1
|
Zhang B, Zhang YR, Wang CJ, Jin JY. An Aggregation-induced Emission Probe to Detect the Viscosity Change in Lipid Droplets during Ferroptosis. J Fluoresc 2023:10.1007/s10895-023-03481-z. [PMID: 37966673 DOI: 10.1007/s10895-023-03481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023]
Abstract
Ferroptosis is a recently identified form of cell death characterized by iron-dependent lipid peroxidation. Understanding the effects of lipid peroxidation on cellular processes during ferroptosis requires insights into lipid droplets (LDs) and their viscosity changes. To gain further insights into the intricacies of ferroptosis, it is crucial to have a fluorescent probe that targets LDs and responds to changes in viscosity. In this study, we introduce a novel LD-targeting viscosity fluorescent probe named TQE, based on the principles of aggregation-induced emission (AIE). The probe displayed AIE characteristics in tetrahydrofuran, possessing a partition coefficient (logP) of 5.87. With increased viscosity, intramolecular rotation was restricted, leading to a remarkable 3.3-fold enhancement in emission. Notably, TQE exhibited robust resistance to photo-bleaching during cellular imaging, maintaining approximately 75% of its emission intensity even after 30 min of laser irradiation. Importantly, the AIEgen could not generate hydroxyl radicals when exposed to light for up to 3 h, suggesting the low photo-toxicity of TQE to cells. Leveraging these properties, we successfully employed the probe for fluorescent imaging of the viscosity change in LDs during ferroptosis.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Nephrology, Central Hospital of Jiamusi, Jiamusi, 154002, Heilongjiang, China
| | - Ya-Ru Zhang
- Research Centre of Chemical Biology, Yanbian University, Yanji, 133002, Jilin, China
| | - Chang-Jiang Wang
- Department of Nephrology, Central Hospital of Jiamusi, Jiamusi, 154002, Heilongjiang, China.
| | - Jing-Yi Jin
- Department of Nephrology, Central Hospital of Jiamusi, Jiamusi, 154002, Heilongjiang, China.
| |
Collapse
|
2
|
García-Mendoza D, van den Berg HJHJ, van den Brink NW. Environmental exposure to cadmium reduces the primary antibody-mediated response of wood mice (Apodemus sylvaticus) from differentially polluted locations in the Netherlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117909. [PMID: 34371263 DOI: 10.1016/j.envpol.2021.117909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The Wood mouse (Apodemus sylvaticus) is a widespread mammalian species that acts as a reservoir host for multiple infections, including zoonotic diseases. Exposure to immunotoxins, like for instance trace metals, may reduce the ability of the host to mount proper responses to pathogens, potentially increasing the transmission and prevalence of infections. Antibody-mediated responses are crucial in preventing and limiting infections, and the quantification of the primary antibody response is considered a sensitive predictor of immunosuppression. The current study aims to investigate effects of cadmium exposure on the antibody-mediated responses of wood mice inhabiting polluted and non-polluted areas in the Netherlands. Wood mice were captured alive at different locations and immunized to sheep red blood cells (SRBC) to induce a primary antibody response. SRBC-specific antibody-producing cells, or plaque forming cells (PFC), were quantified and related to kidney cadmium levels. Differential circulating main leukocyte populations were also characterised. Cadmium concentrations in mice kidneys differed between mice captured at different locations, and increased with individual body mass, likely associated with age-related time of exposure. Effect of cadmium was apparent on the percentages of B cell counts in blood. Because of potential natural immune heterogeneity between wild rodent populations, mice immune responses were analysed and compared grouped by captured locations. Capture location had significant effect on the total counts of white blood cells. Increasing cadmium exposure in wood mice captured from polluted sites was associated with a decrease of splenic PFC counts. This field research shows that wood mice antibody responses can be impaired by cadmium exposure, even at low environmental levels, by affecting B cell functioning mainly. Impaired B cell function can make exposed mice more susceptible to infections, potentially increasing the reservoir function of their populations. It also shows that immunomodulatory effects in the field should be assessed site specifically.
Collapse
|
3
|
Shariev A, Menounos S, Laos AJ, Laxman P, Lai D, Hua S, Zinger A, McRae CR, Casbolt LS, Combes V, Smith G, Hung TT, Dixon KM, Thordarson P, Mason RS, Das A. Skin protective and regenerative effects of RM191A, a novel superoxide dismutase mimetic. Redox Biol 2020; 38:101790. [PMID: 33202300 PMCID: PMC7677716 DOI: 10.1016/j.redox.2020.101790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Superoxide dismutase (SOD) is known to be protective against oxidative stress-mediated skin dysfunction. Here we explore the potential therapeutic activities of RM191A, a novel SOD mimetic, on skin. RM191A is a water-soluble dimeric copper (Cu2+-Cu3+)-centred polyglycine coordination complex. It displays 10-fold higher superoxide quenching activity compared to SOD as well as significant antioxidant, anti-inflammatory and immunomodulatory activities through beneficial modulation of several significant inflammatory cytokines in vitro and in vivo. We tested the therapeutic potential of RM191A in a topical gel using a human skin explant model and observed that it significantly inhibits UV-induced DNA damage in the epidermis and dermis, including cyclobutane pyrimidine dimers (CPD), 8-oxo-guanine (8-oxoG) and 8-nitroguanine (8NGO). RM191A topical gel is found to be non-toxic, non-teratogenic and readily distributed in the body of mice. Moreover, it significantly accelerates excisional wound healing, reduces 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation and attenuates age-associated oxidative stress in skin, demonstrating both skin regenerative and geroprotective properties of RM191A. RM191A is a Cu3+ containing coordination complex with 10-fold higher superoxide quenching activity compared to superoxide dismutase. RM191A exhibits potent antioxidant, anti-inflammatory and immunomodulatory properties in vitro and in vivo. RM191A protects human skin explants against UV-induced oxidative stress and DNA damage. RM191A is non-toxic, non-teratogenic and readily bioavailable in mice. RM191A promotes wound healing, and attenuates TPA-induced inflammation as well as age-associated oxidative stress in mouse skin.
Collapse
Affiliation(s)
- Artur Shariev
- Department of Anatomy and Histology, School of Medical Sciences, University of Sydney, Australia; Bosch Institute, Faculty of Medicine and Health, University of Sydney, Australia
| | - Spiro Menounos
- St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Alistair J Laos
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Pooja Laxman
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Donna Lai
- Bosch Institute, Faculty of Medicine and Health, University of Sydney, Australia
| | - Sheng Hua
- Bosch Institute, Faculty of Medicine and Health, University of Sydney, Australia
| | - Anna Zinger
- Department of Pathology, Faculty of Medicine and Health, University of Sydney, Australia
| | - Christopher R McRae
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Llewellyn S Casbolt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Valery Combes
- School of Life Sciences, University of Technology, Sydney, Australia
| | - Greg Smith
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, Australia
| | - Katie M Dixon
- Department of Anatomy and Histology, School of Medical Sciences, University of Sydney, Australia; Bosch Institute, Faculty of Medicine and Health, University of Sydney, Australia
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia
| | - Rebecca S Mason
- Bosch Institute, Faculty of Medicine and Health, University of Sydney, Australia; Department of Physiology, School of Medical Sciences, University of Sydney, Australia
| | - Abhirup Das
- St. George and Sutherland Clinical School, University of New South Wales, Sydney, Australia.
| |
Collapse
|
4
|
Dahmani Z, Addou-Klouche L, Gizard F, Dahou S, Messaoud A, Chahinez Djebri N, Benaissti MI, Mostefaoui M, Terbeche H, Nouari W, Miliani M, Lefranc G, Fernandez A, Lamb NJ, Aribi M. Metformin partially reverses the inhibitory effect of co-culture with ER-/PR-/HER2+ breast cancer cells on biomarkers of monocyte antitumor activity. PLoS One 2020; 15:e0240982. [PMID: 33108409 PMCID: PMC7591052 DOI: 10.1371/journal.pone.0240982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Immune activities of monocytes (MOs) can be altered within the microenvironment of solid malignancies, including breast cancer. Metformin (1,1-dimethylbiguanide hydrochloride, MET), has been shown to decrease tumor cell proliferation, but its effects have yet to be explored with respect to MOs (monocytes) activity during their crosstalk with breast cancer cells. Here, we investigated the effects of MET on overall phenotypic functional activities, including cellular immunometabolism and protective redox signaling based-biomarkers, intracellular free calcium ions (ifCa2+), phagocytosis and co-operative cytokines (IFN-γ and IL-10) of autologous MOs before and during their interplay with primary ER-/PR-/HER2+ breast cancer cells. METHODS Human primary breast cancer cells were either cultured alone or co-cultured with autologous MOs before treatment with MET. RESULTS MET downregulated breast cancer cell proliferation and phagocytosis, while having no significant effect on the ratio of phosphorylated Akt (p-Akt) to total Akt. Additionally, we observed that, in the absence of MET treatment, the levels of lactate dehydrogenase (LDH)-based cytotoxicity, catalase, ifCa2+, IL-10 and arginase activity were significantly reduced in co-cultures compared to levels in MOs cultured alone whereas levels of inducible nitric oxide synthase (iNOS) activity were significantly increased. In contrast, MET treatment reduced the effects measured in co-culture on the levels of LDH-based cytotoxicity, arginase activity, catalase, ifCa2+, and IFN-γ. MET also induced upregulation of both iNOS and arginase in MO cells, although the increase did not reach significant difference for iNOS activity. Moreover, MET induced a robust increase of superoxide dismutase (SOD) activity in MOs, but not in MOs co-cultured with breast cancer cells. Furthermore, MET markedly upregulated the levels of IFN-γ production and downregulated those of IL-10 in isolated MOs, while inducing a slight opposing up-regulation of IL-10 production in co-cultures. CONCLUSIONS Our results show that the biomarkers of phenotypic functional activities of MOs are modified after co-culturing with primary human breast cancer cells. Treatment of co-cultures with MET resulted in increased release of antitumor cytokine IFN-γ and ifCa2+, and increased cell necrosis during breast cancer cells-MOs crosstalk.
