1
|
Spigaglia P, Mastrantonio P, Barbanti F. Antibiotic Resistances of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:169-198. [PMID: 38175476 DOI: 10.1007/978-3-031-42108-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rapid evolution of antibiotic resistance in Clostridioides difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are a matter of concern for public health. Antibiotic resistance plays an important role in driving C. difficile epidemiology. Emergence of new types is often associated with the emergence of new resistances, and most of the epidemic C. difficile clinical isolates is currently resistant to multiple antibiotics. In particular, it is to worth to note the recent identification of strains with reduced susceptibility to the first-line antibiotics for CDI treatment and/or for relapsing infections. Antibiotic resistance in C. difficile has a multifactorial nature. Acquisition of genetic elements and alterations of the antibiotic target sites, as well as other factors, such as variations in the metabolic pathways or biofilm production, contribute to the survival of this pathogen in the presence of antibiotics. Different transfer mechanisms facilitate the spread of mobile elements among C. difficile strains and between C. difficile and other species. Furthermore, data indicate that both genetic elements and alterations in the antibiotic targets can be maintained in C. difficile regardless of the burden imposed on fitness, and therefore resistances may persist in C. difficile population in absence of antibiotic selective pressure.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Paola Mastrantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
2
|
Lu J, Sha Y, Gao M, Shi W, Lin X, Li K, Bao Q, Feng C. Identification and characterization of a novel aminoglycoside O-nucleotidyltransferase ANT(6)-If from Paenibacillus thiaminolyticus PATH554. Front Microbiol 2023; 14:1184349. [PMID: 37455719 PMCID: PMC10343464 DOI: 10.3389/fmicb.2023.1184349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Background Paenibacillus thiaminolyticus, a species of genus Paenibacillus of the family Paenibacillaceae, exists widely in environments and habitats in various plants and worms, and occasionally causes human infections. This work aimed to characterize the function of a novel aminoglycoside O-nucleotidyltransferase resistance gene, designated ant(6)-If, from a P. thiaminolyticus strain PATH554. Methods Molecular cloning, antimicrobial susceptibility testing, enzyme expression and purification, and kinetic analysis were used to validate the function of the novel gene. Whole-genome sequencing and comparative genomic analysis were performed to investigate the phylogenetic relationship of ANT(6)-If and other aminoglycoside O-nucleotidyltransferases, and the synteny of ant(6)-If related sequences. Results The recombinant with the cloned ant(6)-If gene (pMD19-ant(6)-If/DH5α) demonstrated a 128-fold increase of minimum inhibitory concentration level against streptomycin, compared with the control strains (DH5α and pMD19/DH5α). The kinetic parameter kcat/Km of ANT(6)-If for streptomycin was 9.01 × 103 M-1·s-1. Among the function-characterized resistance genes, ANT(6)-If shared the highest amino acid sequence identity of 75.35% with AadK. The ant(6)-If gene was located within a relatively conserved genomic region in the chromosome. Conclusion ant(6)-If conferred resistance to streptomycin. The study of a novel resistance gene in an unusual environmental bacterium in this work contributed to elucidating the resistance mechanisms in the microorganisms.
Collapse
Affiliation(s)
- Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Yuning Sha
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Ministry of Education, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Finsterwalder SK, Loncaric I, Cabal A, Szostak MP, Barf LM, Marz M, Allerberger F, Burgener IA, Tichy A, Feßler AT, Schwarz S, Monecke S, Ehricht R, Ruppitsch W, Spergser J, Künzel F. Dogs as carriers of virulent and resistant genotypes of Clostridioides difficile. Zoonoses Public Health 2022; 69:673-681. [PMID: 35546073 PMCID: PMC9544694 DOI: 10.1111/zph.12956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
While previous research on zoonotic transmission of community-acquired Clostridioides difficile infection (CA-CDI) focused on food-producing animals, the present study aimed to investigate whether dogs are carriers of resistant and/or virulent C. difficile strains. Rectal swabs were collected from 323 dogs and 38 C. difficile isolates (11.8%) were obtained. Isolates were characterized by antimicrobial susceptibility testing, whole-genome sequencing (WGS) and a DNA hybridization assay. Multilocus sequence typing (MLST), core genome MLST (cgMLST) and screening for virulence and antimicrobial resistance genes were performed based on WGS. Minimum inhibitory concentrations for erythromycin, clindamycin, tetracycline, vancomycin and metronidazole were determined by E-test. Out of 38 C. difficile isolates, 28 (73.7%) carried genes for toxins. The majority of isolates belonged to MLST sequence types (STs) of clade I and one to clade V. Several isolates belonged to STs previously associated with human CA-CDI. However, cgMLST showed low genetic relatedness between the isolates of this study and C. difficile strains isolated from humans in Austria for which genome sequences were publicly available. Four isolates (10.5%) displayed resistance to three of the tested antimicrobial agents. Isolates exhibited resistance to erythromycin, clindamycin, tetracycline and metronidazole. These phenotypic resistances were supported by the presence of the resistance genes erm(B), cfr(C) and tet(M). All isolates were susceptible to vancomycin. Our results indicate that dogs may carry virulent and antimicrobial-resistant C. difficile strains.
