1
|
Oh S, Nguyen AH, Kim JS, Chung SY, Maeng SK, Jung YH, Cho K. A microbiome-biochar composite synergistically eliminates the environmental risks of antibiotic mixtures and their toxic byproducts. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135474. [PMID: 39173370 DOI: 10.1016/j.jhazmat.2024.135474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
This study developed a continuous reactor system employing a hybrid hydrogel composite synthesized using a complex sludge microbiome and an adsorbent (HSA). This HSA-based system effectively eliminated the environmental risks associated with a mixture of the antibiotics ciprofloxacin and sulfamethoxazole, which exhibited higher toxicity in combination than individually at environmentally relevant levels. Analytical chemistry experiments revealed the in-situ generation of various byproducts (BPs) within the bioreactor system, with two of these BPs recording toxicity levels that surpassed those of their parent compound. The HSA approach successfully prevented the functional microbiome from being washed out of the reactor, while HSA efficiently removed antibiotic residues in their original and BP forms through synergistic adsorptive and biotransformation mechanisms, ultimately reducing the overall ecotoxicity. The use of HSA thus demonstrates promise not only as a mean to reduce the threat posed by toxic antibiotic residues to aquatic ecosystems but also as a practical solution to operational challenges, such as biomass loss/washout, that are frequently encountered in various environmental bioprocesses.
Collapse
Affiliation(s)
- Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Anh H Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ji-Su Kim
- Department of Civil Engineering, University of Seoul, Dongdaemun-gu, Seoul, Republic of Korea
| | - Sang-Yeop Chung
- Department of Civil and Environmental Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | - Young-Hoon Jung
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kyungjin Cho
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
2
|
Lopez Gordillo AP, Trueba-Santiso A, Lema JM, Schäffer A, Smith KEC. Sulfamethoxazole is Metabolized and Mineralized at Extremely Low Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9723-9730. [PMID: 38761139 PMCID: PMC11155234 DOI: 10.1021/acs.est.4c02191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
The presence of organic micropollutants in water and sediments motivates investigation of their biotransformation at environmentally low concentrations, usually in the range of μg L-1. Many are biotransformed by cometabolic mechanisms; however, there is scarce information concerning their direct metabolization in this concentration range. Threshold concentrations for microbial assimilation have been reported in both pure and mixed cultures from different origins. The literature suggests a range value for bacterial growth of 1-100 μg L-1 for isolated aerobic heterotrophs in the presence of a single substrate. We aimed to investigate, as a model case, the threshold level for sulfamethoxazole (SMX) metabolization in pure cultures of Microbacterium strain BR1. Previous research with this strain has covered the milligram L-1 range. In this study, acclimated cultures were exposed to concentrations from 0.1 to 25 μg L-1 of 14C-labeled SMX, and the 14C-CO2 produced was trapped and quantified over 24 h. Interestingly, SMX removal was rapid, with 98% removed within 2 h. In contrast, mineralization was slower, with a consistent percentage of 60.0 ± 0.7% found at all concentrations. Mineralization rates increased with rising concentrations. Therefore, this study shows that bacteria are capable of the direct metabolization of organic micropollutants at extremely low concentrations (sub μg L-1).
Collapse
Affiliation(s)
- Ana P. Lopez Gordillo
- Institute
for Environmental Research, RWTH Aachen
University, Worringerweg 1, 52074 Aachen, Germany
- CRETUS,
Department of Chemical Engineering, Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Galicia Spain
| | - Alba Trueba-Santiso
- CRETUS,
Department of Chemical Engineering, Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Galicia Spain
| | - Juan M. Lema
- CRETUS,
Department of Chemical Engineering, Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Galicia Spain
| | - Andreas Schäffer
- Institute
for Environmental Research, RWTH Aachen
University, Worringerweg 1, 52074 Aachen, Germany
| | - Kilian E. C. Smith
- Environmental
Chemistry, Magdeburg-Stendal University
of Applied Sciences, Breitscheidstraße 2, Building 6, 39114 Magdeburg, Germany
| |
Collapse
|
3
|
Ottosen CF, Bjerg PL, Kümmel S, Richnow HH, Middeldorp P, Draborg H, Lemaire GG, Broholm MM. Natural attenuation of sulfonamides and metabolites in contaminated groundwater - Review, advantages and challenges of current documentation techniques. WATER RESEARCH 2024; 254:121416. [PMID: 38489851 DOI: 10.1016/j.watres.2024.121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Sulfonamides are applied worldwide as antibiotics. They are emerging contaminants of concern, as their presence in the environment may lead to the spread of antibiotic resistance genes. Sulfonamides are present in groundwater systems, which suggest their persistence under certain conditions, highlighting the importance of understanding natural attenuation processes in groundwater. Biodegradation is an essential process, as degradation of sulfonamides reduces the risk of antibiotic resistance spreading. In this review, natural attenuation, and in particular assessment of biodegradation, is evaluated for sulfonamides in groundwater systems. The current knowledge level on biodegradation is reviewed, and a scientific foundation is built based on sulfonamide degradation processes, pathways, metabolites and toxicity. An overview of bacterial species and related metabolites is provided. The main research effort has focused on aerobic conditions while investigations under anaerobic conditions are lacking. The level of implementation in research is laboratory scale; here we strived to bridge towards field application and assessment, by assessing approaches commonly used in monitored natural attenuation. Methods to document contaminant mass loss are assessed to be applicable for sulfonamides, while the approach is limited by a lack of reference standards for metabolites. Furthermore, additional information is required on relevant metabolites in order to improve risk assessments. Based on the current knowledge on biodegradation, it is suggested to use the presence of substituent-containing metabolites from breakage of the sulfonamide bridge as specific indicators of degradation. Microbial approaches are currently available for assessment of microbial community's capacities, however, more knowledge is required on indigenous bacteria capable of degrading sulfonamides and on the impact of environmental conditions on biodegradation. Compound specific stable isotope analysis shows great potential as an additional in situ method, but further developments are required to analyse for sulfonamides at environmentally relevant levels. Finally, in a monitored natural attenuation scheme it is assessed that approaches are available that can uncover some processes related to the fate of sulfonamides in groundwater systems. Nevertheless, there are still unknowns related to relevant bacteria and metabolites for risk assessment as well as the effect of environmental settings such as redox conditions. Alongside, uncovering the fate of sulfonamides in future research, the applicability of the natural attenuation documentation approaches will advance, and provide a step towards in situ remedial concepts for the frequently detected sulfonamides.
Collapse
Affiliation(s)
- Cecilie F Ottosen
- Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), Bygningstorvet, building 115, 2800 Kgs. Lyngby, Denmark.
| | - Poul L Bjerg
- Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), Bygningstorvet, building 115, 2800 Kgs. Lyngby, Denmark
| | - Steffen Kümmel
- Department Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Hans H Richnow
- Department Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | | | | | - Gregory G Lemaire
- Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), Bygningstorvet, building 115, 2800 Kgs. Lyngby, Denmark
| | - Mette M Broholm
- Department of Environmental and Resource Engineering, Technical University of Denmark (DTU), Bygningstorvet, building 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Chen J, Chen X, Zhu Y, Yan S, Xie S. New insights into bioaugmented removal of sulfamethoxazole in sediment microcosms: degradation efficiency, ecological risk and microbial mechanisms. MICROBIOME 2024; 12:43. [PMID: 38424602 PMCID: PMC10903153 DOI: 10.1186/s40168-023-01741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Bioaugmentation has the potential to enhance the ability of ecological technology to treat sulfonamide-containing wastewater, but the low viability of the exogenous degraders limits their practical application. Understanding the mechanism is important to enhance and optimize performance of the bioaugmentation, which requires a multifaceted analysis of the microbial communities. Here, DNA-stable isotope probing (DNA-SIP) and metagenomic analysis were conducted to decipher the bioaugmentation mechanisms in stabilization pond sediment microcosms inoculated with sulfamethoxazole (SMX)-degrading bacteria (Pseudomonas sp. M2 or Paenarthrobacter sp. R1). RESULTS The bioaugmentation with both strains M2 and R1, especially strain R1, significantly improved the biodegradation rate of SMX, and its biodegradation capacity was sustainable within a certain cycle (subjected to three repeated SMX additions). The removal strategy using exogenous degrading bacteria also significantly abated the accumulation and transmission risk of antibiotic resistance genes (ARGs). Strain M2 inoculation significantly lowered bacterial diversity and altered the sediment bacterial community, while strain R1 inoculation had a slight effect on the bacterial community and was closely associated with indigenous microorganisms. Paenarthrobacter was identified as the primary SMX-assimilating bacteria in both bioaugmentation systems based on DNA-SIP analysis. Combining genomic information with pure culture evidence, strain R1 enhanced SMX removal by directly participating in SMX degradation, while strain M2 did it by both participating in SMX degradation and stimulating SMX-degrading activity of indigenous microorganisms (Paenarthrobacter) in the community. CONCLUSIONS Our findings demonstrate that bioaugmentation using SMX-degrading bacteria was a feasible strategy for SMX clean-up in terms of the degradation efficiency of SMX, the risk of ARG transmission, as well as the impact on the bacterial community, and the advantage of bioaugmentation with Paenarthrobacter sp. R1 was also highlighted. Video Abstract.
