1
|
Yao R, Li F, Dong X, Xu Y, Hu R, Wang L, Cai K, Liu X, Ni W, Zhou P, Hu S. Microbial Community Structure and Metabolism of Xinjiang Fine-Wool Sheep based on High-Throughput Sequencing Technology. Curr Microbiol 2024; 81:324. [PMID: 39180522 DOI: 10.1007/s00284-024-03837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
It turns out that the more than trillion microorganisms living in the host's digestive tract are crucial for maintaining nutrient intake, environmental suitability, and physiological mechanism. Xinjiang fine-wool sheep is an exclusive breed for wool in China, which has excellent stress tolerance. In this study, we collected feces and blood samples of 20 Xinjiang fine-wool sheep under the same genetic characteristics, the Fine-Wool Sheep (FWS) group and the Control Fine-Wool Sheep (CFWS) group were set up according to the differs in phenotypic characteristics of their wool. By 16S rRNA amplicon sequence, ITS1 region amplicons and Targeted Metabolomics, we analyzed the microbial community structure of fecal microorganisms and Short Chain Fatty Acids (SCFAs) in serum of the Xinjiang fine-wool sheep. Fecal microbial sequencing showed that the bacterial composition and structure were similar between the two groups, whereas there were significant differences in the composition and structure of the fungal community. It was also found that the abundant of Neocallimastigomycota in the intestinal fungal community of FWS was higher. In addition, the results of the serum SCFAs content analysis showed that butyric acid was significantly differences than those two groups. Correlation analysis between SCFAs and bacteria found that butyric acid metabolism had positively correlated (P < 0.05) with Ruminococcus and UCG-005. Overall, our data provide more supplement about the gut microbes community composition and structure of the Xinjiang fine-wool sheep. These results might be useful for improving gut health of sheep and taking nutritional control measure to improve production traits of animals in future.
Collapse
Affiliation(s)
- Rui Yao
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
| | - Fulin Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xuyang Dong
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Kuojun Cai
- College of Veterinary Medicine, Xinjiang Agriculture University, Urumqi, 830052, Xinjiang, China
| | - Xiaogang Liu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
2
|
Batuman O, Britt-Ugartemendia K, Kunwar S, Yilmaz S, Fessler L, Redondo A, Chumachenko K, Chakravarty S, Wade T. The Use and Impact of Antibiotics in Plant Agriculture: A Review. PHYTOPATHOLOGY 2024; 114:885-909. [PMID: 38478738 DOI: 10.1094/phyto-10-23-0357-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Growers have depended on the specificity and efficacy of streptomycin and oxytetracycline as a part of their plant disease arsenal since the middle of the 20th century. With climate change intensifying plant bacterial epidemics, the established success of these antibiotics remains threatened. Our strong reliance on certain antibiotics for devastating diseases eventually gave way to resistance development. Although antibiotics in plant agriculture equal to less than 0.5% of overall antibiotic use in the United States, it is still imperative for humans to continue to monitor usage, environmental residues, and resistance in bacterial populations. This review provides an overview of the history and use, resistance and mitigation, regulation, environmental impact, and economics of antibiotics in plant agriculture. Bacterial issues, such as the ongoing Huanglongbing (citrus greening) epidemic in Florida citrus production, may need antibiotics for adequate control. Therefore, preserving the efficacy of our current antibiotics by utilizing more targeted application methods, such as trunk injection, should be a major focus. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kellee Britt-Ugartemendia
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Sanju Kunwar
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Salih Yilmaz
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Lauren Fessler
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Ana Redondo
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kseniya Chumachenko
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| | - Shourish Chakravarty
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Tara Wade
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| |
Collapse
|
3
|
Pandey SS, Li J, Oswalt C, Wang N. Dynamics of ' Candidatus Liberibacter asiaticus' Growth, Concentrations of Reactive Oxygen Species, and Ion Leakage in Huanglongbing-Positive Sweet Orange. PHYTOPATHOLOGY 2024; 114:961-970. [PMID: 38478730 DOI: 10.1094/phyto-08-23-0294-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Citrus Huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most devastating citrus disease worldwide. CLas induces systemic and chronic reactive oxygen species (ROS) production, which has been suggested to be a primary cause of cell death in phloem tissues and subsequent HLB symptoms. Mitigating oxidative stress caused by CLas using horticultural approaches has been suggested as a useful strategy to reduce HLB damages. To provide information regarding the application timing to mitigate ROS, we investigated monthly dynamics of CLas concentration, CLas-triggered ROS, and phloem cell death in the bark tissues of asymptomatic and symptomatic branches of HLB-positive Hamlin and Valencia sweet orange trees in the field. Healthy branches in the screenhouse were used as controls. CLas concentration exhibited significant variations over the course of the year, with two distinct peaks observed in Florida citrus groves-late spring/early summer and late fall. Within both Hamlin and Valencia asymptomatic tissues, CLas concentration demonstrated a negative correlation with the deviation between the monthly average mean temperature and the optimal temperature for CLas colonization in plants (25.7°C). However, such a correlation was not evident in symptomatic tissues of Hamlin or Valencia sweet oranges. ROS levels were consistently higher in symptomatic or asymptomatic branches than in healthy branches in most months. ROS concentrations were higher in symptomatic branches than in asymptomatic branches in most months. CLas triggered significant increases in ion leakage in most months for asymptomatic and symptomatic branches compared with healthy controls. In asymptomatic branches of Hamlin, a positive correlation was observed between CLas concentration and ROS concentrations, CLas concentration and ion leakage levels, as well as ROS and ion leakage. Intriguingly, such a relationship was not observed in Valencia asymptomatic branches or in the symptomatic branches of Hamlin and Valencia. This study sheds light on the pathogenicity of CLas by providing useful information on the temporal dynamics of ROS production, phloem cell death, and CLas growth, as well as provides useful information in determining the timing for application of antioxidants and antimicrobial agents to control HLB.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Current affiliation: Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati 781035, India
| | - Jinyun Li
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Chris Oswalt
- Institute of Food and Agricultural Sciences, University of Florida, Bartow, FL 33830, U.S.A
| | - Nian Wang
- Citrus Research and Education Center (CREC), Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
4
|
Dominguez J, Jayachandran K, Stover E, Krystel J, Shetty KG. Endophytes and Plant Extracts as Potential Antimicrobial Agents against Candidatus Liberibacter Asiaticus, Causal Agent of Huanglongbing. Microorganisms 2023; 11:1529. [PMID: 37375030 DOI: 10.3390/microorganisms11061529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Huanglongbing (HLB), also known as citrus greening, is an insidious disease in citrus and has become a threat to the sustainability of the citrus industry worldwide. In the U.S., Candidatus Liberibacter asiaticus (CLas) is the pathogen that is associated with HLB, an unculturable, phloem-limited bacteria, vectored by the Asian Citrus Psyllid (ACP, Diaphorina citri). There is no known cure nor treatment to effectively control HLB, and current control methods are primarily based on the use of insecticides and antibiotics, where effectiveness is limited and may have negative impacts on beneficial and non-target organisms. Thus, there is an urgent need for the development of effective and sustainable treatment options to reduce or eliminate CLas from infected trees. In the present study, we screened citrus-derived endophytes, their cell-free culture supernatants (CFCS), and crude plant extracts for antimicrobial activity against two culturable surrogates of CLas, Sinorhizobium meliloti and Liberibacter crescens. Candidates considered high-potential antimicrobial agents were assessed directly against CLas in vitro, using a propidium monoazide-based assay. As compared to the negative controls, statistically significant reductions of viable CLas cells were observed for each of the five bacterial CFCS. Subsequent 16S rRNA gene sequencing revealed that each of the five bacterial isolates were most closely related to Bacillus amyloliquefaciens, a species dominating the market of biological control products. As such, the aboveground endosphere of asymptomatic survivor citrus trees, grown in an organic orchard, were found to host bacterial endophytes capable of effectively disrupting CLas cell membranes. These results concur with the theory that native members of the citrus microbiome play a role in the development of HLB. Here, we identify five strains of Bacillus amyloliquefaciens demonstrating notable potential to be used as sources of novel antimicrobials for the sustainable management of HLB.