Collapse
Affiliation(s)
- Zoheir Dahmani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Lynda Addou-Klouche
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Florence Gizard
- Cell Biology Unit, IGH CNRS, Université de Montpellier, (UMR 9002), Montpellier, France
| | - Sara Dahou
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Aida Messaoud
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Nihel Chahinez Djebri
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Mahmoud Idris Benaissti
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Meriem Mostefaoui
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Hadjer Terbeche
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Marwa Miliani
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| | - Gérard Lefranc
- IGH, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| | - Anne Fernandez
- Cell Biology Unit, IGH CNRS, Université de Montpellier, (UMR 9002), Montpellier, France
| | - Ned J. Lamb
- Cell Biology Unit, IGH CNRS, Université de Montpellier, (UMR 9002), Montpellier, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
5
|
Anti-Inflammatory and Anti-Oxidative Effects of luteolin-7- O-glucuronide in LPS-Stimulated Murine Macrophages through TAK1 Inhibition and Nrf2 Activation. Int J Mol Sci 2020; 21:ijms21062007. [PMID: 32187984 PMCID: PMC7139836 DOI: 10.3390/ijms21062007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Various herbal extracts containing luteolin-7-O-glucuronide (L7Gn) have been traditionally used to treat inflammatory diseases. However, systemic studies aimed at elucidating the anti-inflammatory and anti-oxidative mechanisms of L7Gn in macrophages are insufficient. Herein, the anti-inflammatory and anti-oxidative effects of L7Gn and their underlying mechanisms of action in macrophages were explored. L7Gn inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by transcriptional regulation of inducible NO synthase (iNOS) in a dose-dependent manner. The mRNA expression of inflammatory mediators, including cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α), was inhibited by L7Gn treatment. This suppression was mediated through transforming growth factor beta-activated kinase 1 (TAK1) inhibition that leads to reduced activation of nuclear factor-κB (NF-κB), p38, and c-Jun N-terminal kinase (JNK). L7Gn also enhanced the radical scavenging effect and increased the expression of anti-oxidative regulators, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H quinone oxidoreductase 1 (NQO1), by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) activation. These results indicate that L7Gn exhibits anti-inflammatory and anti-oxidative properties in LPS-stimulated murine macrophages, suggesting that L7Gn may be a suitable candidate to treat severe inflammation and oxidative stress.
Collapse
|
6
|
Synergistic effects of tanshinone IIA and andrographolide on the apoptosis of cancer cells via crosstalk between p53 and reactive oxygen species pathways. Pharmacol Rep 2020; 72:400-417. [DOI: 10.1007/s43440-019-00006-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 09/07/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
7
|
Anti-Inflammatory Effects of Diospyrin on Lipopolysaccharide-Induced Inflammation Using RAW 264.7 Mouse Macrophages. Biomedicines 2020; 8:biomedicines8010011. [PMID: 31940845 PMCID: PMC7168165 DOI: 10.3390/biomedicines8010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/25/2022] Open
Abstract
Diospyrin is a bisnaphthoquinonoid medicinal compound derived from Diospyros lotus, with known anti-cancer, anti-tubercular, and anti-leishmanial activities against Leishmania donovani. However, the effects of diospyrin on lipopolysaccharide (LPS)-induced macrophage activation and inflammation are not fully reported. In this study, the anti-inflammatory effects of diospyrin on LPS-induced macrophages were examined. Diospyrin showed no toxicity in RAW 264.7 at concentrations of up to 10 μM. Diospyrin moderated the production of nitric oxide (NO), monocyte chemotactic protein-1, macrophage inflammatory protein-1β, interleukin (IL)-6, IL-10, granulocyte colony-stimulating factor, granulocyte macrophage colony-stimulating factor, vascular endothelial growth factor, leukemia inhibitory factor, and RANTES/CCL5, as well as calcium release in LPS-induced RAW 264.7, at concentrations of up to 10 μM significantly (p < 0.05). Diospyrin also significantly inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and mRNA expression of C/EBP homologous protein (CHOP), as well as tumor necrosis factor receptor superfamily member 6 (Fas), in LPS-induced RAW 264.7 cells at concentrations of up to 10 μM (p < 0.05). Diospyrin exhibits anti-inflammatory properties mediated via inhibition of NO, and cytokines in LPS-induced mouse macrophages via the ER-stressed calcium-p38 MAPK/CHOP/Fas pathway.
Collapse
|
8
|
Pal S, Nath P, Biswas S, Mukherjee U, Maitra S. Nonylphenol attenuates SOCS3 expression and M1 polarization in lipopolysaccharide-treated rat splenic macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:574-583. [PMID: 30870658 DOI: 10.1016/j.ecoenv.2019.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Endocrine disruptors interfere with normal sexual and reproductive development of numerous organisms. Widely used in several chemical and manufacturing industries, nonylphenol (NP), a potent xenoestrogen, has the potential to perturb immune system. Using rat splenic macrophages (SMΦ) as the model system, NP-modulation of lipopolysaccharide (LPS)-induced inflammatory response has been investigated. Our results demonstrate that NP (0.1-10 µM) attenuates catalase activity, reactive oxygen species (ROS) generation and nitric oxide (NO) synthesis in LPS-treated SMΦ in vitro. NP inhibition of LPS-induced nuclear factor kappa B (NF-κB) activation and pro-inflammatory cytokine gene expression corroborate well with attenuation of suppressor of cytokine signalling 3 (SOCS3). Besides, elevated expression of anti-inflammatory factors reveals inverse correlation with suppression of endotoxin-induced M1 polarization in NP pre-incubated cells. While LPS promotes, NP prevents ERK1/2 (extracellular-signa1-regulated kinase 1/2) phosphorylation and MEK-inhibitor abrogates SOCS3 expression and NO production suggesting involvement of ERK1/2 in NP inhibition of SOCS3 expression. Further, translational inhibitor cycloheximide prevents LPS-induced NF-κB activation indicating functional importance of de novo synthesis of SOCS3, at least in part, in toll-like receptor 4 (TLR4)-mediated inflammatory response. Collectively, present study provides evidence favouring participation of SOCS3 in NP modulation of inflammatory response in rat SMΦ.
Collapse
Affiliation(s)
- Soumojit Pal
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Poulomi Nath
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Subhasri Biswas
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Urmi Mukherjee
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Sudipta Maitra
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
9
|
García-Mendoza D, Han B, van den Berg HJHJ, van den Brink NW. Cell-specific immune-modulation of cadmium on murine macrophages and mast cell lines in vitro. J Appl Toxicol 2019; 39:992-1001. [PMID: 30828855 DOI: 10.1002/jat.3788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/15/2022]
Abstract
Toxic trace metals are widespread contaminants that are potentially immunotoxic even at environmentally low exposure levels. They can modulate the immunity to infections, e.g., in wildlife species living in contaminated areas. The diverse immune cell types can be differentially affected by the exposure leading to the modulation of specific protective mechanisms. Macrophages and mast cells, part of the innate immune system, trigger immune responses and perform particular effector functions. The present study compared toxicological and functional effects of cadmium in two models of murine macrophages (RAW264.7 and NR8383 cell lines) and two models of murine mast cells (MC/9 and RBL-2H3 cell lines). Cadmium was selected as a model compound because its known potential to induce reactive oxygen species and its relevance as an environmental contaminant. Mechanisms of toxicity, such as redox imbalance and apoptosis induction were measured in stationary cells, while functional outcome effects were measured in activated cells. Cadmium-depleted glutathione antioxidant in all four cell lines tested although reactive oxygen species was not significantly increased. Mast cells had full dose-response depletion of glutathione below cytotoxic levels while in macrophages the depletion was not complete. Functional endpoints tumour necrosis factor-alpha and nitrite production in lipopolysaccharide-activated macrophages were increased by cadmium exposure. In contrast, mast cell lipopolysaccharide-induced tumour necrosis factor-alpha and IgE-mediated histamine release were reduced by cadmium. These data indicate potentially differential effects of cadmium among murine innate immune cell types, where mast cells would be more susceptible to oxidative stress and their function might be at a higher risk to be modulated compared to macrophages.
Collapse
Affiliation(s)
- Diego García-Mendoza
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Biyao Han
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Hans J H J van den Berg
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Nico W van den Brink
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
10
|
Memon MA, Wang Y, Xu T, Ma N, Zhang H, Roy AC, Aabdin ZU, Shen X. Lipopolysaccharide induces oxidative stress by triggering MAPK and Nrf2 signalling pathways in mammary glands of dairy cows fed a high-concentrate diet. Microb Pathog 2019; 128:268-275. [DOI: 10.1016/j.micpath.2019.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
|
11
|
Falconer JL, Grainger DW. In vivo comparisons of silver nanoparticle and silver ion transport after intranasal delivery in mice. J Control Release 2017; 269:1-9. [PMID: 29061510 DOI: 10.1016/j.jconrel.2017.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 12/15/2022]
Abstract
Silver nanoparticles (AgNPs) are widely available as consumer goods, and over-the-counter or nutraceutical products used for alleged therapeutic and antibacterial properties. Among these products, AgNP topical therapy is proposed for treating patients with upper airway bacterial rhinosinusitis. While silver ion release from AgNPs in biological systems is well known, limited investigations actually characterize this silver ion release and their subsequent biological effects distinct from delivered particulate metallic silver. This is in part due to the analytical complexity and difficulty involved in distinguishing silver ion release from metallic AgNPs in biological media. Therefore, this study compared intranasal administration of AgNPs versus soluble silver ion (AgNO3) control to examine their transport and biological differences in tissues. First, we compared bactericidal activities of AgNPs and AgNO3 in those bacteria commonly associated with clinical rhinosinusitis in vitro. Next, we evaluated silver residence time in the sinus cavity after intranasal delivery of AgNPs and AgNO3 to mice, and characterized tissue distribution of silver in the sinonasal mucosal epithelium. We found that AgNPs show reduced bactericidal activity compared to AgNO3 (i.e., MBC of 15ppm compared to 5ppm), and significantly lower residence times in the sinus cavity (AgNP concentrations of 3.76ppm after 3h compared to 9ppm for AgNO3). AgNPs were not readily taken up into or through respiratory epithelium, with very low silver levels found in blood and no detectable silver measured in the olfactory bulb and brain. Results indicate that limited tissue distribution of silver detected from AgNPs is due to AgNP dissolution to silver ion. AgNPs therefore demonstrate adequate safety through limited penetration and absorption, but limited potential therapeutic efficacy as antimicrobials in nasal applications, as concentrations of silver in the sinus cavity drop below the minimum bactericidal concentration within 3h.
