signatures, members of clades A and B are indicated to be distinct from all other haloarchaea because of their uniquely shared evolutionary histories. Based upon these results, it is proposed that clades A and B be recognized as two new orders, Natrialbales ord. nov. and Haloferacales ord. nov., within the class Halobacteria, containing the novel families Natrialbaceae fam. nov. and Haloferacaceae fam. nov. Other members of the class Halobacteria that are not members of these two orders will remain part of the emended order Halobacteriales in an emended family Halobacteriaceae.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Sohail Naushad
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Sheridan Baker
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| |
Collapse
|
27
|
Adeolu M, Gupta RS. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie Van Leeuwenhoek 2014; 105:1049-72. [PMID: 24744012 DOI: 10.1007/s10482-014-0164-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/25/2014] [Indexed: 11/26/2022]
Abstract
The genus Borrelia contains two groups of organisms: the causative agents of Lyme disease and their relatives and the causative agents of relapsing fever and their relatives. These two groups are morphologically indistinguishable and are difficult to distinguish biochemically. In this work, we have carried out detailed comparative genomic analyses on protein sequences from 38 Borrelia genomes to identify molecular markers in the forms of conserved signature inserts/deletions (CSIs) that are specifically found in the Borrelia homologues, and conserved signature proteins (CSPs) which are uniquely present in Borrelia species. Our analyses have identified 31 CSIs and 82 CSPs that are uniquely shared by all sequenced Borrelia species, providing molecular markers for this group of organisms. In addition, our work has identified 7 CSIs and 21 CSPs which are uniquely found in the Lyme disease Borrelia species and eight CSIs and four CSPs that are specific for members of the relapsing fever Borrelia group. Additionally, 38 other CSIs, in proteins which are uniquely found in Borrelia species, also distinguish these two groups of Borrelia. The identified CSIs and CSPs provide novel and highly specific molecular markers for identification and distinguishing between the Lyme disease Borrelia and the relapsing fever Borrelia species. We also report the results of average nucleotide identity (ANI) analysis on Borrelia genomes and phylogenetic analysis for these species based upon 16S rRNA sequences and concatenated sequences for 25 conserved proteins. These analyses also support the distinctness of the two Borrelia clades. On the basis of the identified molecular markers, the results from ANI and phylogenetic studies, and the distinct pathogenicity profiles and arthropod vectors used by different Borrelia spp. for their transmission, we are proposing a division of the genus Borrelia into two separate genera: an emended genus Borrelia, containing the causative agents of relapsing fever and a novel genus, Borreliella gen. nov., containing the causative agents of Lyme disease.
Collapse
Affiliation(s)
- Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | | |
Collapse
|
28
|
Wan W, Tharp JM, Liu WR. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1059-70. [PMID: 24631543 DOI: 10.1016/j.bbapap.2014.03.002] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/01/2014] [Accepted: 03/05/2014] [Indexed: 11/16/2022]
Abstract
The genetic incorporation of the 22nd proteinogenic amino acid, pyrrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNA(Pyl). Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNA(Pyl). These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs.
Collapse
Affiliation(s)
- Wei Wan
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA
| | - Jeffery M Tharp
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA
| | - Wenshe R Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
29
|
Towards a computational model of a methane producing archaeum. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:898453. [PMID: 24729742 PMCID: PMC3960522 DOI: 10.1155/2014/898453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/18/2013] [Indexed: 11/17/2022]
Abstract
Progress towards a complete model of the methanogenic archaeum Methanosarcina acetivorans is reported. We characterized size distribution of the cells using differential interference contrast microscopy, finding them to be ellipsoidal with mean length and width of 2.9 μm and 2.3 μm, respectively, when grown on methanol and 30% smaller when grown on acetate. We used the single molecule pull down (SiMPull) technique to measure average copy number of the Mcr complex and ribosomes. A kinetic model for the methanogenesis pathways based on biochemical studies and recent metabolic reconstructions for several related methanogens is presented. In this model, 26 reactions in the methanogenesis pathways are coupled to a cell mass production reaction that updates enzyme concentrations. RNA expression data (RNA-seq) measured for cell cultures grown on acetate and methanol is used to estimate relative protein production per mole of ATP consumed. The model captures the experimentally observed methane production rates for cells growing on methanol and is most sensitive to the number of methyl-coenzyme-M reductase (Mcr) and methyl-tetrahydromethanopterin:coenzyme-M methyltransferase (Mtr) proteins. A draft transcriptional regulation network based on known interactions is proposed which we intend to integrate with the kinetic model to allow dynamic regulation.