Collapse
Affiliation(s)
- Jessica Dominguez
- Department of Earth and Environment, Florida International University, Miami, FL 33199, USA
| | | | - Ed Stover
- United States Department of Agriculture/Agricultural Research Service, Ft. Pierce, FL 34945, USA
| | - Joseph Krystel
- United States Department of Agriculture/Agricultural Research Service, Ft. Pierce, FL 34945, USA
| | - Kateel G Shetty
- Department of Earth and Environment, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
5
|
Archer L, Kunwar S, Alferez F, Batuman O, Albrecht U. Trunk Injection of Oxytetracycline for Huanglongbing Management in Mature Grapefruit and Sweet Orange Trees. PHYTOPATHOLOGY 2023; 113:1010-1021. [PMID: 36474420 DOI: 10.1094/phyto-09-22-0330-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Huanglongbing (HLB) is a devastating bacterial disease associated with 'Candidatus Liberibacter asiaticus'. The location of the pathogen within the vasculature of the tree has left growers with limited options for the effective management of the disease. Trunk injection is a crop protection technique that applies therapeutics directly into the xylem of woody tree species and allows for their systemic uptake and transport, which may provide more effective management of vascular diseases such as HLB. In this study, mature 'Valencia' and 'Hamlin' sweet orange (Citrus sinensis) and 'Duncan' grapefruit (C. paradisi) trees were injected with oxytetracycline (OTC) in the spring and/or fall to evaluate the effects of injection timing and response to injection. In addition to seasonal evaluations of tree health and bacterial titer, preharvest fruit drop, yield, and fruit quality were measured at harvest to determine the effects of OTC injection. The benefits associated with injection included a reduction in fruit drop, an increase in fruit yield and fruit size, and improvements in juice quality. However, results varied due to the timing of injection and were not consistent across all three varieties. Residue analysis at different time points after injection suggests that trunk injection effectively delivers therapeutics to mature citrus trees. This study provides fundamental information on the short-term benefits associated with trunk injection of OTC for HLB management in citrus groves. The potential for use of trunk injection at the commercial scale and the possible risks are discussed.
Collapse
Affiliation(s)
- Leigh Archer
- Horticultural Sciences Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| | - Sanju Kunwar
- Plant Pathology Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| | - Fernando Alferez
- Horticultural Sciences Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| | - Ozgur Batuman
- Plant Pathology Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| | - Ute Albrecht
- Horticultural Sciences Department, University of Florida, Southwest Florida Research and Education Center, University of Florida/IFAS, Immokalee, FL 34142
| |
Collapse
|
6
|
Levy A, Livingston T, Wang C, Achor D, Vashisth T. Canopy Density, but Not Bacterial Titers, Predicts Fruit Yield in Huanglongbing-Affected Sweet Orange Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:290. [PMID: 36679003 PMCID: PMC9863558 DOI: 10.3390/plants12020290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
In Florida, almost all citrus trees are affected with Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas). We characterized various parameters of HLB-affected sweet orange trees in response to yield-improving nutritional treatment, including canopy volume, canopy density and CLas Ct values, and found that the treatment improved yield and maintained canopy density for over three years, whereas untreated HLB-affected trees declined in canopy density. The nutritional treatment did not affect CLas titer or the tree canopy volume suggesting that canopy density is a better indicator of fruit yield. To further validate the importance of canopy density, we evaluated three independent orchards (different in tree age or variety) to identify the specific traits that are correlated with fruit yields. We found that canopy density and fruit detachment force (FDF), were positively correlated with fruit yields in independent trials. Canopy density accurately distinguished between mild and severe trees in three field trials. High and low producing HLB trees had the same Ct values. Ct values did not always agree with CLas number in the phloem, as visualized by transmission electron microscopy. Our work identifies canopy density as an efficient trait to predict yields of HLB-affected trees and suggests canopy health is more relevant for yields than the CLas population.
Collapse
Affiliation(s)
- Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Taylor Livingston
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Tripti Vashisth
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
- Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Munir S, Ahmed A, Li Y, He P, Singh BK, He P, Li X, Asad S, Wu Y, He Y. The hidden treasures of citrus: finding Huanglongbing cure where it was lost. Crit Rev Biotechnol 2021; 42:634-649. [PMID: 34325576 DOI: 10.1080/07388551.2021.1942780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Huanglongbing (HLB), a deadly citrus disease which has significantly downsized the entire industry worldwide. The intractable and incurable disease has brought the citriculture an enormous loss of productivity. With no resistant varieties available, failure of chemical treatments despite repeated applications, and hazardous consequences to environmental health, have led to large-scale research to find a sustainable cure. Inside plants, the key determinants of health and safety, live the endophytic microbes. Endophytes possess unrivaled plant benefiting properties. The progression of HLB is known to cause disturbance in endophytic bacterial communities. Given the importance of the plant endophytic microbiome in disease progression, the notion of engineering microbiomes through indigenous endophytes is attracting scientific attention which is considered revolutionary as it precludes the incompatibility concerns associated with the use of alien (microbes from other plant species) endophytes. In this review, we briefly discuss the transformation of the plant-pathogen-environment to the plant-pathogen-microbial system in a disease triangle. We also argue the employment of indigenous endophytes isolated from a healthy state to engineer the diseased citrus endophytic microbiomes that can provide sustainable solution for vascular pathogens. We evaluated the plethora of microbiomes responses to the re-introduction of endophytes which leads to disease resistance in the citrus host. The idea is not merely confined to citrus-HLB, but it is globally applicable for tailoring a customized cure for general plant-pathogen systems particularly for the diseases caused by the vascular system-restricted pathogens.
Collapse
Affiliation(s)
- Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Yongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, Australia.,Global Centre for Land Based Innovation, Western Sydney University, Penrith South, Australia
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Xingyu Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Suhail Asad
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, P. R. China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, P. R. China
| |
Collapse
|
8
|
Huang J, Dai Z, Zheng Z, da Silvia PA, Kumagai L, Xiang Q, Chen J, Deng X. Bacteriomic Analyses of Asian Citrus Psyllid and Citrus Samples Infected With " Candidatus Liberibacter asiaticus" in Southern California and Huanglongbing Management Implications. Front Microbiol 2021; 12:683481. [PMID: 34276617 PMCID: PMC8283493 DOI: 10.3389/fmicb.2021.683481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Citrus Huanglongbing (HLB; yellow shoot disease) is associated with an unculturable α-proteobacterium "Candidatus Liberibacter asiaticus" (CLas). HLB was found in southern California in 2012, and the current management strategy is based on suppression of the Asian citrus psyllid (Diaphorina citri) that transmits CLas and removal of confirmed CLas-positive trees. Little is known about Asian citrus psyllid-associated bacteria and citrus-associated bacteria in the HLB system. Such information is important in HLB management, particularly for accurate detection of CLas. Recent advancements in next-generation sequencing technology provide new opportunities to study HLB through genomic DNA sequence analyses (metagenomics). In this study, HLB-related bacteria in Asian citrus psyllid and citrus (represented by leaf midrib tissues) samples from southern California were analyzed. A metagenomic pipeline was developed to serve as a prototype for future bacteriomic research. This pipeline included steps of next-generation sequencing in Illumina platform, de novo assembly of Illumina reads, sequence classification using the Kaiju tool, acquisition of bacterial draft genome sequences, and taxonomic validation and diversity evaluation using average nucleotide identity. The identified bacteria in Asian citrus psyllids and citrus together included Bradyrhizobium, Buchnera, Burkholderia, "Candidatus Profftella armature," "Candidatus Carsonella ruddii," CLas, Mesorhizobium, Paraburkholderia, Pseudomonas, and Wolbachia. The whole genome of a CLas strain recently found in San Bernardino County was sequenced and classified into prophage typing group 1 (PTG-1), one of the five known CLas groups in California. Based on sequence similarity, Bradyrhizobium and Mesorhizobium were identified as possible source that could interfere with CLas detection using the 16S rRNA gene-based PCR commonly used for HLB diagnosis, particularly at low or zero CLas titer situation.
