1
|
Ottesen A, Kocurek B, Reed E, Commichaux S, Mammel M, Ramachandran P, McDermott P, Flannery BM, Strain E. Paired metagenomic and chemical evaluation of aflatoxin-contaminated dog kibble. Front Vet Sci 2024; 11:1374839. [PMID: 38665771 PMCID: PMC11043538 DOI: 10.3389/fvets.2024.1374839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Identification of chemical toxins from complex or highly processed foods can present 'needle in the haystack' challenges for chemists. Metagenomic data can be used to guide chemical toxicity evaluations by providing DNA-based description of the wholistic composition (eukaryotic, bacterial, protozoal, viral, and antimicrobial resistance) of foods suspected to harbor toxins, allergens, or pathogens. This type of information can focus chemistry-based diagnostics, improve hazard characterization and risk assessment, and address data gaps. Additionally, there is increasing recognition that simultaneously co-occurring mycotoxins, either from single or multiple species, can impact dietary toxicity exposure. Metagenomic data provides a way to address data gaps related to co-occurrence of multiple fungal species. Methods Paired metagenomic and chemical data were used to evaluate aflatoxin-contaminated kibble with known levels of specific mycotoxins. Kibble was ground to a fine powder for both chemical and molecular analyses. Chemical analyses were performed with Liquid Chromatography Mass Spectrometry (LCMS) and according to the AOAC Official method 2005.08: Aflatoxins in Corn, Raw Peanuts, and Peanut Butter using Liquid Chromatography with Post-Column Photochemical Derivatization. Metagenomes were created from DNA extracted from ground kibble and sequenced on an Illumina NextSeq 2000 with an average sequence depth of 180 million reads per replicate. Results and discussion Metagenomic data demonstrated that the abundance of DNA from putative aflatoxigenic Aspergillus spp. correlated with the levels of aflatoxin quantified by LCMS. Metagenomic data also identified an expansive range of co-occurring fungal taxa which may produce additional mycotoxins. DNA data paired with chemical data provides a novel modality to address current data gaps surrounding dietary mycotoxin exposure, toxigenic fungal taxonomy, and mycotoxins of emerging concern.
Collapse
Affiliation(s)
- Andrea Ottesen
- Center for Veterinary Medicine (CVM), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Brandon Kocurek
- Center for Veterinary Medicine (CVM), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Elizabeth Reed
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Seth Commichaux
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Mark Mammel
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Patrick McDermott
- Center for Veterinary Medicine (CVM), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Brenna M. Flannery
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Errol Strain
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
2
|
Resendiz-Nava CN, Alonso-Onofre F, Silva-Rojas HV, Rebollar-Alviter A, Rivera-Pastrana DM, Stasiewicz MJ, Nava GM, Mercado-Silva EM. Tomato Plant Microbiota under Conventional and Organic Fertilization Regimes in a Soilless Culture System. Microorganisms 2023; 11:1633. [PMID: 37512805 PMCID: PMC10383152 DOI: 10.3390/microorganisms11071633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Tomato is the main vegetable cultivated under soilless culture systems (SCSs); production of organic tomato under SCSs has increased due to consumer demands for healthier and environmentally friendly vegetables. However, organic tomato production under SCSs has been associated with low crop performance and fruit quality defects. These agricultural deficiencies could be linked to alterations in tomato plant microbiota; nonetheless, this issue has not been sufficiently addressed. Thus, the main goal of the present study was to characterize the rhizosphere and phyllosphere of tomato plants cultivated under conventional and organic SCSs. To accomplish this goal, tomato plants grown in commercial greenhouses under conventional or organic SCSs were tested at 8, 26, and 44 weeks after seedling transplantation. Substrate (n = 24), root (n = 24), and fruit (n = 24) composite samples were subjected to DNA extraction and high-throughput 16S rRNA gene sequencing. The present study revealed that the tomato core microbiota was predominantly constituted by Proteobacteria, Actinobacteria, and Firmicutes. Remarkably, six bacterial families, Bacillaceae, Microbacteriaceae, Nocardioidaceae, Pseudomonadaceae, Rhodobacteraceae, and Sphingomonadaceae, were shared among all substrate, rhizosphere, and fruit samples. Importantly, it was shown that plants under organic SCSs undergo a dysbiosis characterized by significant changes in the relative abundance of Bradyrhizobiaceae, Caulobacteraceae, Chitinophagaceae, Enterobacteriaceae, Erythrobacteraceae, Flavobacteriaceae, Nocardioidaceae, Rhodobacteraceae, and Streptomycetaceae. These results suggest that microbial alterations in substrates, roots, and fruits could be potential factors in contributing to the crop performance and fruit quality deficiencies observed in organic SCSs.
Collapse
Affiliation(s)
- Carolina N Resendiz-Nava
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| | | | - Hilda V Silva-Rojas
- Posgrado en Recursos Geneticos y Productividad, Produccion de Semillas, Colegio de Postgraduados, Km 36.5 Carretera Mexico-Texcoco, Texcoco 56264, Mexico
| | - Angel Rebollar-Alviter
- Centro Regional Morelia, Universidad Autonoma de Chapingo, Morelia 58170, Michoacan, Mexico
| | - Dulce M Rivera-Pastrana
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| | - Matthew J Stasiewicz
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1302W Pennsylvania Ave, Urbana, IL 61801, USA
| | - Gerardo M Nava
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| | - Edmundo M Mercado-Silva
- Facultad de Quimica, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro 76010, Queretaro, Mexico
| |
Collapse
|
3
|
Genome Assembly of a Putative Plant Growth-Stimulating Bacterial Sweet Pepper Fruit Isolate, Enterobacter hormaechei SRU4.4. Microbiol Resour Announc 2023; 12:e0123722. [PMID: 36692291 PMCID: PMC9933625 DOI: 10.1128/mra.01237-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Here, we report the draft genome sequence of Enterobacter hormaechei SRU4.4. This bacterium (genome size = 4,440,516 bp; coding sequences = 4,100; G+C content = 56%) encodes for genes attributed to plant growth promotion (PGP).
Collapse
|
4
|
Gorrasi S, Pasqualetti M, Muñoz-Palazon B, Novello G, Mazzucato A, Campiglia E, Fenice M. Comparison of the Peel-Associated Epiphytic Bacteria of Anthocyanin-Rich "Sun Black" and Wild-Type Tomatoes under Organic and Conventional Farming. Microorganisms 2022; 10:2240. [PMID: 36422310 PMCID: PMC9694333 DOI: 10.3390/microorganisms10112240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 07/30/2023] Open
Abstract
Tomatoes are among the most consumed vegetables worldwide and represent a source of health-beneficial substances. Our study represents the first investigating the peel-associated epiphytic bacteria of red and purple (anthocyanin-rich) tomatoes subjected to organic and conventional farming systems. Proteobacteria was the dominant phylum (relative abundances 79-91%) in all experimental conditions. Enterobacteriaceae represented a large fraction (39.3-47.5%) of the communities, with Buttiauxella and Atlantibacter as the most represented genera. The core microbiota was composed of 59 operational taxonomic units (OTUs), including the majority of the most abundant ones. The occurrence of the most abundant OTUs differed among the experimental conditions. OTU 1 (Buttiauxella), OTU 2 (Enterobacteriales), and OTU 6 (Bacillales) were higher in red and purple tomatoes grown under organic farming. OTU 5 (Acinetobacter) had the highest abundance in red tomatoes subjected to organic farming. OTU 3 (Atlantibacter) was among the major OTUs in red tomatoes under both farming conditions. OTU 7 (Clavibacter) and OTU 8 (Enterobacteriaceae) had abundances ≥1% only in red tomatoes grown under conventional farming. PCA and clustering analysis highlighted a high similarity between the bacterial communities of red and purple tomatoes grown under organic farming. Furthermore, the bacterial communities of purple tomatoes grown under organic farming showed the lowest diversity and evenness. This work paves the way to understand the role of nutritional superior tomato genotypes, combined with organic farming, to modulate the presence of beneficial/harmful bacteria and supply healthier foods within a sustainable agriculture.
Collapse
Affiliation(s)
- Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| | - Marcella Pasqualetti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
- Laboratory of Ecology of Marine Fungi, CoNISMa, Department of Ecological and Biological Sciences, University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| | - Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
- Institute of Water Research, University of Granada, 18071 Granada, Spain
| | - Giorgia Novello
- Department of Science, Technology and Innovation (DISIT), Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Andrea Mazzucato
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Enio Campiglia
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
- Laboratory of Applied Marine Microbiology, CoNISMa, University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| |
Collapse
|
5
|
Betiku OC, Sarjeant KC, Ngatia LW, Aghimien MO, Odewumi CO, Latinwo LM. Evaluation of microbial diversity of three recreational water bodies using 16S rRNA metagenomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144773. [PMID: 33548724 DOI: 10.1016/j.scitotenv.2020.144773] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Surface water plays a significant role in world development by promoting economic growth and health benefits to humans and animals whose lives depend on good water quality in the ecosystem. Thus, this study investigated the differences in physical and chemical properties of surface water from two lakes (Lakes Jackson and Talquin) and a pond (Pedrick Pond). Also, the influence of environmental factors on the microbial communities that live within the water environment was examined. Genomic DNA was extracted from the water samples collected and 16S rRNA sequencing method was employed to characterize the microbial community compositions across the three locations. The results obtained suggest that the water sources met the recommended recreational water quality criteria standard for clean water. Overall, Proteobacteria, Actinobacteria, Cyanobacteria, Bacteroidetes were the main bacterial phyla present in the communities, while Archaea was mainly dominated by Euryachaeota. Pressure, conductivity, temperature, dissolved oxygen (DO), and pH accounted for 74.2% of the variation in the distribution of the microbial community in the three locations (P < 0.05), while 58.2% of the variation in the microbial community distribution was accounted for by pressure and conductivity. The high temperature observed in the Pedrick Pond correlated with the distribution of genera hgcl_clades and Legionella. While in Lake Talquin, water conductivity was significantly associated with the abundance of Cyanobium_PCC_6307, Sediminibacterium, and Conexibacter. The results from this study indicate that the microbial communities in the two lakes are different from the pond and all the environmental variables accounted for a significant portion of the total variation, but pressure, conductivity, and temperature are more important factors due to significant correlation with the distribution of the microbial communities.
