1
|
Al-gafari M, Jagadeesan SK, Kazmirchuk TDD, Takallou S, Wang J, Hajikarimlou M, Ramessur NB, Darwish W, Bradbury-Jost C, Moteshareie H, Said KB, Samanfar B, Golshani A. Investigating the Activities of CAF20 and ECM32 in the Regulation of PGM2 mRNA Translation. BIOLOGY 2024; 13:884. [PMID: 39596839 PMCID: PMC11592143 DOI: 10.3390/biology13110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Translation is a fundamental process in biology, and understanding its mechanisms is crucial to comprehending cellular functions and diseases. The regulation of this process is closely linked to the structure of mRNA, as these regions prove vital to modulating translation efficiency and control. Thus, identifying and investigating these fundamental factors that influence the processing and unwinding of structured mRNAs would be of interest due to the widespread impact in various fields of biology. To this end, we employed a computational approach and identified genes that may be involved in the translation of structured mRNAs. The approach is based on the enrichment of interactions and co-expression of genes with those that are known to influence translation and helicase activity. The in silico prediction found CAF20 and ECM32 to be highly ranked candidates that may play a role in unwinding mRNA. The activities of neither CAF20 nor ECM32 have previously been linked to the translation of PGM2 mRNA or other structured mRNAs. Our follow-up investigations with these two genes provided evidence of their participation in the translation of PGM2 mRNA and several other synthetic structured mRNAs.
Collapse
Affiliation(s)
- Mustafa Al-gafari
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Sasi Kumar Jagadeesan
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Thomas David Daniel Kazmirchuk
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Sarah Takallou
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Jiashu Wang
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Maryam Hajikarimlou
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Nishka Beersing Ramessur
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
| | - Waleed Darwish
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
| | - Calvin Bradbury-Jost
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Houman Moteshareie
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Kamaledin B. Said
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail P.O. Box 2240, Saudi Arabia
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.A.-g.); (S.K.J.); (T.D.D.K.); (S.T.); (J.W.); (M.H.); (N.B.R.); (W.D.); (C.B.-J.); (K.B.S.)
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
2
|
Kazmirchuk TDD, Burnside DJ, Wang J, Jagadeesan SK, Al-Gafari M, Silva E, Potter T, Bradbury-Jost C, Ramessur NB, Ellis B, Takallou S, Hajikarimlou M, Moteshareie H, Said KB, Samanfar B, Fletcher E, Golshani A. Cymoxanil disrupts RNA synthesis through inhibiting the activity of dihydrofolate reductase. Sci Rep 2024; 14:11695. [PMID: 38778133 PMCID: PMC11111663 DOI: 10.1038/s41598-024-62563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
The agricultural fungicide cymoxanil (CMX) is commonly used in the treatment of plant pathogens, such as Phytophthora infestans. Although the use of CMX is widespread throughout the agricultural industry and internationally, the exact mechanism of action behind this fungicide remains unclear. Therefore, we sought to elucidate the biocidal mechanism underlying CMX. This was accomplished by first performing a large-scale chemical-genomic screen comprising the 4000 haploid non-essential gene deletion array of the yeast Saccharomyces cerevisiae. We found that gene families related to de novo purine biosynthesis and ribonucleoside synthesis were enriched in the presence of CMX. These results were confirmed through additional spot-test and colony counting assays. We next examined whether CMX affects RNA biosynthesis. Using qRT-PCR and expression assays, we found that CMX appears to target RNA biosynthesis possibly through the yeast dihydrofolate reductase (DHFR) enzyme Dfr1. To determine whether DHFR is a target of CMX, we performed an in-silico molecular docking assay between CMX and yeast, human, and P. infestans DHFR. The results suggest that CMX directly interacts with the active site of all tested forms of DHFR using conserved residues. Using an in vitro DHFR activity assay we observed that CMX inhibits DHFR activity in a dose-dependent relationship.
Collapse
Affiliation(s)
| | - Daniel J Burnside
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Jiashu Wang
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Sasi Kumar Jagadeesan
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Mustafa Al-Gafari
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Eshan Silva
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Taylor Potter
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Calvin Bradbury-Jost
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Nishka Beersing Ramessur
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Brittany Ellis
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Sarah Takallou
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Maryam Hajikarimlou
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Houman Moteshareie
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Kamaleldin B Said
- Department of Pathology and Microbiology, University of Hail, 55476, Hail, Saudi Arabia
| | - Bahram Samanfar
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa, K1A 0C6, Canada
| | - Eugene Fletcher
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada
| | - Ashkan Golshani
- Department of Biology and the Ottawa Institute of Systems Biology (OISB), Carleton University, Ottawa, K1S 5B6, Canada.