Collapse
|
30
|
Naushad HS, Lee B, Gupta RS. Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria. Int J Syst Evol Microbiol 2014; 64:366-383. [DOI: 10.1099/ijs.0.054213-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome sequences are enabling applications of different approaches to more clearly understand microbial phylogeny and systematics. Two of these approaches involve identification of conserved signature indels (CSIs) and conserved signature proteins (CSPs) that are specific for different lineages. These molecular markers provide novel and more definitive means for demarcation of prokaryotic taxa and for identification of species from these groups. Genome sequences are also enabling determination of phylogenetic relationships among species based upon sequences for multiple proteins. In this work, we have used all of these approaches for studying the phytopathogenic bacteria belonging to the genera
Dickeya
,
Pectobacterium
and
Brenneria
. Members of these genera, which cause numerous diseases in important food crops and ornamental plants, are presently distinguished mainly on the basis of their branching in phylogenetic trees. No biochemical or molecular characteristic is known that is uniquely shared by species from these genera. Hence, detailed studies using the above approaches were carried out on proteins from the genomes of these bacteria to identify molecular markers that are specific for them. In phylogenetic trees based upon concatenated sequences for 23 conserved proteins, members of the genera
Dickeya
,
Pectobacterium
and
Brenneria
formed a strongly supported clade within the other
Enterobacteriales
. Comparative analysis of protein sequences from the
Dickeya
,
Pectobacterium
and
Brenneria
genomes has identified 10 CSIs and five CSPs that are either uniquely or largely found in all genome-sequenced species from these genera, but not present in any other bacteria in the database. In addition, our analyses have identified 10 CSIs and 17 CSPs that are specifically present in either all or most sequenced
Dickeya
species/strains, and six CSIs and 19 CSPs that are uniquely found in the sequenced
Pectobacterium
genomes. Finally, our analysis also identified three CSIs and one CSP that are specifically shared by members of the genera
Pectobacterium
and
Brenneria
, but absent in species of the genus
Dickeya
, indicating that the former two genera shared a common ancestor exclusive of
Dickeya
. The identified CSIs and CSPs provide novel tools for identification of members of the genera
Dickeya
and
Pectobacterium
and for delimiting these taxa in molecular terms. Descriptions of the genera
Dickeya
and
Pectobacterium
have been revised to provide information for these molecular markers. Biochemical studies on these CSIs and CSPs, which are specific for these genera, may lead to discovery of novel properties that are unique to these bacteria and which could be targeted to develop antibacterial agents that are specific for these plant-pathogenic bacteria.
Collapse
Affiliation(s)
- Hafiz Sohail Naushad
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Brian Lee
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | - Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| |
Collapse
|
31
|
Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 2012; 335:587-90. [PMID: 22301318 DOI: 10.1126/science.1212665] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ecosystems are shaped by complex communities of mostly unculturable microbes. Metagenomes provide a fragmented view of such communities, but the ecosystem functions of major groups of organisms remain mysterious. To better characterize members of these communities, we developed methods to reconstruct genomes directly from mate-paired short-read metagenomes. We closed a genome representing the as-yet uncultured marine group II Euryarchaeota, assembled de novo from 1.7% of a metagenome sequenced from surface seawater. The genome describes a motile, photo-heterotrophic cell focused on degradation of protein and lipids and clarifies the origin of proteorhodopsin. It also demonstrates that high-coverage mate-paired sequence can overcome assembly difficulties caused by interstrain variation in complex microbial communities, enabling inference of ecosystem functions for uncultured members.