Collapse
Affiliation(s)
- SK Finsterwalder
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
- Clinical Unit of Internal Medicine Small AnimalsUniversity of Veterinary Medicine ViennaViennaAustria
| | - I Loncaric
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - A Cabal
- AGES ‐ Austrian Agency for Health and Food SafetyViennaAustria
| | - MP Szostak
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - LM Barf
- Faculty of Mathematics and Computer ScienceFriedrich Schiller University JenaJenaGermany
- Max Planck Institute for Science of Human HistoryJenaGermany
| | - M Marz
- Faculty of Mathematics and Computer ScienceFriedrich Schiller University JenaJenaGermany
- FLI Leibniz Institute for Age ResearchJenaGermany
- InfectoGnostics Research Campus JenaJenaGermany
| | - F Allerberger
- AGES ‐ Austrian Agency for Health and Food SafetyViennaAustria
| | - IA Burgener
- Clinical Unit of Internal Medicine Small AnimalsUniversity of Veterinary Medicine ViennaViennaAustria
| | - A Tichy
- Department of Biomedical ScienceUniversity of Veterinary Medicine ViennaViennaAustria
| | - AT Feßler
- Department of Veterinary Medicine, Centre of Infection Medicine, Institute of Microbiology and EpizooticsFreie Universität BerlinBerlinGermany
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR)Freie Universität BerlinBerlinGermany
| | - S Schwarz
- Department of Veterinary Medicine, Centre of Infection Medicine, Institute of Microbiology and EpizooticsFreie Universität BerlinBerlinGermany
- Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR)Freie Universität BerlinBerlinGermany
| | - S Monecke
- InfectoGnostics Research Campus JenaJenaGermany
- Leibniz Institute of Photonic Technology (IPHT)JenaGermany
- Institut für Medizinische Mikrobiologie und HygieneUniversitätsklinik DresdenDresdenGermany
| | - R Ehricht
- InfectoGnostics Research Campus JenaJenaGermany
- Leibniz Institute of Photonic Technology (IPHT)JenaGermany
- Institute of Physical ChemistryFriedrich Schiller University JenaJenaGermany
| | - W Ruppitsch
- AGES ‐ Austrian Agency for Health and Food SafetyViennaAustria
| | - J Spergser
- Institute of MicrobiologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - F Künzel
- Clinical Unit of Internal Medicine Small AnimalsUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
4
|
Holman DB, Kommadath A, Tingley JP, Abbott DW. Novel Insights into the Pig Gut Microbiome Using Metagenome-Assembled Genomes. Microbiol Spectr 2022; 10:e0238022. [PMID: 35880887 PMCID: PMC9431278 DOI: 10.1128/spectrum.02380-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Pigs are among the most numerous and intensively farmed food-producing animals in the world. The gut microbiome plays an important role in the health and performance of swine and changes rapidly after weaning. Here, fecal samples were collected from pigs at 7 different times points from 7 to 140 days of age. These swine fecal metagenomes were used to assemble 1,150 dereplicated metagenome-assembled genomes (MAGs) that were at least 90% complete and had less than 5% contamination. These MAGs represented 472 archaeal and bacterial species, and the most widely distributed MAGs were the uncultured species Collinsella sp002391315, Sodaliphilus sp004557565, and Prevotella sp000434975. Weaning was associated with a decrease in the relative abundance of 69 MAGs (e.g., Escherichia coli) and an increase in the relative abundance of 140 MAGs (e.g., Clostridium sp000435835, Oliverpabstia intestinalis). Genes encoding for the production of the short-chain fatty acids acetate, butyrate, and propionate were identified in 68.5%, 18.8%, and 8.3% of the MAGs, respectively. Carbohydrate-active enzymes associated with the degradation of arabinose oligosaccharides and mixed-linkage glucans were predicted to be most prevalent among the MAGs. Antimicrobial resistance genes were detected in 327 MAGs, including 59 MAGs with tetracycline resistance genes commonly associated with pigs, such as tet(44), tet(Q), and tet(W). Overall, 82% of the MAGs were assigned to species that lack cultured representatives indicating that a large portion of the swine gut microbiome is still poorly characterized. The results here also demonstrate the value of MAGs in adding genomic context to gut microbiomes. IMPORTANCE Many of the bacterial strains found in the mammalian gut are difficult to culture and isolate due to their various growth and nutrient requirements that are frequently unknown. Here, we assembled strain-level genomes from short metagenomic sequences, so-called metagenome-assembled genomes (MAGs), that were derived from fecal samples collected from pigs at multiple time points. The genomic context of a number of antimicrobial resistance genes commonly detected in swine was also determined. In addition, our study connected taxonomy with potential metabolic functions such as carbohydrate degradation and short-chain fatty acid production.
Collapse
Affiliation(s)
- Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Arun Kommadath
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Jeffrey P. Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- Department of Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
- Department of Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
5
|
Imwattana K, Rodríguez C, Riley TV, Knight DR. A species-wide genetic atlas of antimicrobial resistance in Clostridioides difficile. Microb Genom 2021; 7:000696. [PMID: 34793295 PMCID: PMC8743556 DOI: 10.1099/mgen.0.000696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial resistance (AMR) plays an important role in the pathogenesis and spread of Clostridioides difficile infection (CDI), the leading healthcare-related gastrointestinal infection in the world. An association between AMR and CDI outbreaks is well documented, however, data is limited to a few ‘epidemic’ strains in specific geographical regions. Here, through detailed analysis of 10 330 publicly-available C. difficile genomes from strains isolated worldwide (spanning 270 multilocus sequence types (STs) across all known evolutionary clades), this study provides the first species-wide snapshot of AMR genomic epidemiology in C. difficile . Of the 10 330 C . difficile genomes, 4532 (43.9 %) in 89 STs across clades 1–5 carried at least one genotypic AMR determinant, with 901 genomes (8.7 %) carrying AMR determinants for three or more antimicrobial classes (multidrug-resistant, MDR). No AMR genotype was identified in any strains belonging to the cryptic clades. C. difficile from Australia/New Zealand had the lowest AMR prevalence compared to strains from Asia, Europe and North America (P <0.0001). Based on the phylogenetic clade, AMR prevalence was higher in clades 2 (84.3 %), 4 (81.5 %) and 5 (64.8 %) compared to other clades (collectively 26.9 %) (P <0.0001). MDR prevalence was highest in clade 4 (61.6 %) which was over three times higher than in clade 2, the clade with the second-highest MDR prevalence (18.3 %). There was a strong association between specific AMR determinants and three major epidemic C. difficile STs: ST1 (clade 2) with fluoroquinolone resistance (mainly T82I substitution in GyrA) (P <0.0001), ST11 (clade 5) with tetracycline resistance (various tet -family genes) (P <0.0001) and ST37 (clade 4) with macrolide-lincosamide-streptogramin B (MLSB) resistance (mainly ermB ) (P <0.0001) and MDR (P <0.0001). A novel and previously overlooked tetM -positive transposon designated Tn6944 was identified, predominantly among clade 2 strains. This study provides a comprehensive review of AMR in the global C. difficile population which may aid in the early detection of drug-resistant C. difficile strains, and prevention of their dissemination worldwide.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Nakhon Pathom, Thailand