Collapse
Affiliation(s)
- Jiaquan Huang
- Laboratory of Citrus Huanglongbing Research, College of Plant Protection, South China Agricultural University, Guangzhou, China
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA, United States
| | - Zehan Dai
- Laboratory of Citrus Huanglongbing Research, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zheng Zheng
- Laboratory of Citrus Huanglongbing Research, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | | | - Luci Kumagai
- Plant Pest Diagnostic Center, California Department of Food and Agriculture, Sacramento, CA, United States
| | - Qijun Xiang
- Jerry Dimitman Laboratory, Riverside, CA, United States
| | - Jianchi Chen
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA, United States
| | - Xiaoling Deng
- Laboratory of Citrus Huanglongbing Research, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Bacillus amyloliquefaciens FH-1 significantly affects cucumber seedlings and the rhizosphere bacterial community but not soil. Sci Rep 2021; 11:12055. [PMID: 34103586 PMCID: PMC8187646 DOI: 10.1038/s41598-021-91399-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) inoculants have been applied worldwide. However, the ecological roles of PGPB under different soil conditions are still not well understood. The present study aimed to explore the ecological roles of Bacillus amyloliquefaciens FH-1 (FH) on cucumber seedlings, rhizosphere soil properties, and the bacterial community in pot experiments. The results showed that FH had significant effects on cucumber seedlings and the rhizosphere bacterial community but not on soil properties. The FH promoted cucumber seedlings growth, reduced the rhizosphere bacterial diversity, increased Proteobacteria, and decreased Acidobacteria. Linear discriminant analysis (LDA) effect size (LEfSe) revealed that FH enriched two taxa (GKS2_174 and Nannocystaceae) and inhibited 18 taxa (mainly Acidobacteria, Actinobacteria, BRC1, Chloroflexi, Plantctomycetes, and Verrucomicrobia). Co-occurrence network analysis demonstrated that FH increased bacteria-bacteria interactions and that Bacillus (genus of FH) had few interactions with the enriched and inhibited taxa. This might indicate that FH does not directly affect the enriched and inhibited taxa. Correlation analysis results displayed that cucumber seedlings’ weight and height/length (except root length) were significantly correlated with the 18 inhibited taxa and the enriched taxa Nannocystaceae. It was speculated that FH might promote cucumber seedling growth by indirectly enriching Nannocystaceae and inhibiting some taxa from Acidobacteria, Actinobacteria, BRC1, Chloroflexi, Plantctomycetes, and Verrucomicrobia.
Collapse
|
10
|
Munir S, Li Y, He P, He P, He P, Cui W, Wu Y, Li X, Li Q, Zhang S, Xiong Y, Lu Z, Wang W, Zong K, Yang Y, Yang S, Mu C, Wen H, Wang Y, Guo J, Karunarathna SC, He Y. Defeating Huanglongbing Pathogen Candidatus Liberibacter asiaticus With Indigenous Citrus Endophyte Bacillus subtilis L1-21. FRONTIERS IN PLANT SCIENCE 2021; 12:789065. [PMID: 35126416 PMCID: PMC8813962 DOI: 10.3389/fpls.2021.789065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 05/11/2023]
Abstract
Huanglongbing (HLB) has turned into a devastating botanical pandemic of citrus crops, caused by Candidatus Liberibacter asiaticus (CLas). However, until now the disease has remained incurable with very limited control strategies available. Restoration of the affected microbiomes in the diseased host through the introduction of an indigenous endophyte Bacillus subtilis L1-21 isolated from healthy citrus may provide an innovative approach for disease management. A novel half-leaf method was developed in vitro to test the efficacy of the endophyte L1-21 against CLas. Application of B. subtilis L1-21 at 104 colony forming unit (cfu ml-1) resulted in a 1,000-fold reduction in the CLas copies per gram of leaf midrib (107 to 104) in 4 days. In HLB-affected citrus orchards over a period of 2 years, the CLas incidence was reduced to < 3%, and CLas copies declined from 109 to 104 g-1 of diseased leaf midribs in the endophyte L1-21 treated trees. Reduction in disease incidence may corroborate a direct or an indirect biocontrol effect of the endophytes as red fluorescent protein-labeled B. subtilis L1-21 colonized and shared niche (phloem) with CLas. This is the first large-scale study for establishing a sustainable HLB control strategy through citrus endophytic microbiome restructuring using an indigenous endophyte.
Collapse
Affiliation(s)
- Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengjie He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Wenyan Cui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xingyu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Qi Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Sixiang Zhang
- Binchuan Institute for Food and Medicine Inspection and Testing, Binchuan, China
| | - Yangsu Xiong
- Binchuan Institute for Food and Medicine Inspection and Testing, Binchuan, China
| | - Zhanjun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Wenbiao Wang
- Binchuan Institute for Food and Medicine Inspection and Testing, Binchuan, China
| | - Kexian Zong
- Binchuan Institute for Food and Medicine Inspection and Testing, Binchuan, China
| | - Yongchao Yang
- Institute of Upland Crops, Wenshan Academy of Agricultural Sciences, Wenshan, China
| | - Shaocong Yang
- Institute of Crop Fertilization, Yuxi Academy of Agricultural Sciences, Yuxi, China
| | - Chan Mu
- Institute of Crop Fertilization, Yuxi Academy of Agricultural Sciences, Yuxi, China
| | - Heming Wen
- Institute of Upland Crops, Wenshan Academy of Agricultural Sciences, Wenshan, China
| | - Yuehu Wang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| | - Jun Guo
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Samantha C. Karunarathna
- Center for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- *Correspondence: Yueqiu He
| |
Collapse
|
11
|
Attaran E, Berim A, Killiny N, Beyenal H, Gang DR, Omsland A. Controlled replication of 'Candidatus Liberibacter asiaticus' DNA in citrus leaf discs. Microb Biotechnol 2020; 13:747-759. [PMID: 31958876 PMCID: PMC7111093 DOI: 10.1111/1751-7915.13531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
'Candidatus Liberibacter asiaticus' is a fastidious bacterium and a putative agent of citrus greening disease (a.k.a., huanglongbing, HLB), a significant agricultural disease that affects citrus fruit quality and tree health. In citrus, 'Ca. L. asiaticus' is phloem limited. Lack of culture tools to study 'Ca. L. asiaticus' complicates analysis of this important organism. To improve understanding of 'Ca. L. asiaticus'-host interactions including parameters that affect 'Ca. L. asiaticus' replication, methods suitable for screening pathogen responses to physicochemical and nutritional variables are needed. We describe a leaf disc-based culture assay that allows highly selective measurement of changes in 'Ca. L. asiaticus' DNA within plant tissue incubated under specific physicochemical and nutritional conditions. qPCR analysis targeting the hypothetical gene CD16-00155 (strain A4) allowed selective quantification of 'Ca. L. asiaticus' DNA content within infected tissue. 'Ca. L. asiaticus' DNA replication was observed in response to glucose exclusively under microaerobic conditions, and the antibiotic amikacin further enhanced 'Ca. L. asiaticus' DNA replication. Metabolite profiling revealed a moderate impact of 'Ca. L. asiaticus' on the ability of leaf tissue to metabolize and respond to glucose.
Collapse
Affiliation(s)
- Elham Attaran
- Paul G. Allen School for Global Animal HealthWashington State UniversityPullmanWAUSA
| | - Anna Berim
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | - Nabil Killiny
- Plant Pathology DepartmentCitrus Research and Education CenterUniversity of FloridaLake AlfredFLUSA
| | - Haluk Beyenal
- Gene and Linda Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWAUSA
| | - David R. Gang
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | - Anders Omsland
- Paul G. Allen School for Global Animal HealthWashington State UniversityPullmanWAUSA
| |
Collapse
|
12
|
Wu Y, Qu M, Pu X, Lin J, Shu B. Distinct microbial communities among different tissues of citrus tree Citrus reticulata cv. Chachiensis. Sci Rep 2020; 10:6068. [PMID: 32269258 PMCID: PMC7142118 DOI: 10.1038/s41598-020-62991-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
Plant microbiota colonize all organs of a plant and play crucial roles including supplying nutrients to plants, stimulating seed germination, promoting plant growth, and defending plants against biotic and abiotic stress. Because of the economic importance, interactions between citrus and microbes have been studied relatively extensively, especially citrus-pathogen interactions. However, the spatial distribution of microbial taxa in citrus trees remains under-studied. In this study, Citrus reticulata cv. Chachiensis was examined for the spatial distribution of microbes by sequencing 16S rRNA genes. More than 2.5 million sequences were obtained from 60 samples collected from soil, roots, leaves, and phloem. The dominant microbial phyla from all samples were Proteobacteria, Actinobacteria and Acidobacteria. The composition and structure of microbial communities in different samples were analyzed by PCoA, CAP, Anosim and MRPP methods. Variation in microbial species between samples were analyzed and the indicator microbes of each sample group were identified. Our results suggested that the microbial communities from different tissues varied significantly and the microenvironments of tree tissues could affect the composition of its microbial community.