Collapse
Affiliation(s)
- Vaughn Iverson
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
32
|
Khemkhao M, Nuntakumjorn B, Techkarnjanaruk S, Phalakornkule C. UASB performance and microbial adaptation during a transition from mesophilic to thermophilic treatment of palm oil mill effluent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 103:74-82. [PMID: 22466006 DOI: 10.1016/j.jenvman.2012.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 02/16/2012] [Accepted: 03/02/2012] [Indexed: 05/31/2023]
Abstract
The treatment of palm oil mill effluent (POME) by an upflow anaerobic sludge bed (UASB) at organic loading rates (OLR) between 2.2 and 9.5 g COD l(-1) day(-1) was achieved by acclimatizing the mesophilic (37 °C) microbial seed to the thermophilic temperature (57 °C) by a series of stepwise temperature shifts. The UASB produced up to 13.2 l biogas d(-1) with methane content on an average of 76%. The COD removal efficiency ranged between 76 and 86%. Microbial diversity of granules from the UASB reactor was also investigated. The PCR-based DGGE analysis showed that the bacterial population profiles significantly changed with the temperature transition from mesophilic to thermophilic conditions. In addition, the results suggested that even though the thermophilic temperature of 57 °C was suitable for a number of hydrolytic, acidogenic and acetogenic bacteria, it may not be suitable for some Methanosaeta species acclimatized from 37 °C. Specifically, the bands associated with Methanosaeta thermophila PT and Methanosaeta harundinacea can be detected during the four consecutive operation phases of 37 °C, 42 °C, 47 °C and 52 °C, but their corresponding bands were found to fade out at 57 °C. The DGGE analysis predicted that the temperature transition can result in significant methanogenic biomass washout at 57 °C.
Collapse
Affiliation(s)
- Maneerat Khemkhao
- Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | | | | | | |
Collapse
|
33
|
Bhandari V, Naushad HS, Gupta RS. Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution. Front Cell Infect Microbiol 2012; 2:98. [PMID: 22919687 PMCID: PMC3417386 DOI: 10.3389/fcimb.2012.00098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/27/2012] [Indexed: 11/20/2022] Open
Abstract
The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs) among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning of whether the Darwinian model of evolution is applicable to prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs) and conserved signature proteins (CSPs) for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on the Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs) initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical studies.
Collapse
Affiliation(s)
- Vaibhav Bhandari
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton, ON, Canada
| | | | | |
Collapse
|
34
|
Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012; 76:66-112. [PMID: 22390973 PMCID: PMC3294427 DOI: 10.1128/mmbr.05011-11] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
35
|
Capes MD, DasSarma P, DasSarma S. The core and unique proteins of haloarchaea. BMC Genomics 2012; 13:39. [PMID: 22272718 PMCID: PMC3287961 DOI: 10.1186/1471-2164-13-39] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background Since the first genome of a halophilic archaeon was sequenced in 2000, biologists have been advancing the understanding of genomic characteristics that allow for survival in the harsh natural environments of these organisms. An increase in protein acidity and GC-bias in the genome have been implicated as factors in tolerance to extreme salinity, desiccation, and high solar radiation. However, few previous attempts have been made to identify novel genes that would permit survival in such extreme conditions. Results With the recent release of several new complete haloarchaeal genome sequences, we have conducted a comprehensive comparative genomic analysis focusing on the identification of unique haloarchaeal conserved proteins that likely play key roles in environmental adaptation. Using bioinformatic methods, we have clustered 31,312 predicted proteins from nine haloarchaeal genomes into 4,455 haloarchaeal orthologous groups (HOGs). We assigned likely functions by association with established COG and KOG databases in NCBI. After identifying homologs in four additional haloarchaeal genomes, we determined that there were 784 core haloarchaeal protein clusters (cHOGs), of which 83 clusters were found primarily in haloarchaea. Further analysis found that 55 clusters were truly unique (tucHOGs) to haloarchaea and qualify as signature proteins while 28 were nearly unique (nucHOGs), the vast majority of which were coded for on the haloarchaeal chromosomes. Of the signature proteins, only one example with any predicted function, Ral, involved in desiccation/radiation tolerance in Halobacterium sp. NRC-1, was identified. Among the core clusters, 33% was predicted to function in metabolism, 25% in information transfer and storage, 10% in cell processes and signaling, and 22% belong to poorly characterized or general function groups. Conclusion Our studies have established conserved groups of nearly 800 protein clusters present in all haloarchaea, with a subset of 55 which are predicted to be accessory proteins that may be critical or essential for success in an extreme environment. These studies support core and signature genes and proteins as valuable concepts for understanding phylogenetic and phenotypic characteristics of coherent groups of organisms.