Collapse
Affiliation(s)
- Jonathan L Falconer
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Isobutyrylshikonin inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in BV2 microglial cells by suppressing the PI3K/Akt-mediated nuclear transcription factor-κB pathway. Nutr Res 2014; 34:1111-9. [DOI: 10.1016/j.nutres.2014.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 02/05/2023]
|
13
|
Ren M, He L, Huang Y, Mao Q, Li S, Qu H, Bian M, Liang P, Chen X, Ling J, Chen T, Liang C, Wang X, Li X, Yu X. Molecular characterization of Clonorchis sinensis secretory myoglobin: delineating its role in anti-oxidative survival. Parasit Vectors 2014; 7:250. [PMID: 24885788 PMCID: PMC4057808 DOI: 10.1186/1756-3305-7-250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background Clonorchiasis is a globally important, neglected food-borne disease caused by Clonorchis sinensis (C. sinensis), and it is highly related to cholangiocarcinoma and hepatocellular carcinoma. Increased molecular evidence has strongly suggested that the adult worm of C. sinensis continuously releases excretory-secretory proteins (ESPs), which play important roles in the parasite-host interactions, to establish successful infection and ensure its own survival. Myoglobin, a hemoprotein, is present in high concentrations in trematodes and ESPs. To further understand the biological function of CsMb and its putative roles in the interactions of C. sinensis with its host, we explored the molecular characterization of CsMb in this paper. Methods We expressed CsMb and its mutants in E. coli BL21 and identified its molecular characteristics using bioinformatics analysis and experimental approaches. Reverse transcription PCR analysis was used to measure myoglobin transcripts of C. sinensis with different culture conditions. The peroxidase activity of CsMb was confirmed by spectrophotometry. We co-cultured RAW264.7 cells with recombinant CsMb (rCsMb), and we then measured the production of hydrogen peroxide (H2O2) and nitric oxide (NO) in addition to the mRNA levels of inducible nitric oxide synthase (iNOS), Cu-Zn superoxide dismutase (SOD1) and Mn superoxide dismutase (SOD2) in activated RAW264.7 cells. Results In the in vitro culture of adult worms, the transcripts of CsMb increased with the increase of oxygen content. Oxidative stress conditions induced by H2O2 increased the levels of CsMb transcripts in a dose-dependent manner. Furthermore, CsMb catalyzed oxidation reactions in the presence of H2O2, and amino acid 34 of CsMb played an essential role in its reaction with H2O2. In addition, CsMb significantly reduced H2O2 and NO levels in LPS-activated macrophages, and CsMb downregulated iNOS and SOD expression in activated macrophages. Conclusion The present study is the first to investigate the peroxidase activity of CsMb. This investigation suggested that C. sinensis may decrease the redox activation of macrophages by CsMb expression to evade host immune responses. These studies contribute to a better understanding of the role of CsMb in the molecular mechanisms involved in ROS detoxification by C. sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong 510080, China.
| | | |
Collapse
|
14
|
Tomasi ML, Ryoo M, Yang H, Iglesias Ara A, Ko KS, Lu SC. Molecular mechanisms of lipopolysaccharide-mediated inhibition of glutathione synthesis in mice. Free Radic Biol Med 2014; 68:148-58. [PMID: 24296246 PMCID: PMC3943979 DOI: 10.1016/j.freeradbiomed.2013.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022]
Abstract
Endotoxemia correlates with the degree of liver failure and may participate in worsening of liver diseases. Lipopolysaccharide (LPS; synonymous with endotoxin) treatment in mice lowered the hepatic glutathione (GSH) level, which in turn is a variable that determines susceptibility to LPS-induced injury. We previously showed that LPS treatment in mice lowered hepatic expression of the rate-limiting enzyme in GSH synthesis, glutamate-cysteine ligase (GCL). The aim of our current work was to determine the molecular mechanism(s) responsible for these changes. Studies were done using RAW cells (murine macrophages), in vivo LPS-treated mice, and mouse hepatocytes. We found that LPS treatment lowered GCL catalytic and modifier (Gclc and Gclm) subunit expression at the transcriptional level, which was unrelated to alterations in nitric oxide production or induction of NF-κB/p65 subunit. The key mechanism was a decrease in sumoylation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafG, which is required for their heterodimerization and subsequent binding and trans-activation of the antioxidant-response element (ARE) present in the promoter region of these genes that is essential for their expression. LPS treatment lowered markedly the expression of ubiquitin-conjugating enzyme 9 (Ubc9), which is required for sumoylation. Similar findings also occurred in liver after in vivo LPS treatment and in LPS-treated mouse hepatocytes. Overexpression of Ubc9 protected against LPS-mediated inhibition of Gclc and Gclm expression in RAW cells and hepatocytes. In conclusion, LPS-mediated lowering of GCL expression in hepatocytes and macrophages is due to lowering of sumoylation of Nrf2 and MafG, leading to reduced heterodimerization, binding, and trans-activation of ARE.
Collapse
Affiliation(s)
- Maria Lauda Tomasi
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA; Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Minjung Ryoo
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA; Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Heping Yang
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA; Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ainhoa Iglesias Ara
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA; Department of Genetics, Faculty of Science and Technology, University of the Basque Country, Leioa, Bilbao, Spain
| | - Kwang Suk Ko
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA; Department of Nutritional Science and Food Management, College of Health Science, Ewha Women's University, Seoul, Korea
| | - Shelly C Lu
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA; Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
15
|
Wang QS, Cui YL, Gao LN, Guo Y, Li RX, Zhang XZ. Reduction of the pro-inflammatory response by tetrandrine-loading poly(l-lactic acid) filmsin vitroandin vivo. J Biomed Mater Res A 2014; 102:4098-107. [DOI: 10.1002/jbm.a.35083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/12/2013] [Accepted: 01/15/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Qiang-Song Wang
- Institute of Medical Equipment; Academy of Military Medical Sciences; Tianjin People's Republic of China
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin People's Republic of China
| | - Yuan-Lu Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin People's Republic of China
| | - Li-Na Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin People's Republic of China
| | - Yong Guo
- Institute of Medical Equipment; Academy of Military Medical Sciences; Tianjin People's Republic of China
| | - Rui-Xin Li
- Institute of Medical Equipment; Academy of Military Medical Sciences; Tianjin People's Republic of China
| | - Xi-Zheng Zhang
- Institute of Medical Equipment; Academy of Military Medical Sciences; Tianjin People's Republic of China
| |
Collapse
|
16
|
Identification and functional characterization of Leishmania donovani secretory peroxidase: delineating its role in NRAMP1 regulation. PLoS One 2013; 8:e53442. [PMID: 23326430 PMCID: PMC3543463 DOI: 10.1371/journal.pone.0053442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/28/2012] [Indexed: 01/02/2023] Open
Abstract
Leishmania silently evades host immune system and establish in the hostile environment of host macrophage phagolysosomes. For differentiation, growth and division parasite acquires divalent cations especially iron from the host nutritive pool. Natural resistance associated with macrophage protein1 (NRAMP1), a cation transporter that effluxes out divalent cations specifically iron from phagosomal milieu to the cytosol, to create ions deprived status for pathogenic microorganisms. The mechanisms of NRAMP1 regulation are largely unknown in leishmanial infections. In the present study, we identified a secretory Leishmania donovani peroxidase (Prx) that showed peroxidoxin like peroxidase activity and significantly reduced H2O2, O2.− and NO levels in LPS activated macrophages. Further, we also observed down regulated Nramp1 expression and concomitantly declined labile iron pool in activated macrophages treated with identified peroxidase. Prx also decreased levels of TNF-α, IFN-γ and IL-12 in LPS activated macrophages. These observations indicate a bifunctional protective role of secretory Prx; first it reduces redox activation of macrophages, and secondly it allows iron access to Leishmania by down regulating NRAMP1 expression.