| |
Collapse
|
3
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Kazmirchuk TDD, Said KB, Samanfar B, Golshani A. The Involvement of YNR069C in Protein Synthesis in the Baker's Yeast, Saccharomyces cerevisiae. BIOLOGY 2024; 13:138. [PMID: 38534408 DOI: 10.3390/biology13030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Maintaining translation fidelity is a critical step within the process of gene expression. It requires the involvement of numerous regulatory elements to ensure the synthesis of functional proteins. The efficient termination of protein synthesis can play a crucial role in preserving this fidelity. Here, we report on investigating a protein of unknown function, YNR069C (also known as BSC5), for its activity in the process of translation. We observed a significant increase in the bypass of premature stop codons upon the deletion of YNR069C. Interestingly, the genomic arrangement of this ORF suggests a compatible mode of expression reliant on translational readthrough, incorporating the neighboring open reading frame. We also showed that the deletion of YNR069C results in an increase in the rate of translation. Based on our results, we propose that YNR069C may play a role in translation fidelity, impacting the overall quantity and quality of translation. Our genetic interaction analysis supports our hypothesis, associating the role of YNR069C to the regulation of protein synthesis.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kamaledin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
4
|
Key J, Gispert S, Kandi AR, Heinz D, Hamann A, Osiewacz HD, Meierhofer D, Auburger G. CLPP-Null Eukaryotes with Excess Heme Biosynthesis Show Reduced L-arginine Levels, Probably via CLPX-Mediated OAT Activation. Biomolecules 2024; 14:241. [PMID: 38397478 PMCID: PMC10886707 DOI: 10.3390/biom14020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The serine peptidase CLPP is conserved among bacteria, chloroplasts, and mitochondria. In humans and mice, its loss causes Perrault syndrome, which presents with growth deficits, infertility, deafness, and ataxia. In the filamentous fungus Podospora anserina, CLPP loss leads to longevity. CLPP substrates are selected by CLPX, an AAA+ unfoldase. CLPX is known to target delta-aminolevulinic acid synthase (ALAS) to promote pyridoxal phosphate (PLP) binding. CLPX may also influence cofactor association with other enzymes. Here, the evaluation of P. anserina metabolomics highlighted a reduction in arginine/histidine levels. In Mus musculus cerebellum, reductions in arginine/histidine and citrulline occurred with a concomitant accumulation of the heme precursor protoporphyrin IX. This suggests that the increased biosynthesis of 5-carbon (C5) chain deltaALA consumes not only C4 succinyl-CoA and C1 glycine but also specific C5 delta amino acids. As enzymes responsible for these effects, the elevated abundance of CLPX and ALAS is paralleled by increased OAT (PLP-dependent, ornithine delta-aminotransferase) levels. Possibly as a consequence of altered C1 metabolism, the proteome profiles of P. anserina CLPP-null cells showed strong accumulation of a methyltransferase and two mitoribosomal large subunit factors. The reduced histidine levels may explain the previously observed metal interaction problems. As the main nitrogen-storing metabolite, a deficiency in arginine would affect the urea cycle and polyamine synthesis. Supplementation of arginine and histidine might rescue the growth deficits of CLPP-mutant patients.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| | - Daniela Heinz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Andrea Hamann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (D.H.); (A.H.); (H.D.O.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany;
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (J.K.); (S.G.); (A.R.K.)
| |
Collapse
|
5
|
Zhao J, Qiu P, Wang Y, Wang Y, Zhou J, Zhang B, Zhang L, Gou D. Chitosan-based hydrogel wound dressing: From mechanism to applications, a review. Int J Biol Macromol 2023:125250. [PMID: 37307982 DOI: 10.1016/j.ijbiomac.2023.125250] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
As promising biomaterials, hydrogels are widely used in the medical engineering field, especially in wound repairing. Compared with traditional wound dressings, such as gauze and bandage, hydrogel could absorb and retain more water without dissolving or losing its three-dimensional structure, thus avoiding secondary injury and promoting wound healing. Chitosan and its derivatives have become hot research topics for hydrogel wound dressing production due to their unique molecular structure and diverse biological activities. In this review, the mechanism of wound healing was introduced systematically. The mechanism of action of chitosan in the first three stages of wound repair (hemostasis, antimicrobial properties and progranulation), the effect of chitosan deacetylation and the molecular weight on its performance are analyzed. Additionally, the recent progress in intelligent and drug-loaded chitosan-based hydrogels and the features and advantages of chitosan were discussed. Finally, the challenges and prospects for the future development of chitosan-based hydrogels were discussed.
Collapse
Affiliation(s)
- Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yue Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jianing Zhou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Baochun Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Lihong Zhang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
6
|
Chen P, Huang R, Hazbun TR. Unlocking the Mysteries of Alpha-N-Terminal Methylation and its Diverse Regulatory Functions. J Biol Chem 2023:104843. [PMID: 37209820 PMCID: PMC10293735 DOI: 10.1016/j.jbc.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Protein post-translation modifications (PTMs) are a critical regulatory mechanism of protein function. Protein α-N-terminal (Nα) methylation is a conserved PTM across prokaryotes and eukaryotes. Studies of the Nα methyltransferases responsible for Να methylation and their substrate proteins have shown that the PTM involves diverse biological processes, including protein synthesis and degradation, cell division, DNA damage response, and transcription regulation. This review provides an overview of the progress toward the regulatory function of Να methyltransferases and their substrate landscape. More than 200 proteins in humans and 45 in yeast are potential substrates for protein Nα methylation based on the canonical recognition motif, XP[KR]. Based on recent evidence for a less stringent motif requirement, the number of substrates might be increased, but further validation is needed to solidify this concept. A comparison of the motif in substrate orthologs in selected eukaryotic species indicates intriguing gain and loss of the motif across the evolutionary landscape. We discuss the state of knowledge in the field that has provided insights into the regulation of protein Να methyltransferases and their role in cellular physiology and disease. We also outline the current research tools that are key to understanding Να methylation. Finally, challenges are identified and discussed that would aid in unlocking a system-level view of the roles of Να methylation in diverse cellular pathways.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
7
|
Abstract
The methyltransferase-like (METTL) family is a diverse group of methyltransferases that can methylate nucleotides, proteins, and small molecules. Despite this diverse array of substrates, they all share a characteristic seven-beta-strand catalytic domain, and recent evidence suggests many also share an important role in stem cell biology. The most well characterized family members METTL3 and METTL14 dimerize to form an N6-methyladenosine (m6A) RNA methyltransferase with established roles in cancer progression. However, new mouse models indicate that METTL3/METTL14 are also important for embryonic stem cell (ESC) development and postnatal hematopoietic and neural stem cell self-renewal and differentiation. METTL1, METTL5, METTL6, METTL8, and METTL17 also have recently identified roles in ESC pluripotency and differentiation, while METTL11A/11B, METTL4, METTL7A, and METTL22 have been shown to play roles in neural, mesenchymal, bone, and hematopoietic stem cell development, respectively. Additionally, a variety of other METTL family members are translational regulators, a role that could place them as important players in the transition from stem cell quiescence to differentiation. Here we will summarize what is known about the role of METTL proteins in stem cell differentiation and highlight the connection between their growing importance in development and their established roles in oncogenesis.