Collapse
Affiliation(s)
- Melinda D Capes
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, 701 East Pratt Street, Baltimore, MD 21202 USA
| | | | | |
Collapse
|
36
|
Microbial systematics in the post-genomics era. Antonie van Leeuwenhoek 2011; 101:45-54. [DOI: 10.1007/s10482-011-9663-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/15/2011] [Indexed: 10/16/2022]
|
37
|
Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie van Leeuwenhoek 2011; 100:171-82. [PMID: 21717204 PMCID: PMC3133647 DOI: 10.1007/s10482-011-9616-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 06/20/2011] [Indexed: 01/01/2023]
Abstract
The prokaryotic organisms can be divided into two main groups depending upon whether their cell envelopes contain one membrane (monoderms) or two membranes (diderms). It is important to understand how these and other variations that are observed in the cell envelopes of prokaryotic organisms have originated. In 2009, James Lake proposed that cells with two membranes (primarily Gram-negative bacteria) originated from an ancient endosymbiotic event involving an Actinobacteria and a Clostridia (Lake 2009). However, this Perspective argues that this proposal is based on a number of incorrect assumptions and the data presented in support of this model are also of questionable nature. Thus, there is no reliable evidence to support the endosymbiotic origin of double membrane bacteria. In contrast, many observations suggest that antibiotic selection pressure was an important selective force in prokaryotic evolution and that it likely played a central role in the evolution of diderm (Gram-negative) bacteria. Some bacterial phyla, such as Deinococcus-Thermus, which lack lipopolysaccharide (LPS) and yet contain some characteristics of the diderm bacteria, are postulated as evolutionary intermediates (simple diderms) in the transition between the monoderm bacterial taxa and the bacterial groups that have the archetypal LPS-containing outer cell membrane found in Gram-negative bacteria. It is possible to distinguish the two stages in the evolution of diderm-LPS cells (viz. monoderm bacteria → simple diderms lacking LPS → LPS containing archetypal diderm bacteria) by means of conserved inserts in the Hsp70 and Hsp60 proteins. The insert in the Hsp60 protein also distinguishes the traditional Gram-negative diderm bacterial phyla from atypical taxa of diderm bacteria (viz. Negativicutes, Fusobacteria, Synergistetes and Elusimicrobia). The Gram-negative bacterial phyla with an LPS-diderm cell envelope, as defined by the presence of the Hsp60 insert, are indicated to form a monophyletic clade and no loss of the outer membrane from any species from this group seems to have occurred. This argues against the origin of monoderm prokaryotes from diderm bacteria by loss of outer membrane.
Collapse
|
38
|
Environmental, biogeographic, and biochemical patterns of archaea of the family Ferroplasmaceae. Appl Environ Microbiol 2011; 77:5071-8. [PMID: 21685165 DOI: 10.1128/aem.00726-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About 10 years ago, a new family of cell wall-deficient, iron-oxidizing archaea, Ferroplasmaceae, within the large archaeal phylum Euryarchaeota, was described. In this minireview, I summarize the research progress achieved since then and report on the current status of taxonomy, biogeography, physiological diversity, biochemistry, and other research areas involving this exciting group of acidophilic archaea.
Collapse
|
39
|
Molecular signatures for the Crenarchaeota and the Thaumarchaeota. Antonie van Leeuwenhoek 2010; 99:133-57. [PMID: 20711675 DOI: 10.1007/s10482-010-9488-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
Crenarchaeotes found in mesophilic marine environments were recently placed into a new phylum of Archaea called the Thaumarchaeota. However, very few molecular characteristics of this new phylum are currently known which can be used to distinguish them from the Crenarchaeota. In addition, their relationships to deep-branching archaeal lineages are unclear. We report here detailed analyses of protein sequences from Crenarchaeota and Thaumarchaeota that have identified many conserved signature indels (CSIs) and signature proteins (SPs) (i.e., proteins for which all significant blast hits are from these groups) that are specific for these archaeal groups. Of the identified signatures 6 CSIs and 13 SPs are specific for the Crenarchaeota phylum; 6 CSIs and >250 SPs are uniquely found in various Thaumarchaeota (viz. Cenarchaeum symbiosum, Nitrosopumilus maritimus and a number of uncultured marine crenarchaeotes) and 3 CSIs and ~10 SPs are found in both Thaumarchaeota and Crenarchaeota species. Some of the molecular signatures are also present in Korarchaeum cryptofilum, which forms the independent phylum Korarchaeota. Although some of these molecular signatures suggest a distant shared ancestry between Thaumarchaeota and Crenarchaeota, our identification of large numbers of Thaumarchaeota-specific proteins and their deep branching between the Crenarchaeota and Euryarchaeota phyla in phylogenetic trees shows that they are distinct from both Crenarchaeota and Euryarchaeota in both genetic and phylogenetic terms. These observations support the placement of marine mesophilic archaea into the separate phylum Thaumarchaeota. Additionally, many CSIs and SPs have been found that are specific for different orders within Crenarchaeota (viz. Sulfolobales-3 CSIs and 169 SPs, Thermoproteales-5 CSIs and 25 SPs, Desulfurococcales-4 SPs, and Sulfolobales and Desulfurococcales-2 CSIs and 18 SPs). The signatures described here provide novel means for distinguishing the Crenarchaeota and the Thaumarchaeota and for the classification of related and novel species in different environments. Functional studies on these signature proteins could lead to discovery of novel biochemical properties that are unique to these groups of archaea.