Collapse
Affiliation(s)
- Omolola C Betiku
- Center for Water Resources, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA; Division of Agriculture Science, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| | - Keawin C Sarjeant
- Division of Agriculture Science, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Lucy W Ngatia
- Center for Water Resources, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Monica O Aghimien
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Caroline O Odewumi
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Lekan M Latinwo
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
6
|
Bacterial communities associated with the surface of fresh sweet pepper (Capsicum annuum) and their potential as biocontrol. Sci Rep 2020; 10:8560. [PMID: 32444860 PMCID: PMC7244708 DOI: 10.1038/s41598-020-65587-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
Fresh produce vegetables are colonized by different bacterial species, some of which are antagonistic to microbes that cause postharvest losses. However, no comprehensive assessment of the diversity and composition of bacteria inhabiting surfaces of fresh pepper plants grown under different conditions has been conducted. In this study, 16S RNA amplicon sequencing was used to reveal bacterial communities inhabiting the surfaces of red and green pepper (fungicides-treated and non-fungicides-treated) grown under hydroponic and open field conditions. Results revealed that pepper fruit surfaces were dominated by bacterial phylum Proteobacteria, Firmicutes, Actinobacteria, and, Bacteroidetes. The majority of the bacterial operation taxonomic units (97% similarity cut-off) were shared between the two habitats, two treatments, and the two pepper types. Phenotypic predictions (at phylum level) detected a high abundance of potentially pathogenic, biofilm-forming, and stress-tolerant bacteria on samples grown on open soils than those from hydroponic systems. Furthermore, bacterial species of genera mostly classified as fungal antagonists including; Acinetobacter, Agrobacterium, and Burkholderia were the most abundant on the surfaces. These results suggest that peppers accommodate substantially different bacterial communities with antagonistic activities on their surfaces, independent of employed agronomic strategies and that the beneficial bacterial strains maybe more important for peppers established on open fields, which seems to be more vulnerable to abiotic and biotic stresses.
Collapse
|
7
|
Disayathanoowat T, Li H, Supapimon N, Suwannarach N, Lumyong S, Chantawannakul P, Guo J. Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China. Microorganisms 2020; 8:microorganisms8020264. [PMID: 32075309 PMCID: PMC7074699 DOI: 10.3390/microorganisms8020264] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
This study investigated both bacterial and fungal communities in corbicular pollen and hive-stored bee bread of two commercial honey bees, Apis mellifera and Apis cerana, in China. Although both honey bees favor different main floral sources, the dynamics of each microbial community is similar. During pH reduction in hive-stored bee bread, results from conventional culturable methods and next-generation sequencing showed a declining bacterial population but a stable fungal population. Different honey bee species and floral sources might not affect the core microbial community structure but could change the number of bacteria. Corbicular pollen was colonized by the Enterobacteriaceae bacterium (Escherichia-Shiga, Panteoa, Pseudomonas) group; however, the number of bacteria significantly decreased in hive-stored bee bread in less than 72 h. In contrast, Acinetobacter was highly abundant and could utilize protein sources. In terms of the fungal community, the genus Cladosporium remained abundant in both corbicular pollen and hive-stored bee bread. This filamentous fungus might encourage honey bees to reserve pollen by releasing organic acids. Furthermore, several filamentous fungi had the potential to inhibit both commensal/contaminant bacteria and the growth of pathogens. Filamentous fungi, in particular, the genus Cladosporium, could support pollen preservation of both honey bee species.
Collapse
Affiliation(s)
- Terd Disayathanoowat
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (T.D.); (J.G.)
| | - HuanYuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Natapon Supapimon
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Correspondence: (T.D.); (J.G.)
| |
Collapse
|
8
|
Jongman M, Carmichael PC, Bill M. Technological Advances in Phytopathogen Detection and Metagenome Profiling Techniques. Curr Microbiol 2020; 77:675-681. [PMID: 31960092 DOI: 10.1007/s00284-020-01881-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
The use of advanced molecular methods in plant pathology and applied microbiology has necessitated for more accurate, rapid detection and identification of plant pathogens. This is particularly significant given accelerated emergence of virulence that leads to increased prevalence of plant pathogens. Thus, the capacity to contain plant pathogens and ultimately disease progression is key to ensuring crop biosecurity and overall food security. Of recent, research on pathogens utilizes a holistic approach focusing on elucidating growth dynamics within the entire biome rather than studying individual or closely related isolates in unison. This has advanced knowledge and information of microbial ecosystem within natural environments in the twenty first century. Applied technological platforms used for rapid detection and profiling microbial biomes in this regard include digital PCR, pyrosequencing, Illumina, DNA microarray and barcoding, Ion torrent, and nanopore. These technologies have been applied in various fields including human health and medicine, marine and animal biology, crop production and water quality research, to mention but a few. Although much has been done and achieved through the development of several technologies, more accuracy is required to circumvent the shortfalls still experienced. This includes integrating existing methods with new applications such as viability PCRs and microbial viability testing. Hence, this review provides critical analysis of some widely used latest technologies in rapid detection and identification of plant pathogens, and profiling plant associated microbiomes that reveal growth dynamics and population diversity. The advantages and limitations of the technologies are also discussed.
Collapse
Affiliation(s)
| | - Patricia C Carmichael
- Agricultural Research and Specialists, Department of Agriculture, Malkerns, Swaziland
| | - Malick Bill
- Plant Health and Food Safety Research, Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
9
|
Anversa L, Pauli LFD, Caria EDS, Assis TCD, Stancari RCA. Microbiological quality and presence of extraneous matter in industrialized tomato sauces. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2020. [DOI: 10.1590/1981-6723.27619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Despite being a staple in the daily diet of the Brazilian population, industrialized tomatoes and their derivatives are often subject to countless contaminants during their production process, which may affect the final quality of these products. This study aimed to investigate the microbiological quality and the presence of extraneous matter in industrialized tomato sauces commercialized in Brazil. To this end, two samples of 21 different “traditional tomato sauce” brands (a total of 42 samples) commercialized in supermarkets in the municipality of Bauru, state of Sao Paulo, Brazil, were analyzed from April to November 2016. Overall, 20 (47.6%) of the 42 samples analyzed were in disagreement with the current Brazilian legislation. After incubation at 35 to 37 °C and 55 °C, no changes in the packages and pH variation >0.2 were observed. However, 9.5% of the samples showed a non-characteristic aspect and 11.9% presented growth of fungi. Regarding the presence of extraneous matter, 11.9% of the samples showed rodent hair above the permitted limit (1 in 100 g) - indicative of risks to human health, whereas 26.2% of them contained non-rodent hair - indicative of failure in adopting good manufacturing practices. Mold filament counting was conducted using the Howard method, and 14.3% of the samples presented values above 40% (acceptable limit) positive microscopic fields. In addition to subsidizing health surveillance actions, such data highlight the need for quality improvement of the raw material used and greater control during the processing of these products.
Collapse
|
10
|
Leneveu-Jenvrin C, Charles F, Barba FJ, Remize F. Role of biological control agents and physical treatments in maintaining the quality of fresh and minimally-processed fruit and vegetables. Crit Rev Food Sci Nutr 2019; 60:2837-2855. [PMID: 31547681 DOI: 10.1080/10408398.2019.1664979] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fruit and vegetables are an important part of human diets and provide multiple health benefits. However, due to the short shelf-life of fresh and minimally-processed fruit and vegetables, significant losses occur throughout the food distribution chain. Shelf-life extension requires preserving both the quality and safety of food products. The quality of fruit and vegetables, either fresh or fresh-cut, depends on many factors and can be determined by analytical or sensory evaluation methods. Among the various technologies used to maintain the quality and increase shelf-life of fresh and minimally-processed fruit and vegetables, biological control is a promising approach. Biological control refers to postharvest control of pathogens using microbial cultures. With respect to application of biological control for increasing the shelf-life of food, the term biopreservation is favored, although the approach is identical. The methods for screening and development of biocontrol agents differ greatly according to their intended application, but the efficacy of all current approaches following scale-up to commercial conditions is recognized as insufficient. The combination of biological and physical methods to maintain quality has the potential to overcome the limitations of current approaches. This review compares biocontrol and biopreservation approaches, alone and in combination with physical methods. The recent increase in the use of meta-omics approaches and other innovative technologies, has led to the emergence of new strategies to increase the shelf-life of fruit and vegetables, which are also discussed herein.
Collapse
Affiliation(s)
- Charlène Leneveu-Jenvrin
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| | - Florence Charles
- QualiSud, Université d'Avignon, CIRAD, Université Montpellier, Montpellier SupAgro, Université de La Réunion, Avignon, France
| | - Francisco J Barba
- Faculty of Pharmacy, Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Burjassot, València, Spain
| | - Fabienne Remize
- QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, Sainte Clotilde, France
| |
Collapse
|
11
|
Metagenome tracking biogeographic agroecology: Phytobiota of tomatoes from Virginia, Maryland, North Carolina and California. Food Microbiol 2019; 79:132-136. [DOI: 10.1016/j.fm.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022]
|
12
|
Lin S, Han Y, Jiangyuan C, Luo Y, Xu W, Luo H, Pang G. Revealing the biodiversity and the response of pathogen to a combined use of procymidone and thiamethoxam in tomatoes. Food Chem 2019; 284:73-79. [DOI: 10.1016/j.foodchem.2019.01.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/05/2018] [Accepted: 01/13/2019] [Indexed: 01/28/2023]
|
13
|
|
14
|
Fessard A, Remize F. Genetic and technological characterization of lactic acid bacteria isolated from tropically grown fruits and vegetables. Int J Food Microbiol 2019; 301:61-72. [PMID: 31100643 DOI: 10.1016/j.ijfoodmicro.2019.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/23/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Phyllosphere microorganisms are common contaminants of fruit or vegetable containing foods. The aim of this study was to identify and characterize lactic acid bacteria isolated from fruits and vegetables from Reunion Island, regarding possible application in food. Among 77 isolates, a large diversity of species was observed, with isolates belonging to Lactobacillus plantarum (3 isolates), other species of Lactobacillus (3), Lactococcus lactis (13), Leuconostoc pseudomesenteroides (25), Leuconostoc lactis (1), Leuconostoc mesenteroides (7), Leuconostoc citreum (14), Weissella cibaria (4), Weissella confusa (4), other species of Weissella (2) and Fructobacillus tropaeoli (1). Several of these species, although belonging to lactic acid bacteria, are poorly characterized, because of their low occurrence in dairy products. Lactobacillus, Lactococcus, Leuconostoc and Weissella isolates were classified by (GTG)5 fingerprinting in 3, 6, 21 and 10 genetic groups, respectively, suggesting a large intra-species diversity. Several Weissella and Lactobacillus isolates were particularly tolerant to acid and osmotic stress, whereas Lc. pseudomesenteroides 60 was highly tolerant to oxidative stress. Isolates of Weissella 30, 64 and 58, Leuconostoc 60 and 12b, Lactobacillus 75 and Fructobacillus 77 present relevant characteristics for their use as starters or as preservative cultures for fruits and vegetables.