Collapse
Affiliation(s)
- Yongxian Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mengqiu Qu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xinhua Pu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jintian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
13
|
Munir S, Li Y, He P, Huang M, He P, He P, Cui W, Wu Y, He Y. Core endophyte communities of different citrus varieties from citrus growing regions in China. Sci Rep 2020; 10:3648. [PMID: 32108149 PMCID: PMC7046616 DOI: 10.1038/s41598-020-60350-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
The native microbiomes of citrus trees play important roles in plant health, with good communication between the native microbiome and the host plant. Here, we report on the native endophytes in 24 citrus varieties in nine citrus growing regions in China; some of the trees were healthy and others had asymptomatic or symptomatic huanglongbing, which is caused by the pathogen Candidatus Liberibacter asiaticus (CLas). We used culture-dependent analysis and characterized the isolates by partial 16S rRNA gene sequencing. The endophytes were compared between different citrus varieties, regions, and disease states (healthy, asymptomatic, and symptomatic). The total number of endophytes isolated from most of the citrus varieties was 104-106 CFU/g of leaves, but it differed significantly by disease state, with the highest numbers in the healthy leaves and the lowest in the symptomatic leaves (p < 0.05). Among the citrus varieties, the Valencia variety had the maximum number of endophyte species (22). The most dominant endophytes were Bacillus subtilis, B. velezensis, Curtobacterium luteum, and Microbacterium testaceum. The higher frequency of B. subtilis in the healthy/asymptomatic plants compared to the symptomatic plants suggests that it has a role in huanglongbing resistance. Native endophyte communities in various citrus varieties could be used to improve citrus growth and combat CLas.
Collapse
Affiliation(s)
- Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Min Huang
- Agriculture College and Urban Modern Agriculture Engineering Research Center, Kunming University, Kunming, 650214, Yunnan, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Pengjie He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenyan Cui
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yixin Wu
- National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming, 650217, Yunnan, China
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- National and Local Joint Engineering Research Center for Screening and Application of Microbial Strains, Kunming, 650217, Yunnan, China.
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
14
|
Jiang Y, Zhang CX, Chen R, He SY. Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens. Proc Natl Acad Sci U S A 2019; 116:23390-23397. [PMID: 31712429 PMCID: PMC6876188 DOI: 10.1073/pnas.1915396116] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the past 4 decades, intensive molecular studies of mostly leaf mesophyll cell-infecting pathogens and chewing insects have led to compelling models of plant-pathogen and plant-insect interactions. Yet, some of the most devastating pathogens and insect pests live in or feed on the phloem, a systemic tissue belonging to the plant vascular system. Phloem tissues are difficult to study, and phloem-inhabiting pathogens are often impossible to culture, thus limiting our understanding of phloem-insect/pathogen interactions at a molecular level. In this Perspective, we highlight recent literature that reports significant advances in the understanding of phloem interactions with insects and prokaryotic pathogens and attempt to identify critical questions that need attention for future research. It is clear that study of phloem-insect/pathogen interactions represents an exciting frontier of plant science, and influx of new scientific expertise and funding is crucial to achieve faster progress in this important area of research that is integral to global food security.
Collapse
Affiliation(s)
- Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China;
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming 650223, China
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430070, China
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824;
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
15
|
Ascunce MS, Shin K, Huguet-Tapia JC, Poudel R, Garrett KA, van Bruggen AHC, Goss EM. Penicillin Trunk Injection Affects Bacterial Community Structure in Citrus Trees. MICROBIAL ECOLOGY 2019; 78:457-469. [PMID: 30506480 DOI: 10.1007/s00248-018-1302-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/23/2018] [Indexed: 05/25/2023]
Abstract
Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), an uncultured α-proteobacterium, is the most destructive disease of citrus trees worldwide. In previous studies, trunk injections of penicillin reduced CLas titers and HLB symptoms in citrus. However, antibiotic effects on the whole plant microbial community, which include effects on taxa that interact with CLas, have not yet been addressed. In this study, we investigated the effects of penicillin injection (0, 1000, and 6000 mg L-1) on rhizospheric and endophytic bacterial communities of grapefruit trees in field and greenhouse experiments through culture-independent high-throughput sequencing. DNA extractions from petioles and roots were subjected to 16S rRNA high-throughput sequencing, and reads were clustered by sequence similarity into operational taxonomic units (OTUs). Principal coordinates analysis based on weighted-UniFrac distances did not reveal differences in bacterial communities among treatments in any of the sample sources. However, pairwise linear discriminant analysis indicated significant differences in relative abundance of some taxa (including CLas) among treatments. Network analysis showed that penicillin produced major changes in root bacterial community structure by affecting interspecific microbial associations. This study provides new knowledge of the effect of antimicrobial treatments on interspecific relationships in citrus microbial communities.
Collapse
Affiliation(s)
- Marina S Ascunce
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA.
| | - Keumchul Shin
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - Ravin Poudel
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, USA
| | - Karen A Garrett
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, USA
| | - Ariena H C van Bruggen
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Erica M Goss
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Fujiwara K, Iwanami T, Fujikawa T. Alterations of Candidatus Liberibacter asiaticus-Associated Microbiota Decrease Survival of Ca. L. asiaticus in in vitro Assays. Front Microbiol 2018; 9:3089. [PMID: 30622518 PMCID: PMC6308922 DOI: 10.3389/fmicb.2018.03089] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/29/2018] [Indexed: 11/28/2022] Open
Abstract
Phloem-inhabiting bacterial phytopathogens often have smaller genomes than other bacterial phytopathogens. It is thought that they depend on both other phloem microbiota and phloem nutrients for colonization of the host. However, the mechanism underlying associations between phloem-inhabiting phytopathogens and other phloem microbiota are poorly understood. Here, we demonstrate that the survival of Candidatus Liberibacter asiaticus (CLas), a cause of huanglongbing (citrus greening disease), depends on interplay with a specific subset of CLas-associated microbiota. CLas was not susceptible to oxytetracycline in vitro. However, oxytetracycline treatment eliminated a particular sub-community dominated by the Comamonadaceae, Flavobacteriaceae, Microbacteriaceae, and Pseudomonadaceae, decreasing CLas survival. We speculate that CLas uses ecological services derived from CLas-associated microbiota to colonize the host and to construct a pathogen-associated community that stimulates disease development.
Collapse
Affiliation(s)
- Kazuki Fujiwara
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Koshi, Japan
| | - Toru Iwanami
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takashi Fujikawa
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
17
|
Ikenaga M, Katsuragi S, Handa Y, Katsumata H, Chishaki N, Kawauchi T, Sakai M. Improvements in Bacterial Primers to Enhance Selective SSU rRNA Gene Amplification of Plant-associated Bacteria by Applying the LNA Oligonucleotide-PCR Clamping Technique. Microbes Environ 2018; 33:340-344. [PMID: 30146542 PMCID: PMC6167120 DOI: 10.1264/jsme2.me18071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PCR clamping by locked nucleic acid (LNA) oligonucleotides is an effective technique for selectively amplifying the community SSU rRNA genes of plant–associated bacteria. However, the original primer set often shows low amplification efficiency. In order to improve this efficiency, new primers were designed at positions to compete with LNA oligonucleotides. Three new sets displayed higher amplification efficiencies than the original; however, efficiency varied among the primer sets. Two new sets appeared to be available in consideration of bacterial profiles by next-generation sequencing. One new set, KU63f and KU1494r, may be applicable to the selective gene amplification of plant-associated bacteria.