Collapse
Affiliation(s)
- Jianfei Chen
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Deng J, Huang Z, Ruan W. Growth and genetic analysis of Pseudomonas BT1 in a high-thiourea environment reveals the mechanisms by which it restores the ability to remove ammonia nitrogen from wastewater. ENVIRONMENTAL TECHNOLOGY 2023; 44:3763-3776. [PMID: 35481797 DOI: 10.1080/09593330.2022.2071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Thiourea is widely present in wastewater and can inhibit the nitrification process, inducing the collapse of the nitrification system in sewage treatment plants. Pseudomonas BT1 can restore the ammonia nitrogen removal ability of wastewater treatment processes in which the nitrification system due to thiourea. However, the genetic mechanisms for BT1 are still unclear. In this study, we reported the first genome assembly for Pseudomonas BT1, which has a genome size of 5,576,102 bp and 5,115 predicted genes. Complete C and S metabolic cycles were identified in its genome, and some intersecting intermediate products were found in these cycles. BT1 can grow well and remove ammonia nitrogen at different thiourea concentrations, but it showed a better removal ability in high-thiourea environments. The longest gene activity stage of BT1 was observed in the high-thiourea environments by RNA sequencing, and genes related to maintaining intracellular copper homeostasis were highly expressed during the S metabolism process, which may be the key to restoring the ammonia nitrogen removal ability. Enzymes detected during the N and S cycles showed that BT1 reacts with thiourea to produce hydrogen but not sulphate, suggesting that BT1 may have genes that are involved in thiourea hydrolysis. In conclusion, the high-quality assembly of BT1 provides a valuable resource for analyzing its biological process and molecular mechanisms for thiourea metabolism. BT1 shows great application potential for the removal of thiourea from sewage treatment plants.
Collapse
Affiliation(s)
- Jingxuan Deng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, People's Republic of China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
6
|
Chen J, Ke Y, Zhu Y, Chen X, Xie S. Deciphering of sulfonamide biodegradation mechanism in wetland sediments: from microbial community and individual populations to pathway and functional genes. WATER RESEARCH 2023; 240:120132. [PMID: 37257294 DOI: 10.1016/j.watres.2023.120132] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Figuring out the comprehensive metabolic mechanism of sulfonamide antibiotics (SA) is critical to improve and optimize SA removal in the bioremediation process, but relevant studies are still lacking. Here, an approach integrating metagenomic analysis, degraders' isolation, reverse transcriptional quantification and targeted metabolite determination was used to decipher microbial interactions and functional genes' characteristics in SA-degrading microbial consortia enriched from wetland sediments. The SA-degrading consortia could rapidly catalyze ipso-hydroxylation and subsequent reactions of SA to achieve the complete mineralization of sulfadiazine and partial mineralization of the other two typical SA (sulfamethoxazole and sulfamethazine). Paenarthrobacter, Achromobacter, Pseudomonas and Methylobacterium were identified as the primary participants for the initial transformation of SA. Among them, Methylobacterium could metabolize the heterocyclic intermediate of sulfadiazine (2-aminopyrimidine), and the owning of sadABC genes (SA degradation genes) made Paenarthrobacter have relatively higher SA-degrading activity. Besides, the coexistence of sadABC genes and sul1 gene (SA resistance gene) gave Paenarthrobacter a dual resistance mechanism to SA. The results of reverse transcription quantification further demonstrated that the activity of sadA gene was related to the biodegradation of SA. Additionally, sadABC genes were relatively conserved in a few Microbacteriaceae and Micrococcaceae SA-degraders, but the multiple recombination events caused by densely nested transposase encoding genes resulted in the differential sequence of sadAB genes in Paenarthrobacter genome. These new findings provide valuable information for the selection and construction of engineered microbiomes.
Collapse
Affiliation(s)
- Jianfei Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou 350007, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Sazykin IS, Sazykina MA. The role of oxidative stress in genome destabilization and adaptive evolution of bacteria. Gene X 2023; 857:147170. [PMID: 36623672 DOI: 10.1016/j.gene.2023.147170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
The review is devoted to bacterial genome destabilization by oxidative stress. The article discusses the main groups of substances causing such stress. Stress regulons involved in destabilization of genetic material and mechanisms enhancing mutagenesis, bacterial genome rearrangements, and horizontal gene transfer, induced by oxidative damage to cell components are also considered. Based on the analysis of publications, it can be claimed that rapid development of new food substrates and ecological niches by microorganisms occurs due to acceleration of genetic changes induced by oxidative stress, mediated by several stress regulons (SOS, RpoS and RpoE) and under selective pressure. The authors conclude that non-lethal oxidative stress is probably-one of the fundamental processes that guide evolution of prokaryotes and a powerful universal trigger for adaptive destabilization of bacterial genome under changing environmental conditions.
Collapse
Affiliation(s)
- I S Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - M A Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation.
| |
Collapse
|
8
|
Wang Z, Chu Y, Chang H, Xie P, Zhang C, Li F, Ho SH. Advanced insights on removal of antibiotics by microalgae-bacteria consortia: A state-of-the-art review and emerging prospects. CHEMOSPHERE 2022; 307:136117. [PMID: 35998727 DOI: 10.1016/j.chemosphere.2022.136117] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics abuse has triggered a growing environmental problem, posing a major threat to both ecosystem and human health. Unfortunately, there are still several shortcomings to current antibiotics removal technologies. Microalgae-bacteria consortia have been shown to be a promising antibiotics treatment technology owing to advantages of high antibiotics removal efficiency, low operational cost, and carbon emission reduction. This review aims to introduce the removal mechanisms, influencing factors, and future research perspectives for using microalgae-bacteria consortia to remove antibiotics. The interaction mechanisms between microalgae and bacteria are comprehensively revealed, and their exclusive advantages have been summarized in a "Trilogy" strategy, including "reinforced physical contact", "upgraded substance utilization along with antibiotics degradation", and "robust biological regulation". What's more, the relationship between different interaction mechanisms is emphatically analyzed. The important influencing factors, including concentration and classes of antibiotics, environmental conditions, and operational parameters, of antibiotics removal were also assessed. Three innovative treatment systems (microalgae-bacteria fuel cells (MBFCs), microalgae-bacteria membrane photobioreactors (MB-MPBRs), and microalgae-bacteria granular sludge (MBGS)) along with three advanced techniques (metabolic engineering, machine learning, and molecular docking and dynamics) are then introduced. In addition, concrete implementing schemes of the above advanced techniques are also provided. Finally, the current challenges and future research directions in using microalgae-bacteria consortia to remove antibiotics have been summarized. Overall, this review addresses the current state of microalgae-bacteria consortia for antibiotics treatment and provides corresponding recommendations for enhancing antibiotics removal efficiency.
Collapse
Affiliation(s)
- Zeyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
9
|
Chen J, Gao M, Zhao Y, Guo L, Jin C, Ji J, She Z. Nitrogen and sulfamethoxazole removal in a partially saturated vertical flow constructed wetland treating synthetic mariculture wastewater. BIORESOURCE TECHNOLOGY 2022; 358:127401. [PMID: 35660456 DOI: 10.1016/j.biortech.2022.127401] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the removal of nitrogen and sulfamethoxazole (SMX), and the microbial communities in a partially saturated vertical flow constructed wetland (PS-VFCW) fed with synthetic mariculture wastewater operated at different saturated zone depths (SZDs), i.e. 51, 70, and 60 cm. Removal efficiencies were 99.8%-100.0% for COD, 34.1%-100.0% for NH4+-N, 67.8%-97.3% for total inorganic nitrogen (TIN), and 29.8%-57.2% for SMX. Excellent nitrification performance was achieved at the SZDs of 51 and 60 cm. Denitrification performed well at 70 and 60 cm SZDs. The highest TIN removal efficiency (97.3%) was achieved as the SZD was 60 cm. SMX removal was significantly influenced by SZD and was promoted by higher SZD. The removal of organics, nitrogen, and SMX mainly occurred in the unsaturated zone. Ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, and SMX-degrading bacteria were detected in the unsaturated and saturated zones, and showed an increasing trend in abundance along the depth.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| |
Collapse
|
10
|
Degrading Characterization of the Newly Isolated Nocardioides sp. N39 for 3-Amino-5-methyl-isoxazole and the Related Genomic Information. Microorganisms 2022; 10:microorganisms10081496. [PMID: 35893554 PMCID: PMC9329766 DOI: 10.3390/microorganisms10081496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
3-amino-5-methyl-isoxazole (3A5MI) is a persistent and harmful intermediate in the degradation of antibiotic sulfamethoxazole. It was accumulated in the environments day by day and has caused great environmental risks due to its refractory characteristic. Microbial degradation is economic and environmentally friendly and a promising method to eliminate this pollutant. In this study, a bacterial strain, Nocardioides sp. N39, was isolated. N39 can grow on 3A5MI as the sole carbon, nitrogen and energy resource. The effect of different factors on 3A5MI degradation by N39 was explored, including initial 3A5MI concentration, temperature, pH value, dissolved oxygen and additional carbon or nitrogen source. The degradation ability of N39 to various 3A5MI analogs was also explored. Nevertheless, the degrading ability of N39 for 3A5MI is not permanent, and long-term storage would lead to the loss of this ability. This may result from the mobile genetic elements in the bacterium according to the genomic comparison of N39 and its degrading ability-lost strain, N40. Despite this, N39 could support a lot of useful information about the degradation of 3A5MI and highlight the importance of studies about the environmental effects and potential degradation mechanism.
Collapse
|
11
|
Liu X, Chen J, Liu Y, Wan Z, Guo X, Lu S, Qiu D. Sulfamethoxazole degradation by Pseudomonas silesiensis F6a isolated from bioelectrochemical technology-integrated constructed wetlands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113698. [PMID: 35636241 DOI: 10.1016/j.ecoenv.2022.113698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The antibiotic-degrading ability and mechanism of the bacteria in the novel and ecological bioelectrochemical technology-integrated constructed wetlands (BICW) remain unknown. In this study, the sulfamethoxazole (SMX) degrading strain Pseudomonas silesiensis F6a (F6a), which had high degradation efficiency, was firstly isolated from a substrate sample in BICW. The SMX degradation process of F6a follows pseudo first order kinetics. Four metabolic pathways and twelve degradation products were identified. Based on genomics and proteomics analysis, six key SMX-degrading genes, Gene4641 deoC, Gene0552 narI, Gene0546 luxS, Gene1753 nuoH, Gene0655 and Gene4650, were identified, which were mainly participated in C-S cleavage, S-N hydrolysis and isoxazole ring cleavage. Interestingly, we found the corresponding sulfonamides resistance genes were not detected in F6a, which may provide an evidence for low abundance of the sulfonamides resistance genes in BICW system. These findings would contribute to a better understanding of biotransformation of antibiotic in the BICW.
