1
|
Timms VJ, Sim E, Pey K, Sintchenko V. Can genomics and meteorology predict outbreaks of legionellosis in urban settings? Appl Environ Microbiol 2024; 90:e0065824. [PMID: 39016616 PMCID: PMC11337837 DOI: 10.1128/aem.00658-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Legionella pneumophila is ubiquitous and sporadically infects humans causing Legionnaire's disease (LD). Globally, reported cases of LD have risen fourfold from 2000 to 2014. In 2016, Sydney, Australia was the epicenter of an outbreak caused by L. pneumophila serogroup 1 (Lpsg1). Whole-genome sequencing was instrumental in identifying the causal clone which was found in multiple locations across the city. This study examined the epidemiology of Lpsg1 in an urban environment, assessed typing schemes to classify resident clones, and investigated the association between local climate variables and LD outbreaks. Of 223 local Lpsg1 isolates, we identified dominant clones with one clone isolated from patients in high frequency during outbreak investigations. The core genome multi-locus sequence typing scheme was the most reliable in identifying this Lpsg1 clone. While an increase in humidity and rainfall was found to coincide with a rise in LD cases, the incidence of the major L. pneumophila outbreak clone did not link to weather phenomena. These findings demonstrated the role of high-resolution typing and weather context assessment in determining source attribution for LD outbreaks in urban settings, particularly when clinical isolates remain scarce.IMPORTANCEWe investigated the genomic and meteorological influences of infections caused by Legionella pneumophila in Sydney, Australia. Our study contributes to a knowledge gap of factors that drive outbreaks of legionellosis compared to sporadic infections in urban settings. In such cases, clinical isolates can be rare, and thus, other data are needed to inform decision-making around control measures. The study revealed that core genome multi-locus sequence typing is a reliable and adaptable technique when investigating Lpsg1 outbreaks. In Sydney, the genomic profile of Lpsg1 was dominated by a single clone, which was linked to numerous community cases over a period of 40 years. Interestingly, the peak in legionellosis cases during Autumn was not associated with this prevalent outbreak clone. Incorporating meteorological data with Lpsg1 genomics can support risk assessment strategies for legionellosis in urban environments, and this approach may be relevant for other densely populated regions globally.
Collapse
Affiliation(s)
- Verlaine J. Timms
- Center for Infectious Diseases and Microbiology- Public Health, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Eby Sim
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
- Center for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Keenan Pey
- Center for Infectious Diseases and Microbiology- Public Health, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Center for Infectious Diseases and Microbiology- Public Health, Westmead Hospital, Sydney, New South Wales, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
- Center for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Michel C, Echahidi F, Place S, Filippin L, Colombie V, Yin N, Martiny D, Vandenberg O, Piérard D, Hallin M. From Investigating a Case of Cellulitis to Exploring Nosocomial Infection Control of ST1 Legionella pneumophila Using Genomic Approaches. Microorganisms 2024; 12:857. [PMID: 38792686 PMCID: PMC11123157 DOI: 10.3390/microorganisms12050857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Legionella pneumophila can cause a large panel of symptoms besides the classic pneumonia presentation. Here we present a case of fatal nosocomial cellulitis in an immunocompromised patient followed, a year later, by a second case of Legionnaires' disease in the same ward. While the first case was easily assumed as nosocomial based on the date of symptom onset, the second case required clear typing results to be assigned either as nosocomial and related to the same environmental source as the first case, or community acquired. To untangle this specific question, we applied core-genome multilocus typing (MLST), whole-genome single nucleotide polymorphism and whole-genome MLST methods to a collection of 36 Belgian and 41 international sequence-type 1 (ST1) isolates using both thresholds recommended in the literature and tailored threshold based on local epidemiological data. Based on the thresholds applied to cluster isolates together, the three methods gave different results and no firm conclusion about the nosocomial setting of the second case could been drawn. Our data highlight that despite promising results in the study of outbreaks and for large-scale epidemiological investigations, next-generation sequencing typing methods applied to ST1 outbreak investigation still need standardization regarding both wet-lab protocols and bioinformatics. A deeper evaluation of the L. pneumophila evolutionary clock is also required to increase our understanding of genomic differences between isolates sampled during a clinical infection and in the environment.