| | - César Rodríguez
- Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Thomas V. Riley
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia
| | - Daniel R. Knight
- School of Biomedical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
6
|
Ebselen Not Only Inhibits Clostridioides difficile Toxins but Displays Redox-Associated Cellular Killing. Microbiol Spectr 2021; 9:e0044821. [PMID: 34468187 PMCID: PMC8557875 DOI: 10.1128/spectrum.00448-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebselen, a reactive organoselenium compound, was shown to inhibit toxins TcdA and TcdB by covalently binding to their cysteine protease domains. It was suggested that ebselen lacked antimicrobial activity against Clostridioides difficile. However, this perception conflicts with C. difficile having essential cysteine-containing enzymes that could be potential targets and the reported antimicrobial activity of ebselen against other species. Hence, we reevaluated the anti-C. difficile properties of ebselen. Susceptibility testing revealed that its activity was either slightly reduced by pyruvate found in Wilkins-Chalgren agar or obliterated by blood in brucella agar. In brain heart infusion (BHI) agar, ebselen inhibited most C. difficile strains (MICs of 2 to 8 μg/ml), except for ribotype 078 that was intrinsically resistant (MIC = 32 to 128 μg/ml). Against C. difficile R20291, at concentrations below its minimal bactericidal concentration (MBC), 16 μg/ml, ebselen inhibited production of toxins and spores. Transcriptome analysis revealed that ebselen altered redox-associated processes and cysteine metabolism and enhanced expression of Stickland proline metabolism, likely to regenerate NAD+ from NADH. In cellular assays, ebselen induced uptake of cysteine, depleted nonprotein thiols, and disrupted the NAD+/NADH ratio. Taken together, killing of C. difficile cells by ebselen occurs by a multitarget action that includes disrupting intracellular redox, which is consistent with ebselen being a reactive molecule. However, the physiological relevance of these antimicrobial actions in treating acute C. difficile infection (CDI) is likely to be undermined by host factors, such as blood, which protect C. difficile from killing by ebselen. IMPORTANCE We show that ebselen kills pathogenic C. difficile by disrupting its redox homeostasis, changing the normal concentrations of NAD+ and NADH, which are critical for various metabolic functions in cells. However, this antimicrobial action is hampered by host components, namely, blood. Future discovery of ebselen analogues, or mechanistically similar compounds, that remain active in blood could be drug leads for CDI or probes to study C. difficile redox biology in vivo.
Collapse
|
7
|
O’Grady K, Knight DR, Riley TV. Antimicrobial resistance in Clostridioides difficile. Eur J Clin Microbiol Infect Dis 2021; 40:2459-2478. [DOI: 10.1007/s10096-021-04311-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023]
|
8
|
Wickramage I, Spigaglia P, Sun X. Mechanisms of antibiotic resistance of Clostridioides difficile. J Antimicrob Chemother 2021; 76:3077-3090. [PMID: 34297842 DOI: 10.1093/jac/dkab231] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clostridioides difficile (CD) is one of the top five urgent antibiotic resistance threats in USA. There is a worldwide increase in MDR of CD, with emergence of novel strains which are often more virulent and MDR. Antibiotic resistance in CD is constantly evolving with acquisition of novel resistance mechanisms, which can be transferred between different species of bacteria and among different CD strains present in the clinical setting, community, and environment. Therefore, understanding the antibiotic resistance mechanisms of CD is important to guide optimal antibiotic stewardship policies and to identify novel therapeutic targets to combat CD as well as other bacteria. Epidemiology of CD is driven by the evolution of antibiotic resistance. Prevalence of different CD strains and their characteristic resistomes show distinct global geographical patterns. Understanding epidemiologically driven and strain-specific characteristics of antibiotic resistance is important for effective epidemiological surveillance of antibiotic resistance and to curb the inter-strain and -species spread of the CD resistome. CD has developed resistance to antibiotics with diverse mechanisms such as drug alteration, modification of the antibiotic target site and extrusion of drugs via efflux pumps. In this review, we summarized the most recent advancements in the understanding of mechanisms of antibiotic resistance in CD and analysed the antibiotic resistance factors present in genomes of a few representative well known, epidemic and MDR CD strains found predominantly in different regions of the world.
Collapse
Affiliation(s)
- Ishani Wickramage
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Down Blvd, Tampa, FL 33612, USA
| | - Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Down Blvd, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Kartalidis P, Skoulakis A, Tsilipounidaki K, Florou Z, Petinaki E, Fthenakis GC. Clostridioides difficile as a Dynamic Vehicle for the Dissemination of Antimicrobial-Resistance Determinants: Review and In Silico Analysis. Microorganisms 2021; 9:microorganisms9071383. [PMID: 34202117 PMCID: PMC8307371 DOI: 10.3390/microorganisms9071383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/11/2023] Open
Abstract
The present paper is divided into two parts. The first part focuses on the role of Clostridioides difficile in the accumulation of genes associated with antimicrobial resistance and then the transmission of them to other pathogenic bacteria occupying the same human intestinal niche. The second part describes an in silico analysis of the genomes of C. difficile available in GenBank, with regard to the presence of mobile genetic elements and antimicrobial resistance genes. The diversity of the C. difficile genome is discussed, and the current status of resistance of the organisms to various antimicrobial agents is reviewed. The role of transposons associated with antimicrobial resistance is appraised; the importance of plasmids associated with antimicrobial resistance is discussed, and the significance of bacteriophages as a potential shuttle for antimicrobial resistance genes is presented. In the in silico study, 1101 C. difficile genomes were found to harbor mobile genetic elements; Tn6009, Tn6105, CTn7 and Tn6192, Tn6194 and IS256 were the ones more frequently identified. The genes most commonly harbored therein were: ermB, blaCDD, vanT, vanR, vanG and vanS. Tn6194 was likely associated with resistance to erythromycin, Tn6192 and CTn7 with resistance to the β-lactams and vancomycin, IS256 with resistance to aminoglycoside and Tn6105 to vancomycin.