Collapse
Affiliation(s)
- John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - James P Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA.
| |
Collapse
|
8
|
Chen P, Paschoal Sobreira TJ, Hall MC, Hazbun TR. Discovering the N-Terminal Methylome by Repurposing of Proteomic Datasets. J Proteome Res 2021; 20:4231-4247. [PMID: 34382793 DOI: 10.1021/acs.jproteome.1c00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein α-N-methylation is an underexplored post-translational modification involving the covalent addition of methyl groups to the free α-amino group at protein N-termini. To systematically explore the extent of α-N-terminal methylation in yeast and humans, we reanalyzed publicly accessible proteomic datasets to identify N-terminal peptides contributing to the α-N-terminal methylome. This repurposing approach found evidence of α-N-methylation of established and novel protein substrates with canonical N-terminal motifs of established α-N-terminal methyltransferases, including human NTMT1/2 and yeast Tae1. NTMT1/2 are implicated in cancer and aging processes but have unclear and context-dependent roles. Moreover, α-N-methylation of noncanonical sequences was surprisingly prevalent, suggesting unappreciated and cryptic methylation events. Analysis of the amino acid frequencies of α-N-methylated peptides revealed a [S]1-[S/A/Q]2 pattern in yeast and [A/N/G]1-[A/S/V]2-[A/G]3 in humans, which differs from the canonical motif. We delineated the distribution of the two types of prevalent N-terminal modifications, acetylation and methylation, on amino acids at the first position. We tested three potentially methylated proteins and confirmed the α-N-terminal methylation of Hsp31 by additional proteomic analysis and immunoblotting. The other two proteins, Vma1 and Ssa3, were found to be predominantly acetylated, indicating that proteomic searching for α-N-terminal methylation requires careful consideration of mass spectra. This study demonstrates the feasibility of reprocessing proteomic data for global α-N-terminal methylome investigations.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Hooshyar M, Jessulat M, Burnside D, Kluew A, Babu M, Golshani A. Deletion of yeast TPK1 reduces the efficiency of non-homologous end joining DNA repair. Biochem Biophys Res Commun 2020; 533:899-904. [DOI: 10.1016/j.bbrc.2020.09.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/12/2022]
|
10
|
Hajikarimlou M, Hunt K, Kirby G, Takallou S, Jagadeesan SK, Omidi K, Hooshyar M, Burnside D, Moteshareie H, Babu M, Smith M, Holcik M, Samanfar B, Golshani A. Lithium Chloride Sensitivity in Yeast and Regulation of Translation. Int J Mol Sci 2020; 21:ijms21165730. [PMID: 32785068 PMCID: PMC7461102 DOI: 10.3390/ijms21165730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
For decades, lithium chloride (LiCl) has been used as a treatment option for those living with bipolar disorder (BD). As a result, many studies have been conducted to examine its mode of action, toxicity, and downstream cellular responses. We know that LiCl is able to affect cell signaling and signaling transduction pathways through protein kinase C and glycogen synthase kinase-3, which are considered to be important in regulating gene expression at the translational level. However, additional downstream effects require further investigation, especially in translation pathway. In yeast, LiCl treatment affects the expression, and thus the activity, of PGM2, a phosphoglucomutase involved in sugar metabolism. Inhibition of PGM2 leads to the accumulation of intermediate metabolites of galactose metabolism causing cell toxicity. However, it is not fully understood how LiCl affects gene expression in this matter. In this study, we identified three genes, NAM7, PUS2, and RPL27B, which increase yeast LiCl sensitivity when deleted. We further demonstrate that NAM7, PUS2, and RPL27B influence translation and exert their activity through the 5′-Untranslated region (5′-UTR) of PGM2 mRNA in yeast.
Collapse
Affiliation(s)
- Maryam Hajikarimlou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Kathryn Hunt
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Grace Kirby
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Sarah Takallou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Sasi Kumar Jagadeesan
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Katayoun Omidi
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Mohsen Hooshyar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Daniel Burnside
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Houman Moteshareie
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Myron Smith
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1Y 4X2, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
- Correspondence:
| |
Collapse
|
11
|
Manganese-induced cellular disturbance in the baker's yeast, Saccharomyces cerevisiae with putative implications in neuronal dysfunction. Sci Rep 2019; 9:6563. [PMID: 31024033 PMCID: PMC6484083 DOI: 10.1038/s41598-019-42907-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Manganese (Mn) is an essential element, but in humans, chronic and/or acute exposure to this metal can lead to neurotoxicity and neurodegenerative disorders including Parkinsonism and Parkinson’s Disease by unclear mechanisms. To better understand the effects that exposure to Mn2+ exert on eukaryotic cell biology, we exposed a non-essential deletion library of the yeast Saccharomyces cerevisiae to a sub-inhibitory concentration of Mn2+ followed by targeted functional analyses of the positive hits. This screen produced a set of 43 sensitive deletion mutants that were enriched for genes associated with protein biosynthesis. Our follow-up investigations demonstrated that Mn reduced total rRNA levels in a dose-dependent manner and decreased expression of a β-galactosidase reporter gene. This was subsequently supported by analysis of ribosome profiles that suggested Mn-induced toxicity was associated with a reduction in formation of active ribosomes on the mRNAs. Altogether, these findings contribute to the current understanding of the mechanism of Mn-triggered cytotoxicity. Lastly, using the Comparative Toxicogenomic Database, we revealed that Mn shared certain similarities in toxicological mechanisms with neurodegenerative disorders including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s and Huntington’s diseases.
Collapse
|
12
|
Abstract
Protein α‐N‐terminal methylation is catalyzed by protein N‐terminal methyltransferases. The prevalent occurrence of this methylation in ribosomes, myosin, and histones implies its function in protein–protein interactions. Although its full spectrum of function has not yet been outlined, recent discoveries have revealed the emerging roles of α‐N‐terminal methylation in protein–chromatin interactions, DNA damage repair, and chromosome segregation. Herein, an overview of the discovery of protein N‐terminal methyltransferases and functions of α‐N‐terminal methylation is presented. In addition, substrate recognition, mechanisms, and inhibition of N‐terminal methyltransferases are reviewed. Opportunities and gaps in protein α‐N‐terminal methylation are also discussed.