Collapse
Affiliation(s)
- Xiaohui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing Chen
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430070, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ying Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhengfen Wan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaochun Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
12
|
Chen J, Yang Y, Ke Y, Chen X, Jiang X, Chen C, Xie S. Sulfonamide-metabolizing microorganisms and mechanisms in antibiotic-contaminated wetland sediments revealed by stable isotope probing and metagenomics. ENVIRONMENT INTERNATIONAL 2022; 165:107332. [PMID: 35687947 DOI: 10.1016/j.envint.2022.107332] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Sulfonamide (SA) antibiotics are ubiquitous pollutants in livestock breeding and aquaculture wastewaters, which increases the propagation of antibiotic resistance genes. Microbes with the ability to degrade SA play important roles in SA dissipation, but their diversity and the degradation mechanism in the field remain unclear. In the present study, we employed DNA-stable isotope probing (SIP) combined with metagenomics to explore the active microorganisms and mechanisms of SA biodegradation in antibiotic-contaminated wetland sediments. DNA-SIP revealed various SA-assimilating bacteria dominated by members of Proteobacteria, such as Bradyrhizobium, Gemmatimonas, and unclassified Burkholderiaceae. Both sulfadiazine and sulfamethoxazole were dissipated mainly through the initial ipso-hydroxylation, and were driven by similar microbes. sadA gene, which encodes an NADH-dependent monooxygenase, was enriched in the 13C heavy DNA, confirming its catalytic capacity for the initial ipso-hydroxylation of SA in sediments. In addition, some genes encoding dioxygenases were also proposed to participate in SA hydroxylation and aromatic ring cleavage based on metagenomics analysis, which might play an important role in SA metabolism in the sediment ecosystem when Proteobacteria was the dominant active bacteria. Our work elucidates the ecological roles of uncultured microorganisms in their natural habitats and gives a deeper understanding of in-situ SA biodegradation mechanisms.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinshu Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Microbial Community Structure and Bacterial Lineages Associated with Sulfonamides Resistance in Anthropogenic Impacted Larut River. WATER 2022. [DOI: 10.3390/w14071018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anthropogenic activities often contribute to antibiotic resistance in aquatic environments. Larut River Malaysia is polluted with both organic and inorganic pollutants from domestic and industrial wastewater that are probably treated inadequately. The river is characterized by high biochemical oxygen demand, chemical oxygen demand, total suspended solids, ammonia, and heavy metals. In our previous study, sulfonamides (SAs) and sulfonamide resistance genes (sul) were detected in the Larut River. Hence, in this study, we further examined the microbial community structure, diversity of sulfonamide-resistant bacteria (SARB), and their resistance genes. The study also aimed at identifying cultivable bacteria potential carriers of sul genes in the aquatic environment. Proteobacteria (22.4–66.0%), Firmicutes (0.8–41.6%), Bacteroidetes (2.0–29.4%), and Actinobacteria (5.5–27.9%) were the most dominant phyla in both the effluents and river waters. SARB isolated consisted only 4.7% of the total genera identified, with SAR Klebsiella as the most dominant (38.0–61.3%) followed by SAR Escherichia (0–22.2%) and Acinetobacter (3.2–16.0%). The majority of the SAR Klebsiella isolated from the effluents and middle downstream were positive for sul genes. Sul genes-negative SAR Escherichia and Acinetobacter were low (<20%). Canonical-correlation analysis (CCA) showed that SAs residues and inorganic nutrients exerted significant impacts on microbial community and total sul genes. Network analysis identified 11 SARB as potential sul genes bacterial carriers. These findings indicated that anthropogenic activities exerted impacts on the microbial community structure and SAs resistance in the Larut River.
Collapse
|
14
|
Qi M, Ma X, Liang B, Zhang L, Kong D, Li Z, Wang A. Complete genome sequences of the antibiotic sulfamethoxazole-mineralizing bacteria Paenarthrobacter sp. P27 and Norcardiodes sp. N27. ENVIRONMENTAL RESEARCH 2022; 204:112013. [PMID: 34492274 DOI: 10.1016/j.envres.2021.112013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Sulfonamide antibiotics (SAs) have been produced and consumed on a large scale over the last few decades. SAs are a typical class of refractory contaminants that are omnipresent in various environments. Although several [phenyl]-SA-degrading bacteria and their corresponding genomes have been documented, limited genetic information is available for the degraders of heterocyclic products (e.g., 3-amino-5-methylisoxazole [3A5MI] produced via sulfamethoxazole [SMX] catabolism). In this study, the previously isolated SMX-mineralizing bacterial partners, Paenarthrobacter sp. P27 (responsible for the initial cleavage of the -C-S-N- bond of SMX and further degradation of [phenyl]-SMX) and Norcardiodes sp. N27 (responsible for 3A5MI catabolism), were further studied and their complete genomes were sequenced. Complete degradation and bacterial growth were verified by pure-culture experiments with SMX or 3A5MI as the sole carbon, nitrogen, and energy source. By cross-feeding strains P27 and N27, complete catabolism of SMX could be achieved over a wide range of initial SMX concentrations. Moreover, strain P27 was capable of transforming the additional nine SA representatives into their corresponding nitrogen-containing heterocyclic products, strongly indicating the broad substrate spectrum and marked bioremediation potential of strain P27. The genome of strain P27 contained the highly homologous monooxygenase gene cluster, sadABC, which initially attacked the sulfonamide molecules. The complete genome sequences of the two important degraders will benefit future research centering on the molecular mechanism underlying advanced SMX mineralization and will aid in further understanding the interspecific interactions and metabolite exchanges for the optimization of artificially constructed synthetic functional microbiomes.
Collapse
Affiliation(s)
- Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Deyong Kong
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
15
|
Hu J, Li X, Liu F, Fu W, Lin L, Li B. Comparison of chemical and biological degradation of sulfonamides: Solving the mystery of sulfonamide transformation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127661. [PMID: 34763922 DOI: 10.1016/j.jhazmat.2021.127661] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Sulfonamides (SAs) are widespread in aquatic environments and pose serious environmental risks. The removal efficiencies and degradation mechanisms of SAs in both chemical and biological degradation systems were comprehensively reviewed. Density functional theory (DFT) was utilized to decipher the reaction types and reactive sites of both degradation mechanisms at the electron level. In chemical degradation, the rate of the reactive oxidants to degrade SAs follows the order SO4•- ≈ •OH > O3 > 1O2 > ClO2 ≈ Fe(VI) ≈ HOCl > peroxymonosulfate. pH affects the oxidation-reduction potentials of oxidants, the reactivity of SAs, and the intermolecular force between oxidants and SAs, thereby affecting the chemical degradation efficiencies and mechanisms. In biological degradation, oxidoreductase produced by bacteria, fungi, algae, and plants can degrade SAs. The catalytic activity of the enzyme is affected by the enzyme system, reaction conditions, and type of SAs. Despite the different reaction modes and removal efficiencies of SAs in chemical degradation and biological degradation, the transformation pathways and products show commonalities. Modification of the amino (N1H2-) moiety and destruction of sulfonamide bridge (-SO2-N11H-) moiety are the main pathways for both chemical and biological degradation of SAs. Most oxidants or enzymes can react with the N1H2- moiety. Reactions of the -SO2-N11H- moiety are mainly initiated by the cleavage of S-N bonds for five-membered heterocyclic ring-substituted SAs, and by SO2 extrusion for six-membered heterocyclic ring-substituted SAs. Chlorine substitution and coupling on the N1H2- moiety, hydroxylation of the benzene moiety, oxidation of methyl, and isomerization of the R substituents are the transformation pathways unique to chemical degradation. Formylation/acetylation, glycosylation, pterin conjugation, and deamination of the N1H2- moiety are the transformation pathways unique to biological degradation. DFT studies revealed the same reaction types and the same reactive sites of SAs in chemical and biological degradation. Electrophiles are mostly prone to attack the N1 atom on the amino moiety of neutral SAs and the N11 atom on the sulfonamide bridge moiety of anionic SAs, leading to nitration or electrophilic substitution of the amino moiety and the cleavage of S-N bonds or SO2 extrusion of the sulfonamide bridge moiety. Reactions on the -SO2-N11H- moiety eliminate antibacterial activity in the SA degradation process. This review elucidated SA transformation by comparing the chemical and biological degradation of SAs. This could provide theoretical guidance for the development of more efficient and economical treatment technologies for SAs.
Collapse
Affiliation(s)
- Jiahui Hu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Feifei Liu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjie Fu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lin Lin
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
16
|
Vijayaraghavan P, Lourthuraj AA, Arasu MV, AbdullahAl-Dhabi N, Ravindran B, WoongChang S. Effective removal of pharmaceutical impurities and nutrients using biocatalyst from the municipal wastewater with moving bed packed reactor. ENVIRONMENTAL RESEARCH 2021; 200:111777. [PMID: 34333016 DOI: 10.1016/j.envres.2021.111777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The presence of antibiotics in the wastewater is one of the important issues related to environmental management. In this study, antibiotics-degrading bacteria were screened from the enriched sewage sludge sample. Among the isolated bacterial strains, Bacillus subtilis AQ03 showed maximum antibiotic tolerance (>2000 ppm). The characterized strain B. subtilis AQ03 degraded sulfamethaoxazole and sulfamethoxine and the optimum nutrient and physical-factors were analyzed. B. subtilis AQ03 degraded 99.8 ± 1.3 % sulfamethaoxazole, and 93.3 ± 6.2 % sulfamethoxine. Sodium nitrate and ammonium chloride were improved antibiotics degradation (<90 %). The optimized conditions were maintained in a moving bed bioreactor for the removal of antibiotics and nutrients from the wastewater. The selected strain considerably produced proteases (109.4 U/mL), amylases (55.1 U/mL), cellulase (9.6 U/mL) and laccases (15.2). In moving bed reactor, sulfamethaoxazole degradation was maximum after 8 days (100 ± 1.5 %) and sulfamethoxazole (100 ± 0) was removed completely from wastewater after 10 days. In moving bed reactor, biological oxygen demand (92.1 ± 2.8 %), chemical oxygen demand (79.6 ± 1.2 %), nitrate (89.4 ± 3.9 %) and phosphate (91.8 ± 1.2) were removed from the wastewater along with antibiotics after 10 days of treatment. The findings indicate that the indigenous bacterial communities and the ability to survive in the presence of high antibiotic concentrations and xenobiotics. Moving bed bioreactor is useful for the removal of nutrients and antibiotics from wastewater.