Collapse
Affiliation(s)
- Amandine Fessard
- UMR QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, ESIROI, 2 rue J. Wetzell, Parc Technologique Universitaire, F-97490 Sainte Clotilde, France.
| | - Fabienne Remize
- UMR QualiSud, Université de La Réunion, CIRAD, Université Montpellier, Montpellier SupAgro, Université d'Avignon, ESIROI, 2 rue J. Wetzell, Parc Technologique Universitaire, F-97490 Sainte Clotilde, France.
| |
Collapse
|
15
|
Zhang J, Wang ET, Singh RP, Guo C, Shang Y, Chen J, Liu C. Grape berry surface bacterial microbiome: impact from the varieties and clones in the same vineyard from central China. J Appl Microbiol 2018; 126:204-214. [PMID: 30288862 DOI: 10.1111/jam.14124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/05/2018] [Accepted: 09/20/2018] [Indexed: 11/30/2022]
Abstract
AIMS Bacterial microbiome on grape berry surface may play an important role in grape quality and health. This study aims to investigate the impact of grape varieties and clones on grape berry surface bacterial microbiome from the same vineyard. METHODS AND RESULTS High-throughput sequencing strategy was used to investigate the bacterial diversity and abundance on the grape surfaces of 12 clones belonging to six varieties grown in the same vineyard of Zhengzhou Fruit Research Institute in Henan Province. In total, 45 bacterial phyla and 933 genera were detected from all samples. Cyanobacteria, Proteobacteria and Firmicutes were the most abundant and prevalent phyla, while Bacteroidetes, Chloroflexi, Acidobacteria and Planctomycetes were grape clone specific phyla. The nonrank genus from phylum Cyanobacteria occupied 30-81% of grape clones from Italian Riesling (GRX), Cabernet Franc (PLZ), Pinot Blanc (BBN) and Riesling (LSL). Interestingly, Bacillus, Pseudomonas and Lactococcus were the only three prevalent genera found on all the clones. Furthermore, the predicted functional activities of grape surface bacterial communities varied according to the clones. CONCLUSIONS The present study revealed that in addition to the grape varieties, the variations in grape clone background may also affect the bacterial microbiome on grape surfaces which may ultimately determine their functional activities. SIGNIFICANCE AND IMPACT OF THE STUDY This research provides an important information for grape planting and wine fermentation that not only the grape varieties need to be paid attention but also grape clones from the specific variety need to be concerned.
Collapse
Affiliation(s)
- J Zhang
- Grape Diversity and Resources, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China.,Department of Bioengineering and Biotechnology, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China.,Environmental Microbiology, Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou, Henan Province, China
| | - E T Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D. F., México
| | - R P Singh
- Microbial Genomics Laboratory, National Bureau of Agriculturally Important Microorganism, Maunath Bhanjan, Uttar Pradesh, India.,Department of Research and Development, Uttaranchal University, Dehradun, India
| | - C Guo
- Department of Bioengineering and Biotechnology, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Y Shang
- Department of Bioengineering and Biotechnology, College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - J Chen
- Grape Diversity and Resources, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - C Liu
- Grape Diversity and Resources, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Wang F, Zhao H, Xiang H, Wu L, Men X, Qi C, Chen G, Zhang H, Wang Y, Xian M. Species Diversity and Functional Prediction of Surface Bacterial Communities on Aging Flue-Cured Tobaccos. Curr Microbiol 2018; 75:1306-1315. [PMID: 29869679 DOI: 10.1007/s00284-018-1525-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/01/2018] [Indexed: 01/04/2023]
Abstract
Microbes on aging flue-cured tobaccos (ATFs) improve the aroma and other qualities desirable in products. Understanding the relevant organisms would picture microbial community diversity, metabolic potential, and their applications. However, limited efforts have been made on characterizing the microbial quality and functional profiling. Herein, we present our investigation of the bacterial diversity and predicted potential genetic capability of the bacteria from two AFTs using 16S rRNA gene sequences and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) software. The results show that dominant bacteria from AFT surfaces were classified into 48 genera, 36 families, and 7 phyla. In addition, Bacillus spp. was found prevalent on both ATFs. Furthermore, PICRUSt predictions of bacterial community functions revealed many attractive metabolic capacities in the AFT microbiota, including several involved in the biosynthesis of flavors and fragrances and the degradation of harmful compounds, such as nicotine and nitrite. These results provide insights into the importance of AFT bacteria in determining product qualities and indicate specific microbial species with predicted enzymatic capabilities for the production of high-efficiency flavors, the degradation of undesirable compounds, and the provision of nicotine and nitrite tolerance which suggest fruitful areas of investigation into the manipulation of AFT microbiota for AFT and other product improvements.
Collapse
Affiliation(s)
- Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Hongwei Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Haiying Xiang
- Yunnan Academy of Tobacco Sciences, Kunming, 650106, China
| | - Lijun Wu
- Yunnan Academy of Tobacco Sciences, Kunming, 650106, China
| | - Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Chang Qi
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guoqiang Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Yi Wang
- Yunnan Academy of Tobacco Sciences, Kunming, 650106, China.
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
17
|
Truchado P, Gil MI, Suslow T, Allende A. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS One 2018; 13:e0199291. [PMID: 30020939 PMCID: PMC6051574 DOI: 10.1371/journal.pone.0199291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
The contamination of pathogenic bacteria through irrigation water is a recognized risk factor for fresh produce. Irrigation water disinfection is an intervention strategy that could be applied to reduce the probability of microbiological contamination of crops. Disinfection treatments should be applied ensuring minimum effective doses, which are efficient in inhibiting the microbial contamination while avoiding formation and accumulation of chemical residues. Among disinfection technologies available for growers, chlorine dioxide (ClO2) represents, after sodium hypochlorite, an alternative disinfection treatment, which is commercially applied by growers in the USA and Spain. However, in most of the cases, the suitability of this treatment has been tested against pathogenic bacteria and low attention have been given to the impact of chemical residues on the bacterial community of the vegetable tissue. The aim of this study was to (i) to evaluate the continual application of chlorine dioxide (ClO2) as a water disinfection treatment of irrigation water during baby spinach growth in commercial production open fields, and (ii) to determine the subsequent impact of these treatments on the bacterial communities in water, soil, and baby spinach. To gain insight into the changes in the bacterial community elicited by ClO2, samples of treated and untreated irrigation water as well as the irrigated soil and baby spinach were analyzed using Miseq® Illumina sequencing platform. Next generation sequencing and multivariate statistical analysis revealed that ClO2 treatment of irrigation water did not affect the diversity of the bacterial community of water, soil and crop, but significant differences were observed in the relative abundance of specific bacterial genera. This demonstrates the different susceptibility of the bacteria genera to the ClO2 treatment. Based on the obtained results it can be concluded that the phyllosphere bacterial community of baby spinach was more influenced by the soil bacteria community rather than that of irrigation water. In the case of baby spinach, the use of low residual ClO2 concentrations (approx. 0.25 mg/L) to treat irrigation water decreased the relative abundance of Pseudomonaceae (2.28-fold) and Enterobacteriaceae (2.5-fold) when comparing treated versus untreated baby spinach. Members of these two bacterial families are responsible for food spoilage and foodborne illnesses. Therefore, a reduction of these bacterial families might be beneficial for the crop and for food safety. In general it can be concluded that the constant application of ClO2 as a disinfection treatment for irrigation water only caused changes in two bacterial families of the baby spinach and soil microbiota, without affecting the major phyla and classes. The significance of these changes in the bacterial community should be further evaluated.
Collapse
Affiliation(s)
- Pilar Truchado
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - María Isabel Gil
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Trevor Suslow
- Department of Plant Science, University of California, One Shields Avenue, Mann Laboratory, Davis, CA, United States of America
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
- * E-mail:
| |
Collapse
|
18
|
Sousa LPD, da Silva MJD, Mondego JMC. Leaf-associated bacterial microbiota of coffee and its correlation with manganese and calcium levels on leaves. Genet Mol Biol 2018; 41:455-465. [PMID: 29782032 PMCID: PMC6082234 DOI: 10.1590/1678-4685-gmb-2017-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/14/2017] [Indexed: 01/16/2023] Open
Abstract
Coffee is one of the most valuable agricultural commodities and the plants’
leaves are the primary site of infection for most coffee diseases, such as the
devastating coffee leaf rust. Therefore, the use of bacterial microbiota that
inhabits coffee leaves to fight infections could be an alternative agricultural
method to protect against coffee diseases. Here, we report the leaf-associated
bacteria in three coffee genotypes over the course of a year, with the aim to
determine the diversity of bacterial microbiota. The results indicate a
prevalence of Enterobacteriales in Coffea canephora,
Pseudomonadales in C. arabica ‘Obatã’, and an intriguing lack
of bacterial dominance in C. arabica ‘Catuaí’. Using PERMANOVA
analyses, we assessed the association between bacterial abundance in the coffee
genotypes and environmental parameters such as temperature, precipitation, and
mineral nutrients in the leaves. We detected a close relationship between the
amount of Mn and the abundance of Pseudomonadales in ‘Obatã’ and the amount of
Ca and the abundance of Enterobacteriales in C. canephora. We
suggest that mineral nutrients can be key drivers that shape leaf microbial
communities.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico, Campinas, SP, Brazil.,Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia Universidade de Campinas (UNICAMP), Campinas, SP, Brazil.,Programa de Pós Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcio José da da Silva
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP), Campinas, SP, Brazil
| | | |
Collapse
|
19
|
An Investigation on Performance and Structure of Ecological Revetment in a Sub-Tropical Area: A Case Study on Cuatien River, Vinh City, Vietnam. WATER 2018. [DOI: 10.3390/w10050636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
20
|
Saminathan T, García M, Ghimire B, Lopez C, Bodunrin A, Nimmakayala P, Abburi VL, Levi A, Balagurusamy N, Reddy UK. Metagenomic and Metatranscriptomic Analyses of Diverse Watermelon Cultivars Reveal the Role of Fruit Associated Microbiome in Carbohydrate Metabolism and Ripening of Mature Fruits. FRONTIERS IN PLANT SCIENCE 2018; 9:4. [PMID: 29403516 PMCID: PMC5780703 DOI: 10.3389/fpls.2018.00004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/03/2018] [Indexed: 05/06/2023]
Abstract
The plant microbiome is a key determinant of plant health and productivity, and changes in the plant microbiome can alter the tolerance to biotic and abiotic stresses and the quality of end produce. Little is known about the microbial diversity and its effect on carbohydrate metabolism in ripe fruits. In this study, we aimed to understand the diversity and function of microorganisms in relation to carbohydrate metabolism of ripe watermelon fruits. We used 16S metagenomics and RNAseq metatranscriptomics for analysis of red (PI459074, Congo, and SDRose) and yellow fruit-flesh cultivars (PI227202, PI435990, and JBush) of geographically and metabolically diverse watermelon cultivars. Metagenomics data showed that Proteobacteria were abundant in SDRose and PI227202, whereas Cyanobacteria were most abundant in Congo and PI4559074. In the case of metatranscriptome data, Proteobacteria was the most abundant in all cultivars. High expression of genes linked to infectious diseases and the expression of peptidoglycan hydrolases associated to pathogenicity of eukaryotic hosts was observed in SDRose, which could have resulted in low microbial diversity in this cultivar. The presence of GH28, associated with polygalacturonase activity in JBush and SDRose could be related to cell wall modifications including de-esterification and depolymerization, and consequent loss of galacturonic acid and neutral sugars. Moreover, based on the KEGG annotation of the expressed genes, nine α-galactosidase genes involved in key processes of galactosyl oligosaccharide metabolism, such as raffinose family were identified and galactose metabolism pathway was reconstructed. Results of this study underline the links between the host and fruit-associated microbiome in carbohydrate metabolism of the ripe fruits. The cultivar difference in watermelon reflects the quantum and diversity of the microbiome, which would benefit watermelon and other plant breeders aiming at the holobiont concept to incorporate associated microbiomes in breeding programs.