Collapse
Affiliation(s)
- Philip Kartalidis
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Anargyros Skoulakis
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Katerina Tsilipounidaki
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Zoi Florou
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Efthymia Petinaki
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - George C. Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
- Correspondence:
| |
Collapse
|
10
|
Masarikova M, Simkova I, Plesko M, Eretova V, Krutova M, Cizek A. The Colonisation of Calves in Czech Large-Scale Dairy Farms by Clonally-Related Clostridioides difficile of the Sequence Type 11 Represented by Ribotypes 033 and 126. Microorganisms 2020; 8:microorganisms8060901. [PMID: 32549307 PMCID: PMC7356540 DOI: 10.3390/microorganisms8060901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/04/2022] Open
Abstract
To investigate a possible Clostridioides difficile reservoir in the Czech Republic, we performed a study in 297 calves from 29 large-scale dairy farms. After enrichment, faecal samples were inoculated onto selective agar for C. difficile. From the 297 samples, 44 C. difficile isolates were cultured (prevalence of 14.8%, 10 farms). The Holstein breed and use of digestate were associated with C. difficile colonisation (p ˂ 0.05). C. difficile isolates belonged to the ribotype/sequence type: RT033/ST11 (n = 37), RT126/ST11 (n = 6) and RT046/ST35 (n = 1). A multiple-locus variable-number tandem-repeat analysis revealed four clonal complexes of RT033 isolates and one clonal complex of RT126 isolates. All isolates were sensitive to amoxicillin, metronidazole and vancomycin. Forty isolates were resistant to ciprofloxacin, twenty-one to clindamycin, seven to erythromycin, seven to tetracycline and six to moxifloxacin. Moxifloxacin resistant isolates revealed an amino-acid substitution Thr82Ile in the GyrA. In conclusion, the calves of Holstein breed from farms using digestate as a product of bio-gas plants are more likely to be colonised by clonally-related C. difficile of ST 11 represented by ribotypes 033 and 126. The identified resistance to moxifloxacin with a Thr82Ile substitution in the GyrA highlights the need for further monitoring by the "One health approach".
Collapse
Affiliation(s)
- Martina Masarikova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| | - Ivana Simkova
- Ruminant and Swine Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| | - Martin Plesko
- Ruminant and Swine Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| | - Veronika Eretova
- Department of Medical Microbiology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, 150 06 Prague, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, 150 06 Prague, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, 612 42 Brno, Czech Republic
| |
Collapse
|
11
|
Archambault M, Rubin JE. Antimicrobial Resistance in Clostridium and Brachyspira spp. and Other Anaerobes. Microbiol Spectr 2020; 8:10.1128/microbiolspec.arba-0020-2017. [PMID: 31971162 PMCID: PMC10773235 DOI: 10.1128/microbiolspec.arba-0020-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 01/26/2023] Open
Abstract
This article describes the antimicrobial resistance to date of the most frequently encountered anaerobic bacterial pathogens of animals. The different sections show that antimicrobial resistance can vary depending on the antimicrobial, the anaerobe, and the resistance mechanism. The variability in antimicrobial resistance patterns is also associated with other factors such as geographic region and local antimicrobial usage. On occasion, the same resistance gene was observed in many anaerobes, whereas some were limited to certain anaerobes. This article focuses on antimicrobial resistance data of veterinary origin.
Collapse
Affiliation(s)
- Marie Archambault
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Joseph E Rubin
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
12
|
Wu Y, Yang L, Li WG, Zhang WZ, Liu ZJ, Lu JX. Microevolution within ST11 group Clostridioides difficile isolates through mobile genetic elements based on complete genome sequencing. BMC Genomics 2019; 20:796. [PMID: 31666016 PMCID: PMC6822371 DOI: 10.1186/s12864-019-6184-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Clade 5 Clostridioides difficile diverges significantly from the other clades and is therefore, attracting increasing attention due its great heterogeneity. In this study, we used third-generation sequencing techniques to sequence the complete whole genomes of three ST11 C. difficile isolates, RT078 and another two new ribotypes (RTs), obtained from three independent hospitalized elderly patients undergoing antibiotics treatment. Mobile genetic elements (MGEs), antibiotic-resistance, drug resistance genes, and virulent-related genes were analyzed and compared within these three isolates. RESULTS Isolates 10,010 and 12,038 carried a distinct deletion in tcdA compared with isolate 21,062. Furthermore, all three isolates had identical deletions and point-mutations in tcdC, which was once thought to be a unique characteristic of RT078. Isolate 21,062 (RT078) had a unique plasmid, different numbers of transposons and genetic organization, and harboring special CRISPR spacers. All three isolates retained high-level sensitivity to 11 drugs and isolate 21,062 (RT078) carried distinct drug-resistance genes and loss of numerous flagellum-related genes. CONCLUSIONS We concluded that capillary electrophoresis based PCR-ribotyping is important for confirming RT078. Furthermore, RT078 isolates displayed specific MGEs, indicating an independent evolutionary process. In the further study, we could testify these findings with more RT078 isolates of divergent origins.
Collapse
Affiliation(s)
- Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| | - Lin Yang
- BGI-Shen zhen, main building, Beishan industry zone, Yan tian District, Shenzhen, China
| | - Wen-Ge Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Zhu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zheng Jie Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin-Xing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
13
|
Knight DR, Riley TV. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front Public Health 2019; 7:164. [PMID: 31281807 PMCID: PMC6595230 DOI: 10.3389/fpubh.2019.00164] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/03/2019] [Indexed: 01/27/2023] Open
Abstract
Clostridium difficile is toxin-producing antimicrobial resistant (AMR) enteropathogen historically associated with diarrhea and pseudomembranous colitis in hospitalized patients. In recent years, there have been dramatic increases in the incidence and severity of C. difficile infection (CDI), and associated morbidity and mortality, in both healthcare and community settings. C. difficile is an ancient and diverse species that displays a sympatric lifestyle, establishing itself in a range of ecological niches external to the healthcare system. These sources/reservoirs include food, water, soil, and over a dozen animal species, in particular, livestock such as pigs and cattle. In a manner analogous to human infection, excessive antimicrobial exposure, particularly to cephalosporins, is driving the expansion of C. difficile in livestock populations worldwide. Subsequent spore contamination of meat, vegetables grown in soil containing animal feces, agricultural by-products such as compost and manure, and the environment in general (households, lawns, and public spaces) is contributing to a persistent community source/reservoir of C. difficile and the insidious rise of CDI in the community. The whole-genome sequencing era continues to redefine our view of this complex pathogen. The application of high-resolution microbial genomics in a One Health framework (encompassing clinical, veterinary, and environment derived datasets) is the optimal paradigm for advancing our understanding of CDI in humans and animals. This approach has begun to yield critical insights into the genetic diversity, evolution, AMR, and zoonotic potential of C. difficile. In Europe, North America, and Australia, microevolutionary analysis of the C. difficile core genome shows strains common to humans and animals (livestock or companion animals) do not form distinct populations but share a recent evolutionary history. Moreover, for C. difficile sequence type 11 and PCR ribotypes 078 and 014, major lineages of One Health importance, this approach has substantiated inter-species clonal transmission between animals and humans. These findings indicate either a zoonosis or anthroponosis. Moreover, they challenge the existing paradigm and the long-held misconception that CDI is primarily a healthcare-associated infection. In this article, evolutionary, and zoonotic aspects of CDI are discussed, including the anthropomorphic factors that contribute to the spread of C. difficile from the farm to the community.