Collapse
|
17
|
Suh JH, Kim RY, Lee DS. A new metabolomic assay to examine inflammation and redox pathways following LPS challenge. J Inflamm (Lond) 2012; 9:37. [PMID: 23036094 PMCID: PMC3507808 DOI: 10.1186/1476-9255-9-37] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 09/23/2012] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED BACKGROUND Shifts in intracellular arginine (Arg) and sulfur amino acid (SAA) redox metabolism modulate macrophage activation, polarization and phenotype. Despite their importance in inflammation and redox regulatory pathways, comprehensive analysis of these metabolic networks was not previously possible with existing analytical methods. METHODS The Arg/thiol redox LC-MS/MS metabolomics assay permits simultaneous assessment of amino acids and derivative products generated from Arg and SAA metabolism. Using this assay, LPS-induced changes in macrophage amino acid metabolism were monitored to identify pathway shifts during activation and their linkage to cellular redox regulation. RESULTS Metabolite concentrations most significantly changed after treatment of a macrophage-like cell line (RAW) with LPS for 24 hrs were citrulline (Cit) (48-fold increase), ornithine (Orn) (8.5-fold increase), arginine (Arg) (66% decrease), and aspartic acid (Asp) (73% decrease). The ratio Cit + Orn/Arg + Asp (CO/AA) was more sensitive to LPS stimulation than other amino acid ratios commonly used to measure LPS-dependent inflammation (e.g., SAM/SAH, GSH/GSSG) and total media NOx. The CO/AA ratio was also the first ratio to change significantly after LPS treatment (4 hrs). Changes in the overall metabolomic profile over time indicated that metabolic pathways shifted from Arg catabolism to thiol oxidation. CONCLUSIONS Simultaneous quantification of Arg and SAA metabolic pathway shifts following LPS challenge of macrophage indicate that, in this system, the Arg-Citrulline/NO cycle and arginase pathways are the amino acid metabolic pathways most sensitive to LPS-challenge. The cellular (Cit + Orn)/(Arg + Asp) ratio, which summarizes this pathway, was more responsive to lower concentrations of LPS and responded earlier than other metabolic biomarkers of macrophage activation including GSH redox. It is suggested that the CO/AA ratio is a redox- independent early biomarker of macrophage activation. The ability to measure both the CO/AA and GSH-redox ratios simultaneously permits quantification of the relative effects of LPS challenge on macrophage inflammation and oxidative stress pathways. The use of this assay in humans is discussed, as are clinical implications.
Collapse
Affiliation(s)
- Jung H Suh
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - Robert Y Kim
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| | - Daniel S Lee
- Nutrition and Metabolism Center, Children’s Hospital Oakland Research Institute, Oakland, CA, USA
| |
Collapse
|
18
|
Pires KMP, Lanzetti M, Rueff-Barroso CR, Castro P, Abrahão A, Koatz VLG, Valença SS, Porto LC. Oxidative damage in alveolar macrophages exposed to cigarette smoke extract and participation of nitric oxide in redox balance. Toxicol In Vitro 2012; 26:791-8. [PMID: 22664789 DOI: 10.1016/j.tiv.2012.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 05/07/2012] [Accepted: 05/24/2012] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) acts in both pathological and biological processes. We investigated the role of NO in the regulation of cigarette smoke-induced oxidative stress in rat alveolar macrophages (RAM). RAM collected from Wistar rats were cultured in 5% concentration cigarette smoke extract (CSE) for 1h. RAM exposed to CSE were then co-incubated with L-NAME (LN), L-arginine (LA), N-acetylcysteine (NAC) and both LN and NAC. RAM cultured only with medium was considered as control group. Biochemical analysis were performed to measure cellular metabolism (MTT), nitrite levels, superoxide dismutase (SOD) and glutathione peroxidase activities, reduced glutathione (GSH) and oxidized (GSSG), malondialdehyde and myeloperoxidase activity. During exposure to CSE, increased NO levels were not only associated with an increase of cell activation, but also affected MTT levels in RAM. CSE exposure resulted in significant redox imbalance in RAM. NAC administration affected SOD antioxidant profile regardless NO levels; however nitrite values were associated with GSH/GSSG ratio. In addition, lipid peroxidation appeared to be nitric-oxide dependent. Furthermore, the use of NAC significantly reduced the expression of NFkB normally observed in RAM exposed to CSE. The present results show that NO appeared to be involved in RAM activation, oxidative status maintenance and lipid peroxidation process during exposure to CSE.
Collapse
Affiliation(s)
- Karla Maria Pereira Pires
- Programa de Pós-graduação em Biologia Humana e Experimental - Universidade do Estado do Rio de Janeiro, Avenida 28 de setembro 87, CEP: 20551-030, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Li DY, Xue MY, Geng ZR, Chen PY. The suppressive effects of Bursopentine (BP5) on oxidative stress and NF-ĸB activation in lipopolysaccharide-activated murine peritoneal macrophages. Cell Physiol Biochem 2012; 29:9-20. [PMID: 22415070 DOI: 10.1159/000337581] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Bursopentine (BP5) is a novel thiol-containing pentapeptide isolated from chicken bursa of Fabricius, and is reported to exert immunomodulatory effects on B and T lymphocytes. It has been found that some thiol compounds, such as glutathione (GSH) and N-acetylcysteine (NAC) protect living cells from oxidative stress. This led us to investigate whether BP5 had any ability to protect macrophages from oxidative stress as well as any mechanism that might underlie this process. METHODS Murine peritoneal macrophages activated by lipopolysaccharide (LPS) (2 μg/ml) were treated with single bouts (0, 25, 50, and 100 μM) of BP5. RESULTS BP5 potently suppressed the markers for oxidative stress, including nitric oxide (NO), reactive oxygen species (ROS), lipid peroxidation, and protein oxidation. It also decreased the expression and activity of inducible nitric oxide synthase (iNOS) and promoted a protective antioxidant state by elevating GSH content and by activating the expression and activity of certain key antioxidant and redox enzymes, including glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT). This suppressive effect on oxidative stress was accompanied by down-regulated expression and activity of nuclear factor kappa B (NF-κB). CONCLUSION These findings demonstrate that BP5 can protect LPS-activated murine peritoneal macrophages from oxidative stress. BP5 may have applications as an anti-oxidative stress reagent.
Collapse
Affiliation(s)
- De-yuan Li
- Key Laboratory of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agricultural University, Nanjing, China.
| | | | | | | |
Collapse
|
20
|
Xu Y, Xin Y, Diao Y, Lu C, Fu J, Luo L, Yin Z. Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells. PLoS One 2011; 6:e29169. [PMID: 22216199 PMCID: PMC3244456 DOI: 10.1371/journal.pone.0029169] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/22/2011] [Indexed: 01/20/2023] Open
Abstract
Background It was well known that the clinical use of chemotherapeutic drugs is restricted by severe adverse reactions and drug resistances. Thus it is necessary to figure out a strategy to increase the specific anti-tumor efficiency of chemotherapeutic drugs. Apigenin, a kind of flavonoids, has been reported to possess anticancer activities with very low cytotoxicity to normal tissue. Methodology/Principal Findings Our results from cell viability assay, western-blots and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay demonstrated the synergistic pro-apoptotic effects of a low dose of apigenin and paclitaxel in human cancer cell lines. To analyze the underlying mechanism, we examined reactive oxygen species (ROS) staining after cells were treated with a combination of apigenin and paclitaxel, or each of them alone. Data from flow-cytometry showed that superoxides but not reduction of peroxides accumulated in HeLa cells treated with apigenin or a combination of apigenin and paclitaxel. Apigenin and paclitaxel-induced HeLa cell apoptosis was related to the level of ROS in cells. We further evaluated activity and protein level of superoxide dismutase (SOD). Apigenin significantly inhibited SOD activity but did not alter the SOD protein level suggesting that apigenin promoted ROS accumulation through suppressing enzyme activity of SOD. Addition of Zn2+, Cu2+ and Mn2+ to cell lysates inhibited apigenin's effects on SOD activity. At the same time, data from caspase-2 over-expression and knocked-down experiments demonstrated that caspase-2 participated in apigenin and paclitaxel-induced HeLa cell apoptosis. Conclusions/Significance Taken together, our study demonstrated that apigenin can sensitize cancer cells to paclitaxel induced apoptosis through suppressing SOD activity, which then led to accumulation of ROS and cleavage of caspase-2, suggesting that the combined use of apigenin and paclitaxel was an effective way to decrease the dose of paclitaxel taken.
Collapse
Affiliation(s)
- Yimiao Xu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Yinqiang Xin
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Ying Diao
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Changyan Lu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Jin Fu
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
- * E-mail: (ZY); (LL)
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medicine Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
- * E-mail: (ZY); (LL)
| |
Collapse
|
21
|
Lee JY, Park W. Anti-inflammatory effect of myristicin on RAW 264.7 macrophages stimulated with polyinosinic-polycytidylic acid. Molecules 2011; 16:7132-42. [PMID: 21991618 PMCID: PMC6264243 DOI: 10.3390/molecules16087132] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Myristicin (1-allyl-5-methoxy-3,4-methylenedioxybenzene) is an active aromatic compound found in nutmeg (the seed of Myristica fragrans), carrot, basil,cinnamon, and parsley. Myristicin has been known to have anti-cholinergic, antibacterial,and hepatoprotective effects, however, the effects of myristicin on virus-stimulated macrophages are not fully reported. In this study, the anti-inflammatory effect of myristicin on double-stranded RNA (dsRNA)-stimulated macrophages was examined. Myristicin did not reduce the cell viability of RAW 264.7 mouse macrophages at concentrations of up to 50 μM. Myristicin significantly inhibited the production of calcium, nitric oxide (NO),interleukin (IL)-6, IL-10, interferon inducible protein-10, monocyte chemotactic protein(MCP)-1, MCP-3, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein (MIP)-1α, MIP-1β, and leukemia inhibitory factor in dsRNA[polyinosinic-polycytidylic acid]-induced RAW 264.7 cells (P < 0.05). In conclusion,myristicin has anti-inflammatory properties related with its inhibition of NO, cytokines,chemokines, and growth factors in dsRNA-stimulated macrophages via the calcium pathway.
Collapse
Affiliation(s)
| | - Wansu Park
- Author to whom correspondence should be addressed; ; Tel.: +82-31-750-8821; Fax: +82-31-750-8821
| |
Collapse
|
22
|
Yuk SS, Lim EM, Lee JY, Lee YJ, Kim YS, Lee TH, Park SK, Bae H, Kim HM, Ko SG, Oh MS, Park W. Antiinflammatory effects of Epimedium brevicornum water extract on lipopolysaccharide-activated RAW264.7 macrophages. Phytother Res 2011; 24:1781-7. [PMID: 20564498 DOI: 10.1002/ptr.3161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epimedium brevicornum Maxim (Berberidaceae) possesses estrogenic properties. It is one of the most widespread herbal remedies used in Oriental medicine. The present study investigated the effects of Epimedium brevicornum water extract (EB) on proinflammatory mediators secreted from lipopolysaccharide (LPS)-induced RAW264.7 macrophages. EB significantly inhibited the production of nitric oxide (NO), interleukin (IL)-3, IL-10, IL-12p40, interferon-inducible protein-10, keratinocyte-derived chemokine, vascular endothelial growth factor, monocyte chemotactic protein-1 and granulocyte macrophage-colony stimulating factor in LPS-induced RAW264.7 cells at concentrations of 25, 50, 100 and 200 μg/mL (p < 0.05). These results suggest that EB has antiinflammatory activity related to its inhibition of NO, cytokine, chemokine and growth factor production in macrophages.