Collapse
|
40
|
Gupta RS, Mathews DW. Signature proteins for the major clades of Cyanobacteria. BMC Evol Biol 2010; 10:24. [PMID: 20100331 PMCID: PMC2823733 DOI: 10.1186/1471-2148-10-24] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 01/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The phylogeny and taxonomy of cyanobacteria is currently poorly understood due to paucity of reliable markers for identification and circumscription of its major clades. RESULTS A combination of phylogenomic and protein signature based approaches was used to characterize the major clades of cyanobacteria. Phylogenetic trees were constructed for 44 cyanobacteria based on 44 conserved proteins. In parallel, Blastp searches were carried out on each ORF in the genomes of Synechococcus WH8102, Synechocystis PCC6803, Nostoc PCC7120, Synechococcus JA-3-3Ab, Prochlorococcus MIT9215 and Prochlor. marinus subsp. marinus CCMP1375 to identify proteins that are specific for various main clades of cyanobacteria. These studies have identified 39 proteins that are specific for all (or most) cyanobacteria and large numbers of proteins for other cyanobacterial clades. The identified signature proteins include: (i) 14 proteins for a deep branching clade (Clade A) of Gloebacter violaceus and two diazotrophic Synechococcus strains (JA-3-3Ab and JA2-3-B'a); (ii) 5 proteins that are present in all other cyanobacteria except those from Clade A; (iii) 60 proteins that are specific for a clade (Clade C) consisting of various marine unicellular cyanobacteria (viz. Synechococcus and Prochlorococcus); (iv) 14 and 19 signature proteins that are specific for the Clade C Synechococcus and Prochlorococcus strains, respectively; (v) 67 proteins that are specific for the Low B/A ecotype Prochlorococcus strains, containing lower ratio of chl b/a2 and adapted to growth at high light intensities; (vi) 65 and 8 proteins that are specific for the Nostocales and Chroococcales orders, respectively; and (vii) 22 and 9 proteins that are uniquely shared by various Nostocales and Oscillatoriales orders, or by these two orders and the Chroococcales, respectively. We also describe 3 conserved indels in flavoprotein, heme oxygenase and protochlorophyllide oxidoreductase proteins that are specific for either Clade C cyanobacteria or for various subclades of Prochlorococcus. Many other conserved indels for cyanobacterial clades have been described recently. CONCLUSIONS These signature proteins and indels provide novel means for circumscription of various cyanobacterial clades in clear molecular terms. Their functional studies should lead to discovery of novel properties that are unique to these groups of cyanobacteria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
41
|
Blank CE. Not so old Archaea - the antiquity of biogeochemical processes in the archaeal domain of life. GEOBIOLOGY 2009; 7:495-514. [PMID: 19843187 DOI: 10.1111/j.1472-4669.2009.00219.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Since the archaeal domain of life was first recognized, it has often been assumed that Archaea are ancient, and harbor primitive traits. In fact, the names of the major archaeal lineages reflect our assumptions regarding the antiquity of their traits. Ancestral state reconstruction and relaxed molecular clock analyses using newly articulated oxygen age constraints show that although the archaeal domain itself is old, tracing back to the Archean eon, many clades and traits within the domain are not ancient or primitive. Indeed many clades and traits, particularly in the Euryarchaeota, were inferred to be Neoproterozoic or Phanerozoic in age. Both Eury- and Crenarchaeota show increasing metabolic and physiological diversity through time. Early archaeal microbial communities were likely limited to sulfur reduction and hydrogenotrophic methanogenesis, and were confined to high-temperature geothermal environments. However, after the appearance of atmospheric oxygen, nodes containing a wide variety of traits (sulfate and thiosulfate reduction, sulfur oxidation, sulfide oxidation, aerobic respiration, nitrate reduction, mesophilic methanogenesis in sedimentary environments) appear, first in environments containing terrestrial Crenarchaeota in the Meso/Neoproterozoic followed by environments containing marine Euryarchaeota in the Neoproterozoic and Phanerozoic. This provides phylogenetic evidence for increasing complexity in the biogeochemical cycling of C, N, and S through geologic time, likely as a consequence of microbial evolution and the gradual oxygenation of various compartments within the biosphere. This work has implications not only for the large-scale evolution of microbial communities and biogeochemical processes, but also for the interpretation of microbial biosignatures in the ancient rock record.