Collapse
Affiliation(s)
- Rong Huang
- Department of Medicinal Chemistry and Molecular PharmacologyCenter for Cancer Research, Institute for Drug DiscoveryPurdue University West Lafayette IN 47907 USA
| |
Collapse
|
13
|
Heavy metal sensitivities of gene deletion strains for ITT1 and RPS1A connect their activities to the expression of URE2, a key gene involved in metal detoxification in yeast. PLoS One 2018; 13:e0198704. [PMID: 30231023 PMCID: PMC6145592 DOI: 10.1371/journal.pone.0198704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/28/2018] [Indexed: 11/19/2022] Open
Abstract
Heavy metal and metalloid contaminations are among the most concerning types of pollutant in the environment. Consequently, it is important to investigate the molecular mechanisms of cellular responses and detoxification pathways for these compounds in living organisms. To date, a number of genes have been linked to the detoxification process. The expression of these genes can be controlled at both transcriptional and translational levels. In baker’s yeast, Saccharomyces cerevisiae, resistance to a wide range of toxic metals is regulated by glutathione S-transferases. Yeast URE2 encodes for a protein that has glutathione peroxidase activity and is homologous to mammalian glutathione S-transferases. The URE2 expression is critical to cell survival under heavy metal stress. Here, we report on the finding of two genes, ITT1, an inhibitor of translation termination, and RPS1A, a small ribosomal protein, that when deleted yeast cells exhibit similar metal sensitivity phenotypes to gene deletion strain for URE2. Neither of these genes were previously linked to metal toxicity. Our gene expression analysis illustrates that these two genes affect URE2 mRNA expression at the level of translation.
Collapse
|
14
|
Galván Márquez I, Ghiyasvand M, Massarsky A, Babu M, Samanfar B, Omidi K, Moon TW, Smith ML, Golshani A. Zinc oxide and silver nanoparticles toxicity in the baker's yeast, Saccharomyces cerevisiae. PLoS One 2018; 13:e0193111. [PMID: 29554091 PMCID: PMC5858749 DOI: 10.1371/journal.pone.0193111] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
Engineered nanomaterials (ENMs) are increasingly incorporated into a variety of commercial applications and consumer products; however, ENMs may possess cytotoxic properties due to their small size. This study assessed the effects of two commonly used ENMs, zinc oxide nanoparticles (ZnONPs) and silver nanoparticles (AgNPs), in the model eukaryote Saccharomyces cerevisiae. A collection of ≈4600 S. cerevisiae deletion mutant strains was used to deduce the genes, whose absence makes S. cerevisiae more prone to the cytotoxic effects of ZnONPs or AgNPs. We demonstrate that S. cerevisiae strains that lack genes involved in transmembrane and membrane transport, cellular ion homeostasis, and cell wall organization or biogenesis exhibited the highest sensitivity to ZnONPs. In contrast, strains that lack genes involved in transcription and RNA processing, cellular respiration, and endocytosis and vesicular transport exhibited the highest sensitivity to AgNPs. Secondary assays confirmed that ZnONPs affected cell wall function and integrity, whereas AgNPs exposure decreased transcription, reduced endocytosis, and led to a dysfunctional electron transport system. This study supports the use of S. cerevisiae Gene Deletion Array as an effective high-throughput technique to determine cellular targets of ENM toxicity.
Collapse
Affiliation(s)
- Imelda Galván Márquez
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mergan Ghiyasvand
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Andrey Massarsky
- Department of Biology, Centre for Advanced Research in Environmental Genomics and the Collaborative Program in Chemical and Environmental Toxicology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Katayoun Omidi
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Thomas W. Moon
- Department of Biology, Centre for Advanced Research in Environmental Genomics and the Collaborative Program in Chemical and Environmental Toxicology, University of Ottawa, Ottawa, Ontario, Canada
| | - Myron L. Smith
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
- * E-mail: (MLS); (AG)
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
- * E-mail: (MLS); (AG)
| |
Collapse
|
15
|
Samanfar B, Shostak K, Moteshareie H, Hajikarimlou M, Shaikho S, Omidi K, Hooshyar M, Burnside D, Márquez IG, Kazmirchuk T, Naing T, Ludovico P, York-Lyon A, Szereszewski K, Leung C, Jin JY, Megarbane R, Smith ML, Babu M, Holcik M, Golshani A. The sensitivity of the yeast, Saccharomyces cerevisiae, to acetic acid is influenced by DOM34 and RPL36A. PeerJ 2017; 5:e4037. [PMID: 29158977 PMCID: PMC5691786 DOI: 10.7717/peerj.4037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
The presence of acetic acid during industrial alcohol fermentation reduces the yield of fermentation by imposing additional stress on the yeast cells. The biology of cellular responses to stress has been a subject of vigorous investigations. Although much has been learned, details of some of these responses remain poorly understood. Members of heat shock chaperone HSP proteins have been linked to acetic acid and heat shock stress responses in yeast. Both acetic acid and heat shock have been identified to trigger different cellular responses including reduction of global protein synthesis and induction of programmed cell death. Yeast HSC82 and HSP82 code for two important heat shock proteins that together account for 1–2% of total cellular proteins. Both proteins have been linked to responses to acetic acid and heat shock. In contrast to the overall rate of protein synthesis which is reduced, the expression of HSC82 and HSP82 is induced in response to acetic acid stress. In the current study we identified two yeast genes DOM34 and RPL36A that are linked to acetic acid and heat shock sensitivity. We investigated the influence of these genes on the expression of HSP proteins. Our observations suggest that Dom34 and RPL36A influence translation in a CAP-independent manner.
Collapse
Affiliation(s)
- Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Agriculture and Ari-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Kristina Shostak
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Agriculture and Ari-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Houman Moteshareie
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Maryam Hajikarimlou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Shaikho
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics , University of Ottawa, Ottawa, Ontario, Canada
| | - Katayoun Omidi
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohsen Hooshyar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, Ontario, Canada
| | - Daniel Burnside
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Imelda Galván Márquez
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Tom Kazmirchuk
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Thet Naing
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics , University of Ottawa, Ottawa, Ontario, Canada
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Portugal
| | - Anna York-Lyon
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kama Szereszewski
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Cindy Leung
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer Yixin Jin
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Rami Megarbane
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Myron L Smith
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Martin Holcik
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics , University of Ottawa, Ottawa, Ontario, Canada.,Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Simões J, Bezerra AR, Moura GR, Araújo H, Gut I, Bayes M, Santos MAS. The Fungus Candida albicans Tolerates Ambiguity at Multiple Codons. Front Microbiol 2016; 7:401. [PMID: 27065968 PMCID: PMC4814463 DOI: 10.3389/fmicb.2016.00401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
The ascomycete Candida albicans is a normal resident of the gastrointestinal tract of humans and other warm-blooded animals. It occurs in a broad range of body sites and has high capacity to survive and proliferate in adverse environments with drastic changes in oxygen, carbon dioxide, pH, osmolarity, nutrients, and temperature. Its biology is unique due to flexible reassignment of the leucine CUG codon to serine and synthesis of statistical proteins. Under standard growth conditions, CUG sites incorporate leucine (3% of the times) and serine (97% of the times) on a proteome wide scale, but leucine incorporation fluctuates in response to environmental stressors and can be artificially increased up to 98%. In order to determine whether such flexibility also exists at other codons, we have constructed several serine tRNAs that decode various non-cognate codons. Expression of these tRNAs had minor effects on fitness, but growth of the mistranslating strains at different temperatures, in medium with different pH and nutrients composition was often enhanced relatively to the wild type (WT) strain, supporting our previous data on adaptive roles of CUG ambiguity in variable growth conditions. Parallel evolution of the recombinant strains (100 generations) followed by full genome resequencing identified various strain specific single nucleotide polymorphisms (SNP) and one SNP in the deneddylase (JAB1) gene in all strains. Since JAB1 is a subunit of the COP9 signalosome complex, which interacts with cullin (Cdc53p) to mediate degradation of a variety of cellular proteins, our data suggest that neddylation plays a key role in tolerance and adaptation to codon ambiguity in C. albicans.