Collapse
Affiliation(s)
- Sang-Suk Yuk
- College of Oriental Medicine, Kyungwon University, Seongnam, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yu T, Lee J, Lee YG, Byeon SE, Kim MH, Sohn EH, Lee YJ, Lee SG, Cho JY. In vitro and in vivo anti-inflammatory effects of ethanol extract from Acer tegmentosum. JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:139-147. [PMID: 20045722 DOI: 10.1016/j.jep.2009.12.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/18/2009] [Accepted: 12/28/2009] [Indexed: 05/28/2023]
Abstract
AIM OF STUDY Acer tegmentosum has been traditionally used for folk medicine to treat hepatic disorders such as hepatitis, hepatic cancer, and hepatic cirrhosis. In this study, we demonstrate the ethno-pharmacological activity of Acer tegmentosum in in vitro and in vivo inflammatory conditions. RESULTS The 70% ethanol extract (At-EE) of Acer tegmentosum dose-dependently diminished the production of nitric oxide (NO), tumour necrosis factor (TNF)-alpha, and prostaglandin (PG)E(2), in lipopolysaccharide (LPS)-activated RAW264.7 cells and peritoneal macrophages, by a transcriptional mechanism. At-EE also suppressed the activation of nuclear factor (NF)-kappaB, activator protein (AP)-1, and cAMP-responsive element binding (CREB), and simultaneously blocked their upstream inflammatory signalling cascades, including Akt, p38, and JNK. Furthermore, At-EE protected against LPS-induced cell death induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) and neutralized reactive species generation. In agreement with the in vitro results, orally administered At-EE strongly ameliorated ear oedema formation induced by arachidonic acid. CONCLUSION At-EE displays strong anti-inflammatory activities in vitro and in vivo, contributing to its major ethno-pharmacological role such as anti-hepatitis remedy and may be applicable to novel anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Tao Yu
- School of Bioscience and Biotechnology, and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Röhl C, Armbrust E, Herbst E, Jess A, Gülden M, Maser E, Rimbach G, Bösch-Saadatmandi C. Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: antioxidative systems, peroxide elimination, radical generation, lipid peroxidation. Neurotox Res 2009; 17:317-31. [PMID: 19763738 DOI: 10.1007/s12640-009-9108-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/19/2009] [Accepted: 08/25/2009] [Indexed: 01/06/2023]
Abstract
Microglia and astrocytes are the cellular key players in many neurological disorders associated with oxidative stress and neuroinflammation. Previously, we have shown that microglia activated by lipopolysaccharides (LPS) induce the expression of antioxidative enzymes in astrocytes and render them more resistant to hydrogen peroxide (H2O2). In this study, we examined the mechanisms involved with respect to the cellular action of different peroxides, the ability to detoxify peroxides, and the status of further antioxidative systems. Astrocytes were treated for 3 days with medium conditioned by purified quiescent (microglia-conditioned medium, MCM[-]) or LPS-activated (MCM[+]) microglia. MCM[+] reduced the cytotoxicity of the organic cumene hydroperoxide in addition to that of H2O2. Increased peroxide resistance was not accompanied by an improved ability of astrocytes to remove H2O2 or an increased expression/activity of peroxide eliminating antioxidative enzymes. Neither peroxide-induced radical generation nor lipid peroxidation were selectively affected in MCM[+] treated astrocytes. The glutathione content of peroxide resistant astrocytes, however, was increased and superoxide dismutase and heme oxygenase were found to be upregulated. These changes are likely to contribute to the higher peroxide resistance of MCM[+] treated astrocytes by improving their ability to detoxify reactive oxygen radicals and oxidation products. For C6 astroglioma cells a protective effect of microglia-derived factors could not be observed, underlining the difference of primary cells and cell lines concerning their mechanisms of oxidative stress resistance. Our results indicate the importance of microglial-astroglial cell interactions during neuroinflammatory processes.
Collapse
Affiliation(s)
- Claudia Röhl
- Institute of Toxicology and Pharmacology for Natural Scientists, Christian-Albrechts-University, Brunswiker Str. 10, 24105 Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wood dusts induce the production of reactive oxygen species and caspase-3 activity in human bronchial epithelial cells. Toxicology 2009; 262:265-70. [PMID: 19573573 DOI: 10.1016/j.tox.2009.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 06/18/2009] [Accepted: 06/21/2009] [Indexed: 11/22/2022]
Abstract
Wood dusts are associated with several respiratory symptoms, e.g. impaired lung function and asthma, in exposed workers. However, despite the evidence from epidemiological studies, the underlying mechanisms are not well understood. In the present study, we investigated different wood dusts for their capacity to induce cytotoxicity and production of radical oxygen species (ROS) as well as activation of the apoptotic caspase-3 enzyme in human bronchial epithelial cells (BEAS-2B). Dusts from three different tree species widely used in wood industry were studied; birch and oak represented hardwood species, and pine a common softwood species. All the experiments were carried out in three different concentrations (10, 50, and 500 microg/ml) and the analysis was performed after 0.5, 2, 6, and 24h exposure. All wood dusts studied were cytotoxic to human bronchial epithelial cells in a dose-dependent manner after 2 and 6h treatment. Exposure to pine, birch, or oak dust had a significant stimulating effect on the production of ROS. Also an induction in caspase-3 protease activity, one of the central components of the apoptotic cascade, was seen in BEAS-2B cells after 2 and 6h exposure to each of the wood dusts studied. In summary, we demonstrate that dusts from pine, birch and oak are cytotoxic, able to increase the production of ROS and the apoptotic response in human broncho-epithelial cells in vitro. Thus, our current data suggest oxidative stress by ROS as an important mechanism likely to function in wood dust related pulmonary toxicity although details of the cellular targets and cell-particle interactions remain to be solved. It is though tempting to speculate that redox-regulated transcription factors such as NFkappaB or AP-1 may play a role in this wood dust-evoked process leading to apparently induced apoptosis of target cells.
Collapse
|
26
|
Das D, Bishayi B. Staphylococcal catalase protects intracellularly survived bacteria by destroying H2O2 produced by the murine peritoneal macrophages. Microb Pathog 2009; 47:57-67. [PMID: 19439176 DOI: 10.1016/j.micpath.2009.04.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 01/04/2023]
Abstract
To determine the interrelationship between the hydrogen peroxide (H(2)O(2)) mediated killing and the potential role of bacterial catalase and SOD in the evasion of host defense, we examined three clinical isolates of Staphylococcus aureus and evaluated their intracellular survival mechanism within murine peritoneal macrophages. Fluorescent microscopy and bacterial colony-forming unit (cfu) count revealed that phagocytic capacity of murine peritoneal macrophages was highest after 2h of in vitro infection with S. aureus. To understand whether catalase and SOD contributing in the intracellular survival, were of bacterial origin or not, 3 amino 1,2,4 triazole (ATZ) and Diethyldithiocarbamic acid (DDC) were used to inhibit specifically macrophage derived catalase and SOD respectively. Catalase activity from the whole staphylococcal cell in presence of ATZ suggested that the released catalase were of extracellular origin. Scanning electron microscopy revealed the degraded host cell membrane integrity during prolonged infection. Purified bacterial catalase from the intracellularly survived S. aureus recovered after 5h of infection and its inhibition by ATZ in the zymography strengthened the scope of involvement of these anti-oxidants in the intracellular survival of S. aureus.
Collapse
Affiliation(s)
- Debaditya Das
- Department of Physiology, Immunology Laboratory, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India.
| | | |
Collapse
|
27
|
Chen X, Choi IY, Chang TS, Noh YH, Shin CY, Wu CF, Ko KH, Kim WK. Pretreatment with interferon-gamma protects microglia from oxidative stress via up-regulation of Mn-SOD. Free Radic Biol Med 2009; 46:1204-10. [PMID: 19439213 DOI: 10.1016/j.freeradbiomed.2009.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 11/25/2022]
Abstract
Microglial cells, resident macrophage-like immune cells in the brain, are exposed to intense oxidative stress under various pathophysiological conditions. For self-defense against oxidative injuries, microglial cells must be equipped with antioxidative mechanisms. In this study, we investigated the regulation of antioxidant enzyme systems in microglial cells by interferon-gamma (IFN-gamma) and found that pretreatment with IFN-gamma for 20 h protected microglial cells from the toxicity of various reactive species such as hydrogen peroxide (H(2)O(2)), superoxide anion, 4-hydroxy-2(E)-nonenal, and peroxynitrite. The cytoprotective effect of IFN-gamma pretreatment was abolished by the protein synthesis inhibitor cycloheximide. In addition, treatment of microglial cells with both IFN-gamma and H(2)O(2) together did not protect them from the H(2)O(2)-evoked toxicity. These results imply that protein synthesis is required for the protection by IFN-gamma. Among various antioxidant enzymes such as manganese or copper/zinc superoxide dismutase (Mn-SOD or Cu/Zn-SOD), catalase, and glutathione peroxidase (GPx), only Mn-SOD was up-regulated in IFN-gamma-pretreated microglial cells. Transfection with siRNA of Mn-SOD abolished both up-regulation of Mn-SOD expression and protection from H(2)O(2) toxicity by IFN-gamma pretreatment. Furthermore, whereas the activities of Mn-SOD and catalase were up-regulated by IFN-gamma pretreatment, those of Cu/Zn-SOD and GPx were not. These results indicate that IFN-gamma pretreatment protects microglial cells from oxidative stress via selective up-regulation of the level of Mn-SOD and activity of Mn-SOD and catalase.