Collapse
Affiliation(s)
- Carrine E Blank
- Department of Geosciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
42
|
Goldman AD, Leigh JA, Samudrala R. Comprehensive computational analysis of Hmd enzymes and paralogs in methanogenic Archaea. BMC Evol Biol 2009; 9:199. [PMID: 19671178 PMCID: PMC2739858 DOI: 10.1186/1471-2148-9-199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 08/11/2009] [Indexed: 11/29/2022] Open
Abstract
Background Methanogenesis is the sole means of energy production in methanogenic Archaea. H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) catalyzes a step in the hydrogenotrophic methanogenesis pathway in class I methanogens. At least one hmd paralog has been identified in nine of the eleven complete genome sequences of class I hydrogenotrophic methanogens. The products of these paralog genes have thus far eluded any detailed functional characterization. Results Here we present a thorough computational analysis of Hmd enzymes and paralogs that includes state of the art phylogenetic inference, structure prediction, and functional site prediction techniques. We determine that the Hmd enzymes are phylogenetically distinct from Hmd paralogs but share a common overall structure. We predict that the active site of the Hmd enzyme is conserved as a functional site in Hmd paralogs and use this observation to propose possible molecular functions of the paralog that are consistent with previous experimental evidence. We also identify an uncharacterized site in the N-terminal domains of both proteins that is predicted by our methods to directly impart function. Conclusion This study contributes to our understanding of the evolutionary history, structural conservation, and functional roles, of the Hmd enzymes and paralogs. The results of our phylogenetic and structural analysis constitute datasets that will aid in the future study of the Hmd protein family. Our functional site predictions generate several testable hypotheses that will guide further experimental characterization of the Hmd paralog. This work also represents a novel approach to protein function prediction in which multiple computational methods are integrated to achieve a detailed characterization of proteins that are not well understood.
Collapse
Affiliation(s)
- Aaron D Goldman
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|
43
|
Csurös M, Miklós I. Streamlining and large ancestral genomes in Archaea inferred with a phylogenetic birth-and-death model. Mol Biol Evol 2009; 26:2087-95. [PMID: 19570746 PMCID: PMC2726834 DOI: 10.1093/molbev/msp123] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Homologous genes originate from a common ancestor through vertical inheritance, duplication, or horizontal gene transfer. Entire homolog families spawned by a single ancestral gene can be identified across multiple genomes based on protein sequence similarity. The sequences, however, do not always reveal conclusively the history of large families. To study the evolution of complete gene repertoires, we propose here a mathematical framework that does not rely on resolved gene family histories. We show that so-called phylogenetic profiles, formed by family sizes across multiple genomes, are sufficient to infer principal evolutionary trends. The main novelty in our approach is an efficient algorithm to compute the likelihood of a phylogenetic profile in a model of birth-and-death processes acting on a phylogeny. We examine known gene families in 28 archaeal genomes using a probabilistic model that involves lineage- and family-specific components of gene acquisition, duplication, and loss. The model enables us to consider all possible histories when inferring statistics about archaeal evolution. According to our reconstruction, most lineages are characterized by a net loss of gene families. Major increases in gene repertoire have occurred only a few times. Our reconstruction underlines the importance of persistent streamlining processes in shaping genome composition in Archaea. It also suggests that early archaeal genomes were as complex as typical modern ones, and even show signs, in the case of the methanogenic ancestor, of an extremely large gene repertoire.