Collapse
Affiliation(s)
- João Simões
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| | - Ana R Bezerra
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| | - Gabriela R Moura
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| | - Hugo Araújo
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| | - Ivo Gut
- Centro Nacional de Análises Genómico, Parc Científic Barcelona, Spain
| | - Mónica Bayes
- Centro Nacional de Análises Genómico, Parc Científic Barcelona, Spain
| | - Manuel A S Santos
- Health Sciences Program, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro Aveiro, Portugal
| |
Collapse
|
17
|
Al-Hadid Q, White J, Clarke S. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation. Biochem Biophys Res Commun 2016; 470:552-557. [PMID: 26801560 DOI: 10.1016/j.bbrc.2016.01.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/17/2016] [Indexed: 11/24/2022]
Abstract
A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.
Collapse
Affiliation(s)
- Qais Al-Hadid
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Jonelle White
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Steven Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Evolution of Robustness to Protein Mistranslation by Accelerated Protein Turnover. PLoS Biol 2015; 13:e1002291. [PMID: 26544557 PMCID: PMC4636289 DOI: 10.1371/journal.pbio.1002291] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/30/2015] [Indexed: 11/19/2022] Open
Abstract
Translational errors occur at high rates, and they influence organism viability and the onset of genetic diseases. To investigate how organisms mitigate the deleterious effects of protein synthesis errors during evolution, a mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). It thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis. This strain was used to study the capacity of the yeast genome to compensate the deleterious effects of protein mistranslation. Laboratory evolutionary experiments revealed that fitness loss due to mistranslation can rapidly be mitigated. Genomic analysis demonstrated that adaptation was primarily mediated by large-scale chromosomal duplication and deletion events, suggesting that errors during protein synthesis promote the evolution of genome architecture. By altering the dosages of numerous, functionally related proteins simultaneously, these genetic changes introduced large phenotypic leaps that enabled rapid adaptation to mistranslation. Evolution increased the level of tolerance to mistranslation through acceleration of ubiquitin-proteasome–mediated protein degradation and protein synthesis. As a consequence of rapid elimination of erroneous protein products, evolution reduced the extent of toxic protein aggregation in mistranslating cells. However, there was a strong evolutionary trade-off between adaptation to mistranslation and survival upon starvation: the evolved lines showed fitness defects and impaired capacity to degrade mature ribosomes upon nutrient limitation. Moreover, as a response to an enhanced energy demand of accelerated protein turnover, the evolved lines exhibited increased glucose uptake by selective duplication of hexose transporter genes. We conclude that adjustment of proteome homeostasis to mistranslation evolves rapidly, but this adaptation has several side effects on cellular physiology. Our work also indicates that translational fidelity and the ubiquitin-proteasome system are functionally linked to each other and may, therefore, co-evolve in nature. Tolerance to errors during protein synthesis evolves rapidly through acceleration of protein turnover—a process determined by the combined rates of protein synthesis and degradation. However, this adaptation has deleterious side effects due to its energy costs. Although fidelity of information transfer has a substantial impact on cellular survival, many steps in protein production are strikingly error-prone. Such errors during protein synthesis can have a substantial influence on viability and the onset of genetic diseases. These considerations raise the question as to how organisms can tolerate errors during protein synthesis. In this paper, for the first time, we study organisms’ capacity to evolve robustness against mistranslation and explore the underlying cellular mechanisms. A mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). This thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis. This strain was used to study the capacity of the yeast genome to compensate for the deleterious effects of protein mistranslation. We found that mistranslation led to rapid evolution of genomic rearrangements, including chromosomal duplications and deletions. By altering the dosages of numerous, functionally related proteins simultaneously, these genetic changes introduce large phenotypic leaps that enable adaptation to mistranslation. Robustness against mistranslation during laboratory evolution was achieved through acceleration of protein turnover—a process that was determined by the combined rates of protein synthesis and ubiquitin-proteasome system-mediated degradation. However, as both translation and active degradation of proteins are exceptionally energy-consuming cellular processes, accelerated proteome turnover has substantial energy costs.
Collapse
|
19
|
Abstract
NRMT (N-terminal regulator of chromatin condensation 1 methyltransferase) was the first eukaryotic methyltransferase identified to specifically methylate the free α-amino group of proteins. Since the discovery of this N-terminal methyltransferase, many new substrates have been identified and the modification itself has been shown to regulate DNA-protein interactions. Sequence analysis predicts one close human homologue of NRMT, METTL11B (methyltransferase-like protein 11B, now renamed NRMT2). We show in the present paper for the first time that NRMT2 also has N-terminal methylation activity and recognizes the same N-terminal consensus sequences as NRMT (now NRMT1). Both enzymes have similar tissue expression and cellular localization patterns. However, enzyme assays and MS experiments indicate that they differ in their specific catalytic functions. Although NRMT1 is a distributive methyltransferase that can mono-, di- and tri-methylate its substrates, NRMT2 is primarily a monomethylase. Concurrent expression of NRMT1 and NRMT2 accelerates the production of trimethylation, and we propose that NRMT2 activates NRMT1 by priming its substrates for trimethylation.
