1
|
Piłsyk S, Perlińska-Lenart U, Janik A, Skalmowska P, Znój A, Gawor J, Grzesiak J, Kruszewska JS. Native and Alien Antarctic Grasses as a Habitat for Fungi. Int J Mol Sci 2024; 25:8475. [PMID: 39126044 PMCID: PMC11313430 DOI: 10.3390/ijms25158475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Biological invasions are now seen as one of the main threats to the Antarctic ecosystem. An example of such an invasion is the recent colonization of the H. Arctowski Polish Antarctic Station area by the non-native grass Poa annua. This site was previously occupied only by native plants like the Antarctic hair grass Deschampsia antarctica. To adapt successfully to new conditions, plants interact with soil microorganisms, including fungi. The aim of this study was to determine how the newly introduced grass P. annua established an interaction with fungi compared to resident grass D. antarctica. We found that fungal diversity in D. antarctica roots was significantly higher compared with P. annua roots. D. antarctica managed a biodiverse microbiome because of its ability to recruit fungal biocontrol agents from the soil, thus maintaining a beneficial nature of the endophyte community. P. annua relied on a set of specific fungal taxa, which likely modulated its cold response, increasing its competitiveness in Antarctic conditions. Cultivated endophytic fungi displayed strong chitinolysis, pointing towards their role as phytopathogenic fungi, nematode, and insect antagonists. This is the first study to compare the root mycobiomes of both grass species by direct culture-independent techniques as well as culture-based methods.
Collapse
Affiliation(s)
- Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| | - Urszula Perlińska-Lenart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| | - Anna Janik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| | - Patrycja Skalmowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| | - Anna Znój
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
- Botanical Garden—Center for Biological Diversity Conservation, Polish Academy of Sciences, Prawdziwka 2, 02-973 Warsaw, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| | - Jakub Grzesiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| | - Joanna S. Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland; (S.P.); (U.P.-L.); (A.J.); (P.S.); (A.Z.); (J.G.)
| |
Collapse
|
2
|
Matušinsky P, Florová V, Sedláková B, Mlčoch P, Bleša D. Colonization dynamic and distribution of the endophytic fungus Microdochium bolleyi in plants measured by qPCR. PLoS One 2024; 19:e0297633. [PMID: 38271444 PMCID: PMC10810448 DOI: 10.1371/journal.pone.0297633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Microdochium bolleyi is a fungal endophyte of cereals and grasses proposed as an ideal model organism for studying plant-endophyte interactions. A qPCR-based diagnostic assay was developed to detect M. bolleyi in wheat and Brachypodium distachyon tissues using the species-specific primers MbqITS derived from the ITS of the ribosomal gene. Specificity was tested against 20 fungal organisms associated with barley and wheat. Colonization dynamics, endophyte distribution in the plant, and potential of the seed transmission were analyzed in the wheat and model plant B. distachyon. The colonization of plants by endophyte starts from the germinating seed, where the seed coats are first strongly colonized, then the endophyte spreads to the adjacent parts, crown, roots near the crown, and basal parts of the stem. While in the lower distal parts of roots, the concentration of M. bolleyi DNA did not change significantly in successive samplings (30, 60, 90, 120, and 150 days after inoculation), there was a significant increase over time in the roots 1 cm under crown, crowns and stem bases. The endophyte reaches the higher parts of the base (2-4 cm above the crown) 90 days after sowing in wheat and 150 days in B. distachyon. The endophyte does not reach both host species' leaves, peduncles, and ears. Regarding the potential for seed transmission, endophyte was not detected in harvested grains of plants with heavily colonized roots. Plants grown from seeds derived from parental plants heavily colonized by endophyte did not exhibit any presence of the endophyte, so transmission by seeds was not confirmed. The course of colonization dynamics and distribution in the plant was similar for both hosts tested, with two differences: the base of the wheat stem was colonized earlier, but B. distachyon was occupied more intensively and abundantly than wheat. Thus, the designed species-specific primers could detect and quantify the endophyte in planta.