Collapse
Affiliation(s)
- Thangasamy Saminathan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
| | - Marleny García
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Bandana Ghimire
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
| | - Carlos Lopez
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Abiodun Bodunrin
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
| | - Venkata L. Abburi
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
| | - Amnon Levi
- U.S. Vegetable Laboratory, Agricultural Research Service, United States Department of Agriculture, Charleston, SC, United States
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, WV, United States
| |
Collapse
|
21
|
Jongman M, Chidamba L, Korsten L. Bacterial biomes and potential human pathogens in irrigation water and leafy greens from different production systems described using pyrosequencing. J Appl Microbiol 2017; 123:1043-1053. [PMID: 28795469 DOI: 10.1111/jam.13558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/14/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the influence of irrigation water microbial quality on leafy green vegetables produced in commercial and small-scale farms as well as homestead gardens using pyrosequencing. METHODS AND RESULTS Next generation sequencing analysis of the V1-V3 hypervariable region of bacterial 16S rDNA was used to compare bacterial diversity in irrigation water sources and on leafy vegetables. In all samples (12) analysed, the phylum Proteobacteria (64·5%), class Gammaproteobacteria (56·6%) and genus Aeromonas (14·4%) were found to be dominant. Of the total Escherichia sequences detected in tested samples, lettuce (16·3%) from the one commercial farm harboured more sequences than cabbage from the small-scale farm (1·3%) or homestead gardens (1·9%). Escherichia sequences were detected in both irrigation water (4·6%) and on cabbage (1·3%) samples from the small-scale farm. The genus Salmonella was absent in borehole water but was detected in the holding dam water (<1%) from commercial farm A. Salmonella sequences were present in river water (<1%) and on cabbages (1·9%) from the small-scale farm but were not detected on cabbage samples from the one commercial farm or the homestead gardens. CONCLUSION Water sources quality used for irrigation greatly influences the microbial dynamics of the irrigated crop. SIGNIFICANCE AND IMPACT OF THE STUDY Microbial biomes in irrigation water and on leafy greens were described with pyrosequencing and revealed insights into prevalence of potential and opportunistic pathogens across different production systems.
Collapse
Affiliation(s)
- M Jongman
- Department of Plant and Soil Sciences, University of Pretoria, P/Bag X20 Hatfield, Pretoria, South Africa
| | - L Chidamba
- Department of Plant and Soil Sciences, University of Pretoria, P/Bag X20 Hatfield, Pretoria, South Africa
| | - L Korsten
- Department of Plant and Soil Sciences, University of Pretoria, P/Bag X20 Hatfield, Pretoria, South Africa
| |
Collapse
|
22
|
Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies. Front Microbiol 2017; 8:1829. [PMID: 29033905 PMCID: PMC5627019 DOI: 10.3389/fmicb.2017.01829] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods.
Collapse
Affiliation(s)
- Yu Cao
- UCD-Centre for Food Safety, Science Centre South, University College DublinDublin, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, Science Centre South, University College DublinDublin, Ireland
| | - Sinéad Proos
- Food for Health Ireland, Science Centre South, University College DublinDublin, Ireland
| | | | - Shabarinath Srikumar
- UCD-Centre for Food Safety, Science Centre South, University College DublinDublin, Ireland
| |
Collapse
|
23
|
Zhang L, Wang S. Bacterial community diversity on in-shell walnut surfaces from six representative provinces in China. Sci Rep 2017; 7:10054. [PMID: 28855583 PMCID: PMC5577159 DOI: 10.1038/s41598-017-10138-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/04/2017] [Indexed: 11/09/2022] Open
Abstract
Walnuts (Juglans regia) have been associated with foodborne illness outbreaks in recent years. Thus, the purpose of this study was to investigate the distribution of bacteria on in-shell walnut surfaces from six representative provinces in China. The bacterial populations on walnut surfaces were investigated by high-throughput sequencing based on the bacterial 16 S rRNA hypervariable region V4. Twenty-eight samples were collected from fourteen regions in six provinces and harvested in different periods (the fresh in 2016 and the old in 2015). Proteobacteria was the most dominant phylum in all samples except for XJ1. In XJ1, and the most abundant phylum was Cyanobacteria, which also accounted for a large proportion of the abundance in YN1, YN11, XJ2 and SC11. In addition, Firmicutes and Actinobacteria were also the abundant phyla in the given samples. Some genera belonging to the opportunistic pathogens were detected, such as Pseudomonas, Acinetobacter, Burkholderia and Bacillus. The results revealed that the composition and abundance of bacterial consortiums on walnut surfaces varied among the geographical sites where they were harvested. Moreover, the storage time of samples also had impact on the abundance of bacteria. This study may provide a better understanding of the bacterial communities' diversity on in-shell walnut surfaces.
Collapse
Affiliation(s)
- Lihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164-6120, USA.
| |
Collapse
|
24
|
Abstract
The preharvest and preslaughter steps of food production constitute a first stage at which food can become contaminated with foodborne and toxigenic pathogens. Contamination at this early stage of food production can lead to amplification as food travels through the production and supply chain, accentuating the crucial need to address hazards and establish science-based metrics that are feasible to implement. This article discusses the preharvest food safety regulatory landscape in the United States, with a specific emphasis on fresh produce crops. Best practices, certification, audit schemes and challenges due to market channels, economies of scales, and grower behavior are considered in relation to the Food Safety Modernization Act. An outlook on the needs to facilitate implementation of the new law, develop educational programs for growers and stakeholders, and continue to better align food safety with environmental goals are presented.
Collapse
|
25
|
Jongman M, Korsten L. Irrigation water quality and microbial safety of leafy greens in different vegetable production systems: A review. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1289385] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mosimanegape Jongman
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Gomba A, Chidamba L, Korsten L. Effect of postharvest practices including degreening on citrus carpoplane microbial biomes. J Appl Microbiol 2017; 122:1057-1070. [PMID: 28052466 DOI: 10.1111/jam.13396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/23/2016] [Accepted: 12/13/2016] [Indexed: 01/04/2023]
Abstract
AIMS To investigate the effect of commercial citrus packhouse processing steps on the fruit surface microbiome of Clementines and Palmer navel oranges. METHODS AND RESULTS Viable bacteria, yeast and fungi counts, and the pyrosequencing analysis of the 16S rRNA and ITS were used to evaluate the community structure and population dynamics of phylloepiphytic bacteria and fungi associated with commercial postharvest processing. Drenching significantly reduced microbial counts in all cases except for yeasts on navels, while the extent of degreening effects varied between the citrus varieties. Pyrosequencing analysis showed a total of 4409 bacteria and 5792 fungi nonchimeric unique sequences with an average of 1102 bacteria and 1448 fungi reads per sample. Dominant phyla on the citrus carpoplane were Proteobacteria (53·5%), Actinobacteria (19·9%), Bacteroidetes (5·6%) and Deinococcus-Thermus (5·4%) for bacteria and Ascomycota (80·5%) and Basidiomycota (9·8%) for fungi. Beginning with freshly harvested fruit fungal diversity declined significantly after drenching, but had little effect on bacteria and populations recovered during degreening treatments, including those for Penicillium sp. CONCLUSION Packhouse processing greatly influences microbial communities on the citrus carpoplane. SIGNIFICANCE AND IMPACT OF THE STUDY A broad orange biome was described with pyrosequencing and gave insight into the likely survival and persistence of pathogens, especially as they may affect the quality and safety of the packed product. A close examination of the microbiota of fruit and the impact of intervention strategies on the ecological balance may provide a more durable approach to reduce losses and spoilage.
Collapse
Affiliation(s)
- A Gomba
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| | - L Chidamba
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| | - L Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
27
|
Using a Control to Better Understand Phyllosphere Microbiota. PLoS One 2016; 11:e0163482. [PMID: 27669159 PMCID: PMC5036865 DOI: 10.1371/journal.pone.0163482] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/10/2016] [Indexed: 11/26/2022] Open
Abstract
An important data gap in our understanding of the phyllosphere surrounds the origin of the many microbes described as phyllosphere communities. Most sampling in phyllosphere research has focused on the collection of microbiota without the use of a control, so the opportunity to determine which taxa are actually driven by the biology and physiology of plants as opposed to introduced by environmental forces has yet to be fully realized. To address this data gap, we used plastic plants as inanimate controls adjacent to live tomato plants (phyllosphere) in the field with the hope of distinguishing between bacterial microbiota that may be endemic to plants as opposed to introduced by environmental forces. Using 16S rRNA gene amplicons to study bacterial membership at four time points, we found that the vast majority of all species-level operational taxonomic units were shared at all time-points. Very few taxa were unique to phyllosphere samples. A higher taxonomic diversity was consistently observed in the control samples. The high level of shared taxonomy suggests that environmental forces likely play a very important role in the introduction of microbes to plant surfaces. The observation that very few taxa were unique to the plants compared to the number that were unique to controls was surprising and further suggests that a subset of environmentally introduced taxa thrive on plants. This finding has important implications for improving our approach to the description of core phytobiomes as well as potentially helping us better understand how foodborne pathogens may become associated with plant surfaces.