Collapse
Affiliation(s)
- Daniel R Knight
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Thomas V Riley
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.,PathWest Laboratory Medicine, Department of Microbiology, Nedlands, WA, Australia
| |
Collapse
|
14
|
Evolutionary and Genomic Insights into Clostridioides difficile Sequence Type 11: a Diverse Zoonotic and Antimicrobial-Resistant Lineage of Global One Health Importance. mBio 2019; 10:mBio.00446-19. [PMID: 30992351 PMCID: PMC6469969 DOI: 10.1128/mbio.00446-19] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Historically, Clostridioides difficile (Clostridium difficile) has been associated with life-threatening diarrhea in hospitalized patients. Increasing rates of C. difficile infection (CDI) in the community suggest exposure to C. difficile reservoirs outside the hospital, including animals, the environment, or food. C. difficile sequence type 11 (ST11) is known to infect/colonize livestock worldwide and comprises multiple ribotypes, many of which cause disease in humans, suggesting CDI may be a zoonosis. Using high-resolution genomics, we investigated the evolution and zoonotic potential of ST11 and a new closely related ST258 lineage sourced from diverse origins. We found multiple intra- and interspecies clonal transmission events in all ribotype sublineages. Clones were spread across multiple continents, often without any health care association, indicative of zoonotic/anthroponotic long-range dissemination in the community. ST11 possesses a massive pan-genome and numerous clinically important antimicrobial resistance elements and prophages, which likely contribute to the success of this globally disseminated lineage of One Health importance. Clostridioides difficile (Clostridium difficile) sequence type 11 (ST11) is well established in production animal populations worldwide and contributes considerably to the global burden of C. difficile infection (CDI) in humans. Increasing evidence of shared ancestry and genetic overlap of PCR ribotype 078 (RT078), the most common ST11 sublineage, between human and animal populations suggests that CDI may be a zoonosis. We performed whole-genome sequencing (WGS) on a collection of 207 ST11 and closely related ST258 isolates of human and veterinary/environmental origin, comprising 16 RTs collected from Australia, Asia, Europe, and North America. Core genome single nucleotide variant (SNV) analysis identified multiple intraspecies and interspecies clonal groups (isolates separated by ≤2 core genome SNVs) in all the major RT sublineages: 078, 126, 127, 033, and 288. Clonal groups comprised isolates spread across different states, countries, and continents, indicative of reciprocal long-range dissemination and possible zoonotic/anthroponotic transmission. Antimicrobial resistance genotypes and phenotypes varied across host species, geographic regions, and RTs and included macrolide/lincosamide resistance (Tn6194 [ermB]), tetracycline resistance (Tn6190 [tetM] and Tn6164 [tet44]), and fluoroquinolone resistance (gyrA/B mutations), as well as numerous aminoglycoside resistance cassettes. The population was defined by a large “open” pan-genome (10,378 genes), a remarkably small core genome of 2,058 genes (only 19.8% of the gene pool), and an accessory genome containing a large and diverse collection of important prophages of the Siphoviridae and Myoviridae. This study provides novel insights into strain relatedness and genetic variability of C. difficile ST11, a lineage of global One Health importance.
Collapse
|
15
|
Androga GO, Knight DR, Lim SC, Foster NF, Riley TV. Antimicrobial resistance in large clostridial toxin-negative, binary toxin-positive Clostridium difficile ribotypes. Anaerobe 2018; 54:55-60. [DOI: 10.1016/j.anaerobe.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
|
16
|
Antibiotic Resistances of Clostridium difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1050:137-159. [PMID: 29383668 DOI: 10.1007/978-3-319-72799-8_9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rapid evolution of antibiotic resistance in Clostridium difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are matter of concern for public health. Antibiotic resistance plays an important role in driving C. difficile epidemiology. Emergence of new types is often associated with the emergence of new resistances and most of epidemic C. difficile clinical isolates is currently resistant to multiple antibiotics. In particular, it is to worth to note the recent identification of strains with reduced susceptibility to the first-line antibiotics for CDI treatment and/or for relapsing infections. Antibiotic resistance in C. difficile has a multifactorial nature. Acquisition of genetic elements and alterations of the antibiotic target sites, as well as other factors, such as variations in the metabolic pathways and biofilm production, contribute to the survival of this pathogen in the presence of antibiotics. Different transfer mechanisms facilitate the spread of mobile elements among C. difficile strains and between C. difficile and other species. Furthermore, recent data indicate that both genetic elements and alterations in the antibiotic targets can be maintained in C. difficile regardless of the burden imposed on fitness, and therefore resistances may persist in C. difficile population in absence of antibiotic selective pressure.
Collapse
|
17
|
Martín-Burriel I, Andrés-Lasheras S, Harders F, Mainar-Jaime RC, Ranera B, Zaragoza P, Falceto V, Bolea Y, Kuijper E, Bolea R, Bossers A, Chirino-Trejo M. Molecular analysis of three Clostridium difficile strain genomes isolated from pig farm-related samples. Anaerobe 2017; 48:224-231. [PMID: 28928035 DOI: 10.1016/j.anaerobe.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/08/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023]
Abstract
Clostridium difficile is an anaerobic spore-forming bacillus that usually causes gastrointestinal disorders in man and other animal species. Most of the strains isolated from animals are toxigenic being the virulent ribotype (RT) 078 predominant in several animal species. Although C. difficile is pathogenic to both humans and animals, there is no direct evidence of zoonosis. Deep genome sequencing provides sufficient resolution to analyse which strains found in animals might be related to human pathogens. So far, there are only a few fully sequenced genomes of C. difficile strains isolated from domestic and wild animals. Using Illumina technology, we have sequenced the genome of three isolates; a strain isolated from the vagina of a sow (5754), one from rat (Rattus spp) intestinal content (RC10) and a third one isolated from environmental rat faeces (RF17). Both, rat and rat faeces were sampled in fattening pig farms. Our study reveals a close genetic relationship of two of these isolates with the virulent strain M120 (RT078) isolated from a human patient. The analysis of the sequences has revealed the presence of antibiotic resistance genes, mobile elements, including the transposon linked with virulence Tn6164, and the similarity of virulence factors between these isolates and human strains. This is the first study focused on the sequencing of C. difficile genomes obtained from wild animals like rats, which can be considered as potential reservoirs for humans and other animal species. This study can help to understand the genome composition and epidemiology of this bacterium species.