Collapse
Affiliation(s)
- Makoto Ikenaga
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University
| | | | | | | | - Naoya Chishaki
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University
| | - Tomohiro Kawauchi
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Masao Sakai
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University
| |
Collapse
|
18
|
Tang J, Ding Y, Nan J, Yang X, Sun L, Zhao X, Jiang L. Transcriptome sequencing and ITRAQ reveal the detoxification mechanism of Bacillus GJ1, a potential biocontrol agent for Huanglongbing. PLoS One 2018; 13:e0200427. [PMID: 30091977 PMCID: PMC6084860 DOI: 10.1371/journal.pone.0200427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/26/2018] [Indexed: 11/18/2022] Open
Abstract
Huanglongbing (HLB) is the most serious disease affecting citrus production worldwide. No HLB-resistant citrus varieties exist. The HLB pathogen Candidatus Liberibacter asiaticus is nonculturable, increasing the difficulty of preventing and curing the disease. We successfully screened the biocontrol agent Bacillus GJ1 for the control of HLB in nursery-grown citrus plants. RNA sequencing (RNA-seq) of the transcriptome and isobaric tags for relative and absolute quantification of the proteome revealed differences in the detoxification responses of Bacillus GJ1-treated and -untreated Ca. L. asiaticus-infected citrus. Phylogenetic tree alignment showed that GJ1 was classified as B. amyloliquefaciens. The effect of eliminating the HLB pathogen was measured using real-time quantitative polymerase chain reaction (qPCR) and PCR. The results indicate that the rate of detoxification reached 50% after seven irrigations, of plants with an OD600nm≈1 Bacillus GJ1 suspension. Most importantly, photosynthesis-antenna proteins, photosynthesis, plant-pathogen interactions, and protein processing in the endoplasmic reticulum were significantly upregulated (padj < 0.05), as shown by the KEGG enrichment analysis of the transcriptomes; nine of the upregulated genes were validated by qPCR. Transcription factor analysis of the transcriptomes was performed, and 10 TFs were validated by qPCR. Cyanoamino acid metabolism, regulation of autophagy, isoflavonoid biosynthesis, starch and sucrose metabolism, protein export, porphyrin and chlorophyll metabolism, and carotenoid biosynthesis were investigated by KEGG enrichment analysis of the proteome, and significant differences were found in the expression of the genes involved in those pathways. Correlation analysis of the proteome and transcriptome showed common entries for the significantly different expression of proteins and the significantly different expression of genes in the GO and KEGG pathways, respectively. The above results reveal important information about the detoxification pathways.
Collapse
Affiliation(s)
- Jizhou Tang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuanxi Ding
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Nan
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangyu Yang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liang Sun
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiuyun Zhao
- College of life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ling Jiang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China.,National Indoor Conservation Center of Virus-free Germplasm of Fruit Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
19
|
Munir S, He P, Wu Y, He P, Khan S, Huang M, Cui W, He P, He Y. Huanglongbing Control: Perhaps the End of the Beginning. MICROBIAL ECOLOGY 2018; 76:192-204. [PMID: 29196843 DOI: 10.1007/s00248-017-1123-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/23/2017] [Indexed: 05/25/2023]
Abstract
Huanglongbing (HLB) is one of the most destructive citrus plant diseases worldwide. It is associated with the fastidious phloem-limited α-proteobacteria 'Candidatus Liberibacter asiaticus', 'Ca. Liberibacter africanus' and 'Ca. Liberibacter americanus'. In recent years, HLB-associated Liberibacters have extended to North and South America. The causal agents of HLB have been putatively identified, and their transmission pathways and worldwide population structure have been extensively studied. However, very little is known about the epidemiologic relationships of Ca. L. asiaticus, which has limited the scope of HLB research and especially the development of control strategies. HLB-affected plants produce damaged fruits and die within several years. To control the disease, scientists have developed new compounds and screened existing compounds for their antibiotic and antimicrobial activities against the disease. These compounds, however, have very little or even no effect on the disease. The aim of the present review was to compile and compare different methods of HLB disease control with newly developed integrative strategies. In light of recent studies, we also describe how to control the vectors of this disease and the biological control of other citrus plant pathogens. This work could steer the attention of scientists towards integrative control strategies.
Collapse
Affiliation(s)
- Shahzad Munir
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Pengfei He
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yixin Wu
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Pengbo He
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Sehroon Khan
- World Agroforestry Centre, East and Central Asia, 132 Lanhei Rd, Heilongtan, Kunming, Yunnan, 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Min Huang
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Agriculture College and Urban Modern Agriculture Engineering Research Center, Kunming University, Kunming, 650214, China
| | - Wenyan Cui
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Pengjie He
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yueqiu He
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
20
|
Passera A, Alizadeh H, Azadvar M, Quaglino F, Alizadeh A, Casati P, Bianco PA. Studies of Microbiota Dynamics Reveals Association of " Candidatus Liberibacter Asiaticus" Infection with Citrus ( Citrus sinensis) Decline in South of Iran. Int J Mol Sci 2018; 19:E1817. [PMID: 29925799 PMCID: PMC6032414 DOI: 10.3390/ijms19061817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 11/29/2022] Open
Abstract
Citrus Decline Disease was recently reported to affect several citrus species in Iran when grafted on a local rootstock variety, Bakraee. Preliminary studies found “Candidatus Phytoplasma aurantifoliae” and “Candidatus Liberibacter asiaticus” as putative etiological agents, but were not ultimately able to determine which one, or if an association of both, were causing the disease. The current study has the aim of characterizing the microbiota of citrus plants that are either asymptomatic, showing early symptoms, or showing late symptoms through amplification of the V1–V3 region of 16S rRNA gene using an Illumina sequencer in order to (i) clarify the etiology of the disease, and (ii) describe the microbiota associated to different symptom stages. Our results suggest that liberibacter may be the main pathogen causing Citrus Decline Disease, but cannot rule out the possibility of phytoplasma being involved as well. The characterization of microbiota shows that the leaves show only two kinds of communities, either symptomatic or asymptomatic, while roots show clear distinction between early and late symptoms. These results could lead to the identification of bacteria that are related to successful plant defense response and, therefore, to immunity to the Citrus Decline Disease.
Collapse
Affiliation(s)
- Alessandro Passera
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy.
| | - Hamidreza Alizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft 7867161167, Iran.
| | - Mehdi Azadvar
- Plant Protection Department, South Kerman Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization, Jiroft 7867161167, Iran.
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy.
| | - Asma Alizadeh
- Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft 7867161167, Iran.
| | - Paola Casati
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy.
| | - Piero A Bianco
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
21
|
Blaustein RA, Lorca GL, Teplitski M. Challenges for Managing Candidatus Liberibacter spp. (Huanglongbing Disease Pathogen): Current Control Measures and Future Directions. PHYTOPATHOLOGY 2018; 108:424-435. [PMID: 28990481 DOI: 10.1094/phyto-07-17-0260-rvw] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Huanglongbing (HLB; "citrus greening" disease) has caused significant damages to the global citrus industry as it has become well established in leading citrus-producing regions and continues to spread worldwide. Insecticidal control has been a critical component of HLB disease management, as there is a direct relationship between vector control and Candidatus Liberibacter spp. (i.e., the HLB pathogen) titer in HLB-infected citrus trees. In recent years, there have been substantial efforts to develop practical strategies for specifically managing Ca. Liberibacter spp.; however, a literature review on the outcomes of such attempts is still lacking. This work summarizes the greenhouse and field studies that have documented the effects and implications of chemical-based treatments (i.e., applications of broad-spectrum antibiotics, small molecule compounds) and nonchemical measures (i.e., applications of plant-beneficial compounds, applications of inorganic fertilizers, biological control, thermotherapy) for phytopathogen control. The ongoing challenges associated with mitigating Ca. Liberibacter spp. populations at the field-scale, such as the seasonality of the phytopathogen and associated HLB disease symptoms, limitations for therapeutics to contact the phytopathogen in planta, adverse impacts of broad-spectrum treatments on plant-beneficial microbiota, and potential implications on public and ecosystem health, are also discussed.