Collapse
Affiliation(s)
- Miklós Csurös
- Department of Computer Science and Operations Research, University of Montréal, Montréal, Canada.
| | | |
Collapse
|
44
|
Luo H, Sun Z, Arndt W, Shi J, Friedman R, Tang J. Gene order phylogeny and the evolution of methanogens. PLoS One 2009; 4:e6069. [PMID: 19562076 PMCID: PMC2699033 DOI: 10.1371/journal.pone.0006069] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/29/2009] [Indexed: 11/18/2022] Open
Abstract
Methanogens are a phylogenetically diverse group belonging to Euryarchaeota. Previously, phylogenetic approaches using large datasets revealed that methanogens can be grouped into two classes, “Class I” and “Class II”. However, some deep relationships were not resolved. For instance, the monophyly of “Class I” methanogens, which consist of Methanopyrales, Methanobacteriales and Methanococcales, is disputable due to weak statistical support. In this study, we use MSOAR to identify common orthologous genes from eight methanogen species and a Thermococcale species (outgroup), and apply GRAPPA and FastME to compute distance-based gene order phylogeny. The gene order phylogeny supports two classes of methanogens, but it differs from the original classification of methanogens by placing Methanopyrales and Methanobacteriales together with Methanosarcinales in Class II rather than with Methanococcales. This study suggests a new classification scheme for methanogens. In addition, it indicates that gene order phylogeny can complement traditional sequence-based methods in addressing taxonomic questions for deep relationships.
Collapse
Affiliation(s)
- Haiwei Luo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Structural and phylogenetic analysis of a conserved actinobacteria-specific protein (ASP1; SCO1997) from Streptomyces coelicolor. BMC STRUCTURAL BIOLOGY 2009; 9:40. [PMID: 19515238 PMCID: PMC2714318 DOI: 10.1186/1472-6807-9-40] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 06/10/2009] [Indexed: 11/22/2022]
Abstract
Background The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known. Results Here we report the first characterization of one of the 5 actinobacteria-specific proteins, ASP1 (Gene ID: SCO1997) from Streptomyces coelicolor. The X-ray crystal structure of ASP1 was determined at 2.2 Ǻ. The overall structure of ASP1 retains a similar fold to the large NP-1 family of nucleoside phosphorylase enzymes; however, the function is not related. Further comparative analysis revealed two regions expected to be important for protein function: a central, divalent metal ion binding pore, and a highly conserved elbow shaped helical region at the C-terminus. Sequence analyses revealed that ASP1 is paralogous to another actinobacteria-specific protein ASP2 (SCO1662 from S. coelicolor) and that both proteins likely carry out similar function. Conclusion Our structural data in combination with sequence analysis supports the idea that two of the 5 actinobacteria-specific proteins, ASP1 and ASP2, mediate similar function. This function is predicted to be novel since the structures of these proteins do not match any known protein with or without known function. Our results suggest that this function could involve divalent metal ion binding/transport.
Collapse
|
46
|
Nakagawa S, Takai K. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 2008; 65:1-14. [DOI: 10.1111/j.1574-6941.2008.00502.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
47
|
Abstract
Gene content has been shown to contain a strong phylogenetic signal, yet its usage for phylogenetic questions is hampered by horizontal gene transfer and parallel gene loss and until now required completely sequenced genomes. Here, we introduce an approach that allows the phylogenetic signal in gene content to be applied to any set of sequences, using signature genes for phylogenetic classification. The hundreds of publicly available genomes allow us to identify signature genes at various taxonomic depths, and we show how the presence of signature genes in an unspecified sample can be used to characterize its taxonomic composition. We identify 8,362 signature genes specific for 112 prokaryotic taxa. We show that these signature genes can be used to address phylogenetic questions on the basis of gene content in cases where classic gene content or sequence analyses provide an ambiguous answer, such as for Nanoarchaeum equitans, and even in cases where complete genomes are not available, such as for metagenomics data. Cross-validation experiments leaving out up to 30% of the species show that ∼92% of the signature genes correctly place the species in a related clade. Analyses of metagenomics data sets with the signature gene approach are in good agreement with the previously reported species distributions based on phylogenetic analysis of marker genes. Summarizing, signature genes can complement traditional sequence-based methods in addressing taxonomic questions.