Collapse
Affiliation(s)
- I Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| | - S Andrés-Lasheras
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - F Harders
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - R C Mainar-Jaime
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - B Ranera
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - P Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - V Falceto
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Y Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - E Kuijper
- Department of Medical Microbiology, Centre of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - R Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - A Bossers
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - M Chirino-Trejo
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
18
|
Putsathit P, Maneerattanaporn M, Piewngam P, Knight DR, Kiratisin P, Riley TV. Antimicrobial susceptibility of Clostridium difficile isolated in Thailand. Antimicrob Resist Infect Control 2017; 6:58. [PMID: 28603609 PMCID: PMC5465545 DOI: 10.1186/s13756-017-0214-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/30/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to antimicrobials is the major risk factor associated with Clostridium difficile infection (CDI). Paradoxically, treatment of CDI with antimicrobials remains the preferred option. To date, only three studies have investigated the antimicrobial susceptibility of C. difficile from Thailand, two of which were published in the 1990s. This study aimed to investigate the contemporary antibiotic susceptibility of C. difficile isolated from patients in Thailand. METHODS A collection of 105 C. difficile isolated from inpatients admitted at Siriraj Hospital in Bangkok in 2015 was tested for their susceptibility to nine antimicrobials via an agar incorporation method. RESULTS All isolates were susceptible to vancomycin, metronidazole, amoxicillin/clavulanate and meropenem. Resistance to clindamycin, erythromycin and moxifloxacin was observed in 73.3%, 35.2% and 21.0% of the isolates, respectively. The in vitro activity of fidaxomicin (MIC50/MIC90 0.06/0.25 mg/L) was superior to first-line therapies vancomycin (MIC50/MIC90 1/2 mg/L) and metronidazole (MIC50/MIC90 0.25/0.25 mg/L). Rifaximin exhibited potent activity against 85.7% of the isolates (MIC ≤0.03 mg/L), and its MIC50 (0.015 mg/L) was the lowest among all antimicrobials tested. The prevalence of multi-drug resistant C. difficile, defined by resistance to ≥3 antimicrobials, was 21.9% (23/105). CONCLUSIONS A high level of resistance against multiple classes of antimicrobial was observed, emphasising the need for enhanced antimicrobial stewardship and educational programmes to effectively disseminate information regarding C. difficile awareness and appropriate use of antimicrobials to healthcare workers and the general public.
Collapse
Affiliation(s)
- Papanin Putsathit
- Microbiology & Immunology, School of Pathology & Laboratory Medicine, The University of Western Australia, Crawley, WA 6008 Australia
| | - Monthira Maneerattanaporn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - Pipat Piewngam
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - Daniel R. Knight
- Microbiology & Immunology, School of Pathology & Laboratory Medicine, The University of Western Australia, Crawley, WA 6008 Australia
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand
| | - Thomas V. Riley
- Microbiology & Immunology, School of Pathology & Laboratory Medicine, The University of Western Australia, Crawley, WA 6008 Australia
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, WA 6009 Australia
| |
Collapse
|
19
|
Insights into drug resistance mechanisms in Clostridium difficile. Essays Biochem 2017; 61:81-88. [PMID: 28258232 DOI: 10.1042/ebc20160062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 01/05/2023]
Abstract
The incidence of Clostridium difficile infection has been elevated and becoming common in hospitals worldwide. Although antibiotics usually serve as the primary treatment for bacterial infection including C. difficile infection, limitations and failures have been evident due to drug resistance. Antibiotic resistance in C. difficile has been recognized as one of the most important factors to promote the infection and increase the level of severity and the recurrence rate. Several outbreaks in many countries have been linked to the emergence of hypervirulent drug-resistant strains. This pathogen harbours various mechanisms against the actions of antibiotics. The present study highlights three main drug-resistant strategies in C. difficile including drug inactivation, target modification and efflux pump. Other mechanisms that potentially contribute to drug-resistant traits in this organism are also discussed.
Collapse
|
20
|
Aljarallah KM. Conventional and alternative treatment approaches for Clostridium difficile infection. Int J Health Sci (Qassim) 2017; 11:1-10. [PMID: 28293151 PMCID: PMC5327666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Clostridium difficile-associated disease continues to be one of the leading health concerns worldwide. C. difficile is considered as a causative agent of nosocomial diarrhea that causes serious infection, which may result in death. The incidences of C. difficile infection (CDI) in developed countries have become increasingly high which may be attributed to the emergence of newer epidemic strains, extensive use of antibiotics, and limited alternative therapies. The available treatment options against CDI are expensive and promote resistance. Therefore, there is urgent need for new approaches to meet these challenges. This review discusses the current understanding of CDI, the existing clinical treatment strategies and future potential options as antidifficile agents based on the available published works.