Collapse
Affiliation(s)
- Xia Chen
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pietsch C, Vogt R, Neumann N, Kloas W. Production of nitric oxide by carp (Cyprinus carpio L.) kidney leukocytes is regulated by cyclic 3',5'-adenosine monophosphate. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:58-65. [PMID: 18424130 DOI: 10.1016/j.cbpa.2008.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 03/04/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
The inducible nitric oxide synthase (iNOS) plays a central role in the inflammatory reactions that follow infection or tissue damage. Induction of nitric oxide (NO) synthesis by bacterial lipopolysaccharide (LPS) depends on activation of G protein-coupled receptors in mammals. Thus, it was our intention to evaluate whether similar mechanisms are involved in iNOS activation in fish leukocytes. Therefore, the participation of membrane-bound receptors which activate effectors via G proteins has been confirmed using the G protein inhibitor suramin. Furthermore, the NO produced by iNOS performs both beneficial and detrimental actions. It is thus conceivable that regulatory mechanisms exist which control the timing and intensity of NO production by iNOS in order to outweigh protective effects against detrimental ones. The second messenger cAMP produced by adenylyl cyclases (ACs) plays a key role in the regulation of many cellular functions. Since cAMP signaling inhibits numerous immunological reactions, studies have been carried out to determine whether cAMP-dependent pathways could inhibit NO production by carp leukocytes as well. To measure cellular responses such as NO production by carp leukocytes derived from head and trunk kidneys treatments were performed with the cAMP elevating agents forskolin and dibutyryl-cAMP (db-cAMP) prior to stimulation with Aeromonas hydrophila. Pharmacological studies in stimulated kidney leukocytes showed that increased intracellular cAMP levels lead to reduced NO formation. This reduction of NO production was not due to decreased cell numbers, since a tetrazolium dye-based assay revealed no reduction of cell viability by cyclic nucleotide elevating agents. Thus, our data provide evidence that the AC/cAMP signaling pathway is well established in carp leukocytes. Cyclic AMP leads to type II immune response. We provide evidence that the predominant AC in fish leukocytes is a particulate enzyme due to its sensitivity to forskolin. Treatment of leukocytes with agents increasing intracellular cAMP gave clear evidence for participation of this cyclic nucleotide in immune signaling.
Collapse
Affiliation(s)
- Constanze Pietsch
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany.
| | | | | | | |
Collapse
|
29
|
Marcantonio M, Trost M, Courcelles M, Desjardins M, Thibault P. Combined enzymatic and data mining approaches for comprehensive phosphoproteome analyses: application to cell signaling events of interferon-gamma-stimulated macrophages. Mol Cell Proteomics 2007; 7:645-60. [PMID: 18006492 DOI: 10.1074/mcp.m700383-mcp200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is a central cell signaling event that underlies a broad spectrum of key physiological processes. Advances in affinity chromatography and mass spectrometry are now providing the ability to identify and quantitate thousands of phosphorylation sites simultaneously. Comprehensive phosphoproteome analyses present sizable analytical challenges in view of suppression effects of phosphopeptides and the variable quality of MS/MS spectra. This work presents an integrated enzymatic and data mining approach enabling the comprehensive detection of native and putative phosphopeptides following alkaline phosphatase digestion of titanium dioxide (TiO2)-enriched cell extracts. The correlation of retention times of more than 750 phospho- and dephosphopeptide pairs from J774 macrophage cell extracts indicated that removal of the phosphate groups can impart a gain or a loss in hydrophobicity that is partly explained by the formation of a salt bridge with proximal amino groups. Dephosphorylation also led to an average 2-fold increase in MS sensitivity that facilitated peptide sequencing. More importantly, alkaline phosphatase digestion enhanced the overall population of putative phosphopeptides from TiO2-enriched cell extracts providing a unique approach to profile multiphosphorylated cognates that would have remained otherwise undetected. The application of this approach is demonstrated for differential phosphoproteome analyses of mouse macrophages exposed to interferon-gamma for 5 min. TiO2 enrichment enabled the identification of 1143 phosphopeptides from 432 different proteins of which 125 phosphopeptides showed a 2-fold change upon interferon-gamma exposure. The use of alkaline phosphatase nearly doubled the number of putative phosphopeptides assignments leading to the observation of key interferon-gamma signaling events involved in vesicle trafficking, production of reactive oxygen species, and mRNA translation.
Collapse
Affiliation(s)
- Maria Marcantonio
- Institute for Research in Immunology and Cancer, Departments of Biochemistry, Université de Montréal, Station Centre-ville, Montréal H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
30
|
Lee SJ, Lim KT. Glycoprotein isolated from Ulmus davidiana Nakai regulates expression of iNOS and COX-2 in vivo and in vitro. Food Chem Toxicol 2007; 45:990-1000. [PMID: 17240506 DOI: 10.1016/j.fct.2006.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 11/25/2006] [Accepted: 12/04/2006] [Indexed: 01/22/2023]
Abstract
This study was carried out to investigate the anti-inflammatory potential of a 116-kDa glycoprotein isolated from Ulmus davidiana Nakai (UDN glycoprotein, 116 kDa) in lipopolysaccaride (LPS)-treated RAW 264.7 cells and dextran sodium sulfate (DSS)-treated A/J mouse. In LPS (1 microg/ml)-stimulated RAW 264.7 cells, we found that UDN glycoprotein has dose-dependent blocking effects of reactive oxygen species (ROS) and inducible nitric oxide (NO) production. In addition, the results obtained from electrophoretic mobility shift assay (EMSA) and western blot analysis showed that UDN glycoprotein dose-dependently inhibits DNA binding activity of nuclear factor-kappa B (NF-kappaB), and activities of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and manganese-superoxide dismutases (Mn-SOD) in LPS-stimulated RAW 264.7 cells. Similar results after treatment with UDN glycoprotein were also brought in the DSS-stimulated A/J mouse colitis. The increased disease activity index (DAI) and the shortened large intestine in DSS (5%)-treated A/J mouse were normalized by treatment with UDN glycoprotein [40 mg/kg body weight (BW)]. These intestinal protective activities of UDN glycoprotein are caused by blockage of plasmic thiobarbituric acid reactive substances (TBARS) formation, nitric oxide (NO) production, and lactate dehydrogenase (LDH) release, accompanying the inhibition of colonic inflammatory signal mediators (NF-kappaB, iNOS, and COX-2). These results in this study were presumably come from anti-oxidative effect of UDN glycoprotein in either LPS-stimulated RAW 264.7 cells or DSS-stimulated A/J mouse colitis. Therefore, we speculate that UDN glycoprotein has anti-inflammatory potential at the early inflammation stage.
Collapse
Affiliation(s)
- Sei-Jung Lee
- Molecular Biochemistry Laboratory, Institute of Biotechnology and Center for the Control of Animal Hazards Using Biotechnology (BK 21), Chonnam National University, Kwang-ju, 300 Yongbong-Dong, 500-757, South Korea
| | | |
Collapse
|
31
|
Lundborg M, Bouhafs R, Gerde P, Ewing P, Camner P, Dahlén SE, Jarstrand C. Aggregates of ultrafine particles modulate lipid peroxidation and bacterial killing by alveolar macrophages. ENVIRONMENTAL RESEARCH 2007; 104:250-7. [PMID: 17303107 DOI: 10.1016/j.envres.2007.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 12/19/2006] [Accepted: 01/04/2007] [Indexed: 05/14/2023]
Abstract
We hypothesized that aggregates of ultrafine carbon and washed diesel particles impair the ability of alveolar macrophages (AM) to kill bacteria and enhance the AM lipid peroxidation (LPO) of lung surfactant. Rat AM were exposed, 5h, to particles 20 microg/ml. The AM, containing carbon or washed diesel particles, were incubated 2h, with Streptococcus pneumoniae, an American Type Culture Collection (ATCC) strain or clinical isolates. Surviving bacteria were quantified. Surfactant was incubated, 5h, with carbon or washed diesel loaded AM and LPO was measured. The particle load was approximately 1 microg/10(6) AM, representing accepted exposure to ambient particles in Europe. Metal concentrations were 10 to 100 fold higher in washed diesel--than in carbon particles. There was a dose dependent increase in bacterial survival with carbon-loaded macrophages, but not with washed diesel-loaded AM. Clinical isolates had a higher survival rate with carbon-loaded macrophages than the ATCC strain. Surfactant LPO was increased with washed diesel-loaded macrophages (95%) and with carbon-loaded macrophages (55%) compared to controls. High LPO caused by washed diesel-loaded AM reflects their increased oxidative metabolism, probably caused by particle metals. The additional oxygen metabolites maintained bactericidal activity of AM, while corresponding activity was decreased in carbon-loaded AM. Altered functions of AM may explain health problems related to air pollution.