Collapse
Affiliation(s)
| | - A Amala Lourthuraj
- Department of Biochemistry,Guru nanak College (autonomous), Velachery, Chennai, 600042, Tamil nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2455, Riyadh, 11451, Saudi Arabia
| | - Naif AbdullahAl-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2455, Riyadh, 11451, Saudi Arabia
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Soon WoongChang
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| |
Collapse
|
17
|
Wang Y, Ji XM, Jin RC. How anammox responds to the emerging contaminants: Status and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112906. [PMID: 34087646 DOI: 10.1016/j.jenvman.2021.112906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Numerous researches have been carried out to study the effects of emerging contaminants in wastewater, such as antibiotics, nanomaterials, heavy metals, and microplastics, on the anammox process. However, they are fragmented and difficult to provide a comprehensive understanding of their effects on reactor performance and the metabolic mechanisms in anammox bacteria. Therefore, this paper overviews the effects on anammox processes by the introduced emerging contaminants in the past years to fulfill such knowledge gaps that affect our perception of the inhibitory mechanisms and limit the optimization of the anammox process. In detail, their effects on anammox processes from the aspects of reactor performance, microbial community, antibiotic resistance genes (ARGs), and functional genes related to anammox and nitrogen transformation in anammox consortia are summarized. Furthermore, the metabolic mechanisms causing the cell death of anammox bacteria, such as induction of reactive oxygen species, limitation of substrates diffusion, and membrane binding are proposed. By offering this review, the remaining research gaps are identified, and the potential metabolic mechanisms in anammox consortia are highlighted.
Collapse
Affiliation(s)
- Ye Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiao-Ming Ji
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
18
|
Wang S, Yuan R, Chen H, Wang F, Zhou B. Anaerobic biodegradation of four sulfanilamide antibiotics: Kinetics, pathways and microbiological studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125840. [PMID: 34492796 DOI: 10.1016/j.jhazmat.2021.125840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of sulfanilamide antibiotics (SAs) have been excreted into the manure. In this study, the anaerobic biodegradation of four kinds of SAs including sulfaquinoxaline (SQX), sulfamethoxazole (SMX), sulfamethoxine (SMD) and sulfathiazole (STZ) was investigated. The degradation rates of SQX and STZ decreased with the increase of the concentrations of other organics, but those of SMX and SMD were less affected. The average degradation rates of SAs were in the order of SMX >SMD ≈QX >STZ, with the best degradation rate constants of 0.30125, 0.14752, 0.16696, and 0.06577 /d, respectively. STZ had the greatest effect on the population richness of microbes, whereas SQX had the largest impact on the population diversity. The degradation rates of SAs were positively correlated with the abundances of Proteobacteria and Bacteroidetes, and negatively correlated with the abundance of Firmicutes. The common degradation pathways of SAs were S-N cleavage and substitution. The specific functional groups of SQX, SMX and SMD, including quinoxaline, isoxazole and pyrimidine rings, could be opened, but the thiazole ring of STZ was difficult to be decomposed. After the rings of the specific functional groups were opened, they would be further substituted or decomposed to be products with small molecules.
Collapse
Affiliation(s)
- Shaona Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; CECEP&CIECC Huarui Technology Co., Ltd, Beijing 100034, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
19
|
Liang DH, Hu Y, Cheng J, Chen Y. Enhanced performance of sulfamethoxazole degradation using Achromobacter sp. JL9 with in-situ generated biogenic manganese oxides. BIORESOURCE TECHNOLOGY 2021; 333:125089. [PMID: 33894443 DOI: 10.1016/j.biortech.2021.125089] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Little information is known about the relationships of in-situ generated BioMnOx and sulfamethoxazole (SMX) degradation. In this study, a novel efficient bioremediation technology was presented for simultaneous remove the nitrogen-N, SMX, and Mn(II) from water. Mn(II) can be completely oxidized with a oxidized rate of 0.071 mg/(L·h), the SMX and nitrogen-N removal ratios were 97.43% and 85.61%, respectively. The Ratkowsky kinetic models were established for described the SMX degradation influence by temperature. Furthermore, the microbial degradation, Mn(III) trapping, and intermediates identified experiments were used to explore the mechanisms of SMX and nitrogen-N removal. These results indicated that microbial activity play a decisive role in SMX and nitrogen-N removal, and the catalytic character of sediment could enhanced the SMX degradation. Furthermore, proposed the possible SMX degradation pathway based on the intermediates and microbial metabolism theory, the environmental toxicity of SMX and each intermediates were calculated via ECOSAR program.
Collapse
Affiliation(s)
- Dong Hui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
20
|
Qi M, Liang B, Zhang L, Ma X, Yan L, Dong W, Kong D, Zhang L, Zhu H, Gao SH, Jiang J, Liu SJ, Corvini PFX, Wang A. Microbial Interactions Drive the Complete Catabolism of the Antibiotic Sulfamethoxazole in Activated Sludge Microbiomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3270-3282. [PMID: 33566597 DOI: 10.1021/acs.est.0c06687] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbial communities are believed to outperform monocultures in the complete catabolism of organic pollutants via reduced metabolic burden and increased robustness to environmental challenges; however, the interaction mechanism in functional microbiomes remains poorly understood. Here, three functionally differentiated activated sludge microbiomes (S1: complete catabolism of sulfamethoxazole (SMX); S2: complete catabolism of the phenyl part of SMX ([phenyl]-SMX) with stable accumulation of its heterocyclic product 3-amino-5-methylisoxazole (3A5MI); A: complete catabolism of 3A5MI rather than [phenyl]-SMX) were enriched. Combining time-series cultivation-independent microbial community analysis, DNA-stable isotope probing, molecular ecological network analysis, and cultivation-dependent function verification, we identified key players involved in the SMX degradation process. Paenarthrobacter and Nocardioides were primary degraders for the initial cleavage of the sulfonamide functional group (-C-S-N- bond) and 3A5MI degradation, respectively. Complete catabolism of SMX was achieved by their cross-feeding. The co-culture of Nocardioides, Acidovorax, and Sphingobium demonstrated that the nondegraders Acidovorax and Sphingobium were involved in the enhancement of 3A5MI degradation. Moreover, we unraveled the internal labor division patterns and connections among the active members centered on the two primary degraders. Overall, the proposed methodology is promisingly applicable and would help generate mechanistic, predictive, and operational understanding of the collaborative biodegradation of various contaminants. This study provides useful information for synthetic activated sludge microbiomes with optimized environmental functions.
Collapse
Affiliation(s)
- Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchen Dong
- Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch 8140, New Zealand
| | - Deyong Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haizhen Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Sodhi KK, Kumar M, Balan B, Dhaulaniya AS, Shree P, Sharma N, Singh DK. Perspectives on the antibiotic contamination, resistance, metabolomics, and systemic remediation. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04003-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractAntibiotics have been regarded as the emerging contaminants because of their massive use in humans and veterinary medicines and their persistence in the environment. The global concern of antibiotic contamination to different environmental matrices and the emergence of antibiotic resistance has posed a severe impact on the environment. Different mass-spectrometry-based techniques confirm their presence in the environment. Antibiotics are released into the environment through the wastewater steams and runoff from land application of manure. The microorganisms get exposed to the antibiotics resulting in the development of antimicrobial resistance. Consistent release of the antibiotics, even in trace amount into the soil and water ecosystem, is the major concern because the antibiotics can lead to multi-resistance in bacteria which can cause hazardous effects on agriculture, aquaculture, human, and livestock. A better understanding of the correlation between the antibiotic use and occurrence of antibiotic resistance can help in the development of policies to promote the judicious use of antibiotics. The present review puts a light on the remediation, transportation, uptake, and antibiotic resistance in the environment along with a novel approach of creating a database for systemic remediation, and metabolomics for the cleaner and safer environment.
Collapse
|
22
|
Mendes Barros AR, Argenta TS, de Amorim de Carvalho C, da Silva Oliveira F, Milen Firmino PI, Bezerra Dos Santos A. Effects of the antibiotics trimethoprim (TMP) and sulfamethoxazole (SMX) on granulation, microbiology, and performance of aerobic granular sludge systems. CHEMOSPHERE 2021; 262:127840. [PMID: 32763570 DOI: 10.1016/j.chemosphere.2020.127840] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
This work assessed the effect of the antibiotics trimethoprim (TMP) and sulfamethoxazole (SMX) on the granulation process, microbiology, and organic matter and nutrient removal of an aerobic granular sludge (AGS) system. In addition, after the maturation stage, the impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) (25 μM) on the biotransformation of the antibiotics was evaluated. The reactor R1 was maintained as a control, and the reactor R2 was supplemented with TMP and SMX (200 μg L-1). The ability to remove C, N, and P was similar between the reactors. However, the structural integrity of the AGS was impaired by the antibiotics. Low TMP (∼30%) and SMX (∼60%) removals were achieved when compared to anaerobic or floccular biomass aerobic systems. However, when the system was supplemented with AQDS, an increase in the removal of TMP (∼75%) and SMX (∼95%) was observed, possibly due to the catalytic action of the redox mediator on cometabolic processes. Regarding the microbial groups, whereas Proteobacteria and Bacterioidetes increased, Planctomycetes decreased in both reactors. However, TMP and SMX presence seemed to inhibit or favor some genera during the formation of the granules, possibly due to their bactericidal action.