Collapse
Affiliation(s)
- Charlotte Michel
- Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
| | - Fedoua Echahidi
- Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Sammy Place
- Department of Internal Medicine and Infectious Diseases, EpiCURA Hospital, 7301 Hornu, Belgium
| | - Lorenzo Filippin
- Department of Internal Medicine and Infectious Diseases, EpiCURA Hospital, 7301 Hornu, Belgium
| | - Vincent Colombie
- Department of Internal Medicine and Infectious Diseases, EpiCURA Hospital, 7301 Hornu, Belgium
| | - Nicolas Yin
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Faculty of Medicine and Pharmacy, Mons University, Chemin du Champ de Mars 37, 7000 Mons, Belgium
| | - Olivier Vandenberg
- Innovation and Business Development Unit, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Avenue Roosevelt 50, 1050 Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Marie Hallin
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Avenue Roosevelt 50, 1050 Brussels, Belgium
- European Plotkin Institute for Vaccinology (EPIV), Université Libre de Bruxelles (ULB), Avenue Roosevelt 50, 1050 Brussels, Belgium
| |
Collapse
|
3
|
Comparative Genomics of Legionella pneumophila Isolates from the West Bank and Germany Support Molecular Epidemiology of Legionnaires' Disease. Microorganisms 2023; 11:microorganisms11020449. [PMID: 36838414 PMCID: PMC9965269 DOI: 10.3390/microorganisms11020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Legionella pneumophila is an environmental bacterium and clinical pathogen that causes many life-threating outbreaks of an atypical pneumonia called Legionnaires' disease (LD). Studies of this pathogen have focused mainly on Europe and the United States. A shortage in L. pneumophila data is clearly observed for developing countries. To reduce this knowledge gap, L. pneumophila isolates were studied in two widely different geographical areas, i.e., the West Bank and Germany. For this study, we sequenced and compared the whole genome of 38 clinical and environmental isolates of L. pneumophila covering different MLVA-8(12) genotypes in the two areas. Sequencing was conducted using the Illumina HiSeq 2500 platform. In addition, two isolates (A194 and H3) were sequenced using a Pacific Biosciences (PacBio) RSII platform to generate complete reference genomes from each of the geographical areas. Genome sequences from 55 L. pneumophila strains, including 17 reference strains, were aligned with the genome sequence of the closest strain (L. pneumophila strain Alcoy). A whole genome phylogeny based on single nucleotide polymorphisms (SNPs) was created using the ParSNP software v 1.0. The reference genomes obtained for isolates A194 and H3 consisted of circular chromosomes of 3,467,904 bp and 3,691,263 bp, respectively. An average of 36,418 SNPs (min. 8569, max. 70,708 SNPs) against our reference strain L. pneumophila str. Alcoy, and 2367 core-genes were identified among the fifty-five strains. An analysis of the genomic population structure by SNP comparison divided the fifty-five L. pneumophila strains into six branches. Individual isolates in sub-lineages in these branches differed by less than 120 SNPs if they had the same MLVA genotype and were isolated from the same location. A bioinformatics analysis identified the genomic islands (GIs) for horizontal gene transfer and mobile genetic elements, demonstrating that L. pneumophila showed high genome plasticity. Four L. pneumophila isolates (H3, A29, A129 and L10-091) contained well-defined plasmids. On average, only about half of the plasmid genes could be matched to proteins in databases. In silico phage findings suggested that 43 strains contained at least one phage. However, none of them were found to be complete. BLASTp analysis of proteins from the type IV secretion Dot/Icm system showed those proteins highly conserved, with less than 25% structural differences in the new L. pneumophila isolates. Overall, we demonstrated that whole genome sequencing provides a molecular surveillance tool for L. pneumophila at the highest conceivable discriminatory level, i.e., two to eight SNPs were observed for isolates from the same location but several years apart.