Collapse
Affiliation(s)
- Margot Lundborg
- Division of Physiology, The National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
32
|
de Souza LF, Barreto F, da Silva EG, Andrades ME, Guimarães ELM, Behr GA, Moreira JCF, Bernard EA. Regulation of LPS stimulated ROS production in peritoneal macrophages from alloxan-induced diabetic rats: involvement of high glucose and PPARgamma. Life Sci 2007; 81:153-9. [PMID: 17532345 DOI: 10.1016/j.lfs.2007.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/15/2007] [Accepted: 04/27/2007] [Indexed: 01/21/2023]
Abstract
An increased occurrence of long term bacterial infections is common in diabetic patients. Bacterial cell wall components are described as the main antigenic agents from these microorganisms and high blood glucose levels are suggested to be involved in altered immune response. Hyperglycemia is reported to alter macrophages response to lipopolysaccharide (LPS) and peroxisome proliferators activated receptor gamma (PPARgamma) expression. Additionally, glucose is the main metabolic fuel for reduced nicotinamide adenine dinucleotide phosphate (NADPH) production by pentose phosphate shunt. In this work, lipopolysaccharide (LPS) stimulated reactive oxygen species (ROS) and nitrite production were evaluated in peritoneal macrophages from alloxan-induced diabetic rats. Cytosolic dehydrogenases and PPARgamma expression were also investigated. LPS was ineffective to stimulate ROS and nitrite production in peritoneal macrophages from diabetic rats, which presented increased glucose-6-phosphate dehydrogenase and malate dehydrogenase activity. In RAW 264.7 macrophages, acute high glucose treatment abolished LPS stimulated ROS production, with no effect on nitrite and dehydrogenase activities. Peritoneal macrophages from alloxan-treated rats presented reduced PPARgamma expression. Treating RAW 264.7 macrophages with a PPARgamma antagonist resulted in defective ROS production in response to LPS, however, stimulated nitrite production was unaltered. In conclusion, in the present study we have reported reduced nitric oxide and reactive oxygen species production in LPS-treated peritoneal macrophages from alloxan-induced diabetic rats. The reduced production of reactive oxygen species seems to be dependent on elevated glucose levels and reduced PPARgamma expression.
Collapse
|
33
|
Madhavan L, Ourednik V, Ourednik J. Increased "vigilance" of antioxidant mechanisms in neural stem cells potentiates their capability to resist oxidative stress. Stem Cells 2006; 24:2110-9. [PMID: 16728559 DOI: 10.1634/stemcells.2006-0018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although the potential value of transplanted and endogenous neural stem cells (NSCs) for the treatment of the impaired central nervous system (CNS) has widely been accepted, almost nothing is known about their sensitivity to the hostile microenvironment in comparison to surrounding, more mature cell populations. Since many neuropathological insults are accompanied by oxidative stress, this report compared the alertness of antioxidant defense mechanisms and cell survival in NSCs and postmitotic neural cells (PNCs). Both primary and immortalized cells were analyzed. At steady state, NSCs distinguished themselves in their basal mitochondrial metabolism from PNCs by their lower reactive oxygen species (ROS) levels and higher expression of the key antioxidant enzymes uncoupling protein 2 (UCP2) and glutathione peroxidase (GPx). Following exposure to the mitochondrial toxin 3-nitropropionic acid, PNC cultures were marked by rapidly decreasing mitochondrial activity and increasing ROS content, both entailing complete cell loss. NSCs, in contrast, reacted by fast upregulation of UCP2, GPx, and superoxide dismutase 2 and successfully recovered from an initial deterioration. This recovery could be abolished by specific antioxidant inhibition. Similar differences between NSCs and PNCs regarding redox control efficiency were detected in both primary and immortalized cells. Our first in vivo data from the subventricular stem cell niche of the adult mouse forebrain corroborated the above observations and revealed strong baseline expression of UCP2 and GPx in the resident, proliferating NSCs. Thus, an increased "vigilance" of antioxidant mechanisms might represent an innate characteristic of NSCs, which not only defines their cell fate, but also helps them to encounter oxidative stress in diseased CNS.
Collapse
Affiliation(s)
- Lalitha Madhavan
- Department of Biomedical Sciences, College of Veterinary Medicine 2052, Iowa State University, Ames, 50011, USA
| | | | | |
Collapse
|
34
|
Sobocanec S, Kusić B, Sverko V, Balog T, Marotti T. Methionine-enkephalin Modulated Regulation of Oxidant/Antioxidant Status in Liver of CBA Mice. Biogerontology 2006; 7:53-62. [PMID: 16518720 DOI: 10.1007/s10522-005-6040-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 11/17/2005] [Indexed: 11/27/2022]
Abstract
Reactive oxygen species (ROS) are formed by all aerobic organisms, and are involved in the numerous physiological and pathophysiological processes. Opioid peptides belong to a class of bioactive compounds of great interest because of their opiate-like activity. We determined the influence of methionine-enkephalin (MENK) on age-associated oxidant/antioxidant status in liver of CBA mice. Lipid peroxidation (LPO), total superoxide dismutase (tSOD), catalase (CAT), and glutathione peroxidase (Gpx) activities of 1, 4, 10 and 18 months old male and female control and MENK treated (10 mg/kg bw) CBA mice were determined. MENK showed gender-related effect on both oxidant/antioxidant parameters. It stimulated LPO in males, but suppressed in females. CAT and Gpx activities were lowered upon MENK exposure in males, but in females the activities were modulated by MENK. The relative mRNA levels for the antioxidant enzymes CuZnSOD, MnSOD, CAT and Gpx-1 were determined by reverse transcriptase polymerase chain reaction (RT-PCR) in groups where differences in activities between control and treated samples were observed. Changes of mRNA level in MENK treated groups showed that transcriptional regulation is both gender- and age-related. Comparison of enzyme activities and mRNA levels in control and MENK treated groups showed that, in some cases parallel changes occurred, while in other cases nonparallel changes were found. These results suggest that transcriptional changes are in accordance with enzyme activities in some cases, while in other cases posttranscriptional regulation of antioxidant enzymes may exist.
Collapse
Affiliation(s)
- Sandra Sobocanec
- Division of Molecular Medicine, Rudjer Bosković Institute, Bijenicka 54, 10000, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
35
|
Kumar S, Barillas-Mury C. Ookinete-induced midgut peroxidases detonate the time bomb in anopheline mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:721-7. [PMID: 15894189 DOI: 10.1016/j.ibmb.2005.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2005] [Indexed: 05/02/2023]
Abstract
Previous analysis of the temporal-spatial relationship between ookinete migration and the cellular localization of genes mediating midgut immune defense responses suggested that, in order to survive, parasites must complete invasion before toxic chemicals ("a bomb") are generated by the invaded cell. Recent studies indicate that ookinete invasion induces tyrosine nitration as a two-step reaction, in which NOS induction is followed by a localized increase in peroxidase activity. Peroxidases utilize nitrite and hydrogen peroxide as substrates, and detonate the time bomb by generating reactive nitrogen intermediates, such as nitrogen dioxide, which mediate nitration. There is evidence that peroxidases also mediate antimicrobial responses to bacteria, fungi and parasites in a broad range of biological systems including humans and plants. Defense reactions that generate toxic chemicals are also potentially harmful to the host mounting the response and often results in apoptosis. The two-step nitration pathway is probably an ancient response, as it has also been described in vertebrate leukocytes and probably evolved as a mechanism to circumscribe the toxic products generated during defense responses involving protein nitration.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Laboratory of Malaria and Vector Research, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | | |
Collapse
|
36
|
Srisook K, Kim C, Cha YN. Role of NO in Enhancing the Expression of HO‐1 in LPS‐Stimulated Macrophages. Methods Enzymol 2005; 396:368-77. [PMID: 16291246 DOI: 10.1016/s0076-6879(05)96031-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Macrophages serve as the first-line defense against invading pathogens by (a) overproducing O2- via activation of NADPH-oxidase localized in its plasma membrane, (b) inducing the expression of inducible nitric oxide synthase (iNOS) and overproducing NO, and (c) generating highly toxic peroxynitrite (ONOO-) to kill the invading pathogens without killing the macrophages themselves. Results show that this was due at least in part to the NO-derived induction of heme oxygenase-1 (HO-1) expression. The NO-derived induction of HO-1 caused (a) rapid elimination of toxic heme to inhibit lipid peroxidation and to prevent further induction of iNOS, (b) rapid production of bile pigment antioxidants to scavenge reactive oxygen (O2-) and nitrogen (NO) metabolites, and (c) rapid production of carbon monoxide (CO) to inhibit further production of O2- and NO by blocking the activities of NADPH-oxidase and iNOS, respectively. Thus, the NO overproduced by the O2- -dependent induction of iNOS expression can scavenge O2- to produce ONOO-, first to kill the invading pathogens and second to enhance the HO-1 expression in macrophages. This allows the survival of host tissues from the injuries caused by inflammatory oxidative stress.