Collapse
Affiliation(s)
| | - Thaís Salvador Argenta
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Clara de Amorim de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisca da Silva Oliveira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
23
|
Li H, Yao H, Liu T, Wang B, Xia J, Guo J. Achieving simultaneous nitrogen and antibiotic removal in one-stage partial nitritation-Anammox (PN/A) process. ENVIRONMENT INTERNATIONAL 2020; 143:105987. [PMID: 32763631 DOI: 10.1016/j.envint.2020.105987] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/10/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Partial nitritation-Anammox (PN/A) process has been recognized as a sustainable process for biological nitrogen removal. Although various antibiotics have been ubiquitously detected in influent of wastewater treatment plants, little is known whether functional microorganisms in the PN/A process are capable of biodegrading antibiotics. This study aimed to investigate simultaneous nitrogen and antibiotic removal in a lab-scale one-stage PN/A system treating synthetic wastewater containing a widely-used antibiotic, sulfadiazine (SDZ). Results showed that maximum total nitrogen (TN) removal efficiency of 86.1% and SDZ removal efficiency of 95.1% could be achieved when treating 5 mg/L SDZ under DO conditions of 0.5-0.6 mg/L. Compared to anammox bacteria, ammonia-oxidizing bacteria (AOB) made a major contribution to SDZ degradation through their cometabolic pathway. A strong correlation between amoA gene and SDZ removal efficiency was found (p < 0.01). In addition, the degradation products of SDZ did not exhibit any inhibitory effects on Escherichia coli. The findings suggest that it is promising to apply the PN/A process to simultaneously remove antibiotics and nitrogen from contaminated wastewater.
Collapse
Affiliation(s)
- Huayu Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China.
| | - Tao Liu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Bingzheng Wang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jun Xia
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
24
|
Sun F, Liu H, Wang H, Shu D, Chen T, Zou X, Huang F, Chen D. A novel discovery of a heterogeneous Fenton-like system based on natural siderite: A wide range of pH values from 3 to 9. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134293. [PMID: 31514027 DOI: 10.1016/j.scitotenv.2019.134293] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Natural iron-bearing minerals have been proven to be effective for activating H2O2 to produce OH, which can be used to degrade organic pollutants. In this study, the performance of siderite to degrade sodium sulfadiazine via catalytic H2O2 degradation was investigated at different solution pH values from 3 to 9. An interesting discovery was made: the performance of the siderite-H2O2 system was excellent under acidic, neutral, and even alkaline conditions. The influence of various factors (e.g. initial concentration, anions, natural organic matters, etc.) on the system under different pH conditions was investigated, which confirmed that siderite exhibited an excellent catalytic performance. By combining EPR characterization with scavenger research, it was proposed that dissolved iron (Fe2+) mainly initiated the homogenous Fenton reaction to degrade pollutants under acidic conditions, while structural Fe2+ species present in siderite triggered Fenton-like reactions under neutral or even alkaline conditions. From the SEM and XPS characterizations, oxidation and dissolution of Fe2+ on the surface were also observed, confirming our inference concerning the different reaction mechanisms. The experimental findings show that this siderite-H2O2 system can be used in solutions with pH values from 3 to 9 and that siderite plays a positive role in soil and groundwater remediation when H2O2 is used as an oxidant.
Collapse
Affiliation(s)
- Fuwei Sun
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haibo Liu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Hanlin Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Daobing Shu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tianhu Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xuehua Zou
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fangju Huang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dong Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
25
|
Liang DH, Hu Y. Simultaneous sulfamethoxazole biodegradation and nitrogen conversion by Achromobacter sp. JL9 using with different carbon and nitrogen sources. BIORESOURCE TECHNOLOGY 2019; 293:122061. [PMID: 31520862 DOI: 10.1016/j.biortech.2019.122061] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
This study investigated sulfamethoxazole (SMX) biodegradation and nitrogen conversion by Achromobacter sp. JL9 using different carbon and nitrogen sources. Results showed that SMX and sodium acetate could be co-metabolized as carbon sources for bacterial growth and nitrogen conversion with highest removal efficiencies of 82.44%, 80.2%, and 79.45% for NH4+-N, NO3--N, and SMX, respectively. Strain JL9 was able to utilize SMX as its sole nitrogen source for growth, with an SMX biodegradation efficiency of 63.10%. In addition, carbon and nitrogen balance analyses showed that approximately 35.31% and 63.22% of carbon and nitrogen, respectively, were lost as gaseous products. Finally, medium toxicity gradually decreased during the carbon and nitrogen dependence experiments. This study, thus, suggests that carbon and nitrogen play vital roles in SMX biodegradation and biotoxicity reduction.
Collapse
Affiliation(s)
- Dong Hui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| |
Collapse
|
26
|
Biodegradation of Sulfamethoxazole in Milkfish (Chanos chanos) Pond Sediments. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To cope with bacterial infections, broad-spectrum antibiotics such as sulfonamides have been largely used for intensive coastal aquaculture. Sulfonamides are stable and difficult to remove by conventional wastewater treatment. Environmental pollution will occur if sulfonamide-containing aquaculture wastewater is discharged into rivers and oceans. In this study, high salinity-tolerant bacterial strains A12 and L with sulfamethoxazole (SMX)-degrading ability from milkfish (Chanos chanos) culture pond sediments with SMX were isolated, identified, and characterized. The degradation of SMX and the changes in the bacterial community in milkfish culture pond sediments were assessed. Phylogenetic analysis using 16S rRNA gene sequences suggested that bacterial strain A12 was very close (99% sequence identity) to Vibrio sp., and bacterial strain L was very close (99% sequence identity) to Pseudomonas sp. Aerobic and anaerobic batch and continuous SMX addition experiments indicated that bacterial strains A12 and L could enhance SMX degradation in milkfish culture pond sediments. Different microbial community compositions under aerobic and anaerobic conditions exhibited different SMX-degrading abilities. The results of this study suggest that bacterial strains A12 and L provide a solution for treatment of wastewater and sediment from SMX-contaminated high salinity milkfish culture ponds.
Collapse
|
27
|
Węgrzyn A, Felis E. Isolation of Bacterial Endophytes from Phalaris arundinacea and their Potential in Diclofenac and Sulfamethoxazole Degradation. Pol J Microbiol 2019; 67:321-331. [PMID: 30451449 PMCID: PMC7256827 DOI: 10.21307/pjm-2018-039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2018] [Indexed: 12/21/2022] Open
Abstract
Diclofenac (DCF), a non-steroidal anti-inflammatory drug (NSAID) and sulfamethoxazole (SMX), an antimicrobial agent, are in common use and can be often detected in the environment. The constructed wetland systems (CWs) are one of the technologies to remove them from the aquatic environment. The final effect of the treatment processes depends on many factors, including the interaction between plants and the plant-associated microorganisms present in the system. Bacteria living inside the plant as endophytes are exposed to secondary metabolites in the tissues. Therefore, they can possess the potential to degrade aromatic structures, including residues of pharmaceuticals. The endophytic strain MG7 identified as Microbacterium sp., obtained from root tissues of Phalaris arundinacea exposed to DCF and SMX was tested for the ability to remove 2 mg/l of SMX and DCF in monosubstrate cultures and in the presence of phenol as an additional carbon source. The MG7 strain was able to remove approximately 15% of DCF and 9% of SMX after 20 days of monosubstrate culture. However, a decrease in the optical density of the MG7 strain cultures was observed, caused by an insufficient carbon source for bacterial growth and proliferation. The adsorption of pharmaceuticals onto autoclaved cells was negligible, which confirmed that the tested strain was directly involved in the removal of DCF and SMX. In the presence of phenol as the additional carbon source, the MG7 strain was able to remove approximately 35% of DCF and 61% of SMX, while an increase in the optical density of the cultures was noted. The higher removal efficiency can be explained by adaptive mechanisms in microorganisms exposed to phenol (i.e. changes in the composition of membrane lipids) and by a co-metabolic mechanism, where non-growth substrates can be transformed by non-specific enzymes. The presence of both DCF and SMX and the influence of the supply frequency of CWs with the contaminated wastewater on the diversity of whole endophytic bacterial communities were demonstrated. The results of this study suggest the capability of the MG7 strain to degrade DCF and SMX. This finding deserves further investigations to improve wastewater treatment in CWs with the possible use of pharmaceuticals-degrading endophytes.
Collapse
Affiliation(s)
- Anna Węgrzyn
- Environmental Biotechnology Department, Faculty o f Power and Environmental Engineering, Silesian University of Technology, Gliwice, Poland
| | - Ewa Felis
- Environmental Biotechnology Department, Faculty o f Power and Environmental Engineering, Silesian University of Technology, Gliwice, Poland ; Centre for Biotechnology, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
28
|
Silva MOD, Desmond P, Derlon N, Morgenroth E, Pernthaler J. Source Community and Assembly Processes Affect the Efficiency of Microbial Microcystin Degradation on Drinking Water Filtration Membranes. Front Microbiol 2019; 10:843. [PMID: 31057530 PMCID: PMC6482319 DOI: 10.3389/fmicb.2019.00843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/02/2019] [Indexed: 01/14/2023] Open
Abstract
Microbial biofilms in gravity-driven membrane (GDM) filtration systems can efficiently degrade the cyanotoxin microcystin (MC), but it is unclear if this function depends on the presence of MC-producing cyanobacteria in the source water habitat. We assessed the removal of MC from added Microcystis aeruginosa biomass in GDMs fed with water from a lake with regular blooms of toxic cyanobacteria (ExpL) or from a stream without such background (ExpS). While initial MC removal was exclusively due to abiotic processes, significantly higher biological MC removal was observed in ExpL. By contrast, there was no difference in MC degradation capacity between lake and stream bacteria in separately conducted liquid enrichments on pure MC. Co-occurrence network analysis revealed a pronounced modularity of the biofilm communities, with a clear hierarchic distinction according to feed water origin and treatment type. Genotypes in the network modules associated with ExpS had significantly more links to each other, indicating that these biofilms had assembled from a more coherent source community. In turn, signals for stochastic community assembly were stronger in ExpL biofilms. We propose that the less "tightly knit" ExpL biofilm assemblages allowed for the better establishment of facultatively MC degrading bacteria, and thus for higher overall functional efficiency.