Collapse
|
4
|
Trousil J, Frgelecová L, Kubíčková P, Řeháková K, Drašar V, Matějková J, Štěpánek P, Pavliš O. Acute Pneumonia Caused by Clinically Isolated Legionella pneumophila Sg 1, ST 62: Host Responses and Pathologies in Mice. Microorganisms 2022; 10:179. [PMID: 35056629 PMCID: PMC8781576 DOI: 10.3390/microorganisms10010179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Legionnaires' disease is a severe form of lung infection caused by bacteria belonging to the genus Legionella. The disease severity depends on both host immunity and L. pneumophila virulence. The objective of this study was to describe the pathological spectrum of acute pneumonia caused by a virulent clinical isolate of L. pneumophila serogroup 1, sequence type 62. In A/JOlaHsd mice, we compared two infectious doses, namely, 104 and 106 CFU, and their impact on the mouse status, bacterial clearance, lung pathology, and blood count parameters was studied. Acute pneumonia resembling Legionnaires' disease has been described in detail.
Collapse
Affiliation(s)
- Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic;
| | - Lucia Frgelecová
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 00 Prague, Czech Republic; (P.K.); (O.P.)
| | - Kristína Řeháková
- Small Animal Clinical Laboratory, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Vladimír Drašar
- National Legionella Reference Laboratory, Public Health Institute Ostrava, Masarykovo náměstí 16, 682 01 Vyškov, Czech Republic;
| | - Jana Matějková
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University, Motol University Hospital, V Úvalu 84, 150 06 Prague, Czech Republic;
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic;
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 00 Prague, Czech Republic; (P.K.); (O.P.)
| |
Collapse
|
5
|
Wee BA, Alves J, Lindsay DSJ, Klatt AB, Sargison FA, Cameron RL, Pickering A, Gorzynski J, Corander J, Marttinen P, Opitz B, Smith AJ, Fitzgerald JR. Population analysis of Legionella pneumophila reveals a basis for resistance to complement-mediated killing. Nat Commun 2021; 12:7165. [PMID: 34887398 PMCID: PMC8660822 DOI: 10.1038/s41467-021-27478-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022] Open
Abstract
Legionella pneumophila is the most common cause of the severe respiratory infection known as Legionnaires' disease. However, the microorganism is typically a symbiont of free-living amoeba, and our understanding of the bacterial factors that determine human pathogenicity is limited. Here we carried out a population genomic study of 902 L. pneumophila isolates from human clinical and environmental samples to examine their genetic diversity, global distribution and the basis for human pathogenicity. We find that the capacity for human disease is representative of the breadth of species diversity although some clones are more commonly associated with clinical infections. We identified a single gene (lag-1) to be most strongly associated with clinical isolates. lag-1, which encodes an O-acetyltransferase for lipopolysaccharide modification, has been distributed horizontally across all major phylogenetic clades of L. pneumophila by frequent recent recombination events. The gene confers resistance to complement-mediated killing in human serum by inhibiting deposition of classical pathway molecules on the bacterial surface. Furthermore, acquisition of lag-1 inhibits complement-dependent phagocytosis by human neutrophils, and promoted survival in a mouse model of pulmonary legionellosis. Thus, our results reveal L. pneumophila genetic traits linked to disease and provide a molecular basis for resistance to complement-mediated killing.