Collapse
Affiliation(s)
- Pavel Matušinsky
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
| | - Vendula Florová
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
| | - Božena Sedláková
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Patrik Mlčoch
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Dominik Bleša
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Gao Y, Ren GC, Wanasinghe DN, Xu JC, Gomes de Farias AR, Gui H. Two New Species and a New Record of Microdochium from Grasses in Yunnan Province, South-West China. J Fungi (Basel) 2022; 8:1297. [PMID: 36547630 PMCID: PMC9783193 DOI: 10.3390/jof8121297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Microdochium species are frequently reported as phytopathogens on various plants and also as saprobic and soil-inhabiting organisms. As a pathogen, they mainly affect grasses and cereals, causing severe disease in economically valuable crops, resulting in reduced yield and, thus, economic loss. Numerous asexual Microdochium species have been described and reported as hyphomycetous. However, the sexual morph is not often found. The main purpose of this study was to describe and illustrate two new species and a new record of Microdochium based on morphological characterization and multi-locus phylogenetic analyses. Surveys of both asexual and sexual morph specimens were conducted from March to June 2021 in Yunnan Province, China. Here, we introduce Microdochium graminearum and M. shilinense, from dead herbaceous stems of grasses and report M. bolleyi as an endophyte of Setaria parviflora leaves. This study improves the understanding of Microdochium species on monocotyledonous flowering plants in East Asia. A summary of the morphological characteristics of the genus and detailed references are provided for use in future research.
Collapse
Affiliation(s)
- Ying Gao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Guiyang Nursing Vocational College, Guiyang City 550081, China
| | - Dhanushka N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jian-Chu Xu
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | - Heng Gui
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
4
|
Compatible interaction of Brachypodium distachyon and endophytic fungus Microdochium bolleyi. PLoS One 2022; 17:e0265357. [PMID: 35286339 PMCID: PMC8920291 DOI: 10.1371/journal.pone.0265357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Brachypodium distachyon is a useful model organism for studying interaction of cereals with phytopathogenic fungi. The present study tested the possibility of a compatible interaction of B. distachyon with the endophytic fungus Microdochium bolleyi originated from wheat roots. There was evaluated the effect of this endophytic fungus on the intensity of the attack by pathogen Fusarium culmorum in B. distachyon and wheat, and also changes in expression of genes (in B. distachyon: BdChitinase1, BdPR1-5, BdLOX3, BdPAL, BdEIN3, and BdAOS; and in wheat: TaB2H2(chitinase), TaPR1.1, TaLOX, TaPAL, TaEIN2, and TaAOS) involved in defence against pathogens. Using light microscopy and newly developed specific primers was found to be root colonization of B. distachyon by the endophyte M. bolleyi. B. distachyon plants, as well as wheat inoculated with M. bolleyi showed significantly weaker symptoms on leaves from infection by fungus F. culmorum than did plants without the endophyte. Expression of genes BdPR1-5, BdChitinase1, and BdLOX3 in B. distachyon and of TaPR1.1 and TaB2H2 in wheat was upregulated after infection with F. culmorum. M. bolleyi-mediated resistance in B. distachyon was independent of the expression of the most tested genes. Taken together, the results of the present study show that B. distachyon can be used as a model host system for endophytic fungus M. bolleyi.
Collapse
|
5
|
Rizwan HM, Zhimin L, Harsonowati W, Waheed A, Qiang Y, Yousef AF, Munir N, Wei X, Scholz SS, Reichelt M, Oelmüller R, Chen F. Identification of Fungal Pathogens to Control Postharvest Passion Fruit ( Passiflora edulis) Decays and Multi-Omics Comparative Pathway Analysis Reveals Purple Is More Resistant to Pathogens than a Yellow Cultivar. J Fungi (Basel) 2021; 7:jof7100879. [PMID: 34682301 PMCID: PMC8538400 DOI: 10.3390/jof7100879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/25/2023] Open
Abstract
Production of passion fruit (Passiflora edulis) is restricted by postharvest decay, which limits the storage period. We isolated, identified, and characterized fungal pathogens causing decay in two passion fruit cultivars during two fruit seasons in China. Morphological characteristics and nucleotide sequences of ITS-rDNA regions identified eighteen isolates, which were pathogenic on yellow and purple fruit. Fusarium kyushuense, Fusarium concentricum, Colletotrichum truncatum, and Alternaria alternata were the most aggressive species. Visible inspections and comparative analysis of the disease incidences demonstrated that wounded and non-wounded yellow fruit were more susceptible to the pathogens than the purple fruit. Purple cultivar showed higher expression levels of defense-related genes through expression and metabolic profiling, as well as significantly higher levels of their biosynthesis pathways. We also found fungi with potential beneficial features for the quality of fruits. Our transcriptomic and metabolomics data provide a basis to identify potential targets to improve the pathogen resistance of the susceptible yellow cultivar. The identified fungi and affected features of the fruit of both cultivars provide important information for the control of pathogens in passion fruit industry and postharvest storage.