Collapse
Affiliation(s)
- Marisa O. D. Silva
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Peter Desmond
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Environmental Engineering, ETH Zurich, Institute of Environmental Engineering, Zurich, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Environmental Engineering, ETH Zurich, Institute of Environmental Engineering, Zurich, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Guillet G, Knapp JLA, Merel S, Cirpka OA, Grathwohl P, Zwiener C, Schwientek M. Fate of wastewater contaminants in rivers: Using conservative-tracer based transfer functions to assess reactive transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1250-1260. [PMID: 30625655 DOI: 10.1016/j.scitotenv.2018.11.379] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/24/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Interpreting the fate of wastewater contaminants in streams is difficult because their inputs vary in time and several processes synchronously affect reactive transport. We present a method to disentangle the various influences by performing a conservative-tracer test while sampling a stream section at various locations for chemical analysis of micropollutants. By comparing the outflow concentrations of contaminants with the tracer signal convoluted by the inflow time series, we estimated reaction rate coefficients and calculated the contaminant removal along a river section. The method was tested at River Steinlach, Germany, where 38 contaminants were monitored. Comparing day-time and night-time experiments allowed distinguishing photo-dependent degradation from other elimination processes. While photo-dependent degradation showed to be highly efficient for the removal of metroprolol, bisoprolol, and venlafaxine, its impact on contaminant removal was on a similar scale to the photo-independent processes when averaged over 24 h. For a selection of compounds analyzed in the present study, bio- and photodegradation were higher than in previous field studies. In the Steinlach study, we observed extraordinarily effective removal processes that may be due to the higher proportion of treated wastewater, temperature, DOC and nitrate concentrations, but also a higher surface to volume ratio from low flow conditions that favorizes photodegradation through the shallow water column and a larger transient storage than observed in comparable studies.
Collapse
Affiliation(s)
- Gaëlle Guillet
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Julia L A Knapp
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Sylvain Merel
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Olaf A Cirpka
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Peter Grathwohl
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Christian Zwiener
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Marc Schwientek
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany.
| |
Collapse
|
30
|
Song M, Luo C, Jiang L, Peng K, Zhang D, Zhang R, Li Y, Zhang G. The presence of in situ sulphamethoxazole degraders and their interactions with other microbes in activated sludge as revealed by DNA stable isotope probing and molecular ecological network analysis. ENVIRONMENT INTERNATIONAL 2019; 124:121-129. [PMID: 30641255 DOI: 10.1016/j.envint.2018.12.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Wastewater treatment plants (WWTPs) are the main hotspots for the release of antibiotics, including the widely used sulphonamides. Microbes play important roles in eliminating sulphonamides in WWTPs, and knowledge about these degraders and their interactions within the microbial community is crucial for operating and optimising WWTPs. In the present study, stable isotope probing (SIP) coupled with high-throughput sequencing as culture-independent approach revealed four operational taxonomic units (OTUs) involved in sulphamethoxazole (SMX) degradation in activated sludge. Except for the OTU affiliated with Gammaproteobacteria, the others have not been previously reported to possess the ability to metabolise SMX. The isolated SMX degrader by culture-dependent method did not participate in SMX biodegradation in situ according to the SIP analysis, and showed weak correlations with other members in the activated sludge. The complex interactions between in situ active SMX degraders and non-degrading microbes might explain our failure to isolate these degraders. In addition, sul1 genes associated with SMX resistance were also labelled with 13C, suggesting that they might benefit from SMX degradation and/or originate from the active SMX degraders. These findings broaden our understanding of the diversity of SMX-degrading microbes and their associated characteristics in WWTPs.
Collapse
Affiliation(s)
- Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China.
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ke Peng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruijie Zhang
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
31
|
Fan CH, Yang CW, Chang BV. Anaerobic degradation of sulfamethoxazole by mixed cultures from swine and sewage sludge. ENVIRONMENTAL TECHNOLOGY 2019; 40:210-218. [PMID: 28942703 DOI: 10.1080/09593330.2017.1384510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to evaluate the anaerobic degradation of sulfamethoxazole (SMX) and the associated bacterial community changes in swine and sewage sludges. The degradation rate of SMX was higher in swine sludge than in sewage sludge. The addition of lactate, citrate, and sucrose had significant effects on SMX degradation, and sucrose addition yielded a higher SMX degradation rate than the other additives. At concentrations of 0.1-10 g/l sucrose, the SMX degradation rates increased in the sludge. The bacterial genera from swine sludge with sucrose exhibited the highest SMX degrading efficiency. Seventeen bacterial genera were found to be the major bacterial community members involved in SMX degradation in the sludge.
Collapse
Affiliation(s)
- Chu-Hsi Fan
- a Department of Microbiology , Soochow University , Taipei , Taiwan
| | - Chu-Wen Yang
- a Department of Microbiology , Soochow University , Taipei , Taiwan
| | - Bea-Ven Chang
- a Department of Microbiology , Soochow University , Taipei , Taiwan
| |
Collapse
|
32
|
Yang CW, Tsai LL, Chang BV. Anaerobic degradation of sulfamethoxazole in mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1446-1455. [PMID: 30189561 DOI: 10.1016/j.scitotenv.2018.06.305] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
The effects of sucrose and electron acceptors on the anaerobic degradation of sulfamethoxazole (SMX) in mangrove sediments were investigated in this study. Among three sulfonamides, sulfamethoxazole, sulfadimethoxine and sulfamethazine, only SMX could be completely degraded in mangrove sediments. Degradation of SMX was enhanced by the addition of sucrose to the sediments. The degradation rates of SMX were increased in bioreactor experiments with sucrose. The addition of electron acceptors (sodium hydrogen carbonate, sodium sulfate, and sodium nitrate) could further enhance SMX degradation. The order of anaerobic SMX degradation rates under three different conditions was as follows: sulfate-reducing conditions > methanogenic conditions > nitrate-reducing conditions. Methanolobus, Desulfuromonas, and Thauera were found in the highest proportions among methanogens, sulfate-reducing bacteria and denitrifying bacteria, respectively. Achromobacter, Brevundimonas, Delftia, Idiomarina, Pseudomonas, and Rhodopirellula were the major bacterial communities responsible for SMX degradation in the sediment. Overall, 16 bacterial and archaeal genera were identified as the core microbial community facilitating anaerobic SMX degradation for all methanogenic, sulfate-reducing and nitrate-reducing conditions. The results of this study provide feasible methods for the removal of SMX from mangrove sediments.
Collapse
Affiliation(s)
- Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Li-Ling Tsai
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Bea-Ven Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan.
| |
Collapse
|
33
|
Lakshminarasimman N, Quiñones O, Vanderford BJ, Campo-Moreno P, Dickenson EV, McAvoy DC. Biotransformation and sorption of trace organic compounds in biological nutrient removal treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:62-72. [PMID: 29857321 DOI: 10.1016/j.scitotenv.2018.05.145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/25/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
This study determined biotransformation rates (kbio) and sorption-distribution coefficients (Kd) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems.
Collapse
Affiliation(s)
| | - Oscar Quiñones
- Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA
| | - Brett J Vanderford
- Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA
| | - Pablo Campo-Moreno
- Cranfield Water Science Institute, Cranfield University, Cranfield, Beds MK43 0AL, UK
| | - Eric V Dickenson
- Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA
| | - Drew C McAvoy
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
34
|
Chen J, Xie S. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1465-1477. [PMID: 30021313 DOI: 10.1016/j.scitotenv.2018.06.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Sulfonamide antibiotics have aroused increasing concerns due to their ability to enhance the resistance of pathogenic bacteria and promote the spread of antibiotic resistance. Biodegradation plays an important role in sulfonamide dissipation in both natural and engineered ecosystems. In this article, we provided an overview of sulfonamide biodegradation in different systems and summarized the relevant sulfonamide-degrading species and metabolic pathways. The removal of sulfonamides depends on a variety of factors, such as the type and initial concentration of sulfonamides, the properties of water or soil, and treatment process. The removal efficiency of sulfonamides by engineered ecosystems can be improved by optimizing their operating conditions. Much higher sulfonamide removal was also observed in upgraded or advanced treatment systems than in conventional activated sludge systems. Ammonia oxidation might promote sulfonamide biodegradation. In addition, sulfonamide-degraders from different bacterial genera have been isolated and classified, but no bioaugmentation practice has been reported. Different pathways have been detected in sulfonamide biodegradation. Further efforts will be necessary to elucidate in-situ degraders and the metabolic pathways and functional genes of sulfonamide biodegradation.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
35
|
Reis PJM, Homem V, Alves A, Vilar VJP, Manaia CM, Nunes OC. Insights on sulfamethoxazole bio-transformation by environmental Proteobacteria isolates. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:310-318. [PMID: 29990819 DOI: 10.1016/j.jhazmat.2018.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/14/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Although sulfonamide residues are frequently reported as freshwaters contaminants, information on the ability of native bacteria to modify these synthetic antibiotics is scarce. Our purpose was to investigate the potential of bacteria from different aquatic environments to cleave or transform sulfamethoxazole (SMX) and infer on their ability to reduce the toxicity of this antibiotic. From a collection of about 100 Proteobacteria, 47 strains previously isolated from drinking water, surface water, and wastewater grew in the presence of 200 μMSMX, and were further studied. Out of these, 14 strains, mostly from mineral drinking water, transformed SMX into equimolar amounts of the lesser toxic derivative N4-acetyl-sulfamethoxazole. The highest percentage of SMX transformation was recorded for two strains affiliated to Pseudomonas mandelii. For P. mandelii McBPA4 higher SMX transformation rate and extent were observed in fed-batch (∼8 μMSMX/h, 81%) than in batch conditions (∼5 μMSMX/h, 25%), but similar specific transformation rates were found in both cultivation modes (∼20 μmolSMX/gcell dry weight/h), indicating the dependence of the process on the microbial load. These results evidence that the capacity to transform synthetic antibiotics may be common among bacteria and highlight the potential of environmental bacteria in attenuating the potential adverse effects of pollution with sulfonamides.