Collapse
Affiliation(s)
- Bryan A Wee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Joana Alves
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Diane S J Lindsay
- Bacterial Respiratory Infections Service (Ex Mycobacteria), Scottish Microbiology Reference Laboratory, Glasgow, Scotland, UK
| | - Ann-Brit Klatt
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Fiona A Sargison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Ross L Cameron
- NHS National Services Scotland, Health Protection Scotland, Glasgow, Scotland, UK
| | - Amy Pickering
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jamie Gorzynski
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Pekka Marttinen
- Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Aalto, Finland
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andrew J Smith
- Bacterial Respiratory Infections Service (Ex Mycobacteria), Scottish Microbiology Reference Laboratory, Glasgow, Scotland, UK
- College of Medical, Veterinary & Life Sciences, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - J Ross Fitzgerald
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
6
|
Quero S, Párraga-Niño N, Sabria M, Barrabeig I, Sala MR, Jané M, Mateu L, Sopena N, Pedro-Botet ML, Garcia-Nuñez M. Legionella SBT applied directly to respiratory samples as a rapid molecular epidemiological tool. Sci Rep 2019; 9:623. [PMID: 30679570 PMCID: PMC6346096 DOI: 10.1038/s41598-018-36924-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/29/2018] [Indexed: 11/09/2022] Open
Abstract
Legionnaires' disease (LD) is an atypical pneumonia caused by the inhalation of Legionella. The methods used for the diagnosis of LD are direct culture of respiratory samples and urinary antigen detection. However, the sensitivity of culture is low, and the urinary antigen test is specific only for L. pneumophila sg1. Moreover, as no isolates are obtained, epidemiological studies cannot be performed. The implementation of Nested-sequence-based typing (Nested-SBT) makes it possible to carry out epidemiological studies while also confirming LD, especially in cases caused by non-sg 1. Sixty-two respiratory samples from patients with Legionella clinically confirmed by positive urinary antigen tests were cultured and tested by Nested-SBT, following the European Study Group for Legionella Infections (ESGLI) protocol. Only 2/62 (3.2%) respiratory samples were culture-positive. Amplification and sequencing of Nested-SBT genes were successfully performed in 57/62 samples (91.9%). The seven target genes were characterised in 39/57 (68.4%) respiratory samples, and the complete sequence type (ST) was obtained. The mip gene was the most frequently amplified and sequenced. Nested-SBT is a useful method for epidemiological studies in culture-negative samples, achieving a 28.7-fold improvement over the results of culture studies and reducing the time needed to obtain molecular epidemiological results.
Collapse
Affiliation(s)
- Sara Quero
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.
| | - Noemí Párraga-Niño
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Miquel Sabria
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. .,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain. .,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| | - Irene Barrabeig
- Vigilància Epidemiològica i Resposta a Emergències de Salut Pública, Agencia de Salut Pública de Catalunya, Barcelona, Spain
| | - Maria Rosa Sala
- Vigilància Epidemiològica i Resposta a Emergències de Salut Pública, Agencia de Salut Pública de Catalunya, Barcelona, Spain
| | - Mireia Jané
- Vigilància Epidemiològica i Resposta a Emergències de Salut Pública, Agencia de Salut Pública de Catalunya, Barcelona, Spain
| | - Lourdes Mateu
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Nieves Sopena
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Maria Luisa Pedro-Botet
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain.,Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marian Garcia-Nuñez
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. .,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain. .,Hospital Universitari Parc Taulí, Sabadell, Spain.
| |
Collapse
|
7
|
David S, Mentasti M, Lai S, Vaghji L, Ready D, Chalker VJ, Parkhill J. Spatial structuring of a Legionella pneumophila population within the water system of a large occupational building. Microb Genom 2018; 4. [PMID: 30312149 PMCID: PMC6249432 DOI: 10.1099/mgen.0.000226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The diversity of Legionella pneumophila populations within single water systems is not well understood, particularly in those unassociated with cases of Legionnaires’ disease. Here, we performed genomic analysis of 235 L. pneumophila isolates obtained from 28 water samples in 13 locations within a large occupational building. Despite regular treatment, the water system of this building is thought to have been colonized by L. pneumophila for at least 30 years without evidence of association with Legionnaires’ disease cases. All isolates belonged to one of three sequence types (STs), ST27 (n=81), ST68 (n=122) and ST87 (n=32), all three of which have been recovered from Legionnaires’ disease patients previously. Pairwise single nucleotide polymorphism differences amongst isolates of the same ST were low, ranging from 0 to 19 in ST27, from 0 to 30 in ST68 and from 0 to 7 in ST87, and no homologous recombination was observed in any lineage. However, there was evidence of horizontal transfer of a plasmid, which was found in all ST87 isolates and only one ST68 isolate. A single ST was found in 10/13 sampled locations, and isolates of each ST were also more similar to those from the same location compared with those from different locations, demonstrating spatial structuring of the population within the water system. These findings provide the first insights into the diversity and genomic evolution of a L. pneumophila population within a complex water system not associated with disease.