Collapse
Affiliation(s)
- Hafiz Muhammad Rizwan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
| | - Lin Zhimin
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China;
| | - Wiwiek Harsonowati
- Department of Bioresource Science, College of Agriculture, Ibaraki University, 3-21-1 Chuuo, Ami, Inashiki, Ibaraki 300-0393, Japan;
| | - Abdul Waheed
- Key Laboratory for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yang Qiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
| | - Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut 71524, Egypt
| | - Nigarish Munir
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
| | - Xiaoxia Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China;
| | - Sandra S. Scholz
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany;
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany;
| | - Ralf Oelmüller
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany;
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.M.R.); (Y.Q.); (A.F.Y.); (N.M.); (R.O.)
- Correspondence:
| |
Collapse
|
6
|
Das K, Lee SY, Jung HY. Molecular and Morphological Characterization of Two Novel Species Collected from Soil in Korea. MYCOBIOLOGY 2019; 48:9-19. [PMID: 32158601 PMCID: PMC7048220 DOI: 10.1080/12298093.2019.1695717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Two fungal species of ascomycetes were discovered during the screening of soil microflora from the Gangwon Province in Korea: Didymella chlamydospora sp. nov. (YW23-14) and Microdochium salmonicolor sp. nov. (NC14-294). Morphologically, YW23-14 produces smaller chlamydospores (8.0-17.0 × 7.0-15.0 µm) than D. glomerata and D. musae. The strain NC14-294 was characterized by smaller conidiogenous cells (4.9-8.8 × 2.0-3.2 µm) compared with the closest strains M. fisheri and M. phragmitis. The detailed descriptions, illustrations, and discussions regarding the morphological and phylogenetical analyses of the closely related species are provided to support the novelty of each species. Thus, YW23-14 and NC14-294 are described here as newly discovered species.
Collapse
Affiliation(s)
- Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Seung-Yeol Lee
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Korea
| | - Hee-Young Jung
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
7
|
Wemheuer F, Wemheuer B, Daniel R, Vidal S. Deciphering bacterial and fungal endophyte communities in leaves of two maple trees with green islands. Sci Rep 2019; 9:14183. [PMID: 31578453 PMCID: PMC6775154 DOI: 10.1038/s41598-019-50540-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/10/2019] [Indexed: 01/04/2023] Open
Abstract
Green islands (the re-greening of senescent leaf tissues) are particularly evident on leaves infected with fungal pathogens. To date, there is only a limited number of studies investigating foliar endophytic microorganisms in phytopathogen-infected leaves. Here, we analysed bacterial and fungal endophyte communities in leaves without green islands (control leaves; CL), within green island areas (GLA) and the surrounding yellow leaf areas (YLA) of leaves with green islands of Acer campestre and A. platanoides. GLA samples of A. campestre and A. platanoides were dominated by Sawadaea polyfida and S. bicornis, respectively, suggesting that these fungi might be responsible for the green islands. We detected a higher fungal richness and diversity in CL compared to GLA samples of A. campestre. Leaf status (CL, GLA, YLA) significantly altered the composition of fungal communities of A. campestre. This was related to differences in fungal community composition between YLA and GLA samples. Site was the main driver of bacterial communities, suggesting that bacterial and fungal endophytes are shaped by different factors. Overall, we observed Acer species-specific responses of endophyte communities towards the presence of green islands and/or leaf type, which might be attributed to several fungi and bacteria specifically associated with one Acer species.