Collapse
|
20
|
Schoenrock A, Samanfar B, Pitre S, Hooshyar M, Jin K, Phillips CA, Wang H, Phanse S, Omidi K, Gui Y, Alamgir M, Wong A, Barrenäs F, Babu M, Benson M, Langston MA, Green JR, Dehne F, Golshani A. Efficient prediction of human protein-protein interactions at a global scale. BMC Bioinformatics 2014; 15:383. [PMID: 25492630 PMCID: PMC4272565 DOI: 10.1186/s12859-014-0383-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Our knowledge of global protein-protein interaction (PPI) networks in complex organisms such as humans is hindered by technical limitations of current methods. RESULTS On the basis of short co-occurring polypeptide regions, we developed a tool called MP-PIPE capable of predicting a global human PPI network within 3 months. With a recall of 23% at a precision of 82.1%, we predicted 172,132 putative PPIs. We demonstrate the usefulness of these predictions through a range of experiments. CONCLUSIONS The speed and accuracy associated with MP-PIPE can make this a potential tool to study individual human PPI networks (from genomic sequences alone) for personalized medicine.
Collapse
Affiliation(s)
| | | | - Sylvain Pitre
- School of Computer Science, Carleton University, Ottawa, Canada.
| | | | - Ke Jin
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada.
| | - Charles A Phillips
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA.
| | - Hui Wang
- Department of Pediatrics, Gothenburg University, Gothenburg, Sweden. .,The Centre for Individualized Medication, Linköping University, Linköping, Sweden.
| | - Sadhna Phanse
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada.
| | - Katayoun Omidi
- Department of Biology, Carleton University, Ottawa, Canada.
| | - Yuan Gui
- Department of Biology, Carleton University, Ottawa, Canada.
| | - Md Alamgir
- Department of Biology, Carleton University, Ottawa, Canada.
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Canada.
| | - Fredrik Barrenäs
- Department of Pediatrics, Gothenburg University, Gothenburg, Sweden. .,The Centre for Individualized Medication, Linköping University, Linköping, Sweden.
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada.
| | - Mikael Benson
- Department of Pediatrics, Gothenburg University, Gothenburg, Sweden. .,The Centre for Individualized Medication, Linköping University, Linköping, Sweden.
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, USA.
| | - James R Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada.
| | - Frank Dehne
- School of Computer Science, Carleton University, Ottawa, Canada.
| | | |
Collapse
|
21
|
Tooley JG, Schaner Tooley CE. New roles for old modifications: emerging roles of N-terminal post-translational modifications in development and disease. Protein Sci 2014; 23:1641-9. [PMID: 25209108 DOI: 10.1002/pro.2547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023]
Abstract
The importance of internal post-translational modification (PTM) in protein signaling and function has long been known and appreciated. However, the significance of the same PTMs on the alpha amino group of N-terminal amino acids has been comparatively understudied. Historically considered static regulators of protein stability, additional functional roles for N-terminal PTMs are now beginning to be elucidated. New findings show that N-terminal methylation, along with N-terminal acetylation, is an important regulatory modification with significant roles in development and disease progression. There are also emerging studies on the enzymology and functional roles of N-terminal ubiquitylation and N-terminal propionylation. Here, will discuss the recent advances in the functional studies of N-terminal PTMs, recount the new N-terminal PTMs being identified, and briefly examine the possibility of dynamic N-terminal PTM exchange.
Collapse
Affiliation(s)
- John G Tooley
- Department of Biochemistry and Molecular Biology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky
| | | |
Collapse
|
22
|
Samanfar B, Tan LH, Shostak K, Chalabian F, Wu Z, Alamgir M, Sunba N, Burnside D, Omidi K, Hooshyar M, Galván Márquez I, Jessulat M, Smith ML, Babu M, Azizi A, Golshani A. A global investigation of gene deletion strains that affect premature stop codon bypass in yeast, Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2014; 10:916-24. [PMID: 24535059 DOI: 10.1039/c3mb70501c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein biosynthesis is an orderly process that requires a balance between rate and accuracy. To produce a functional product, the fidelity of this process has to be maintained from start to finish. In order to systematically identify genes that affect stop codon bypass, three expression plasmids, pUKC817, pUKC818 and pUKC819, were integrated into the yeast non-essential loss-of-function gene array (5000 strains). These plasmids contain three different premature stop codons (UAA, UGA and UAG, respectively) within the LacZ expression cassette. A fourth plasmid, pUKC815 that carries the native LacZ gene was used as a control. Transformed strains were subjected to large-scale β-galactosidase lift assay analysis to evaluate production of β-galactosidase for each gene deletion strain. In this way 84 potential candidate genes that affect stop codon bypass were identified. Three candidate genes, OLA1, BSC2, and YNL040W, were further investigated, and were found to be important for cytoplasmic protein biosynthesis.
Collapse
Affiliation(s)
- Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Omidi K, Hooshyar M, Jessulat M, Samanfar B, Sanders M, Burnside D, Pitre S, Schoenrock A, Xu J, Babu M, Golshani A. Phosphatase complex Pph3/Psy2 is involved in regulation of efficient non-homologous end-joining pathway in the yeast Saccharomyces cerevisiae. PLoS One 2014; 9:e87248. [PMID: 24498054 PMCID: PMC3909046 DOI: 10.1371/journal.pone.0087248] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
One of the main mechanisms for double stranded DNA break (DSB) repair is through the non-homologous end-joining (NHEJ) pathway. Using plasmid and chromosomal repair assays, we showed that deletion mutant strains for interacting proteins Pph3p and Psy2p had reduced efficiencies in NHEJ. We further observed that this activity of Pph3p and Psy2p appeared linked to cell cycle Rad53p and Chk1p checkpoint proteins. Pph3/Psy2 is a phosphatase complex, which regulates recovery from the Rad53p DNA damage checkpoint. Overexpression of Chk1p checkpoint protein in a parallel pathway to Rad53p compensated for the deletion of PPH3 or PSY2 in a chromosomal repair assay. Double mutant strains Δpph3/Δchk1 and Δpsy2/Δchk1 showed additional reductions in the efficiency of plasmid repair, compared to both single deletions which is in agreement with the activity of Pph3p and Psy2p in a parallel pathway to Chk1p. Genetic interaction analyses also supported a role for Pph3p and Psy2p in DNA damage repair, the NHEJ pathway, as well as cell cycle progression. Collectively, we report that the activity of Pph3p and Psy2p further connects NHEJ repair to cell cycle progression.