Collapse
Affiliation(s)
- Sophia David
- 1Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,2Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, Colindale, London, UK.,†Present address: The Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Cambridge, UK
| | - Massimo Mentasti
- 2Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, Colindale, London, UK.,‡Present address: Microbiology Cardiff, Public Health Wales, University Hospital of Wales, Cardiff, UK
| | - Sandra Lai
- 3Food, Water and Environmental Laboratory, Public Health England, Colindale, London, UK
| | - Lalita Vaghji
- 2Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, Colindale, London, UK
| | - Derren Ready
- 2Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, Colindale, London, UK
| | - Victoria J Chalker
- 2Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, Colindale, London, UK
| | - Julian Parkhill
- 1Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
8
|
Comparison of in situ sequence type analysis of Legionella pneumophila in respiratory tract secretions and environmental samples of a hospital in East Jerusalem. Epidemiol Infect 2018; 146:2116-2121. [PMID: 30157982 DOI: 10.1017/s0950268818002340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Legionella pneumophila genotyping is important for epidemiological investigation of nosocomial and community-acquired outbreaks of legionellosis. The prevalence of legionellosis in pneumonia patients in the West Bank was monitored for the first time, and the sequence types (STs) from respiratory samples were compared with STs of environmental samples from different wards of the hospital. Sputum (n = 121) and bronchoalveolar lavage (BAL) (n = 74) specimens were cultured for L. pneumophila; genomic DNA was tested by 16S rRNA polymerase chain reaction (PCR) amplification. Nested PCR sequence-based typing (NPSBT) was implemented on DNA of the respiratory and environmental PCR-positive samples. Only one respiratory specimen was positive for L. pneumophila by culture. BAL gave a higher percentage of L. pneumophila-positive samples, 35% (26/74) than sputum, 15% (18/121) by PCR. NPSBT revealed the following STs: ST 1 (29%, 7/24), ST 461 (21%, 5/24), ST 1037 (4%, 1/24) from respiratory samples, STs from environmental samples: ST 1 (28.5%, 4/14), ST 187 (21.4%, 3/14) and ST 2070, ST 461, ST 1482 (7.1%, 1/14) each. This study emphasises the advantage of PCR over culture for the detection of L. pneumophila in countries where antibiotics are indiscriminately used prior to hospital admission. ST 1 was the predominant ST in both respiratory and environmental samples.
Collapse
|
9
|
Population structure of Environmental and Clinical Legionella pneumophila isolates in Catalonia. Sci Rep 2018; 8:6241. [PMID: 29674708 PMCID: PMC5908911 DOI: 10.1038/s41598-018-24708-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Legionella is the causative agent of Legionnaires’ disease (LD). In Spain, Catalonia is the region with the highest incidence of LD cases. The characterisation of clinical and environmental isolates using molecular epidemiology techniques provides epidemiological data for a specific geographic region and makes it possible to carry out phylogenetic and population-based analyses. The aim of this study was to describe and compare environmental and clinical isolates of Legionella pneumophila in Catalonia using sequence-based typing and monoclonal antibody subgrouping. A total of 528 isolates were characterised. For data analysis, the isolates were filtered to reduce redundancies, and 266 isolates (109 clinical and 157 environmental) were finally included. Thirty-two per cent of the clinical isolates were ST23, ST37 and ST1 while 40% of the environmental isolates were ST284 and ST1. Although the index of diversity was higher in clinical than in environmental ST isolates, we observed that clinical STs were similar to those recorded in other regions but that environmental STs were more confined to particular study areas. This observation supports the idea that only certain STs trigger cases or outbreaks in humans. Therefore, comparison of the genomes of clinical and environmental isolates could provide important information about the traits that favour infection or environmental persistence.