Collapse
Affiliation(s)
- Franziska Wemheuer
- Department of Crop Sciences, University of Göttingen, Grisebachstr.6, D-37077, Göttingen, Germany
- Applied Marine and Estuarine Ecology, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Bernd Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
- Centre for Marine Science and Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Stefan Vidal
- Department of Crop Sciences, University of Göttingen, Grisebachstr.6, D-37077, Göttingen, Germany.
| |
Collapse
|
8
|
Wemheuer B, Thomas T, Wemheuer F. Fungal Endophyte Communities of Three Agricultural Important Grass Species Differ in Their Response Towards Management Regimes. Microorganisms 2019; 7:E37. [PMID: 30691243 PMCID: PMC6407066 DOI: 10.3390/microorganisms7020037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/26/2022] Open
Abstract
Despite the importance of endophytic fungi for plant health, it remains unclear how these fungi are influenced by grassland management practices. Here, we investigated the effect of fertilizer application and mowing frequency on fungal endophyte communities and their life strategies in aerial tissues of three agriculturally important grass species (Dactylis glomerata L., Festuca rubra L. and Lolium perenne L.) over two consecutive years. Our results showed that the management practices influenced fungal communities in the plant holobiont, but observed effects differed between grass species and sampling year. Phylogenetic diversity of fungal endophytes in D. glomerata was significantly affected by mowing frequency in 2010, whereas fertilizer application and the interaction of fertilization with mowing frequency had a significant impact on community composition of L. perenne in 2010 and 2011, respectively. Taken together, our research provides a basis for future studies on responses of fungal endophytes towards management practices. To the best of our knowledge, this is the first study simultaneously assessing fungal endophyte communities in aerial parts of three agriculturally important grass species over two consecutive years.
Collapse
Affiliation(s)
- Bernd Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany.
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Franziska Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, D-37077 Göttingen, Germany.
- Division of Agricultural Entomology, Department of Crop Sciences, Georg-August University of Göttingen, D-37077 Göttingen, Germany.
| |
Collapse
|
9
|
Climate and dispersal influence the structure of leaf fungal endophyte communities of Quercus gambelii in the eastern Great Basin, USA. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Batista-García RA, Sutton T, Jackson SA, Tovar-Herrera OE, Balcázar-López E, Sánchez-Carbente MDR, Sánchez-Reyes A, Dobson ADW, Folch-Mallol JL. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One 2017; 12:e0173750. [PMID: 28339473 PMCID: PMC5365110 DOI: 10.1371/journal.pone.0173750] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/24/2017] [Indexed: 12/03/2022] Open
Abstract
Extreme habitats have usually been regarded as a source of microorganisms that possess robust proteins that help enable them to survive in such harsh conditions. The deep sea can be considered an extreme habitat due to low temperatures (<5°C) and high pressure, however marine sponges survive in these habitats. While bacteria derived from deep-sea marine sponges have been studied, much less information is available on fungal biodiversity associated with these sponges. Following screening of fourteen fungi isolated from the deep-sea sponge Stelletta normani sampled at a depth of 751 metres, three halotolerant strains (TS2, TS11 and TS12) were identified which displayed high CMCase and xylanase activities. Molecular based taxonomic approaches identified these strains as Cadophora sp. TS2, Emericellopsis sp. TS11 and Pseudogymnoascus sp. TS 12. These three fungi displayed psychrotolerance and halotolerant growth on CMC and xylan as sole carbon sources, with optimal growth rates at 20°C. They produced CMCase and xylanase activities, which displayed optimal temperature and pH values of between 50-70°C and pH 5-8 respectively, together with good thermostability and halotolerance. In solid-state fermentations TS2, TS11 and TS12 produced CMCases, xylanases and peroxidase/phenol oxidases when grown on corn stover and wheat straw. This is the first time that CMCase, xylanase and peroxidase/phenol oxidase activities have been reported in these three fungal genera isolated from a marine sponge. Given the biochemical characteristics of these ligninolytic enzymes it is likely that they may prove useful in future biomass conversion strategies involving lignocellulosic materials.