Collapse
Affiliation(s)
- Katayoun Omidi
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohsen Hooshyar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Matthew Jessulat
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Megan Sanders
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Daniel Burnside
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sylvain Pitre
- Department of Computer Science, Carleton University, Ottawa, Ontario, Canada
| | - Andrew Schoenrock
- Department of Computer Science, Carleton University, Ottawa, Ontario, Canada
| | - Jianhua Xu
- College of Pharmaceutical Sciences, Zhejian University, Hangzhou, Zhejiang, China
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Darvishi E, Omidi M, Bushehri AAS, Golshani A, Smith ML. The antifungal eugenol perturbs dual aromatic and branched-chain amino acid permeases in the cytoplasmic membrane of yeast. PLoS One 2013; 8:e76028. [PMID: 24204588 PMCID: PMC3799837 DOI: 10.1371/journal.pone.0076028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022] Open
Abstract
Eugenol is an aromatic component of clove oil that has therapeutic potential as an antifungal drug, although its mode of action and precise cellular target(s) remain ambiguous. To address this knowledge gap, a chemical-genetic profile analysis of eugenol was done using ∼4700 haploid Saccharomyces cerevisiae gene deletion mutants to reveal 21 deletion mutants with the greatest degree of susceptibility. Cellular roles of deleted genes in the most susceptible mutants indicate that the main targets for eugenol include pathways involved in biosynthesis and transport of aromatic and branched-chain amino acids. Follow-up analyses showed inhibitory effects of eugenol on amino acid permeases in the yeast cytoplasmic membrane. Furthermore, phenotypic suppression analysis revealed that eugenol interferes with two permeases, Tat1p and Gap1p, which are both involved in dual transport of aromatic and branched-chain amino acids through the yeast cytoplasmic membrane. Perturbation of cytoplasmic permeases represents a novel antifungal target and may explain previous observations that exposure to eugenol results in leakage of cell contents. Eugenol exposure may also contribute to amino acid starvation and thus holds promise as an anticancer therapeutic drug. Finally, this study provides further evidence of the usefulness of the yeast Gene Deletion Array approach in uncovering the mode of action of natural health products.
Collapse
Affiliation(s)
- Emad Darvishi
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
- Biology Department, Carleton University, Ottawa, Ontario, Canada
| | - Mansoor Omidi
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | | | - Ashkan Golshani
- Biology Department, Carleton University, Ottawa, Ontario, Canada
- * E-mail: (AG); (MLS)
| | - Myron L. Smith
- Biology Department, Carleton University, Ottawa, Ontario, Canada
- * E-mail: (AG); (MLS)
| |
Collapse
|
25
|
Darvishi E, Omidi M, Bushehri AA, Golshani A, Smith ML. Thymol antifungal mode of action involves telomerase inhibition. Med Mycol 2013; 51:826-34. [PMID: 23718894 DOI: 10.3109/13693786.2013.795664] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The antifungal mode of action of thymol was investigated by a chemical-genetic profile analysis. Growth of each of ~4700 haploid Saccharomyces cerevisiae gene deletion mutants was monitored on medium with a subinhibitory concentration (50 μg/ml) of thymol and compared to growth on non-thymol control medium. This analysis revealed that, of the 76 deletion mutants with the greatest degree of susceptibility to thymol, 29% had deletions in genes involved in telomere length maintenance. A telomere restriction fragment (TRF) length assay showed that yeast exposed to a subinhibitory concentration of thymol for 15 days had telomere size reductions of 13-20% compared to non-thymol controls. By accelerating telomere shortening, thymol may increase the rate of cell senescence and apoptosis. Furthermore, real-time RT-PCR analysis revealed approximately two-fold reductions in EST2 mRNA but no change in TLC1 RNA in thymol-treated S. cerevisiae relative to untreated cells. EST2 encodes the essential reverse transcriptase subunit of telomerase that uses TLC1 RNA as a template during addition of TG(1-3) repeats to maintain telomere ends. This study provides compelling evidence that a primary mode of thymol antifungal activity is through inhibition of transcription of EST2 and thus telomerase activity.
Collapse
Affiliation(s)
- Emad Darvishi
- * Department of Agronomy and Plant Breeding, College of Agriculture, University of Tehran , Karaj , Iran
| | | | | | | | | |
Collapse
|
26
|
Samanfar B, Omidi K, Hooshyar M, Laliberte B, Alamgir M, Seal AJ, Ahmed-Muhsin E, Viteri DF, Said K, Chalabian F, Golshani A, Wainer G, Burnside D, Shostak K, Bugno M, Willmore WG, Smith ML, Golshani A. Large-scale investigation of oxygen response mutants in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2013; 9:1351-9. [PMID: 23467670 DOI: 10.1039/c3mb25516f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A genome-wide screen of a yeast non-essential gene-deletion library was used to identify sick phenotypes due to oxygen deprivation. The screen provided a manageable list of 384 potentially novel as well as known oxygen responding (anoxia-survival) genes. The gene-deletion mutants were further assayed for sensitivity to ferrozine and cobalt to obtain a subset of 34 oxygen-responsive candidate genes including the known hypoxic gene activator, MGA2. With each mutant in this subset a plasmid based β-galactosidase assay was performed using the anoxic-inducible promoter from OLE1 gene, and 17 gene deletions were identified that inhibit induction under anaerobic conditions. Genetic interaction analysis for one of these mutants, the RNase-encoding POP2 gene, revealed synthetic sick interactions with a number of genes involved in oxygen sensing and response. Knockdown experiments for CNOT8, human homolog of POP2, reduced cell survival under low oxygen condition suggesting a similar function in human cells.