Collapse
Affiliation(s)
- Khalid M. Aljarallah
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, KSA,Address for correspondence: Dr. Khalid M. Aljarallah, Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, KSA. E-mail:
| |
Collapse
|
21
|
Hargreaves KR, Thanki AM, Jose BR, Oggioni MR, Clokie MRJ. Use of single molecule sequencing for comparative genomics of an environmental and a clinical isolate of Clostridium difficile ribotype 078. BMC Genomics 2016; 17:1020. [PMID: 27964731 PMCID: PMC5154133 DOI: 10.1186/s12864-016-3346-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/25/2016] [Indexed: 01/20/2023] Open
Abstract
Background How the pathogen Clostridium difficile might survive, evolve and be transferred between reservoirs within the natural environment is poorly understood. Some ribotypes are found both in clinical and environmental settings. Whether these strains are distinct from each another and evolve in the specific environments is not established. The possession of a highly mobile genome has contributed to the genetic diversity and ongoing evolution of C. difficile. Interpretations of genetic diversity have been limited by fragmented assemblies resulting from short-read length sequencing approaches and by a limited understanding of epigenetic regulation of diversity. To address this, single molecule real time (SMRT) sequencing was used in this study as it produces high quality genome sequences, with resolution of repeat regions (including those found in mobile elements) and can generate data to determine methylation modifications across the sequence (the methylome). Results Chromosomal rearrangements and ribosomal operon duplications were observed in both genomes. The rearrangements occurred at insertion sites within two mobile genetic elements (MGEs), Tn6164 and Tn6293, present only in the M120 and CD105HS27 genomes, respectively. The gene content of these two transposons differ considerably which could impact upon horizontal gene transfer; differences include CDSs encoding methylases and a conjugative prophage only in Tn6164. To investigate mechanisms which could affect MGE transfer, the methylome, restriction modification (RM) and the CRISPR/Cas systems were characterised for each strain. Notably, the environmental isolate, CD105HS27, does not share a consensus motif for m4C methylation, but has one additional spacer when compared to the clinical isolate M120. Conclusions These findings show key differences between the two strains in terms of their genetic capacity for MGE transfer. The carriage of horizontally transferred genes appear to have genome wide effects based on two different methylation patterns. The CRISPR/Cas system appears active although perhaps slow to evolve. Data suggests that both mechanisms are functional and impact upon horizontal gene transfer and genome evolution within C. difficile. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3346-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine R Hargreaves
- Department Infection, Immunity and Inflammation, University of Leicester, Leicester, UK. .,Department Microbiology, The Ohio State University, Columbus, OH, USA.
| | - Anisha M Thanki
- Department Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Bethany R Jose
- Department Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | - Martha R J Clokie
- Department Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.
| |
Collapse
|
22
|
Spigaglia P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis 2016; 3:23-42. [PMID: 26862400 DOI: 10.1177/2049936115622891] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile epidemiology has changed in recent years, with the emergence of highly virulent types associated with severe infections, high rates of recurrences and mortality. Antibiotic resistance plays an important role in driving these epidemiological changes and the emergence of new types. While clindamycin resistance was driving historical endemic types, new types are associated with resistance to fluoroquinolones. Furthermore, resistance to multiple antibiotics is a common feature of the newly emergent strains and, in general, of many epidemic isolates. A reduced susceptibility to antibiotics used for C. difficile infection (CDI) treatment, in particular to metronidazole, has recently been described in several studies. Furthermore, an increased number of strains show resistance to rifamycins, used for the treatment of relapsing CDI. Several mechanisms of resistance have been identified in C. difficile, including acquisition of genetic elements and alterations of the antibiotic target sites. The C. difficile genome contains a plethora of mobile genetic elements, many of them involved in antibiotic resistance. Transfer of genetic elements among C. difficile strains or between C. difficile and other bacterial species can occur through different mechanisms that facilitate their spread. Investigations of the fitness cost in C. difficile indicate that both genetic elements and mutations in the molecular targets of antibiotics can be maintained regardless of the burden imposed on fitness, suggesting that resistances may persist in the C. difficile population also in absence of antibiotic selective pressure. The rapid evolution of antibiotic resistance and its composite nature complicate strategies in the treatment and prevention of CDI. The rapid identification of new phenotypic and genotypic traits, the implementation of effective antimicrobial stewardship and infection control programs, and the development of alternative therapies are needed to prevent and contain the spread of resistance and to ensure an efficacious therapy for CDI.
Collapse
|
23
|
Abstract
Clostridium difficile infection (CDI) is the leading cause of antimicrobial and health care-associated diarrhea in humans, presenting a significant burden to global health care systems. In the last 2 decades, PCR- and sequence-based techniques, particularly whole-genome sequencing (WGS), have significantly furthered our knowledge of the genetic diversity, evolution, epidemiology, and pathogenicity of this once enigmatic pathogen. C. difficile is taxonomically distinct from many other well-known clostridia, with a diverse population structure comprising hundreds of strain types spread across at least 6 phylogenetic clades. The C. difficile species is defined by a large diverse pangenome with extreme levels of evolutionary plasticity that has been shaped over long time periods by gene flux and recombination, often between divergent lineages. These evolutionary events are in response to environmental and anthropogenic activities and have led to the rapid emergence and worldwide dissemination of virulent clonal lineages. Moreover, genome analysis of large clinically relevant data sets has improved our understanding of CDI outbreaks, transmission, and recurrence. The epidemiology of CDI has changed dramatically over the last 15 years, and CDI may have a foodborne or zoonotic etiology. The WGS era promises to continue to redefine our view of this significant pathogen.
Collapse
|
24
|
Baines SD, Wilcox MH. Antimicrobial Resistance and Reduced Susceptibility in Clostridium difficile: Potential Consequences for Induction, Treatment, and Recurrence of C. difficile Infection. Antibiotics (Basel) 2015; 4:267-98. [PMID: 27025625 PMCID: PMC4790285 DOI: 10.3390/antibiotics4030267] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile infection (CDI) remains a substantial burden on healthcare systems and is likely to remain so given our reliance on antimicrobial therapies to treat bacterial infections, especially in an aging population in whom multiple co-morbidities are common. Antimicrobial agents are a key component in the aetiology of CDI, both in the establishment of the infection and also in its treatment. The purpose of this review is to summarise the role of antimicrobial agents in primary and recurrent CDI; assessing why certain antimicrobial classes may predispose to the induction of CDI according to a balance between antimicrobial activity against the gut microflora and C. difficile. Considering these aspects of CDI is important in both the prevention of the infection and in the development of new antimicrobial treatments.
Collapse
Affiliation(s)
- Simon D Baines
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| | - Mark H Wilcox
- Leeds Institute of Biomedical and Clinical Sciences, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK.
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, The General Infirmary, Leeds LS1 3EX, UK.
| |
Collapse
|
25
|
Hargreaves KR, Otieno JR, Thanki A, Blades MJ, Millard AD, Browne HP, Lawley TD, Clokie MRJ. As Clear as Mud? Determining the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates of Clostridium difficile. Genome Biol Evol 2015; 7:1842-55. [PMID: 26019165 PMCID: PMC4524475 DOI: 10.1093/gbe/evv094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile “mobilome,” which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics.