Collapse
Affiliation(s)
- Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Thomas Sutton
- School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Omar Eduardo Tovar-Herrera
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Edgar Balcázar-López
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | - Ayixon Sánchez-Reyes
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
11
|
Niche conservatism in Gynandropaa frogs on the southeastern Qinghai-Tibetan Plateau. Sci Rep 2016; 6:32624. [PMID: 27601098 PMCID: PMC5013482 DOI: 10.1038/srep32624] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 08/11/2016] [Indexed: 12/21/2022] Open
Abstract
The role of ecological niche in lineage diversification has been the subject of long-standing interest of ecologists and evolutionary biologists. Gynandropaa frogs diversified into three independent clades endemic to the southeastern Qinghai-Tibetan Plateau. Here, we address the question whether these clades kept the same niche after separation, and what it tells us about possible diversification processes. We applied predictions in geographical (G)-space and tests of niche conservatism in environmental (E)-space. Niche models in G-space indicate separate regions with high suitability for the different clades, with some potential areas of sympatry. While the pair of central and eastern clades displayed the largest niche overlap for most variables, and strict niche equivalency was rejected for all clade-pairs, we found no strong evidence for niche divergence, but rather the signature of niche conservatism compared to null models in E-space. These results suggest a common ancestral ecological niche, and as such give good support to divergence through allopatric speciation, but alternative explanations are also possible. Our findings illustrate how testing for niche conservatism in lineage diversification can provide insights into underlying speciation processes, and how this information may guide further research and conservation practices, as illustrated here for amphibians on the Qinghai-Tibetan Plateau.
Collapse
|
12
|
Réblová M, Miller AN, Rossman AY, Seifert KA, Crous PW, Hawksworth DL, Abdel-Wahab MA, Cannon PF, Daranagama DA, De Beer ZW, Huang SK, Hyde KD, Jayawardena R, Jaklitsch W, Jones EBG, Ju YM, Judith C, Maharachchikumbura SSN, Pang KL, Petrini LE, Raja HA, Romero AI, Shearer C, Senanayake IC, Voglmayr H, Weir BS, Wijayawarden NN. Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales). IMA Fungus 2016; 7:131-53. [PMID: 27433444 PMCID: PMC4941682 DOI: 10.5598/imafungus.2016.07.01.08] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022] Open
Abstract
With the advance to one scientific name for each fungal species, the generic names in the class Sordariomycetes typified by sexual and asexual morphs are evaluated based on their type species to determine if they compete with each other for use or protection. Recommendations are made for which of the competing generic names should be used based on criteria such as priority, number of potential names changes, and frequency of use. Some recommendations for well-known genera include Arthrinium over Apiospora, Colletotrichum over Glomerella, Menispora over Zignoëlla, Microdochium over Monographella, Nigrospora over Khuskia, and Plectosphaerella over Plectosporium. All competing generic names are listed in a table of recommended names along with the required action. If priority is not accorded to sexually typified generic names after 2017, only four names would require formal protection: Chaetosphaerella over Oedemium, Diatrype over Libertella, Microdochium over Monographella, and Phaeoacremonium over Romellia and Togninia. Concerning species in the recommended genera, one replacement name (Xylaria benjaminii nom. nov.) is introduced, and the following new combinations are made: Arthrinium sinense, Chloridium caesium, C. chloroconium, C. gonytrichii, Corollospora marina, C. parvula, C. ramulosa, Juncigena fruticosae, Melanospora simplex, Seimatosporium massarina, Sporoschisma daemonoropis, S. taitense, Torpedospora mangrovei, Xylaria penicilliopsis, and X. termiticola combs. nov.