Collapse
Affiliation(s)
- Klaokwan Srisook
- Department of Pharmacology and Toxicology, Medicinal Toxicology Center, College of Medicine, Inha University, Inchon, South Korea
| | | | | |
Collapse
|
37
|
Kumar S, Gupta L, Han YS, Barillas-Mury C. Inducible Peroxidases Mediate Nitration of Anopheles Midgut Cells Undergoing Apoptosis in Response to Plasmodium Invasion. J Biol Chem 2004; 279:53475-82. [PMID: 15456781 DOI: 10.1074/jbc.m409905200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasmodium berghei invasion of Anopheles stephensi midgut cells causes severe damage, induces expression of nitric-oxide synthase, and leads to apoptosis. The present study indicates that invasion results in tyrosine nitration, catalyzed as a two-step reaction in which nitric-oxide synthase induction is followed by increased peroxidase activity. Ookinete invasion induced localized expression of peroxidase enzymes, which catalyzed protein nitration in vitro in the presence of nitrite and H(2)O(2). Histochemical stainings revealed that when a parasite migrates laterally and invades more than one cell, the pattern of induced peroxidase activity is similar to that observed for tyrosine nitration. In Anopheles gambiae, ookinete invasion elicited similar responses; it induced expression of 5 of the 16 peroxidase genes predicted by the genome sequence and decreased mRNA levels of one of them. One of these inducible peroxidases has a C-terminal oxidase domain homologous to the catalytic moiety of phagocyte NADPH oxidase and could provide high local levels of superoxide anion (O(2)), that when dismutated would generate the local increase in H(2)O(2) required for nitration. Chemically induced apoptosis of midgut cells also activated expression of four ookinete-induced peroxidase genes, suggesting their involvement in general apoptotic responses. The two-step nitration reaction provides a mechanism to precisely localize and circumscribe the toxic products generated by defense reactions involving nitration. The present study furthers our understanding of the biochemistry of midgut defense reactions to parasite invasion and how these may influence the efficiency of malaria transmission by anopheline mosquitoes.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
38
|
Olker C, Siese A, Stumpf S, Müller B, Gemsa D, Garn H. Impaired superoxide radical production by bronchoalveolar lavage cells from NO(2)-exposed rats. Free Radic Biol Med 2004; 37:977-87. [PMID: 15336314 DOI: 10.1016/j.freeradbiomed.2004.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 05/17/2004] [Accepted: 06/17/2004] [Indexed: 11/13/2022]
Abstract
Production of superoxide radicals is a central property of professional phagocytes used to combat invading microorganisms. Even though the number of macrophages and neutrophils is often increased in the lungs of patients with chronic lung diseases, these patients frequently suffer from bacterially induced exacerbations. To understand the underlying mechanisms, we investigated the production of superoxide radicals by bronchoalveolar lavage (BAL) cells in a rat NO(2) exposure model (10 ppm NO(2) for 1, 3, or 20 days). We showed that cells from NO(2)-exposed animals display a significantly impaired superoxide radical release after zymosan stimulation. The use of specific inhibitors (antimycin or diphenyleneiodonium [DPI]) revealed that the major enzyme systems, NADPH oxidase and complex III of the respiratory chain, are affected. In addition, we investigated gene expression and enzyme activities of antioxidant enzymes. mRNA expression was significantly enhanced for glutathione peroxidase (GPx)-3 and CuZn-superoxide dismutase (SOD) in BAL cells from animals exposed 3 and 20 days, and GPx and SOD enzyme activities were increased in BAL cells from rats exposed 20 days. In conclusion, concomitant occurrence of reduced production and increased scavenging of superoxide radicals resulted in the drastically impaired release of these radicals from BAL cells of NO(2)-exposed rats.
Collapse
Affiliation(s)
- Christoph Olker
- Institute of Immunology, Philipps University of Marburg, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Oviedo-Chávez I, Ramírez-Apan T, Soto-Hernández M, Martínez-Vázquez M. Principles of the bark of Amphipterygium adstringens (Julianaceae) with anti-inflammatory activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2004; 11:436-445. [PMID: 15330500 DOI: 10.1016/j.phymed.2003.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Despite the fact that Amphipterygium adstringens (usually known as "cuachalalate") is used intensively in traditional medicine throughout México, there are, to our knowledge, no previous studies concerning the actual therapeutic, anti-inflammatory properties of this species. This lack of data prompted us to evaluate the aqueous (AE) and hexane (HE) extracts from A. adstringens in two models of acute inflammation: 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema and carrageenan-induced paw edema. The results showed that HE possesses dose-dependent activity, while AE showed no anti-inflammatory effect on TPA-induced edema. Reverse effects were found in the carrageenan test, wherein AE showed a 73.5% of inhibition of edema, while HE showed only a 14.4% activity at 100 mg/kg body weight. These results could indicate that AE and HE possess different anti-inflammatory mechanisms of action. On the other hand, it is known that masticadienonic (1) and 3alpha-hydroxymasticadienonic (2) acids are the main constituents of the organic extract of A. adstringens bark. Because of this knowledge, we tested 1 and 2 in the same experimental models. The results showed that 2 possesses a dose-dependent effect, while 1 does not show a dose-dependent response in TPA-induced edema. In carrageenan-induced edema tests, both 1 and 2 showed almost the same activity (approximately 44% inhibition at 100 mg/kg body weight). In order to determine whether the anti-inflammatory activities of AE, HE, 1 and 2 are involved in the alteration of inducible nitric oxide synthase (iNOS) activity, we evaluated these substances by examining nitric oxide generation in lipopolysaccharide (LPS)-activated peritoneal macrophages. The results showed that 1 presented the highest activity (93.3%), followed by 2 (86.5%), while AE (57%) and HE (33.6%) showed the lowest. In the cytotoxic MTT assay, however only 1 and 2 showed any activity whatsoever.
Collapse
Affiliation(s)
- I Oviedo-Chávez
- Instituto de Química, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, México, DF, Mexico
| | | | | | | |
Collapse
|
40
|
Maeng O, Kim YC, Shin HJ, Lee JO, Huh TL, Kang KI, Kim YS, Paik SG, Lee H. Cytosolic NADP+-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species. Biochem Biophys Res Commun 2004; 317:558-64. [PMID: 15063794 DOI: 10.1016/j.bbrc.2004.03.075] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Indexed: 11/19/2022]
Abstract
Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.
Collapse
Affiliation(s)
- Oky Maeng
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Leiro J, Alvarez E, Arranz JA, Laguna R, Uriarte E, Orallo F. Effects of cis-resveratrol on inflammatory murine macrophages: antioxidant activity and down-regulation of inflammatory genes. J Leukoc Biol 2004; 75:1156-65. [PMID: 14982945 DOI: 10.1189/jlb.1103561] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study investigated for the first time the effects of the cis isomer of resveratrol (c-RESV) on the responses of inflammatory murine peritoneal macrophages, namely on the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during the respiratory burst; on the biosynthesis of other mediators of inflammation such prostaglandins; and on the expression of inflammatory genes such as inducible nitric oxide synthase (NOS)-2 and inducible cyclooxygenase (COX)-2. Treatment with 1-100 microM c-RESV significantly inhibited intracellular and extracellular ROS production, and c-RESV at 10-100 microM significantly reduced RNS production. c-RESV at 1-100 microM was ineffective for scavenging superoxide radicals (O(2)(.-)), generated enzymatically by a hypoxanthine (HX)/xanthine oxidase (XO) system and/or for inhibiting XO activity. However, c-RESV at 10-100 microM decreased nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NADH/NADPH) oxidase activity in macrophage homogenates. c-RESV at 100 microM decreased NOS-2 and COX-2 mRNA levels in lipopolysaccharide (LPS) interferon gamma (IFN-gamma)-treated macrophages. At 10-100 microM, c-RESV also significantly inhibited NOS-2 and COX-2 protein synthesis and decreased prostaglandin E(2) (PGE(2)) production. These results indicate that c-RESV at micromolar concentrations significantly attenuates several components of the macrophage response to proinflammatory stimuli (notably, production of O(2)(.-)(-) and of the proinflammatory mediators NO(.-) and PGE(2)).
Collapse
Affiliation(s)
- José Leiro
- Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, E-15782 Santiago de Compostela (La Coruña), Spain
| | | | | | | | | | | |
Collapse
|
42
|
Vicente AM, Guillén MI, Alcaraz MJ. Heme oxygenase-1 induction and regulation in unstimulated mouse peritoneal macrophages. Biochem Pharmacol 2003; 65:905-9. [PMID: 12628482 DOI: 10.1016/s0006-2952(02)01657-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heme oxygenase-1 (HO-1) is a stress protein induced by a variety of stimuli in inflammatory cells. This study was set up to investigate the induction of this protein in unstimulated macrophages. Resident mouse peritoneal macrophages purified by adhesion and cultured in basal conditions strongly induced HO-1 in a time-dependent manner, with a peak at 20 hr. At the same time, low levels of nitrite accumulated in the culture medium and expression of nitric oxide synthase-2 (NOS-2) and NOS-3 protein was detected. Inhibition of NO production and/or NOS expression by incubating macrophages with different drugs inhibiting NOS activity or modulating the redox state of the cell, such as N-acetylcysteine (NAC) resulted in inhibition of HO-1 expression, suggesting that NO is an endogenous mediator of this stress response. In conclusion, mouse peritoneal macrophages cultured in basal conditions develop an adaptive response with up-regulation of HO-1 as a very sensitive marker of oxidative stress.
Collapse
|
43
|
Frevel MAE, Bakheet T, Silva AM, Hissong JG, Khabar KSA, Williams BRG. p38 Mitogen-activated protein kinase-dependent and -independent signaling of mRNA stability of AU-rich element-containing transcripts. Mol Cell Biol 2003; 23:425-36. [PMID: 12509443 PMCID: PMC151534 DOI: 10.1128/mcb.23.2.425-436.2003] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenylate/uridylate-rich element (ARE)-mediated mRNA turnover is an important regulatory component of gene expression for innate and specific immunity, in the hematopoietic system, in cellular growth regulation, and for many other cellular processes. This diversity is reflected in the distribution of AREs in the human genome, which we have established as a database of more than 900 ARE-containing genes that may utilize AREs as a means of controlling cellular mRNA levels. The p38 mitogen-activated protein kinase (MAP kinase) pathway has been implicated in regulating the stability of nine ARE-containing transcripts. Here we explored the entire spectrum of ARE-containing genes for p38-dependent regulation of ARE-mediated mRNA turnover with a custom cDNA array containing probes for 950 ARE mRNAs. The human monocytic cell line THP-1 treated with lipopolysaccharide (LPS) was used as a reproducible cellular model system that allowed us to precisely control the conditions of mRNA induction and decay in the absence and presence of the p38 inhibitor SB203580. This approach allowed us to establish an LPS-induced ARE mRNA expression profile in human monocytes and determine the half-lives of 470 AU-rich mRNAs. Most importantly, we identified 42 AU-rich genes, previously unrecognized, that show p38-dependent mRNA stabilization. In addition to a number of cytokines, several interesting novel AU-rich transcripts likely to play a role in macrophage activation by LPS exhibited p38-dependent transcript stabilization, including macrophage-specific colony-stimulating factor 1, carbonic anhydrase 2, Bcl2, Bcl2-like 2, and nuclear factor erythroid 2-like 2. Finally, the identification of the p38-dependent upstream activator MAP kinase kinase 6 as a member of this group identifies a positive feedback loop regulating macrophage signaling via p38 MAP kinase-dependent transcript stabilization.
Collapse
Affiliation(s)
- Mathias A E Frevel
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|