Collapse
Affiliation(s)
- Katherine R Hargreaves
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom Department of Ecology and Evolutionary Biology, University of Arizona
| | - James R Otieno
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Anisha Thanki
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Matthew J Blades
- Bioinformatics and Biostatistics Analysis Support Hub (BBASH), Core Biotechnology Services, University of Leicester, United Kingdom
| | - Andrew D Millard
- Microbiology & Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Hilary P Browne
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Trevor D Lawley
- Microbial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Martha R J Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| |
Collapse
|
26
|
Amy J, Johanesen P, Lyras D. Extrachromosomal and integrated genetic elements in Clostridium difficile. Plasmid 2015; 80:97-110. [PMID: 25929174 DOI: 10.1016/j.plasmid.2015.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/21/2022]
Abstract
Clostridium difficile is a major nosocomial pathogen, causing gastrointestinal disease in patients undergoing antibiotic therapy. This bacterium contains many extrachromosomal and integrated genetic elements, with recent genomic work giving new insights into their variability and distribution. This review summarises research conducted in this area over the last 30 years and includes a discussion on the functional contributions of these elements to host cell phenotypes, as well as encompassing recent genome sequencing studies that have contributed to our understanding of their evolution and dissemination. Importantly, we also include a review of antibiotic resistance determinants associated with mobile genetic elements since antibiotic use and the spread of antibiotic resistance are currently of significant global clinical importance.
Collapse
Affiliation(s)
- Jacob Amy
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Priscilla Johanesen
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dena Lyras
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
27
|
Knetsch CW, Connor TR, Mutreja A, van Dorp SM, Sanders IM, Browne HP, Harris D, Lipman L, Keessen EC, Corver J, Kuijper EJ, Lawley TD. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. ACTA ACUST UNITED AC 2014; 19:20954. [PMID: 25411691 DOI: 10.2807/1560-7917.es2014.19.45.20954] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Farm animals are a potential reservoir for human Clostridium difficile infection (CDI), particularly PCR ribotype 078 which is frequently found in animals and humans. Here, whole genome single-nucleotide polymorphism (SNP) analysis was used to study the evolutionary relatedness of C. difficile 078 isolated from humans and animals on Dutch pig farms. All sequenced genomes were surveyed for potential antimicrobial resistance determinants and linked to an antimicrobial resistance phenotype. We sequenced the whole genome of 65 C. difficile 078 isolates collected between 2002 and 2011 from pigs (n = 19), asymptomatic farmers (n = 15) and hospitalised patients (n = 31) in the Netherlands. The collection included 12 pairs of human and pig isolates from 2011 collected at 12 different pig farms. A mutation rate of 1.1 SNPs per genome per year was determined for C. difficile 078. Importantly, we demonstrate that farmers and pigs were colonised with identical (no SNP differences) and nearly identical (less than two SNP differences) C. difficile clones. Identical tetracycline and streptomycin resistance determinants were present in human and animal C. difficile 078 isolates. Our observation that farmers and pigs share identical C. difficile strains suggests transmission between these populations, although we cannot exclude the possibility of transmission from a common environmental source.
Collapse
Affiliation(s)
- C W Knetsch
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol Rev 2014; 38:720-60. [DOI: 10.1111/1574-6976.12058] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/15/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022] Open
|
29
|
Roberts AP, Allan E, Mullany P. The impact of horizontal gene transfer on the biology of Clostridium difficile. Adv Microb Physiol 2014; 65:63-82. [PMID: 25476764 DOI: 10.1016/bs.ampbs.2014.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile infection (CDI) is now recognised as the main cause of healthcare associated diarrhoea. Over the recent years there has been a change in the epidemiology of CDI with certain related strains dominating infection. These strains have been termed hyper-virulent and have successfully spread across the globe. Many C. difficile strains have had their genomes completely sequenced allowing researchers to build up a very detailed picture of the contribution of horizontal gene transfer to the adaptive potential, through the acquisition of mobile DNA, of this organism. Here, we review and discuss the contribution of mobile genetic elements to the biology of this clinically important pathogen.
Collapse
|
30
|
Abstract
Horizontal gene transfer has a tremendous impact on the genome plasticity, adaptation and evolution of bacteria. Horizontally transferred mobile genetic elements are involved in the dissemination of antibiotic resistance and virulence genes, thus contributing to the emergence of novel "superbugs". This review provides update on various mechanisms of horizontal gene transfer and examines how horizontal gene transfer contributes to the evolution of pathogenic bacteria. Special focus is paid to the role horizontal gene transfer plays in pathogenicity of the emerging human pathogens: hypervirulent Clostridium difficile and Escherichia coli (including the most recent haemolytic uraemic syndrome outbreak strain) and methicillin-resistant Staphylococcus aureus (MRSA), which have been associated with largest outbreaks of infection recently.
Collapse
Affiliation(s)
- Mario Juhas
- Department of Pathology, University of Cambridge , Cambridge , UK
| |
Collapse
|
31
|
Different antibiotic resistance and sporulation properties within multiclonal Clostridium difficile PCR ribotypes 078, 126, and 033 in a single calf farm. Appl Environ Microbiol 2012; 78:8515-22. [PMID: 23001653 DOI: 10.1128/aem.02185-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile strains were sampled periodically from 50 animals at a single veal calf farm over a period of 6 months. At arrival, 10% of animals were C. difficile positive, and the peak incidence was determined to occur at the age of 18 days (16%). The prevalence then decreased, and at slaughter, C. difficile could not be isolated. Six different PCR ribotypes were detected, and strains within a single PCR ribotype could be differentiated further by pulsed-field gel electrophoresis (PFGE). The PCR ribotype diversity was high up to the animal age of 18 days, but at later sampling points, PCR ribotype 078 and the highly related PCR ribotype 126 predominated. Resistance to tetracycline, doxycycline, and erythromycin was detected, while all strains were susceptible to amoxicillin and metronidazole. Multiple variations of the resistance gene tet(M) were present at the same sampling point, and these changed over time. We have shown that PCR ribotypes often associated with cattle (ribotypes 078, 126, and 033) were not clonal but differed in PFGE type, sporulation properties, antibiotic sensitivities, and tetracycline resistance determinants, suggesting that multiple strains of the same PCR ribotype infected the calves and that calves were likely to be infected prior to arrival at the farm. Importantly, strains isolated at later time points were more likely to be resistant to tetracycline and erythromycin and showed higher early sporulation efficiencies in vitro, suggesting that these two properties converge to promote the persistence of C. difficile in the environment or in hosts.
Collapse
|