Collapse
Affiliation(s)
- Ryan A Blaustein
- First and third authors: Department of Soil and Water Sciences, Genetics Institute, University of Florida, Gainesville; and second author: Department of Microbiology and Cell Science, Genetics Institute, University of Florida, Gainesville
| | - Graciela L Lorca
- First and third authors: Department of Soil and Water Sciences, Genetics Institute, University of Florida, Gainesville; and second author: Department of Microbiology and Cell Science, Genetics Institute, University of Florida, Gainesville
| | - Max Teplitski
- First and third authors: Department of Soil and Water Sciences, Genetics Institute, University of Florida, Gainesville; and second author: Department of Microbiology and Cell Science, Genetics Institute, University of Florida, Gainesville
| |
Collapse
|
22
|
Defining the Core Citrus Leaf- and Root-Associated Microbiota: Factors Associated with Community Structure and Implications for Managing Huanglongbing (Citrus Greening) Disease. Appl Environ Microbiol 2017; 83:AEM.00210-17. [PMID: 28341678 DOI: 10.1128/aem.00210-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Abstract
Stable associations between plants and microbes are critical to promoting host health and productivity. The objective of this work was to test the hypothesis that restructuring of the core microbiota may be associated with the progression of huanglongbing (HLB), the devastating citrus disease caused by Liberibacter asiaticus, Liberibacter americanus, and Liberibacter africanus The microbial communities of leaves (n = 94) and roots (n = 79) from citrus trees that varied by HLB symptom severity, cultivar, location, and season/time were characterized with Illumina sequencing of 16S rRNA genes. The taxonomically rich communities contained abundant core members (i.e., detected in at least 95% of the respective leaf or root samples), some overrepresented site-specific members, and a diverse community of low-abundance variable taxa. The composition and diversity of the leaf and root microbiota were strongly associated with HLB symptom severity and location; there was also an association with host cultivar. The relative abundance of Liberibacter spp. among leaf microbiota positively correlated with HLB symptom severity and negatively correlated with alpha diversity, suggesting that community diversity decreases as symptoms progress. Network analysis of the microbial community time series identified a mutually exclusive relationship between Liberibacter spp. and members of the Burkholderiaceae, Micromonosporaceae, and Xanthomonadaceae This work confirmed several previously described plant disease-associated bacteria, as well as identified new potential implications for biological control. Our findings advance the understanding of (i) plant microbiota selection across multiple variables and (ii) changes in (core) community structure that may be a precondition to disease establishment and/or may be associated with symptom progression.IMPORTANCE This study provides a comprehensive overview of the core microbial community within the microbiomes of plant hosts that vary in extent of disease symptom progression. With 16S Illumina sequencing analyses, we not only confirmed previously described bacterial associations with plant health (e.g., potentially beneficial bacteria) but also identified new associations and potential interactions between certain bacteria and an economically important phytopathogen. The importance of core taxa within broader plant-associated microbial communities is discussed.
Collapse
|
23
|
Canzani D, Hsieh K, Standland M, Hammack W, Aldeek F. UHPLC-MS/MS method for the quantitation of penicillin G and metabolites in citrus fruit using internal standards. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:87-94. [PMID: 28088045 DOI: 10.1016/j.jchromb.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/08/2016] [Accepted: 01/08/2017] [Indexed: 11/17/2022]
Abstract
Penicillin G has been applied to citrus trees as a potential treatment in the fight against Huanglongbing (HLB). Here, we have developed and validated a method to identify and quantitate penicillin G and two of its metabolites, penillic acid and penilloic acid, in citrus fruit using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). This method improves upon a previous method by incorporating isotopically labeled internal standards, namely, penillic acid-D5, and penilloic acid-D5. These standards greatly enhanced the accuracy and precision of our measurements by compensating for recovery losses, degradation, and matrix effects. When 2g of citrus fruit sample is extracted, the limits of detection (LOD) were determined to be 0.1ng/g for penicillin G and penilloic acid, and 0.25ng/g for penillic acid. At fortification levels of 0.1, 0.25, 1, and 10ng/g, absolute recoveries for penillic and penilloic acids were generally between 50-70%. Recoveries corrected with the isotopically labeled standards were approximately 90-110%. This method will be useful for the identification and quantitation of drug residues and their degradation products using isotopically labeled standards and UHPLC-MS/MS.
Collapse
Affiliation(s)
- Daniele Canzani
- Florida Department of Agriculture and Consumer Services, Division of Food Safety, 3125 Conner Boulevard, Tallahassee, FL, 32399-1650, United States
| | - Kevin Hsieh
- Florida Department of Agriculture and Consumer Services, Division of Food Safety, 3125 Conner Boulevard, Tallahassee, FL, 32399-1650, United States
| | - Matthew Standland
- Florida Department of Agriculture and Consumer Services, Division of Food Safety, 3125 Conner Boulevard, Tallahassee, FL, 32399-1650, United States
| | - Walter Hammack
- Florida Department of Agriculture and Consumer Services, Division of Food Safety, 3125 Conner Boulevard, Tallahassee, FL, 32399-1650, United States
| | - Fadi Aldeek
- Florida Department of Agriculture and Consumer Services, Division of Food Safety, 3125 Conner Boulevard, Tallahassee, FL, 32399-1650, United States.
| |
Collapse
|
24
|
Aldeek F, Canzani D, Standland M, Crosswhite MR, Hammack W, Gerard G, Cook JM. Identification of Penicillin G Metabolites under Various Environmental Conditions Using UHPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6100-7. [PMID: 26906275 DOI: 10.1021/acs.jafc.5b06150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this work, we investigate the stability of penicillin G in various conditions including acidic, alkaline, natural acidic matrices and after treatment of citrus trees that are infected with citrus greening disease. The identification, confirmation, and quantitation of penicillin G and its various metabolites were evaluated using two UHPLC-MS/MS systems with variable capabilities (i.e., Thermo Q Exactive Orbitrap and Sciex 6500 QTrap). Our data show that under acidic and alkaline conditions, penicillin G at 100 ng/mL degrades quickly, with a determined half-life time of approximately 2 h. Penillic acid, penicilloic acid, and penilloic acid are found to be the most abundant metabolites of penicillin G. These major metabolites, along with isopenillic acid, are found when penicillin G is used for treatment of citrus greening infected trees. The findings of this study will provide insight regarding penicillin G residues in agricultural and biological applications.
Collapse
Affiliation(s)
- Fadi Aldeek
- Division of Food Safety, Florida Department of Agriculture and Consumer Services , 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Daniele Canzani
- Division of Food Safety, Florida Department of Agriculture and Consumer Services , 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Matthew Standland
- Division of Food Safety, Florida Department of Agriculture and Consumer Services , 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Mark R Crosswhite
- Division of Food Safety, Florida Department of Agriculture and Consumer Services , 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Walter Hammack
- Division of Food Safety, Florida Department of Agriculture and Consumer Services , 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Ghislain Gerard
- Division of Food Safety, Florida Department of Agriculture and Consumer Services , 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Jo-Marie Cook
- Division of Food Safety, Florida Department of Agriculture and Consumer Services , 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| |
Collapse
|
25
|
Yang C, Powell CA, Duan Y, Shatters R, Fang J, Zhang M. Deciphering the Bacterial Microbiome in Huanglongbing-Affected Citrus Treated with Thermotherapy and Sulfonamide Antibiotics. PLoS One 2016; 11:e0155472. [PMID: 27171468 PMCID: PMC4865244 DOI: 10.1371/journal.pone.0155472] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/26/2016] [Indexed: 11/23/2022] Open
Abstract
Huanglongbing (HLB) is a serious citrus disease that threatens the citrus industry. In previous studies, sulfonamide antibiotics and heat treatment suppressed ‘Candidatus Liberibacter asiaticus’ (Las), but did not completely eliminate the Las. Furthermore, there are few reports studying the bacterial microbiome of HLB-affected citrus treated by heat and sulfonamide antibiotics. In this study, combinations of heat (45°C or 40°C) and sulfonamide treatment (sulfathiazole sodium–STZ, or sulfadimethoxine sodium—SDX) were applied to HLB-affected citrus. The bacterial microbiome of HLB-affected citrus following thermotherapy and/or chemotherapy was characterized by PhyloChipTMG3-based metagenomics. Our results showed that the combination of thermotherapy at 45°C and chemotherapy with STZ and SDX was more effective against HLB than thermotherapy alone, chemotherapy alone, or a combination of thermotherapy at 40°C and chemotherapy. The PhyloChipTMG3-based results indicated that 311 empirical Operational Taxonomic Units (eOTUs) were detected in 26 phyla. Cyanobacteria (18.01%) were dominant after thermo-chemotherapy. Thermotherapy at 45°C decreased eOTUs (64.43%) in leaf samples, compared with thermotherapy at 40°C (73.96%) or without thermotherapy (90.68%) and it also reduced bacterial family biodiversity. The eOTU in phylum Proteobacteria was reduced significantly and eOTU_28, representing “Candidatus Liberibacter,” was not detected following thermotherapy at 45°C. Following antibiotic treatment with SDX and STZ, there was enhanced abundance of specific eOTUs belonging to the families Streptomycetaceae, Desulfobacteraceae, Chitinophagaceae, and Xanthomonadaceae, which may be implicated in increased resistance to plant pathogens. Our study further develops an integrated strategy for combating HLB, and also provides new insight into the bacterial microbiome of HLB-affected citrus treated by heat and sulfonamide antibiotics.