Collapse
|
28
|
Koo OK, Kim H, Kim HJ, Baker CA, Ricke SC. Bacterial community analysis of Tatsoi cultivated by hydroponics. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:490-496. [PMID: 27070460 DOI: 10.1080/03601234.2016.1159462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tatsoi (Brassica narinosa) is a popular Asian salad green that is mostly consumed as a source of fresh produce. The purpose of this study was to assess the microbial diversity of Tatsoi cultivated in a hydroponic system and of its ecosystem. Tatsoi leaves, nutrient solution, and perlite/earth samples from a trickle feed system (TFS) and an ebb-and-flow system (EFS) were collected and their microbial communities were analyzed by pyrosequencing analysis. The results showed that most bacteria in the leaves from the TFS contained genus Sporosarcina (99.6%), while Rhizobium (60.4%) was dominant in the leaves from the EFS. Genus Paucibacter (18.21%) and Pelomonas (12.37%) were the most abundant microbiota in the nutrient solution samples of the TFS. In the EFS, the nutrient solution samples contained mostly genus Rhodococcus and Acinetobacter. Potential microbial transfer between the leaves and the ecosystem was observed in the EFS, while samples in the TFS were found to share only one species between the leaves, nutrient solution, and earth. Together, these results show that the bacterial populations in Tatsoi and in its ecosystem are highly diverse based on the cultivation system.
Collapse
Affiliation(s)
- Ok K Koo
- a Department of Food and Nutrition , Gyeongsang National University , Jinju , Republic of Korea
- b Institute of Agriculture & Life Science, Gyeongsang National University , Jinju , Republic of Korea
| | - Hun Kim
- c Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea
- d Department of Green Chemistry and Environmental Biotechnology , Korea University of Science and Technology , Daejeon , Republic of Korea
| | - Hyun J Kim
- e Food Safety Research Group, Korea Food Research Institute , Seongnam , Republic of Korea
| | - Christopher A Baker
- f Center for Food Safety, Department of Food Science, University of Arkansas , Fayetteville , Arkansas , USA
| | - Steven C Ricke
- f Center for Food Safety, Department of Food Science, University of Arkansas , Fayetteville , Arkansas , USA
| |
Collapse
|
29
|
Aw TG, Wengert S, Rose JB. Metagenomic analysis of viruses associated with field-grown and retail lettuce identifies human and animal viruses. Int J Food Microbiol 2016; 223:50-6. [PMID: 26894328 DOI: 10.1016/j.ijfoodmicro.2016.02.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/20/2023]
Abstract
The emergence of culture- and sequence-independent metagenomic methods has not only provided great insight into the microbial community structure in a wide range of clinical and environmental samples but has also proven to be powerful tools for pathogen detection. Recent studies of the food microbiome have revealed the vast genetic diversity of bacteria associated with fresh produce. However, no work has been done to apply metagenomic methods to tackle viruses associated with fresh produce for addressing food safety. Thus, there is a little knowledge about the presence and diversity of viruses associated with fresh produce from farm-to-fork. To address this knowledge gap, we assessed viruses on commercial romaine and iceberg lettuces in fields and a produce distribution center using a shotgun metagenomic sequencing targeting both RNA and DNA viruses. Commercial lettuce harbors an immense assemblage of viruses that infect a wide range of hosts. As expected, plant pathogenic viruses dominated these communities. Sequences of rotaviruses and picobirnaviruses were also identified in both field-harvest and retail lettuce samples, suggesting an emerging foodborne transmission threat that has yet to be fully recognized. The identification of human and animal viruses in lettuce samples in the field emphasizes the importance of preventing viral contamination on leafy greens starting at the field. Although there are still some inherent experimental and bioinformatics challenges in applying viral metagenomic approaches for food safety testing, this work will facilitate further application of this unprecedented deep sequencing method to food samples.
Collapse
Affiliation(s)
- Tiong Gim Aw
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, United States.
| | - Samantha Wengert
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, United States
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
30
|
Romero FM, Marina M, Pieckenstain FL. Novel components of leaf bacterial communities of field-grown tomato plants and their potential for plant growth promotion and biocontrol of tomato diseases. Res Microbiol 2015; 167:222-33. [PMID: 26654914 DOI: 10.1016/j.resmic.2015.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/26/2015] [Accepted: 11/08/2015] [Indexed: 11/30/2022]
Abstract
This work aimed to characterize potentially endophytic culturable bacteria from leaves of cultivated tomato and analyze their potential for growth promotion and biocontrol of diseases caused by Botrytis cinerea and Pseudomonas syringae. Bacteria were obtained from inner tissues of surface-disinfected tomato leaves of field-grown plants. Analysis of 16S rRNA gene sequences identified bacterial isolates related to Exiguobacterium aurantiacum (isolates BT3 and MT8), Exiguobacterium spp. (isolate GT4), Staphylococcus xylosus (isolate BT5), Pantoea eucalypti (isolate NT6), Bacillus methylotrophicus (isolate MT3), Pseudomonas veronii (isolates BT4 and NT2), Pseudomonas rhodesiae (isolate BT2) and Pseudomonas cichorii (isolate NT3). After seed inoculation, BT2, BT4, MT3, MT8, NT2 and NT6 were re-isolated from leaf extracts. NT2, BT2, MT3 and NT6 inhibited growth of Botrytis cinerea and Pseudomonas syringae pv. tomato in vitro, produced antimicrobial compounds and reduced leaf damage caused by B. cinerea. Some of these isolates also promoted growth of tomato plants, produced siderophores, the auxin indole-3-acetic and solubilized inorganic phosphate. Thus, bacterial communities of leaves from field-grown tomato plants were found to harbor potentially endophytic culturable beneficial bacteria capable of antagonizing pathogenic microorganisms and promoting plant growth, which could be used as biological control agents and biofertilizers/biostimulators for promotion of tomato plant growth.
Collapse
Affiliation(s)
- Fernando M Romero
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina.
| | - María Marina
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina.
| | - Fernando L Pieckenstain
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina.
| |
Collapse
|
31
|
Pascazio S, Crecchio C, Ricciuti P, Palese AM, Xiloyannis C, Sofo A. Phyllosphere and carposphere bacterial communities in olive plants subjected to different cultural practices. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2015. [DOI: 10.4081/pb.2015.6011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to characterize phyllosphere and carposphere bacterial communities of olive trees subjected for 13 years to two different soil management systems (sustainable and conventional) in a mature olive grove located in Southern Italy. Amplified DNA fragments of the 16S ribosomal RNA eubacterial gene (16S <em>rRNA</em>) of bacteria living on leaf and fruit surface, and in fruit pulp were analyzed by denaturing gradient gel electrophoresis (DGGE). A clone library of 16S <em>rRNA</em> amplicons extracted from the bacteria living in pulp homogenates and a phylogenetic analysis were performed. Generally, the DGGE patterns of the bacteria from both the treatments clustered separately. The medium-term sustainable orchard management resulted in a higher number of bacterial species from olive fruit pulp. Phyllosphere and carposphere communities evaluated by DGGE were affected by the type of the agricultural practices adopted. A better understanding of phyllosphere and carposphere microbiota of cultivated olive plants could be useful for the promotion of plant growth, a better plant protection and a higher crop quality.
Collapse
|
32
|
Klaedtke S, Jacques MA, Raggi L, Préveaux A, Bonneau S, Negri V, Chable V, Barret M. Terroir is a key driver of seed-associated microbial assemblages. Environ Microbiol 2015; 18:1792-804. [PMID: 26171841 DOI: 10.1111/1462-2920.12977] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/01/2015] [Indexed: 12/20/2022]
Abstract
Seeds have evolved in association with diverse microbial assemblages that may influence plant growth and health. However, little is known about the composition of seed-associated microbial assemblages and the ecological processes shaping their structures. In this work, we monitored the relative influence of the host genotypes and terroir on the structure of the seed microbiota through metabarcoding analysis of different microbial assemblages associated to five different bean cultivars harvested in two distinct farms. Overall, few bacterial and fungal operational taxonomic units (OTUs) were conserved across all seed samples. The lack of shared OTUs between samples is explained by a significant effect of the farm site on the structure of microbial assemblage, which explained 12.2% and 39.7% of variance in bacterial and fungal diversity across samples. This site-specific effect is reflected by the significant enrichment of 70 OTUs in Brittany and 88 OTUs in Luxembourg that lead to differences in co-occurrence patterns. In contrast, variance in microbial assemblage structure was not explained by host genotype. Altogether, these results suggest that seed-associated microbial assemblage is determined by niche-based processes and that the terroir is a key driver of these selective forces.
Collapse
Affiliation(s)
| | - Marie-Agnès Jacques
- UMR1345 Institut de Recherches en Horticulture et Semences, INRA, SFR4207 QUASAV, F-49071, Beaucouzé, France
| | - Lorenzo Raggi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Anne Préveaux
- UMR1345 Institut de Recherches en Horticulture et Semences, INRA, SFR4207 QUASAV, F-49071, Beaucouzé, France
| | - Sophie Bonneau
- UMR1345 Institut de Recherches en Horticulture et Semences, INRA, SFR4207 QUASAV, F-49071, Beaucouzé, France
| | - Valeria Negri
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
| | - Véronique Chable
- UR980, INRA SAD, 65 Rue de St. Brieuc, CS 84215, 35042, Rennes, France
| | - Matthieu Barret
- UMR1345 Institut de Recherches en Horticulture et Semences, INRA, SFR4207 QUASAV, F-49071, Beaucouzé, France
| |
Collapse
|
33
|
McGarvey J, Han R, Connell J, Stanker L, Hnasko R. Bacterial populations on the surfaces of organic and conventionally grown almond drupes. J Appl Microbiol 2015; 119:529-38. [DOI: 10.1111/jam.12850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 11/27/2022]
Affiliation(s)
- J.A. McGarvey
- Foodborne Toxin Detection and Protection Research Unit; Agricultural Research Service; United States Department of Agriculture; Albany CA USA
| | - R. Han
- Department of Plant Sciences; University of California; Davis CA USA
| | - J.H. Connell
- University of California Cooperative Extension; Oroville CA USA
| | - L.H. Stanker
- Foodborne Toxin Detection and Protection Research Unit; Agricultural Research Service; United States Department of Agriculture; Albany CA USA
| | - R. Hnasko
- Foodborne Toxin Detection and Protection Research Unit; Agricultural Research Service; United States Department of Agriculture; Albany CA USA
| |
Collapse
|
34
|
Xu A, Pahl DM, Buchanan RL, Micallef SA. Comparing the microbiological status of pre- and postharvest produce from small organic production. J Food Prot 2015; 78:1072-80. [PMID: 26038895 DOI: 10.4315/0362-028x.jfp-14-548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Consumption of locally, organically grown produce is increasing in popularity. Organic farms typically produce on a small scale, have limited resources, and adopt low technology harvest and postharvest handling practices. Data on the food safety risk associated with hand harvesting, field packing, and packing-house handling with minimal treatment, at this production scale, are lacking. We followed produce from small organic farms from the field through postharvest handling and packing. Pre- and postharvest produce (177 samples) and water (29 samples) were collected and analyzed quantitatively for Escherichia coli, total coliforms (TC), aerobic bacteria (APC), yeasts, molds (M), and enteric pathogens. No pathogens were recovered. E. coli was detected in 3 (3.6%) of 83 preharvest produce samples, 2 (6.3%) of 32 unwashed and 0 of 42 washed postharvest produce samples, and 10 (34.5%) of 29 water samples. No correlation was found between bacterial levels in irrigation water and those on produce. Postharvest handling without washing was a factor for APC and M counts on tomatoes, with lower frequencies postharvest. Postharvest handling with washing was a factor for leafy greens for TC counts, with higher frequencies postharvest. APC (P = 0.03) and yeast (P = 0.05) counts were higher in preharvest than in unwashed postharvest tomatoes. Washed postharvest leafy greens had higher M counts (P = 0.03) and other washed produce had higher TC counts (P = 0.01) than did their preharvest counterparts. Barriers were found to the use of sanitizer in wash water for leafy greens among small farms using organic practices. Hand harvesting and dry handling did not appear to be associated with a significant food safety risk, but washed leafy greens carried higher levels of some microbial indicators, possibly because of the lack of sanitizer in the wash water. The development of resources and materials customized for this sector of growers could enhance dissemination of information on best practices for handling of leafy greens.