Collapse
Affiliation(s)
- Bas E Dutilh
- Center for Molecular and Biomolecular Informatics/Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
48
|
Attwood G, McSweeney C. Methanogen genomics to discover targets for methane mitigation technologies and options for alternative H2 utilisation in the rumen. ACTA ACUST UNITED AC 2008. [DOI: 10.1071/ea07203] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reducing ruminant methane emissions is an important objective for ensuring the sustainability of ruminant-based agriculture. Methane is formed in the rumen by methanogens (part of the domain Archaea), mainly from H2 and CO2. Methanogens from a wide range of habitats are being genome-sequenced to gain a better understanding of their biology and, in particular, to identify targets for inhibition technologies for gut-associated methanogens. Genome comparisons are identifying common genes that define a methanogen, while gene differences are providing an insight into adaptations that allow methanogen survival and persistence under different environmental conditions. Within the rumen microbial food web, methanogens perform the beneficial task of removing H2, which allows reduced cofactors to be reoxidised and recycled, thereby enhancing the breakdown and fermentation of plant material. Therefore, rumen methane mitigation strategies need to consider alternative routes of H2 utilisation in the absence (or decreased levels) of methanogenesis to maintain rumen function. Two main alternatives are possible: enhancing rumen microorganisms that carry out reductive acetogenesis (combining CO2 and H2 to form acetate) or promotion of organisms that consume reducing equivalents during the conversion of metabolic intermediates (malate, fumarate and crotonate) into propionate and butyrate. A better understanding of the role and scale of methane oxidation in the rumen may also lead to future options for methane mitigation.
Collapse
|
49
|
Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA. Phylogenetic systematics of microorganisms inhabiting thermal environments. BIOCHEMISTRY (MOSCOW) 2007; 72:1299-312. [DOI: 10.1134/s0006297907120048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Gupta RS, Mok A. Phylogenomics and signature proteins for the alpha proteobacteria and its main groups. BMC Microbiol 2007; 7:106. [PMID: 18045498 PMCID: PMC2241609 DOI: 10.1186/1471-2180-7-106] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 11/28/2007] [Indexed: 01/11/2023] Open
Abstract
Background Alpha proteobacteria are one of the largest and most extensively studied groups within bacteria. However, for these bacteria as a whole and for all of its major subgroups (viz. Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomonadales and Caulobacterales), very few or no distinctive molecular or biochemical characteristics are known. Results We have carried out comprehensive phylogenomic analyses by means of Blastp and PSI-Blast searches on the open reading frames in the genomes of several α-proteobacteria (viz. Bradyrhizobium japonicum, Brucella suis, Caulobacter crescentus, Gluconobacter oxydans, Mesorhizobium loti, Nitrobacter winogradskyi, Novosphingobium aromaticivorans, Rhodobacter sphaeroides 2.4.1, Silicibacter sp. TM1040, Rhodospirillum rubrum and Wolbachia (Drosophila) endosymbiont). These studies have identified several proteins that are distinctive characteristics of all α-proteobacteria, as well as numerous proteins that are unique repertoires of all of its main orders (viz. Rhizobiales, Rhodobacterales, Rhodospirillales, Rickettsiales, Sphingomonadales and Caulobacterales) and many families (viz. Rickettsiaceae, Anaplasmataceae, Rhodospirillaceae, Acetobacteraceae, Bradyrhiozobiaceae, Brucellaceae and Bartonellaceae). Many other proteins that are present at different phylogenetic depths in α-proteobacteria provide important information regarding their evolution. The evolutionary relationships among α-proteobacteria as deduced from these studies are in excellent agreement with their branching pattern in the phylogenetic trees and character compatibility cliques based on concatenated sequences for many conserved proteins. These studies provide evidence that the major groups within α-proteobacteria have diverged in the following order: (Rickettsiales(Rhodospirillales (Sphingomonadales (Rhodobacterales (Caulobacterales-Parvularculales (Rhizobiales)))))). We also describe two conserved inserts in DNA Gyrase B and RNA polymerase beta subunit that are distinctive characteristics of the Sphingomonadales and Rhodosprilllales species, respectively. The results presented here also provide support for the grouping of Hyphomonadaceae and Parvularcula species with the Caulobacterales and the placement of Stappia aggregata with the Rhizobiaceae group. Conclusion The α-proteobacteria-specific proteins and indels described here provide novel and powerful means for the taxonomic, biochemical and molecular biological studies on these bacteria. Their functional studies should prove helpful in identifying novel biochemical and physiological characteristics that are unique to these bacteria.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton L8N3Z5, Canada.
| | | |
Collapse
|