Collapse
Affiliation(s)
- Bahram Samanfar
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
N(α)-Acetylation of yeast ribosomal proteins and its effect on protein synthesis. J Proteomics 2010; 74:431-41. [PMID: 21184851 DOI: 10.1016/j.jprot.2010.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 01/18/2023]
Abstract
N(α)-Acetyltransferases (NATs) cause the N(α)-acetylation of the majority of eukaryotic proteins during their translation, although the functions of this modification have been largely unexplored. In yeast (Saccharomyces cerevisiae), four NATs have been identified: NatA, NatB, NatC, and NatD. In this study, the N(α)-acetylation status of ribosomal protein was analyzed using NAT mutants combined with two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). A total of 60 ribosomal proteins were identified, of which 17 were N(α)-acetylated by NatA, and two by NatB. The N(α)-acetylation of two of these, S17 and L23, by NatA was not previously observed. Furthermore, we tested the effect of ribosomal protein N(α)-acetylation on protein synthesis using the purified ribosomes from each NAT mutant. It was found that the protein synthesis activities of ribosomes from NatA and NatB mutants were decreased by 27% and 23%, respectively, as compared to that of the normal strain. Furthermore, we have shown that ribosomal protein N(α)-acetylation by NatA influences translational fidelity in the presence of paromomycin. These results suggest that ribosomal protein N(α)-acetylation is necessary to maintain the ribosome's protein synthesis function.
Collapse
|
28
|
Alamgir M, Erukova V, Jessulat M, Azizi A, Golshani A. Chemical-genetic profile analysis of five inhibitory compounds in yeast. BMC CHEMICAL BIOLOGY 2010; 10:6. [PMID: 20691087 PMCID: PMC2925817 DOI: 10.1186/1472-6769-10-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 08/06/2010] [Indexed: 11/10/2022]
Abstract
Background Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s). Results Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Conclusion Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.
Collapse
Affiliation(s)
- Md Alamgir
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1 S 5B6, ON, Canada.
| | | | | | | | | |
Collapse
|
29
|
Venancio TM, Balaji S, Geetha S, Aravind L. Robustness and evolvability in natural chemical resistance: identification of novel systems properties, biochemical mechanisms and regulatory interactions. MOLECULAR BIOSYSTEMS 2010; 6:1475-91. [PMID: 20517567 PMCID: PMC3236069 DOI: 10.1039/c002567b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A vast amount of data on the natural resistance of Saccharomyces cerevisiae to a diverse array of chemicals has been generated over the past decade (chemical genetics). We endeavored to use this data to better characterize the "systems" level properties of this phenomenon. By collating data from over 30 different genome-scale studies on growth of gene deletion mutants in presence of diverse chemicals, we assembled the largest currently available gene-chemical network. We also derived a second gene-gene network that links genes with significantly overlapping chemical-genetic profiles. We analyzed properties of these networks and investigated their significance by overlaying various sources of information, such as presence of TATA boxes in their promoters (which typically correlate with transcriptional noise), association with TFIID or SAGA, and propensity to function as phenotypic capacitors. We further combined these networks with ubiquitin and protein kinase-substrate networks to understand chemical tolerance in the context of major post-translational regulatory processes. Hubs in the gene-chemical network (multidrug resistance genes) are notably enriched for phenotypic capacitors (buffers against phenotypic variation), suggesting the generality of these players in buffering mechanistically unrelated deleterious forces impinging on the cell. More strikingly, analysis of the gene-gene network derived from the gene-chemical network uncovered another set of genes that appear to function in providing chemical tolerance in a cooperative manner. These appear to be enriched in lineage-specific and rapidly diverging members that also show a corresponding tendency for SAGA-dependent regulation, evolutionary divergence and noisy expression patterns. This set represents a previously underappreciated component of the chemical response that enables cells to explore alternative survival strategies. Thus, systems robustness and evolvability are simultaneously active as general forces in tolerating environmental variation. We also recover the actual genes involved in the above-discussed network properties and predict the biochemistry of their products. Certain key components of the ubiquitin system (e.g. Rcy1, Wss1 and Ubp16), peroxisome recycling (e.g. Irs4) and phosphorylation cascades (e.g. NPR1, MCK1 and HOG) are major participants and regulators of chemical resistance. We also show that a major sub-network boosting mitochondrial protein synthesis is important for exploration of alternative survival strategies under chemical stress. Further, we find evidence that cellular exploration of survival strategies under chemical stress and secondary metabolism draw from a common pool of biochemical players (e.g. acetyltransferases and a novel NTN hydrolase).
Collapse
Affiliation(s)
- Thiago M. Venancio
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - S. Balaji
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - S. Geetha
- 1001 Rockville Pike, Rockville, Maryland 20852, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
30
|
Webb KJ, Lipson RS, Al-Hadid Q, Whitelegge JP, Clarke SG. Identification of protein N-terminal methyltransferases in yeast and humans. Biochemistry 2010; 49:5225-35. [PMID: 20481588 PMCID: PMC2890028 DOI: 10.1021/bi100428x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein modification by methylation is important in cellular function. We show here that the Saccharomyces cerevisiae YBR261C/TAE1 gene encodes an N-terminal protein methyltransferase catalyzing the modification of two ribosomal protein substrates, Rpl12ab and Rps25a/Rps25b. The YBR261C/Tae1 protein is conserved across eukaryotes; all of these proteins share sequence similarity with known seven beta-strand class I methyltransferases. Wild-type yeast cytosol and mouse heart cytosol catalyze the methylation of a synthetic peptide (PPKQQLSKY) that contains the first eight amino acids of the processed N-terminus of Rps25a/Rps25b. However, no methylation of this peptide is seen in yeast cytosol from a DeltaYBR261C/tae1 deletion strain. Yeast YBR261C/TAE1 and the human orthologue METTL11A genes were expressed as fusion proteins in Escherichia coli and were shown to be capable of stoichiometrically dimethylating the N-terminus of the synthetic peptide. Furthermore, the YBR261C/Tae1 and METTL11A recombinant proteins methylate variants of the synthetic peptide containing N-terminal alanine and serine residues. However, methyltransferase activity is largely abolished when the proline residue in position 2 or the lysine residue in position 3 is substituted. Thus, the methyltransferases described here specifically recognize the N-terminal X-Pro-Lys sequence motif, and we suggest designating the yeast enzyme Ntm1 and the human enzyme NTMT1. These enzymes may account for nearly all previously described eukaryotic protein N-terminal methylation reactions. A number of other yeast and human proteins also share the recognition motif and may be similarly modified. We conclude that protein X-Pro-Lys N-terminal methylation reactions catalyzed by the enzymes described here may be widespread in nature.
Collapse
Affiliation(s)
- Kristofor J. Webb
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Rebecca S. Lipson
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Qais Al-Hadid
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Julian P. Whitelegge
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
- Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90024
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| |
Collapse
|