Collapse
|
10
|
Kozak-Muiznieks NA, Morrison SS, Mercante JW, Ishaq MK, Johnson T, Caravas J, Lucas CE, Brown E, Raphael BH, Winchell JM. Comparative genome analysis reveals a complex population structure of Legionella pneumophila subspecies. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 59:172-185. [PMID: 29427765 PMCID: PMC9014860 DOI: 10.1016/j.meegid.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
The majority of Legionnaires' disease (LD) cases are caused by Legionella pneumophila, a genetically heterogeneous species composed of at least 17 serogroups. Previously, it was demonstrated that L. pneumophila consists of three subspecies: pneumophila, fraseri and pascullei. During an LD outbreak investigation in 2012, we detected that representatives of both subspecies fraseri and pascullei colonized the same water system and that the outbreak-causing strain was a new member of the least represented subspecies pascullei. We used partial sequence based typing consensus patterns to mine an international database for additional representatives of fraseri and pascullei subspecies. As a result, we identified 46 sequence types (STs) belonging to subspecies fraseri and two STs belonging to subspecies pascullei. Moreover, a recent retrospective whole genome sequencing analysis of isolates from New York State LD clusters revealed the presence of a fourth L. pneumophila subspecies that we have termed raphaeli. This subspecies consists of 15 STs. Comparative analysis was conducted using the genomes of multiple members of all four L. pneumophila subspecies. Whereas each subspecies forms a distinct phylogenetic clade within the L. pneumophila species, they share more average nucleotide identity with each other than with other Legionella species. Unique genes for each subspecies were identified and could be used for rapid subspecies detection. Improved taxonomic classification of L. pneumophila strains may help identify environmental niches and virulence attributes associated with these genetically distinct subspecies.
Collapse
Affiliation(s)
- Natalia A Kozak-Muiznieks
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Shatavia S Morrison
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jeffrey W Mercante
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Maliha K Ishaq
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Taccara Johnson
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jason Caravas
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Claressa E Lucas
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Ellen Brown
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Brian H Raphael
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jonas M Winchell
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| |
Collapse
|
11
|
Schjørring S, Stegger M, Kjelsø C, Lilje B, Bangsborg JM, Petersen RF, David S, Uldum SA. Genomic investigation of a suspected outbreak of Legionella pneumophila ST82 reveals undetected heterogeneity by the present gold-standard methods, Denmark, July to November 2014. ACTA ACUST UNITED AC 2017; 22:30558. [PMID: 28662761 PMCID: PMC5490456 DOI: 10.2807/1560-7917.es.2017.22.25.30558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022]
Abstract
Between July and November 2014, 15 community-acquired cases of Legionnaires´ disease (LD), including four with Legionella pneumophila serogroup 1 sequence type (ST) 82, were diagnosed in Northern Zealand, Denmark. An outbreak was suspected. No ST82 isolates were found in environmental samples and no external source was established. Four putative-outbreak ST82 isolates were retrospectively subjected to whole genome sequencing (WGS) followed by phylogenetic analyses with epidemiologically unrelated ST82 sequences. The four putative-outbreak ST82 sequences fell into two clades, the two clades were separated by ca 1,700 single nt polymorphisms (SNP)s when recombination regions were included but only by 12 to 21 SNPs when these were removed. A single putative-outbreak ST82 isolate sequence segregated in the first clade. The other three clustered in the second clade, where all included sequences had < 5 SNP differences between them. Intriguingly, this clade also comprised epidemiologically unrelated isolate sequences from the UK and Denmark dating back as early as 2011. The study confirms that recombination plays a major role in L. pneumophila evolution. On the other hand, strains belonging to the same ST can have only few SNP differences despite being sampled over both large timespans and geographic distances. These are two important factors to consider in outbreak investigations.