Collapse
Affiliation(s)
- Aixia Xu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA
| | - Donna M Pahl
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| | - Robert L Buchanan
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland 20742, USA
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
35
|
Ottesen AR, Gorham S, Pettengill JB, Rideout S, Evans P, Brown E. The impact of systemic and copper pesticide applications on the phyllosphere microflora of tomatoes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1116-1125. [PMID: 25410588 PMCID: PMC4368374 DOI: 10.1002/jsfa.7010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/21/2014] [Accepted: 11/17/2014] [Indexed: 05/31/2023]
Abstract
BACKGROUND Contamination of tomatoes by Salmonella can occur in agricultural settings. Little is currently understood about how agricultural inputs such as pesticide applications may impact epiphytic crop microflora and potentially play a role in contamination events. We examined the impact of two materials commonly used in Virginia tomato agriculture: acibenzolar-S-methyl (crop protectant) and copper oxychloride (pesticide) to identify the effects these materials may exert on baseline tomato microflora and on the incidence of three specific genera; Salmonella, Xanthomonas and Paenibacillus. RESULTS Approximately 186 441 16S rRNA gene and 39 381 18S rRNA gene sequences per independent replicate were used to analyze the impact of the pesticide applications on tomato microflora. An average of 3 346 677 (634 892 974 bases) shotgun sequences per replicate were used for metagenomic analyses. CONCLUSION A significant decrease in the presence of Gammaproteobacteria was observed between controls and copper-treated plants, suggesting that copper is effective at suppressing growth of certain taxa in this class. A higher mean abundance of Salmonella and Paenibacillus in control samples compared to treatments may suggest that both systemic and copper applications diminish the presence of these genera in the phyllosphere; however, owing to the lack of statistical significance, this could also be due to other factors. The most distinctive separation of shared membership was observed in shotgun data between the two different sampling time-points (not between treatments), potentially supporting the hypothesis that environmental pressures may exert more selective pressures on epiphytic microflora than do certain agricultural management practices.
Collapse
MESH Headings
- Copper
- Crop Protection/methods
- Crops, Agricultural/drug effects
- Crops, Agricultural/growth & development
- Crops, Agricultural/microbiology
- Fungi/classification
- Fungi/drug effects
- Fungi/growth & development
- Fungi/isolation & purification
- Solanum lycopersicum/drug effects
- Solanum lycopersicum/growth & development
- Solanum lycopersicum/microbiology
- Metagenomics
- Molecular Typing
- Mycological Typing Techniques
- Paenibacillus/classification
- Paenibacillus/drug effects
- Paenibacillus/growth & development
- Paenibacillus/isolation & purification
- Pesticides
- Phyllobacteriaceae/classification
- Phyllobacteriaceae/drug effects
- Phyllobacteriaceae/growth & development
- Phyllobacteriaceae/metabolism
- Phylogeny
- Plant Components, Aerial/drug effects
- Plant Components, Aerial/growth & development
- Plant Components, Aerial/microbiology
- Principal Component Analysis
- RNA, Bacterial/analysis
- RNA, Bacterial/metabolism
- RNA, Fungal/analysis
- RNA, Fungal/metabolism
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 18S/analysis
- RNA, Ribosomal, 18S/metabolism
- Salmonella/classification
- Salmonella/drug effects
- Salmonella/growth & development
- Salmonella/isolation & purification
- Seasons
- Thiadiazoles
- Virginia
- Xanthomonas/classification
- Xanthomonas/drug effects
- Xanthomonas/growth & development
- Xanthomonas/isolation & purification
Collapse
Affiliation(s)
- Andrea R Ottesen
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, FDA5100 Paint Branch Parkway, College Park, MD 20740, USA
| | - Sasha Gorham
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, FDA5100 Paint Branch Parkway, College Park, MD 20740, USA
| | - James B Pettengill
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, FDA5100 Paint Branch Parkway, College Park, MD 20740, USA
| | - Steven Rideout
- Virginia Tech, Virginia Agricultural Experiment StationPainter, VA 23420, USA
| | - Peter Evans
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, FDA5100 Paint Branch Parkway, College Park, MD 20740, USA
| | - Eric Brown
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, FDA5100 Paint Branch Parkway, College Park, MD 20740, USA
| |
Collapse
|
36
|
The growing season, but not the farming system, is a food safety risk determinant for leafy greens in the mid-Atlantic region of the United States. Appl Environ Microbiol 2015; 81:2395-407. [PMID: 25616798 DOI: 10.1128/aem.00051-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small- and medium-size farms in the mid-Atlantic region of the United States use varied agricultural practices to produce leafy greens during spring and fall, but the impact of preharvest practices on food safety risk remains unclear. To assess farm-level risk factors, bacterial indicators, Salmonella enterica, and Shiga toxin-producing Escherichia coli (STEC) from 32 organic and conventional farms were analyzed. A total of 577 leafy greens, irrigation water, compost, field soil, and pond sediment samples were collected. Salmonella was recovered from 2.2% of leafy greens (n = 369) and 7.7% of sediment (n = 13) samples. There was an association between Salmonella recovery and growing season (fall versus spring) (P = 0.006) but not farming system (organic or conventional) (P = 0.920) or region (P = 0.991). No STEC was isolated. In all, 10% of samples were positive for E. coli: 6% of leafy greens, 18% of irrigation water, 10% of soil, 38% of sediment, and 27% of compost samples. Farming system was not a significant factor for levels of E. coli or aerobic mesophiles on leafy greens but was a significant factor for total coliforms (TC) (P < 0.001), with higher counts from organic farm samples. Growing season was a factor for aerobic mesophiles on leafy greens (P = 0.004), with higher levels in fall than in spring. Water source was a factor for all indicator bacteria (P < 0.001), and end-of-line groundwater had marginally higher TC counts than source samples (P = 0.059). Overall, the data suggest that seasonal events, weather conditions, and proximity of compost piles might be important factors contributing to microbial contamination on farms growing leafy greens.
Collapse
|
37
|
Pagadala S, Marine SC, Micallef SA, Wang F, Pahl DM, Melendez MV, Kline WL, Oni RA, Walsh CS, Everts KL, Buchanan RL. Assessment of region, farming system, irrigation source and sampling time as food safety risk factors for tomatoes. Int J Food Microbiol 2014; 196:98-108. [PMID: 25540859 DOI: 10.1016/j.ijfoodmicro.2014.12.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 10/07/2014] [Accepted: 12/07/2014] [Indexed: 11/29/2022]
Abstract
In the mid-Atlantic region of the United States, small- and medium-sized farmers use varied farm management methods and water sources to produce tomatoes. It is unclear whether these practices affect the food safety risk for tomatoes. This study was conducted to determine the prevalence, and assess risk factors for Salmonella enterica, Shiga toxin-producing Escherichia coli (STEC) and bacterial indicators in pre-harvest tomatoes and their production areas. A total of 24 organic and conventional, small- to medium-sized farms were sampled for six weeks in Maryland (MD), Delaware (DE) and New Jersey (NJ) between July and September 2012, and analyzed for indicator bacteria, Salmonella and STEC. A total of 422 samples--tomato fruit, irrigation water, compost, field soil and pond sediment samples--were collected, 259 of which were tomato samples. A low level of Salmonella-specific invA and Shiga toxin genes (stx1 or stx2) were detected, but no Salmonella or STEC isolates were recovered. Of the 422 samples analyzed, 9.5% were positive for generic E. coli, found in 5.4% (n=259) of tomato fruits, 22.5% (n=102) of irrigation water, 8.9% (n=45) of soil, 3/9 of pond sediment and 0/7 of compost samples. For tomato fruit, farming system (organic versus conventional) was not a significant factor for levels of indicator bacteria. However, the total number of organic tomato samples positive for generic E. coli (1.6%; 2/129) was significantly lower than for conventional tomatoes (6.9% (9/130); (χ(2) (1)=4.60, p=0.032)). Region was a significant factor for levels of Total Coliforms (TC) (p=0.046), although differences were marginal, with western MD having the highest TC counts (2.6 log CFU/g) and NJ having the lowest (2.0 log CFU/g). Tomatoes touching the ground or plastic mulch harbored significantly higher levels of TC compared to vine tomatoes, signaling a potential risk factor. Source of irrigation water was a significant factor for all indicator bacteria (p<0.0001), and groundwater had lower bacterial levels than surface water. End of line surface water samples were not significantly different from source water samples, but end of line groundwater samples had significantly higher bacterial counts than source (p<0.0001), suggesting that Good Agricultural Practices that focus on irrigation line maintenance might be beneficial. In general, local effects other than cropping practices, including topography, land use and adjacent industries, might be important factors contributing to microbiological inputs on small- and medium-sized farms in the mid-Atlantic region.