Collapse
Affiliation(s)
- Chuanyu Yang
- State Key Lab for Conservation and Utilization of Subtropical Agro-biological Resources, Guangxi University, Nanning, 530005, China
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL, 34945, United States of America
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Charles A. Powell
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL, 34945, United States of America
| | - Yongping Duan
- Horticultural Research Lab, USDA-ARS, Fort Pierce, FL, 34945, United States of America
| | - Robert Shatters
- Horticultural Research Lab, USDA-ARS, Fort Pierce, FL, 34945, United States of America
| | - Jingping Fang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-biological Resources, Guangxi University, Nanning, 530005, China
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL, 34945, United States of America
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- * E-mail:
| |
Collapse
|
26
|
Zhang MQ, Guo Y, Powell CA, Doud MS, Yang CY, Zhou H, Duan YP. Zinc treatment increases the titre of 'Candidatus Liberibacter asiaticus' in huanglongbing-affected citrus plants while affecting the bacterial microbiomes. J Appl Microbiol 2016; 120:1616-28. [PMID: 26909469 DOI: 10.1111/jam.13102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/28/2016] [Accepted: 02/05/2016] [Indexed: 12/26/2022]
Abstract
AIMS Huanglongbing (HLB)-affected citrus often display zinc deficiency symptoms. In this study, supplemental zinc was applied to citrus to determine its effect on Candidatus Liberibacter asiaticus (Las) titre, HLB symptoms, and leaf microbiome. METHODS AND RESULTS HLB-affected citrus were treated with various amounts of zinc. The treatments promoted Las growth and affected microbiomes in citrus leaves. Phylochip(™) -based results indicated that 5475 of over 50 000 known Operational Taxonomic Units (OTUs) in 52 phyla were detected in the midribs of HLB-affected citrus, of which Proteobacteria was the most abundant, followed by Firmicutes and Actinobacteria. In comparison, the microbiomes of zinc-treated diseased plants had overall more OTUs with higher amounts of Proteobacteria, but decreased percentages of Firmicutes and Actinobacteria. In addition, more OTUs of siderophore-producing bacteria were present. Only zinc-sensitive Staphylococcaceae had higher OTU's in the diseased plants without zinc treatments. CONCLUSIONS Although HLB-affected citrus appear zinc deficient, zinc amendments increased the pathogen levels and shifted the microbiome. SIGNIFICANCE AND IMPACT OF THE STUDY HLB is currently the most devastating disease of citrus worldwide. Zinc is often applied to HLB-affected citrus due to zinc deficiency symptoms. This study provided new insights into the potential effects of zinc on HLB and the microbial ecology of citrus.
Collapse
Affiliation(s)
- M Q Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-biological Resources, Guangxi University, Nanning, China.,IRREC-IFAS, University of Florida, Fort Pierce, FL, USA.,USHRL, USDA-ARS, Fort Pierce, FL, USA
| | - Y Guo
- IRREC-IFAS, University of Florida, Fort Pierce, FL, USA
| | - C A Powell
- IRREC-IFAS, University of Florida, Fort Pierce, FL, USA
| | - M S Doud
- USHRL, USDA-ARS, Fort Pierce, FL, USA
| | - C Y Yang
- IRREC-IFAS, University of Florida, Fort Pierce, FL, USA
| | - H Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agro-biological Resources, Guangxi University, Nanning, China
| | - Y P Duan
- USHRL, USDA-ARS, Fort Pierce, FL, USA
| |
Collapse
|
27
|
Sauer AV, Zanutto CA, Nocchi PTR, Machado MA, Bock CH, Nunes WMC. Seasonal Variation in Populations of 'Candidatus Liberibacter asiaticus' in Citrus Trees in Paraná State, Brazil. PLANT DISEASE 2015; 99:1125-1132. [PMID: 30695933 DOI: 10.1094/pdis-09-14-0926-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Huanglongbing (HLB) is considered one of the most destructive diseases of citrus because the plants rapidly become unproductive, enter a decline, and eventually die. HLB is caused by the phloem-limited bacterium 'Candidatus Liberibacter' spp. The objective of this study was to evaluate seasonal variation of the in planta population of 'Ca. Liberibacter asiaticus' in the foliage of citrus trees in Brazil using real-time polymerase chain reaction (qPCR). Eleven plants (naturally infected, then screened) in the field with very mild and localized symptoms of HLB were confirmed to be 'Ca. L. asiaticus' infected by conventional PCR, and the canopies were divided into four quadrants. The bacterial population in the trees was tested on a monthly basis for up to 20 months by quantifying 'Ca. L. asiaticus' DNA using qPCR 'Ca. L. asiaticus'-specific primers (As84F/As180R). The average cycle threshold (Ct) values, which relate to 'Ca. L. asiaticus' titer, were analyzed using a mixed model. Significant differences were observed in Ct values between seasons (F = 8.77, P = 0.0004), and abrupt changes were observed in Ct values in different quadrants of the trees. Autumn had the lowest Ct values, indicating the highest 'Ca. L. asiaticus' titer, and, thus, is considered the best period to detect 'Ca. L. asiaticus' infection in foliage of citrus trees in southern Brazil. In addition to the seasonal changes in Ct values, there was an initial decline in the Ct value in the months following initial detection, the rate of decline slowing with time. Concomitant with the increase of the bacterial population in the host, there was an increase in severity of HLB symptoms in the trees over time (Spearman's rank correlation, r = -0.4083, P < 0.0001). The results identify the optimal season to sample foliage for 'Ca. L. asiaticus' in southern Brazil (autumn) and confirm the importance of sample timing to maximize detection of 'Ca. L. asiaticus' and, thus, contribute to the search for effective measures to manage HLB.
Collapse
Affiliation(s)
- Aline Vanessa Sauer
- Núcleo de Pesquisa em Biotecnologia Aplicada (NBA), Universidade Estadual de Maringá (UEM) 87020-900, Maringá, Paraná, Brazil
| | - Carlos Alexandre Zanutto
- Núcleo de Pesquisa em Biotecnologia Aplicada (NBA), Universidade Estadual de Maringá (UEM) 87020-900, Maringá, Paraná, Brazil
| | - Paula Thais Requena Nocchi
- Núcleo de Pesquisa em Biotecnologia Aplicada (NBA), Universidade Estadual de Maringá (UEM) 87020-900, Maringá, Paraná, Brazil
| | - Marcos Antonio Machado
- Centro de Citricultura "Sylvio Moreira", Instituto Agronomico de Campinas, 13490-970, Cordeirópolis, SP, Brazil
| | - Clive H Bock
- United States Department of Agriculture-Agricultural Research Service SEFTNRL, Byron, GA 31008
| | | |
Collapse
|
28
|
Aldeek F, Rosana MR, Hamilton ZK, Crosswhite MR, Burrows CW, Singh S, Gerard G, Hammack W, Cook JM. LC-MS/MS Method for the Determination and Quantitation of Penicillin G and Its Metabolites in Citrus Fruits Affected by Huanglongbing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5993-6000. [PMID: 26072945 DOI: 10.1021/acs.jafc.5b02030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, we developed and validated a method for the extraction, identification, and quantitation of penicillin G and its metabolites (penilloic acid and penillic acid) in a variety of citrus fruits by employing sequential liquid/liquid and solid-phase extraction techniques in conjunction with UHPLC-MS/MS. Two product ion transitions per analyte were required for identification, which contributes to a high degree of selectivity. Corrected recoveries of penicillin G using an isotopically labeled internal standard were 90-100% at fortification levels of 0.1, 0.25, 1, and 10 ng/g. Absolute recoveries for penillic acid and penilloic acid were 50-75% depending on the matrix used. The limit of detection (LOD) of penicillin G and its metabolites was found to be 0.1 ng/g when 2 g of citrus was extracted. This method is useful in determining residue levels of penicillin G and its metabolites in citrus trees infected with huanglongbing bacteria after antibiotic treatment.