Collapse
Affiliation(s)
- Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Charlotte Kjelsø
- Department of Infectious Disease Epidemiology and prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Berit Lilje
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jette M Bangsborg
- Department of Clinical Microbiology, Herlev Hospital, University of Copenhagen, Denmark
| | - Randi F Petersen
- Department of Virus and Microbiological Special Diagnostics; Statens Serum Institut, Copenhagen, Denmark
| | - Sophia David
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Søren A Uldum
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|
12
|
A Supervised Statistical Learning Approach for Accurate Legionella pneumophila Source Attribution during Outbreaks. Appl Environ Microbiol 2017; 83:AEM.01482-17. [PMID: 28821546 DOI: 10.1128/aem.01482-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/11/2017] [Indexed: 01/12/2023] Open
Abstract
Public health agencies are increasingly relying on genomics during Legionnaires' disease investigations. However, the causative bacterium (Legionella pneumophila) has an unusual population structure, with extreme temporal and spatial genome sequence conservation. Furthermore, Legionnaires' disease outbreaks can be caused by multiple L. pneumophila genotypes in a single source. These factors can confound cluster identification using standard phylogenomic methods. Here, we show that a statistical learning approach based on L. pneumophila core genome single nucleotide polymorphism (SNP) comparisons eliminates ambiguity for defining outbreak clusters and accurately predicts exposure sources for clinical cases. We illustrate the performance of our method by genome comparisons of 234 L. pneumophila isolates obtained from patients and cooling towers in Melbourne, Australia, between 1994 and 2014. This collection included one of the largest reported Legionnaires' disease outbreaks, which involved 125 cases at an aquarium. Using only sequence data from L. pneumophila cooling tower isolates and including all core genome variation, we built a multivariate model using discriminant analysis of principal components (DAPC) to find cooling tower-specific genomic signatures and then used it to predict the origin of clinical isolates. Model assignments were 93% congruent with epidemiological data, including the aquarium Legionnaires' disease outbreak and three other unrelated outbreak investigations. We applied the same approach to a recently described investigation of Legionnaires' disease within a UK hospital and observed a model predictive ability of 86%. We have developed a promising means to breach L. pneumophila genetic diversity extremes and provide objective source attribution data for outbreak investigations.IMPORTANCE Microbial outbreak investigations are moving to a paradigm where whole-genome sequencing and phylogenetic trees are used to support epidemiological investigations. It is critical that outbreak source predictions are accurate, particularly for pathogens, like Legionella pneumophila, which can spread widely and rapidly via cooling system aerosols, causing Legionnaires' disease. Here, by studying hundreds of Legionella pneumophila genomes collected over 21 years around a major Australian city, we uncovered limitations with the phylogenetic approach that could lead to a misidentification of outbreak sources. We implement instead a statistical learning technique that eliminates the ambiguity of inferring disease transmission from phylogenies. Our approach takes geolocation information and core genome variation from environmental L. pneumophila isolates to build statistical models that predict with high confidence the environmental source of clinical L. pneumophila during disease outbreaks. We show the versatility of the technique by applying it to unrelated Legionnaires' disease outbreaks in Australia and the UK.
Collapse
|
13
|
David S, Sánchez-Busó L, Harris SR, Marttinen P, Rusniok C, Buchrieser C, Harrison TG, Parkhill J. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genet 2017. [PMID: 28650958 PMCID: PMC5507463 DOI: 10.1371/journal.pgen.1006855] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Legionella pneumophila is an environmental bacterium and the causative agent of Legionnaires' disease. Previous genomic studies have shown that recombination accounts for a high proportion (>96%) of diversity within several major disease-associated sequence types (STs) of L. pneumophila. This suggests that recombination represents a potentially important force shaping adaptation and virulence. Despite this, little is known about the biological effects of recombination in L. pneumophila, particularly with regards to homologous recombination (whereby genes are replaced with alternative allelic variants). Using newly available population genomic data, we have disentangled events arising from homologous and non-homologous recombination in six major disease-associated STs of L. pneumophila (subsp. pneumophila), and subsequently performed a detailed characterisation of the dynamics and impact of homologous recombination. We identified genomic "hotspots" of homologous recombination that include regions containing outer membrane proteins, the lipopolysaccharide (LPS) region and Dot/Icm effectors, which provide interesting clues to the selection pressures faced by L. pneumophila. Inference of the origin of the recombined regions showed that isolates have most frequently imported DNA from isolates belonging to their own clade, but also occasionally from other major clades of the same subspecies. This supports the hypothesis that the possibility for horizontal exchange of new adaptations between major clades of the subspecies may have been a critical factor in the recent emergence of several clinically important STs from diverse genomic backgrounds. However, acquisition of recombined regions from another subspecies, L. pneumophila subsp. fraseri, was rarely observed, suggesting the existence of a recombination barrier and/or the possibility of ongoing speciation between the two subspecies. Finally, we suggest that multi-fragment recombination may occur in L. pneumophila, whereby multiple non-contiguous segments that originate from the same molecule of donor DNA are imported into a recipient genome during a single episode of recombination.