Collapse
Affiliation(s)
- Sivaranjani Pagadala
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Sasha C Marine
- Department of Plant Science and Landscape Architecture, University of Maryland, located at Lower Eastern Shore Research and Education Center, Salisbury, MD, USA
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA.
| | - Fei Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Donna M Pahl
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Meredith V Melendez
- Rutgers Cooperative Extension of Mercer County, Rutgers University, Trenton, NJ, USA
| | - Wesley L Kline
- Rutgers Cooperative Extension of Cumberland County, Rutgers University, Millville, NJ, USA
| | - Ruth A Oni
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Christopher S Walsh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Kathryne L Everts
- Department of Plant Science and Landscape Architecture, University of Maryland, located at Lower Eastern Shore Research and Education Center, Salisbury, MD, USA; Joint Appointment with University of Delaware, Georgetown, DE, USA
| | - Robert L Buchanan
- Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
38
|
Anderson KE, Carroll MJ, Sheehan T, Lanan MC, Mott BM, Maes P, Corby-Harris V. Hive-stored pollen of honey bees: many lines of evidence are consistent with pollen preservation, not nutrient conversion. Mol Ecol 2014; 23:5904-17. [PMID: 25319366 PMCID: PMC4285803 DOI: 10.1111/mec.12966] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 12/02/2022]
Abstract
Honey bee hives are filled with stored pollen, honey, plant resins and wax, all antimicrobial to differing degrees. Stored pollen is the nutritionally rich currency used for colony growth and consists of 40–50% simple sugars. Many studies speculate that prior to consumption by bees, stored pollen undergoes long-term nutrient conversion, becoming more nutritious ‘bee bread’ as microbes predigest the pollen. We quantified both structural and functional aspects associated with this hypothesis using behavioural assays, bacterial plate counts, microscopy and 454 amplicon sequencing of the 16S rRNA gene from both newly collected and hive-stored pollen. We found that bees preferentially consume fresh pollen stored for <3 days. Newly collected pollen contained few bacteria, values which decreased significantly as pollen were stored >96 h. The estimated microbe to pollen grain surface area ratio was 1:1 000 000 indicating a negligible effect of microbial metabolism on hive-stored pollen. Consistent with these findings, hive-stored pollen grains did not appear compromised according to microscopy. Based on year round 454 amplicon sequencing, bacterial communities of newly collected and hive-stored pollen did not differ, indicating the lack of an emergent microbial community co-evolved to digest stored pollen. In accord with previous culturing and 16S cloning, acid resistant and osmotolerant bacteria like Lactobacillus kunkeei were found in greatest abundance in stored pollen, consistent with the harsh character of this microenvironment. We conclude that stored pollen is not evolved for microbially mediated nutrient conversion, but is a preservative environment due primarily to added honey, nectar, bee secretions and properties of pollen itself.
Collapse
Affiliation(s)
- Kirk E Anderson
- Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA; Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA; USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, 85719, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Syst Appl Microbiol 2014; 37:376-85. [PMID: 24958606 DOI: 10.1016/j.syapm.2014.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/22/2022]
Abstract
A diverse array of bacteria that inhabit the rhizosphere and different plant organs play a crucial role in plant health and growth. Therefore, a general understanding of these bacterial communities and their diversity is necessary. Using the 16S rRNA gene clone library technique, the bacterial community structure and diversity of the rhizosphere and endophytic bacteria in Stellera chamaejasme compartments were compared and clarified for the first time. Grouping of the sequences obtained showed that members of the Proteobacteria (43.2%), Firmicutes (36.5%) and Actinobacteria (14.1%) were dominant in both samples. Other groups that were consistently found, albeit at lower abundance, were Bacteroidetes (2.1%), Chloroflexi (1.9%), and Cyanobacteria (1.7%). The habitats (rhizosphere vs endophytes) and organs (leaf, stem and root) structured the community, since the Wilcoxon signed rank test indicated that more varied bacteria inhabited the rhizosphere compared to the organs of the plant. In addition, correspondence analysis also showed that differences were apparent in the bacterial communities associated with these distinct habitats. Moreover, principal component analysis revealed that the profiles obtained from the rhizosphere and roots were similar, whereas leaf and stem samples clustered together on the opposite side of the plot from the rhizosphere and roots. Taken together, these results suggested that, although the communities associated with the rhizosphere and organs shared some bacterial species, the associated communities differed in structure and diversity.
Collapse
|
40
|
McGarvey J, Connell J, Stanker L, Hnasko R. Bacterial population structure and dynamics during the development of almond drupes. J Appl Microbiol 2014; 116:1543-52. [DOI: 10.1111/jam.12464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/08/2014] [Accepted: 01/29/2014] [Indexed: 01/06/2023]
Affiliation(s)
- J.A. McGarvey
- Foodborne Toxin Detection and Protection Research Unit; Agricultural Research Service; United States Department of Agriculture; Albany CA USA
| | - J.H. Connell
- University of California Cooperative Extension; Oroville CA USA
| | - L.H. Stanker
- Foodborne Toxin Detection and Protection Research Unit; Agricultural Research Service; United States Department of Agriculture; Albany CA USA
| | - R. Hnasko
- Foodborne Toxin Detection and Protection Research Unit; Agricultural Research Service; United States Department of Agriculture; Albany CA USA
| |
Collapse
|
41
|
Romero FM, Marina M, Pieckenstain FL. The communities of tomato (Solanum lycopersicumL.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 2014; 351:187-94. [DOI: 10.1111/1574-6968.12377] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/05/2014] [Accepted: 01/05/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Fernando M. Romero
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús; Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET); Chascomús Argentina
| | - María Marina
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús; Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET); Chascomús Argentina
| | - Fernando L. Pieckenstain
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús; Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH/UNSAM-CONICET); Chascomús Argentina
| |
Collapse
|
42
|
Müller T, Ruppel S. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 2013; 87:2-17. [PMID: 24003903 PMCID: PMC3906827 DOI: 10.1111/1574-6941.12198] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/28/2022] Open
Abstract
Most microorganisms of the phyllosphere are nonculturable in commonly used media and culture conditions, as are those in other natural environments. This review queries the reasons for their ‘noncultivability’ and assesses developments in phyllospere microbiology that have been achieved cultivation independently over the last 4 years. Analyses of total microbial communities have revealed a comprehensive microbial diversity. 16S rRNA gene amplicon sequencing and metagenomic sequencing were applied to investigate plant species, location and season as variables affecting the composition of these communities. In continuation to culture-based enzymatic and metabolic studies with individual isolates, metaproteogenomic approaches reveal a great potential to study the physiology of microbial communities in situ. Culture-independent microbiological technologies as well advances in plant genetics and biochemistry provide methodological preconditions for exploring the interactions between plants and their microbiome in the phyllosphere. Improving and combining cultivation and culture-independent techniques can contribute to a better understanding of the phyllosphere ecology. This is essential, for example, to avoid human–pathogenic bacteria in plant food.
Collapse
Affiliation(s)
- Thomas Müller
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Institute of Landscape Biogeochemistry, Müncheberg, Germany
| | | |
Collapse
|
43
|
Han L, Liu W, Chen M, Zhang M, Liu S, Sun R, Fei X. Comparison of NOM removal and microbial properties in up-flow/down-flow BAC filter. WATER RESEARCH 2013; 47:4861-4868. [PMID: 23866148 DOI: 10.1016/j.watres.2013.05.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/21/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
The removal of natural organic matter (NOM) in term of CODMn by up-flow biologically activated carbon filter (UBACF) and down-flow biologically activated carbon filter (DBACF) was investigated in a pilot-scale test. The impacts of the molecular weight distribution of NOM on its degradation by the UBACF and DBACF were evaluated. The relationship between biodegradation and the microbial properties in the UBACF and DBACF were approached as well. The feed water of the UBACF and DBACF were pumped from the effluent of the rapid sand filtration (RSF) of Chengnan Drinking Water Treatment Plant (CDWTP), Huaian, Jiangsu Province, China. When the adsorption was the dominant mechanism of NOM removal at the initial stage of operation, the CODMn removal efficiency by the UBACF was lower than the DBACF. However, with the microbes gradually accumulated and biofilm formed, the removal of CODMn by the UBACF increased correspondingly to 25.3%, at the steady-state operation and was approximately 10% higher than that by the DBACF. Heterotrophy plate count (HPC) in the finished water of the UBACF was observed 30% higher than that of the DBACF. The UBACF effluent had higher concentration of detached bacteria whereas the DBACF harbored more attached biomass. The highest attached biomass concentration of the UBACF was found in the middle of the GAC bed. On the contrary, the highest attached biomass concentration of the DBACF was found on the top of the GAC bed. Furthermore, a total of 9479 reads by pyrosequencing was obtained from samples of the UBACF and DBACF effluents. The UBACF effluent had a more diverse microbial community and more even distribution of species than the DBACF effluent did. Alphaproteobacteria and Betaproteobacteria were the dominant groups in the finished water of the UBACF and DBACF. The higher organic matter removal by the UBACF was attributed to the presence of its higher biologically activity.
Collapse
Affiliation(s)
- Lineng Han
- School of Environment, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Williams TR, Moyne AL, Harris LJ, Marco ML. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One 2013; 8:e68642. [PMID: 23844230 PMCID: PMC3699665 DOI: 10.1371/journal.pone.0068642] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/30/2013] [Indexed: 01/28/2023] Open
Abstract
The developmental and temporal succession patterns and disturbance responses of phyllosphere bacterial communities are largely unknown. These factors might influence the capacity of human pathogens to persist in association with those communities on agriculturally-relevant plants. In this study, the phyllosphere microbiota was identified for Romaine lettuce plants grown in the Salinas Valley, CA, USA from four plantings performed over 2 years and including two irrigation methods and inoculations with an attenuated strain of Escherichia coli O157:H7. High-throughput DNA pyrosequencing of the V5 to V9 variable regions of bacterial 16S rRNA genes recovered in lettuce leaf washes revealed that the bacterial diversity in the phyllosphere was distinct for each field trial but was also strongly correlated with the season of planting. Firmicutes were generally most abundant in early season (June) plantings and Proteobacteria comprised the majority of bacteria recovered later in the year (August and October). Comparisons within individual field trials showed that bacterial diversity differed between sprinkler (overhead) and drip (surface) irrigated lettuce and increased over time as the plants grew. The microbiota were also distinct between control and E. coli O157:H7-inoculated plants and between E. coli O157:H7-inoculated plants with and without surviving pathogen cells. The bacterial inhabitants of the phyllosphere therefore appear to be affected by seasonal, irrigation, and biological factors in ways that are relevant for assessments of fresh produce food safety.