Collapse
Affiliation(s)
- Martina Réblová
- Department of Taxonomy, Institute of Botany of the Academy of Sciences of the Czech Republic, Prùhonice 252 43, Czech Republic
| | - Andrew N. Miller
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois 61820, USA
| | - Amy Y. Rossman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Keith A. Seifert
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada
| | - Pedro W. Crous
- CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - David L. Hawksworth
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Madrid 28040, Spain
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS, UK
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Paul F. Cannon
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS, UK
| | - Dinushani A. Daranagama
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Z. Wilhelm De Beer
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa
| | - Shi-Ke Huang
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ruvvishika Jayawardena
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Walter Jaklitsch
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yu-Ming Ju
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115 29, Taiwan
| | - Caroline Judith
- Department of Mycology, Institute of Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Sajeewa S. N. Maharachchikumbura
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 8, 123 Al Khoud, Oman
| | - Ka-Lai Pang
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan (ROC)
| | | | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, 457 Sullivan Science Building, University of North Carolina, Greensboro, NC 27402-6170, USA
| | - Andrea I Romero
- Instituto de Micología y Botánica, UBA-CONICET, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Piso 4°, Lab 6, Av. Int. Güiraldes 2620. Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Carol Shearer
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois 61820, USA
| | - Indunil C. Senanayake
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Hermann Voglmayr
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Bevan S. Weir
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand
| | - Nalin N. Wijayawarden
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
13
|
David AS, Haridas S, LaButti K, Lim J, Lipzen A, Wang M, Barry K, Grigoriev IV, Spatafora JW, May G. Draft Genome Sequence of Microdochium bolleyi, a Dark Septate Fungal Endophyte of Beach Grass. GENOME ANNOUNCEMENTS 2016; 4:e00270-16. [PMID: 27125481 PMCID: PMC4850852 DOI: 10.1128/genomea.00270-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 01/30/2023]
Abstract
Here, we present the genome sequence of the dark septate fungal endophyte Microdochium bolleyi (Ascomycota, Sordariomycetes, Xylariales). The assembled genome size was 38.84 Mbp and consisted of 173 scaffolds and 13,177 predicted genes.
Collapse
Affiliation(s)
- Aaron S David
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Joanne Lim
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Mei Wang
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Georgiana May
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, Minnesota, USA Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
14
|
Elucidating the Diversity of Aquatic Microdochium and Trichoderma Species and Their Activity against the Fish Pathogen Saprolegnia diclina. Int J Mol Sci 2016; 17:ijms17010140. [PMID: 26805821 PMCID: PMC4730379 DOI: 10.3390/ijms17010140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/25/2015] [Accepted: 01/12/2016] [Indexed: 11/17/2022] Open
Abstract
Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture.
Collapse
|
15
|
Liu Y, de Bruijn I, Jack ALH, Drynan K, van den Berg AH, Thoen E, Sandoval-Sierra V, Skaar I, van West P, Diéguez-Uribeondo J, van der Voort M, Mendes R, Mazzola M, Raaijmakers JM. Deciphering microbial landscapes of fish eggs to mitigate emerging diseases. THE ISME JOURNAL 2014; 8:2002-14. [PMID: 24671087 PMCID: PMC4184010 DOI: 10.1038/ismej.2014.44] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/18/2014] [Accepted: 02/27/2014] [Indexed: 12/18/2022]
Abstract
Animals and plants are increasingly suffering from diseases caused by fungi and oomycetes. These emerging pathogens are now recognized as a global threat to biodiversity and food security. Among oomycetes, Saprolegnia species cause significant declines in fish and amphibian populations. Fish eggs have an immature adaptive immune system and depend on nonspecific innate defences to ward off pathogens. Here, meta-taxonomic analyses revealed that Atlantic salmon eggs are home to diverse fungal, oomycete and bacterial communities. Although virulent Saprolegnia isolates were found in all salmon egg samples, a low incidence of Saprolegniosis was strongly correlated with a high richness and abundance of specific commensal Actinobacteria, with the genus Frondihabitans (Microbacteriaceae) effectively inhibiting attachment of Saprolegniato salmon eggs. These results highlight that fundamental insights into microbial landscapes of fish eggs may provide new sustainable means to mitigate emerging diseases.
Collapse
Affiliation(s)
- Yiying Liu
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Irene de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Allison LH Jack
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Prescott College, Environmental Studies Program, Prescott, AZ, USA
| | | | - Albert H van den Berg
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Even Thoen
- Norwegian Veterinary Institute, Oslo, Norway
- Norwegian School of Veterinary Science, Oslo, Norway
| | | | - Ida Skaar
- Norwegian Veterinary Institute, Oslo, Norway
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Menno van der Voort
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Rodrigo Mendes
- Laboratory of Environmental Microbiology, Embrapa Environment, Jaguariuna, Brazil
| | | | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
16
|
Assessment of root-associated fungal communities colonizing two species of tropical grasses reveals incongruence to fungal communities of North American native grasses. FUNGAL ECOL 2013. [DOI: 10.1016/j.funeco.2012.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|