Collapse
Affiliation(s)
- Patrícia J M Reis
- LEPABE - Laboratory of Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal
| | - Vera Homem
- LEPABE - Laboratory of Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Arminda Alves
- LEPABE - Laboratory of Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374, Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory of Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
36
|
Kang AJ, Brown AK, Wong CS, Huang Z, Yuan Q. Variation in bacterial community structure of aerobic granular and suspended activated sludge in the presence of the antibiotic sulfamethoxazole. BIORESOURCE TECHNOLOGY 2018; 261:322-328. [PMID: 29677660 DOI: 10.1016/j.biortech.2018.04.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
The treatment performance and bacterial community structure of conventional activated sludge and aerobic granules exposed to antibiotic sulfamethoxazole (SMX) was studied. For three months, two sets of sequencing batch reactors inoculated with conventional and granular biomass were fed with a synthetic municipal wastewater containing 2 μg/L SMX. The presence of SMX had no significant impacts on treatment performance of the reactors as well as stability of the granules. Results confirmed different bacterial community structure of flocs and granules. During the operation, variations in bacterial community structure of suspended and granular sludge were observed in all reactors. The variations in bacterial community composition due to the exposure to 2 μg/L SMX were found after two months in both suspended and granular biomass. Nitrosomonas, Pseudomonas, and Acinetobacter were detected as the genes capable of degrading SMX in both biomass types. Also, Rikenellaceae, Oscillospira, Rhodocyclaceae, Zoogloea, and Shewanella varied in abundance over the operation time. Rikenellaceae and Oscillospira were vulnerable to SMX and decreased in abundance the operation time; while Rhodocyclaceae, Zoogloea, Shewanella, and Aeromonas were found as SMX resistance genes.
Collapse
Affiliation(s)
- Abbass Jafari Kang
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Alistair K Brown
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Charles S Wong
- Department of Chemistry and Department of Environmental Studies and Sciences, Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, China
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
37
|
Wang S, Hu Y, Wang J. Biodegradation of typical pharmaceutical compounds by a novel strain Acinetobacter sp. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:240-246. [PMID: 29604418 DOI: 10.1016/j.jenvman.2018.03.096] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 05/18/2023]
Abstract
A novel sulfamethoxazole (SMX)-degrading strain, Acinetobacter sp., was used to degrade other pharmaceutical compounds, including sulfadiazine (SD), sulfamethazine (SMT), trimethoprim (THM), triclosan (TCS), diclofenac (DFC) and carbamazepine (CBZ). The experimental results showed that Acinetobacter sp. can completely degrade SMX, SD and SMT, but with different mineralization efficiency. Acinetobacter sp. can mineralize 98.8% of SMX, while only 17.5% and 20.5% for SD and SMT, respectively. The intermediate products of SMX, SD and SMT degradation were tentatively identified. Based on the intermediates, it is inferred that the initial step for degrading sulfonamides by Acinetobacter sp. was the amidation of the amino groups in the benzene ring. The presence of methyl in the heterocyclic ring could induce the formation of methylase. By comparing the intermediates of SMX, SD and SMT degradation, it is concluded that Acinetobacter sp. preferred attacking the oxazole ring. However, Acinetobacter sp. cannot degrade THM, TCS, DFC and CBZ, while Acinetobacter sp. can still degrade SMX in the respective presence of THM, DFC and CBZ, although the degradation rate decreased. Moreover, the presence of TCS could completely inhibit the degradation of SMX by Acinetobacter sp.
Collapse
Affiliation(s)
- Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Yuming Hu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
38
|
Deng Y, Li B, Zhang T. Bacteria That Make a Meal of Sulfonamide Antibiotics: Blind Spots and Emerging Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3854-3868. [PMID: 29498514 DOI: 10.1021/acs.est.7b06026] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The release of sulfonamide antibiotics into the environment is alarming because the existence of these antibiotics in the environment may promote resistance in clinically relevant microorganisms, which is a potential threat to the effectiveness of antibiotic therapies. Controllable biodegradation processes are of particular significance for the inexpensive yet effective restoration of sulfonamide-contaminated environments. Cultivation-based techniques have already made great strides in successfully isolating bacteria with promising sulfonamide degradation abilities, but the implementation of these isolates in bioremediation has been limited by unknown microbial diversity, vast population responsiveness, and the impact of perturbations from open and complex environments. Advances in DNA sequencing technologies and metagenomic analyses are being used to complement the information derived from cultivation-based procedures. In this Review, we provide an overview of the growing understanding of isolated sulfonamide degraders and identify shortcomings of the prevalent literature in this field. In addition, we propose a technical paradigm that integrates experimental testing with metagenomic analysis to pave the way for improved understanding and exploitation of these ecologically important isolates. Overall, this Review aims to outline how metagenomic studies of isolated sulfonamide degraders are being applied for the advancement of bioremediation strategies for sulfonamide contamination.
Collapse
Affiliation(s)
- Yu Deng
- Environmental Biotechnology Laboratory, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , PR China
| | - Bing Li
- Division of Energy & Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , PR China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , PR China
| |
Collapse
|
39
|
Yang CW, Tsai LL, Chang BV. Fungi extracellular enzyme-containing microcapsules enhance degradation of sulfonamide antibiotics in mangrove sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10069-10079. [PMID: 29383640 DOI: 10.1007/s11356-018-1332-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/18/2018] [Indexed: 05/22/2023]
Abstract
Mangroves represent a special coastal vegetation along the coastlines of tropical and subtropical regions. Sulfonamide antibiotics (SAs) are the most commonly used antibiotics. The application of white-rot fungi extracellular enzyme-containing microcapsules (MC) for aerobic degradation of SAs in mangrove sediments was investigated in this study. Degradation of three SAs, sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamethazine (SMZ), was enhanced by adding MC to the sediments. The order of SA degradation in batch experiments was SMX > SDM > SMZ. Bioreactor experiments revealed that SA removal rates were higher with than without MC. The enhanced SA removal rates with MC persisted with three re-additions of SAs. Thirteen bacteria genera (Achromobacter, Acinetobacter, Alcaligenes, Aquamicrobium, Arthrobacter, Brevundimonas, Flavobacterium, Methylobacterium, Microbacterium, Oligotropha, Paracoccus, Pseudomonas, and Rhodococcus) were identified to be associated with SA degradation in mangrove sediments by combination of next-generation sequencing, bacterial strain isolation, and literature search results. Results of this study suggest that MC could be used for SA removal in mangrove sediments.
Collapse
Affiliation(s)
- Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Li-Ling Tsai
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Bea-Ven Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan.
| |
Collapse
|
40
|
Improvement of sulfamethoxazole (SMX) elimination and inhibition of formations of hydroxylamine-SMX and N4-acetyl-SMX by membrane bioreactor systems. Biodegradation 2018; 29:245-258. [PMID: 29546497 DOI: 10.1007/s10532-018-9826-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/13/2018] [Indexed: 12/13/2022]
Abstract
Sulfamethoxazole (SMX) has frequently been detected in aquatic environments. In natural environment, not only individual microorganism but also microbial consortia are involved in some biotransformation of pollutants. The competition for space under consortia causing cell-cell contact inhibition changes the cellular behaviors. Herein, the membrane bioreactor system (MBRS) was applied to improve SMX elimination thorough exchanging the cell-free broths (CFB). The removal efficiency of SMX was increased by more than 24% whether under the pure culture of A. faecalis or under the co-culture of A. faecalis and P. denitrificans with MBRS. Meanwhile, MBRS significantly inhibited the formation of HA-SMX, and Ac-SMX from parent compound. Additionally, the cellular growth under MBRS was obviously enhanced, indicating that the increases in the cellular growth under MBRS are possibly related to the decreases in the levels of HA-SMX and Ac-SMX compared to that without MBRS. The intracellular NADH/NAD+ ratios of A. faecalis under MBRS were increased whether thorough itself-recycle of CFB or exchanging CFB between the pure cultures of A. faecalis and P. denitrificans, suggesting that the enhancement in the bioremoval efficiencies of SMX under MBRS by A. faecalis is likely related to the increases in the NADH/NAD+ ratio. Taken together, the regulation of cell-to-cell communication is preferable strategy to improve the bioremoval efficiency of SMX.
Collapse
|
41
|
|
42
|
Deng Y, Wang Y, Mao Y, Zhang T. Partnership of Arthrobacter and Pimelobacter in Aerobic Degradation of Sulfadiazine Revealed by Metagenomics Analysis and Isolation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2963-2972. [PMID: 29378398 DOI: 10.1021/acs.est.7b05913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, metagenomic analyses were combined with cultivation-based techniques as a nested approach to identify functionally significant bacteria for sulfadiazine biodegradation within enrichment communities. The metagenomic investigations indicated that our previously isolated sulfadiazine degrader, Arthrobacter sp. D2, and another Pimelobacter bacterium concomitantly occurred as most abundant members in the community of an enrichment culture that performed complete sulfadiazine mineralization for over two years. Responses of the enriched populations to sole carbon source alternation further suggested the ability of this Pimelobacter member to grow on 2-aminopyrimidine, the most prominent intermediate metabolite of sulfadiazine. Taking advantage of this propensity, additional cultivation procedures have enabled the successful isolation of Pimelobacter sp. LG209, whose genomic sequences exactly matched that of the dominant Pimelobacter bacterium in the sulfadiazine enrichment culture. Integration of metagenomic investigations with the physiological characteristics of the isolates conclusively demonstrated that the sulfadiazine mineralization in a long-running enrichment culture was prominently mediated by primary sulfadiazine-degrading specialist strain Arthrobacter sp. D2 in association with the 2-aminopyrimidine-degrading partner strain Pimelobacter sp. LG209. Here, we provided the first mechanistic insight into microbial interactions in steady sulfadiazine mineralization processes, which will help develop appropriate bioremediation strategies for sulfadiazine-contaminated hotspot sites.