Collapse
Affiliation(s)
- Thomas R. Williams
- Department of Food Science & Technology, University of California, Davis, California, United States of America
| | - Anne-Laure Moyne
- Department of Food Science & Technology, University of California, Davis, California, United States of America
- Western Center for Food Safety, University of California, Davis, California, United States of America
| | - Linda J. Harris
- Department of Food Science & Technology, University of California, Davis, California, United States of America
- Western Center for Food Safety, University of California, Davis, California, United States of America
| | - Maria L. Marco
- Department of Food Science & Technology, University of California, Davis, California, United States of America
| |
Collapse
|
45
|
Pahl DM, Telias A, Newell M, Ottesen AR, Walsh CS. Comparing source of agricultural contact water and the presence of fecal indicator organisms on the surface of 'juliet' grape tomatoes. J Food Prot 2013; 76:967-74. [PMID: 23726191 DOI: 10.4315/0362-028x.jfp-12-204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Consumption of fresh tomatoes (Solanum lycopersicum) has been implicated as the cause of several foodborne illness outbreaks in the United States, most notably in cases of salmonellosis. How the levels of fecal indicator organisms (FIOs) in water relate to the counts of these microorganisms on the tomato fruit surface is unknown, although microbial water quality standards exist for agricultural use. This study utilized four types of FIOs currently and historically used in microbial water quality standards (Enterobacteriaceae, total coliforms, fecal coliforms, and Escherichia coli) to monitor the water quality of two surface ponds and a groundwater source. The groundwater tested contained significantly lower counts of all FIOs than the two surface water sources (P < 0.05). Considerable variability in bacterial counts was found in the surface water sources over the course of the season, perhaps explained by environmental variables, such as water temperature, pH, precipitation, and air temperature (R(2) of 0.13 to 0.27). We also monitored the fruit surface of grape tomatoes treated with overhead applications of the different water sources over the 2009 and 2010 growing seasons. The type of water source and time of year significantly affected the populations of FIOs in irrigation water (P < 0.05). Despite up to 5-log differences in fecal coliforms and 3-log differences in E. coli between the water sources, there was little difference in the populations measured in washes taken from tomato fruits. This lack of association between the aforementioned FIOs present in the water samples and on the tomato fruit surface demonstrates the difficulty in developing reliable metrics needed for testing of agricultural water to ensure the effectiveness of food safety programs.
Collapse
Affiliation(s)
- Donna M Pahl
- Plant Science and Landscape Architecture Department, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
46
|
Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiol 2013; 13:114. [PMID: 23705801 PMCID: PMC3680157 DOI: 10.1186/1471-2180-13-114] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 05/13/2013] [Indexed: 12/22/2022] Open
Abstract
Background Research to understand and control microbiological risks associated with the consumption of fresh fruits and vegetables has examined many environments in the farm to fork continuum. An important data gap however, that remains poorly studied is the baseline description of microflora that may be associated with plant anatomy either endemically or in response to environmental pressures. Specific anatomical niches of plants may contribute to persistence of human pathogens in agricultural environments in ways we have yet to describe. Tomatoes have been implicated in outbreaks of Salmonella at least 17 times during the years spanning 1990 to 2010. Our research seeks to provide a baseline description of the tomato microbiome and possibly identify whether or not there is something distinctive about tomatoes or their growing ecology that contributes to persistence of Salmonella in this important food crop. Results DNA was recovered from washes of epiphytic surfaces of tomato anatomical organs; leaves, stems, roots, flowers and fruits of Solanum lycopersicum (BHN602), grown at a site in close proximity to commercial farms previously implicated in tomato-Salmonella outbreaks. DNA was amplified for targeted 16S and 18S rRNA genes and sheared for shotgun metagenomic sequencing. Amplicons and metagenomes were used to describe “native” bacterial microflora for diverse anatomical parts of Virginia-grown tomatoes. Conclusions Distinct groupings of microbial communities were associated with different tomato plant organs and a gradient of compositional similarity could be correlated to the distance of a given plant part from the soil. Unique bacterial phylotypes (at 95% identity) were associated with fruits and flowers of tomato plants. These include Microvirga, Pseudomonas, Sphingomonas, Brachybacterium, Rhizobiales, Paracocccus, Chryseomonas and Microbacterium. The most frequently observed bacterial taxa across aerial plant regions were Pseudomonas and Xanthomonas. Dominant fungal taxa that could be identified to genus with 18S amplicons included Hypocrea, Aureobasidium and Cryptococcus. No definitive presence of Salmonella could be confirmed in any of the plant samples, although 16S sequences suggested that closely related genera were present on leaves, fruits and roots.
Collapse
|
47
|
Rungrassamee W, Klanchui A, Chaiyapechara S, Maibunkaew S, Tangphatsornruang S, Jiravanichpaisal P, Karoonuthaisiri N. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages. PLoS One 2013; 8:e60802. [PMID: 23577162 PMCID: PMC3618293 DOI: 10.1371/journal.pone.0060802] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/03/2013] [Indexed: 12/30/2022] Open
Abstract
Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.
Collapse
Affiliation(s)
- Wanilada Rungrassamee
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
| | - Amornpan Klanchui
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
| | - Sage Chaiyapechara
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
| | - Sawarot Maibunkaew
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- Genomic Research Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
| | - Pikul Jiravanichpaisal
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
| | - Nitsara Karoonuthaisiri
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology, Khlong Luang, Pathum Thani, Thailand
- * E-mail:
| |
Collapse
|
48
|
Leff JW, Fierer N. Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS One 2013; 8:e59310. [PMID: 23544058 PMCID: PMC3609859 DOI: 10.1371/journal.pone.0059310] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 02/15/2013] [Indexed: 11/19/2022] Open
Abstract
Fresh fruits and vegetables can harbor large and diverse populations of bacteria. However, most of the work on produce-associated bacteria has focused on a relatively small number of pathogenic bacteria and, as a result, we know far less about the overall diversity and composition of those bacterial communities found on produce and how the structure of these communities varies across produce types. Moreover, we lack a comprehensive view of the potential effects of differing farming practices on the bacterial communities to which consumers are exposed. We addressed these knowledge gaps by assessing bacterial community structure on conventional and organic analogs of eleven store-bought produce types using a culture-independent approach, 16 S rRNA gene pyrosequencing. Our results demonstrated that the fruits and vegetables harbored diverse bacterial communities, and the communities on each produce type were significantly distinct from one another. However, certain produce types (i.e., sprouts, spinach, lettuce, tomatoes, peppers, and strawberries) tended to share more similar communities as they all had high relative abundances of taxa belonging to the family Enterobacteriaceae when compared to the other produce types (i.e., apples, peaches, grapes, and mushrooms) which were dominated by taxa belonging to the Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria phyla. Although potentially driven by factors other than farming practice, we also observed significant differences in community composition between conventional and organic analogs within produce types. These differences were often attributable to distinctions in the relative abundances of Enterobacteriaceae taxa, which were generally less abundant in organically-grown produce. Taken together, our results suggest that humans are exposed to substantially different bacteria depending on the types of fresh produce they consume with differences between conventionally and organically farmed varieties contributing to this variation.
Collapse
Affiliation(s)
- Jonathan W. Leff
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, United States of America
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, United States of America
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|
49
|
Lusk TS, Ottesen AR, White JR, Allard MW, Brown EW, Kase JA. Characterization of microflora in Latin-style cheeses by next-generation sequencing technology. BMC Microbiol 2012; 12:254. [PMID: 23134566 PMCID: PMC3503605 DOI: 10.1186/1471-2180-12-254] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cheese contamination can occur at numerous stages in the manufacturing process including the use of improperly pasteurized or raw milk. Of concern is the potential contamination by Listeria monocytogenes and other pathogenic bacteria that find the high moisture levels and moderate pH of popular Latin-style cheeses like queso fresco a hospitable environment. In the investigation of a foodborne outbreak, samples typically undergo enrichment in broth for 24 hours followed by selective agar plating to isolate bacterial colonies for confirmatory testing. The broth enrichment step may also enable background microflora to proliferate, which can confound subsequent analysis if not inhibited by effective broth or agar additives. We used 16S rRNA gene sequencing to provide a preliminary survey of bacterial species associated with three brands of Latin-style cheeses after 24-hour broth enrichment. RESULTS Brand A showed a greater diversity than the other two cheese brands (Brands B and C) at nearly every taxonomic level except phylum. Brand B showed the least diversity and was dominated by a single bacterial taxon, Exiguobacterium, not previously reported in cheese. This genus was also found in Brand C, although Lactococcus was prominent, an expected finding since this bacteria belongs to the group of lactic acid bacteria (LAB) commonly found in fermented foods. CONCLUSIONS The contrasting diversity observed in Latin-style cheese was surprising, demonstrating that despite similarity of cheese type, raw materials and cheese making conditions appear to play a critical role in the microflora composition of the final product. The high bacterial diversity associated with Brand A suggests it may have been prepared with raw materials of high bacterial diversity or influenced by the ecology of the processing environment. Additionally, the presence of Exiguobacterium in high proportions (96%) in Brand B and, to a lesser extent, Brand C (46%), may have been influenced by the enrichment process. This study is the first to define Latin-style cheese microflora using Next-Generation Sequencing. These valuable preliminary data will direct selective tailoring of agar formulations to improve culture-based detection of pathogens in Latin-style cheese.
Collapse
Affiliation(s)
- Tina S Lusk
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 38730, Tennessee
| | - Andrea R Ottesen
- Division of Microbiology, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740, MD, USA
| | - James R White
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St., Baltimore, MD 21201, MD, USA
| | - Marc W Allard
- Division of Microbiology, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740, MD, USA
| | - Eric W Brown
- Division of Microbiology, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740, MD, USA
| | - Julie A Kase
- Division of Microbiology, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740, MD, USA
| |
Collapse
|
50
|
Berlec A. Novel techniques and findings in the study of plant microbiota: search for plant probiotics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:96-102. [PMID: 22794922 DOI: 10.1016/j.plantsci.2012.05.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/11/2012] [Accepted: 05/20/2012] [Indexed: 05/12/2023]
Abstract
Plants live in intimate relationships with numerous microorganisms present inside or outside plant tissues. The plant exterior provides two distinct ecosystems, the rhizosphere (below ground) and the phyllosphere (above ground), both populated by microbial communities. Most studies on plant microbiota deal with pathogens or mutualists. This review focuses on plant commensal bacteria, which could represent a rich source of bacteria beneficial to plants, alternatively termed plant probiotics. Plant commensal bacteria have been addressed only recently with culture-independent studies. These use next-generation sequencing, DNA microarray technologies and proteomics to decipher microbial community composition and function. Diverse bacterial populations are described in both rhizosphere and phyllosphere of different plants. The microorganisms can emerge from neighboring environmental ecosystems at random; however their survival is regulated by the plant. Influences from the environment, such as pesticides, farming practice and atmosphere, also affect the composition of microbial communities. Apart from community composition studies, some functional studies have also been performed. These include identification of broad-substrate surface receptors and methanol utilization enzymes by the proteomic approach, as well as identification of bacterial species that are important mediators of disease-suppressive soil phenomenon. Experience from more advanced human microbial studies could provide useful information and is discussed in the context of methodology and common trends. Administration of microbial mixtures of whole communities, rather than individual species, is highlighted and should be considered in future agricultural applications.
Collapse
Affiliation(s)
- Aleš Berlec
- Department of Biotechnology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|