Collapse
Affiliation(s)
- Fadi Aldeek
- Division of Food Safety, Florida Department of Agriculture and Consumer Services, 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Michael R Rosana
- Division of Food Safety, Florida Department of Agriculture and Consumer Services, 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Zaid K Hamilton
- Division of Food Safety, Florida Department of Agriculture and Consumer Services, 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Mark R Crosswhite
- Division of Food Safety, Florida Department of Agriculture and Consumer Services, 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Casey W Burrows
- Division of Food Safety, Florida Department of Agriculture and Consumer Services, 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Sonal Singh
- Division of Food Safety, Florida Department of Agriculture and Consumer Services, 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Ghislain Gerard
- Division of Food Safety, Florida Department of Agriculture and Consumer Services, 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Walter Hammack
- Division of Food Safety, Florida Department of Agriculture and Consumer Services, 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| | - Jo-Marie Cook
- Division of Food Safety, Florida Department of Agriculture and Consumer Services, 3125 Conner Boulevard, Tallahassee, Florida 32399-1650, United States
| |
Collapse
|
29
|
Zhang M, Guo Y, Powell CA, Doud MS, Yang C, Duan Y. Effective antibiotics against 'Candidatus Liberibacter asiaticus' in HLB-affected citrus plants identified via the graft-based evaluation. PLoS One 2014; 9:e111032. [PMID: 25372135 PMCID: PMC4220982 DOI: 10.1371/journal.pone.0111032] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/25/2014] [Indexed: 12/29/2022] Open
Abstract
Citrus huanglongbing (HLB), caused by three species of fastidious, phloem-limited 'Candidatus Liberibacter', is one of the most destructive diseases of citrus worldwide. To date, there is no established cure for this century-old and yet, newly emerging disease. As a potential control strategy for citrus HLB, 31 antibiotics were screened for effectiveness and phytotoxicity using the optimized graft-based screening system with 'Candidatus Liberibacter asiaticus' (Las)-infected citrus scions. Actidione and Oxytetracycline were the most phytotoxic to citrus with less than 10% of scions surviving and growing; therefore, this data was not used in additional analyses. Results of principal component (PCA) and hierarchical clustering analyses (HCA) demonstrated that 29 antibiotics were clustered into 3 groups: highly effective, partly effective, and not effective. In spite of different modes of actions, a number of antibiotics such as, Ampicillin, Carbenicillin, Penicillin, Cefalexin, Rifampicin and Sulfadimethoxine were all highly effective in eliminating or suppressing Candidatus Liberibacter asiaticus indicated by both the lowest Las infection rate and titers of the treated scions and inoculated rootstock. The non-effective group, including 11 antibiotics alone with three controls, such as Amikacin, Cinoxacin, Gentamicin, Kasugamycin, Lincomycin, Neomycin, Polymixin B and Tobramycin, did not eliminate or suppress Las in the tested concentrations, resulting in plants with increased titers of Las. The other 12 antibiotics partly eliminated or suppressed Las in the treated and graft-inoculated plants. The effective and non-phytotoxic antibiotics could be potential candidates for control of citrus HLB, either for the rescue of infected citrus germplasm or for restricted field application.
Collapse
Affiliation(s)
- Muqing Zhang
- Guangxi University, Nanning, 530004, China
- Institute of Food and Agricultural Science-Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, United States of America
| | - Ying Guo
- Institute of Food and Agricultural Science-Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, United States of America
| | - Charles A. Powell
- Institute of Food and Agricultural Science-Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, United States of America
| | - Melissa S. Doud
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL 34945, United States of America
| | - Chuanyu Yang
- Guangxi University, Nanning, 530004, China
- Institute of Food and Agricultural Science-Indian River Research and Education Center, University of Florida, Fort Pierce, FL 34945, United States of America
| | - Yongping Duan
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL 34945, United States of America
| |
Collapse
|
30
|
McManus PS. Does a drop in the bucket make a splash? Assessing the impact of antibiotic use on plants. Curr Opin Microbiol 2014; 19:76-82. [PMID: 25006016 DOI: 10.1016/j.mib.2014.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/29/2014] [Accepted: 05/21/2014] [Indexed: 11/27/2022]
Abstract
Antibiotics are applied to plants to prevent bacterial diseases, although the diversity of antibiotics and total amounts used are dwarfed by antibiotic use in animal agriculture. Nevertheless, the release of antibiotics into the open environment during crop treatment draws scrutiny for its potential impact on the global pool of resistance genes. The main use of antibiotics on plants is application of streptomycin to prevent fire blight, a serious disease of apple and pear trees. A series of recent studies identified and quantified antibiotic resistance genes and profiled bacterial communities in apple orchard plots that were or were not sprayed with streptomycin. While the specific objectives and methods varied, the results of these studies suggest that streptomycin application for fire blight control does not influence bacterial community structure or increase the abundance of resistance genes in orchards.
Collapse
Affiliation(s)
- Patricia S McManus
- Department of Plant Pathology, University of Wisconsin-Madison, United States.
| |
Collapse
|
31
|
Zhang M, Powell CA, Benyon LS, Zhou H, Duan Y. Deciphering the bacterial microbiome of citrus plants in response to 'Candidatus Liberibacter asiaticus'-infection and antibiotic treatments. PLoS One 2013; 8:e76331. [PMID: 24250784 PMCID: PMC3826729 DOI: 10.1371/journal.pone.0076331] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
The bacterial microbiomes of citrus plants were characterized in response to 'Candidatus Liberibacter asiaticus' (Las)-infection and treatments with ampicillin (Amp) and gentamicin (Gm) by Phylochip-based metagenomics. The results revealed that 7,407 of over 50,000 known Operational Taxonomic Units (OTUs) in 53 phyla were detected in citrus leaf midribs using the PhyloChip™ G3 array, of which five phyla were dominant, Proteobacteria (38.7%), Firmicutes (29.0%), Actinobacteria (16.1%), Bacteroidetes (6.2%) and Cyanobacteria (2.3%). The OTU62806, representing 'Candidatus Liberibacter', was present with a high titer in the plants graft-inoculated with Las-infected scions treated with Gm at 100 mg/L and in the water-treated control (CK1). However, the Las bacterium was not detected in the plants graft-inoculated with Las-infected scions treated with Amp at 1.0 g/L or in plants graft-inoculated with Las-free scions (CK2). The PhyloChip array demonstrated that more OTUs, at a higher abundance, were detected in the Gm-treated plants than in the other treatment and the controls. Pairwise comparisons indicated that 23 OTUs from the Achromobacter spp. and 12 OTUs from the Methylobacterium spp. were more abundant in CK2 and CK1, respectively. Ten abundant OTUs from the Stenotrophomonas spp. were detected only in the Amp-treatment. These results provide new insights into microbial communities that may be associated with the progression of citrus huanglongbing (HLB) and the potential effects of antibiotics on the disease and microbial ecology.
Collapse
Affiliation(s)
- Muqing Zhang
- Indian River Research and Education Center, IFAS-UF, Fort Pierce, Florida, United States of America
- USDA-ARS, US Horticultural Lab, Fort Pierce, Florida, United States of America
- State Key Lab for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Charles A. Powell
- Indian River Research and Education Center, IFAS-UF, Fort Pierce, Florida, United States of America
| | - Lesley S. Benyon
- USDA-ARS, US Horticultural Lab, Fort Pierce, Florida, United States of America
| | - Hui Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Yongping Duan
- USDA-ARS, US Horticultural Lab, Fort Pierce, Florida, United States of America
| |
Collapse
|