Collapse
Affiliation(s)
- Yu Deng
- Environmental Biotechnology Laboratory, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Yulin Wang
- Environmental Biotechnology Laboratory, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Yanping Mao
- Environmental Biotechnology Laboratory, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , China
- College of Chemistry and Environmental Engineering , Shenzhen University , Shenzhen , 518060 China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , China
- International Center for Antibiotic Resistance in the Environment , Southern University of Science and Technology , Shenzhen , 518055 China
| |
Collapse
|
43
|
Kang AJ, Brown AK, Wong CS, Yuan Q. Removal of antibiotic sulfamethoxazole by anoxic/anaerobic/oxic granular and suspended activated sludge processes. BIORESOURCE TECHNOLOGY 2018; 251:151-157. [PMID: 29274854 DOI: 10.1016/j.biortech.2017.12.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
This study investigates the removal of the antibiotic sulfamethoxazole (SMX) in two sets of anoxic/anaerobic/oxic sequencing batch reactors inoculated with either suspended or granular activated sludge. Continuously, for three months, 2 μg/L SMX was spiked into the reactor feeds in a synthetic municipal wastewater with COD, total nitrogen (TN) and total phosphorous (TP) of 400, 43 and 7 mg/L, respectively. The presence of SMX had no significant impact on treatment performance of the suspended and granular biomass. After 12 h of hydraulic retention time, SMX removal efficiencies of 84 and 73% were obtained for the granular and suspended biomass, respectively. Mixing without aeration did not remove SMX, confirming the insignificance of SMX removal via sorption. The pseudo-first order SMX removal rate constants in the granular and suspended biomass were 2.25 ± 0.30 and 1.34 ± 0.39 L/gVSS·d, respectively. The results suggest that granules with advantages such as elevated biomass retention and greater biomass concentration could be effective for the removal of this class of antibiotics.
Collapse
Affiliation(s)
- Abbass Jafari Kang
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Alistair K Brown
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Charles S Wong
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada; Department of Chemistry and Department of Environmental Studies and Sciences, Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
44
|
Bennett KA, Kelly SD, Tang X, Reid BJ. Potential for natural and enhanced attenuation of sulphanilamide in a contaminated chalk aquifer. J Environ Sci (China) 2017; 62:39-48. [PMID: 29289291 DOI: 10.1016/j.jes.2017.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Understanding antibiotic biodegradation is important to the appreciation of their fate and removal from the environment. In this research an Isotope Ratio Mass Spectrometry (IRMS) method was developed to evaluate the extent of biodegradation of the antibiotic, sulphanilamide, in contaminated groundwater. Results indicted an enrichment in δ13C of 8.44‰ from -26.56 (at the contaminant source) to -18.12‰ (300m downfield of the source). These results confirm reductions in sulphanilamide concentrations (from 650 to 10mg/L) across the contaminant plume to be attributable to biodegradation (56%) vs. other natural attenuation processes, such as dilution or dispersion (42%). To understand the controls on sulphanilamide degradation ex-situ microcosms assessed the influence of sulphanilamide concentration, redox conditions and an alternative carbon source. Results indicated, high levels of anaerobic capacity (~50% mineralisation) to degrade sulphanilamide under high (263mg/L), moderate (10mg/L) and low (0.02mg/L) substrate concentrations. The addition of electron acceptors; nitrate and sulphate, did not significantly enhance the capacity of the groundwater to anaerobically biodegrade sulphanilamide. Interestingly, where alternative carbon sources were present, the addition of nitrate and sulphate inhibited sulphanilamide biodegradation. These results suggest, under in-situ conditions, when a preferential carbon source was available for biodegradation, sulphanilamide could be acting as a nitrogen and/or sulphur source. These findings are important as they highlight sulphanilamide being used as a carbon and a putative nitrogen and sulphur source, under prevailing iron reducing conditions.
Collapse
Affiliation(s)
- Karen A Bennett
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Simon D Kelly
- Food and Environmental Protection Laboratory, International Atomic Energy Agency, 1400 Vienna, Austria
| | - Xiangyu Tang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Brian J Reid
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
45
|
Ricken B, Kolvenbach BA, Bergesch C, Benndorf D, Kroll K, Strnad H, Vlček Č, Adaixo R, Hammes F, Shahgaldian P, Schäffer A, Kohler HPE, Corvini PFX. FMNH 2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics. Sci Rep 2017; 7:15783. [PMID: 29150672 PMCID: PMC5693940 DOI: 10.1038/s41598-017-16132-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/08/2017] [Indexed: 01/31/2023] Open
Abstract
We report a cluster of genes encoding two monooxygenases (SadA and SadB) and one FMN reductase (SadC) that enable Microbacterium sp. strain BR1 and other Actinomycetes to inactivate sulfonamide antibiotics. Our results show that SadA and SadC are responsible for the initial attack of sulfonamide molecules resulting in the release of 4-aminophenol. The latter is further transformed into 1,2,4-trihydroxybenzene by SadB and SadC prior to mineralization and concomitant production of biomass. As the degradation products lack antibiotic activity, the presence of SadA will result in an alleviated bacteriostatic effect of sulfonamides. In addition to the relief from antibiotic stress this bacterium gains access to an additional carbon source when this gene cluster is expressed. As degradation of sulfonamides was also observed when Microbacterium sp. strain BR1 was grown on artificial urine medium, colonization with such strains may impede common sulfonamide treatment during co-infections with pathogens of the urinary tract. This case of biodegradation exemplifies the evolving catabolic capacity of bacteria, given that sulfonamide bacteriostatic are purely of synthetic origin. The wide distribution of this cluster in Actinomycetes and the presence of traA encoding a relaxase in its vicinity suggest that this cluster is mobile and that is rather alarming.
Collapse
Affiliation(s)
- Benjamin Ricken
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Boris A Kolvenbach
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Christian Bergesch
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Kevin Kroll
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Čestmír Vlček
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ricardo Adaixo
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Frederik Hammes
- Department Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Patrick Shahgaldian
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Hans-Peter E Kohler
- Department Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
| |
Collapse
|
46
|
Biodegradation and metabolic pathway of sulfamethoxazole by a novel strain Acinetobacter sp. Appl Microbiol Biotechnol 2017; 102:425-432. [DOI: 10.1007/s00253-017-8562-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/24/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
|
47
|
Wang Y, Jin X, He L, Zhang W. Inhibitory effect of thiourea on biological nitrification process and its eliminating method. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 75:2900-2907. [PMID: 28659530 DOI: 10.2166/wst.2017.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thiourea is a typical nitrification inhibitor that shows a strong inhibitory effect against the biological nitrification process. The 50% inhibitory concentration (IC50) of thiourea on nitrification was determined to be 0.088 mg g VSS-1, and nitrifiers recovered from the thiourea inhibition after it was completely degraded. The thiourea-degrading ability of the sludge system was improved to 3.06 mg gVSS-1 h-1 through cultivation of thiourea-degrading bacteria by stepwise increasing the influent thiourea concentration. The dominant thiourea-degrading bacteria strain that used thiourea as the sole carbon and nitrogen source in the sludge system was identified as Pseudomonas sp. NCIMB. The results of this study will facilitate further research of the biodegradation characteristics of thiourea and similar pollutants.
Collapse
Affiliation(s)
- Yuan Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control of Chemical Processes, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Xibiao Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control of Chemical Processes, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Lijun He
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control of Chemical Processes, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control of Chemical Processes, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| |
Collapse
|
48
|
Rudrashetti AP, Jadeja NB, Gandhi D, Juwarkar AA, Sharma A, Kapley A, Pandey RA. Microbial population shift caused by sulfamethoxazole in engineered-Soil Aquifer Treatment (e-SAT) system. World J Microbiol Biotechnol 2017; 33:121. [PMID: 28523623 DOI: 10.1007/s11274-017-2284-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/11/2017] [Indexed: 12/01/2022]
Abstract
The engineered-Soil Aquifer Treatment (e-SAT) system was exploited for the biological degradation of Sulfamethoxazole (SMX) which is known to bio-accumulate in the environment. The fate of SMX in soil column was studied through laboratory simulation for a period of 90 days. About 20 ppm SMX concentration could be removed in four consecutive cycles in e-SAT. To understand the microbial community change and biological degradation of SMX in e-SAT system, metagenomic analysis was performed for the soil samples before (A-EBD) and after SMX exposure (B-EBD) in the e-SAT. Four bacterial phyla were found to be present in both the samples, with sample B-EBD showing increased abundance for Actinobacteria, Bacteroidetes, Firmicutes and decreased Proteobacterial abundance compared to A-EBD. The unclassified bacteria were found to be abundant in B-EBD compared to A-EBD. At class level, classes such as Bacilli, Negativicutes, Deltaproteobacteria, and Bacteroidia emerged in sample B-EBD owing to SMX treatment, while Burkholderiales and Nitrosomonadales appeared to be dominant at order level after SMX treatment. Furthermore, in response to SMX treatment, the family Nitrosomonadaceae appeared to be dominant. Pseudomonas was the most dominating bacterial genus in A-EBD whereas Cupriavidus dominated in sample B-EBD. Additionally, the sulfur oxidizing bacteria were enriched in the B-EBD sample, signifying efficient electron transfer and hence organic molecule degradation in the e-SAT system. Results of this study offer new insights into understanding of microbial community shift during the biodegradation of SMX.
Collapse
Affiliation(s)
| | - Niti B Jadeja
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Deepa Gandhi
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Asha A Juwarkar
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Abhinav Sharma
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Atya Kapley
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - R A Pandey
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.
| |
Collapse
|
49
|
Biodegradation of sulfamethazine by an isolated thermophile–Geobacillus sp. S-07. World J Microbiol Biotechnol 2017; 33:85. [DOI: 10.1007/s11274-017-2245-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
|
50
|
Nguyen PY, Carvalho G, Reis AC, Nunes OC, Reis MAM, Oehmen A. Impact of biogenic substrates on sulfamethoxazole biodegradation kinetics by Achromobacter denitrificans strain PR1. Biodegradation 2017; 28:205-217. [DOI: 10.1007/s10532-017-9789-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
|