Collapse
Affiliation(s)
- Sophia David
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Leonor Sánchez-Busó
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Simon R. Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Pekka Marttinen
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Aalto, Espoo, Finland
| | - Christophe Rusniok
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France
- CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France
- CNRS UMR 3525, Paris, France
| | - Timothy G. Harrison
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Bacigalupe R, Lindsay D, Edwards G, Fitzgerald JR. Population Genomics of Legionella longbeachae and Hidden Complexities of Infection Source Attribution. Emerg Infect Dis 2017; 23:750-757. [PMID: 28418314 PMCID: PMC5403047 DOI: 10.3201/eid2305.161165] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Legionella longbeachae is the primary cause of legionellosis in Australasia and Southeast Asia and an emerging pathogen in Europe and the United States; however, our understanding of the population diversity of L. longbeachae from patient and environmental sources is limited. We analyzed the genomes of 64 L. longbeachae isolates, of which 29 were from a cluster of legionellosis cases linked to commercial growing media in Scotland in 2013 and 35 were non-outbreak-associated isolates from Scotland and other countries. We identified extensive genetic diversity across the L. longbeachae species, associated with intraspecies and interspecies gene flow, and a wide geographic distribution of closely related genotypes. Of note, we observed a highly diverse pool of L. longbeachae genotypes within compost samples that precluded the genetic establishment of an infection source. These data represent a view of the genomic diversity of L. longbeachae that will inform strategies for investigating future outbreaks.
Collapse
|
15
|
Mentasti M, Cassier P, David S, Ginevra C, Gomez-Valero L, Underwood A, Afshar B, Etienne J, Parkhill J, Chalker V, Buchrieser C, Harrison T, Jarraud S. Rapid detection and evolutionary analysis of Legionella pneumophila serogroup 1 sequence type 47. Clin Microbiol Infect 2017; 23:264.e1-264.e9. [DOI: 10.1016/j.cmi.2016.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
|
16
|
Kanatani JI, Isobe J, Norimoto S, Kimata K, Mitsui C, Amemura-Maekawa J, Kura F, Sata T, Watahiki M. Prevalence of Legionella species isolated from shower water in public bath facilities in Toyama Prefecture, Japan. J Infect Chemother 2017; 23:265-270. [PMID: 28188095 DOI: 10.1016/j.jiac.2017.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/04/2017] [Accepted: 01/14/2017] [Indexed: 11/20/2022]
Abstract
AIMS We investigated the prevalence of Legionella spp. isolated from shower water in public bath facilities in Toyama Prefecture, Japan. In addition, we analyzed the genetic diversity among Legionella pneumophila isolates from shower water as well as the genetic relationship between isolates from shower water and from stock strains previously analyzed from sputum specimens. METHODS The isolates were characterized using serogrouping, 16S rRNA gene sequencing, and sequence-based typing. RESULTS Legionella spp. were isolated from 31/91 (34.1%) samples derived from 17/37 (45.9%) bath facilities. Isolates from shower water and bath water in each public bath facility were serologically or genetically different, indicating that we need to isolate several L. pneumophila colonies from both bath and shower water to identify public bath facilities as sources of legionellosis. The 61 L. pneumophila isolates from shower water were classified into 39 sequence types (STs) (index of discrimination = 0.974), including 19 new STs. Among the 39 STs, 12 STs match clinical isolates in the European Working Group for Legionella Infections database. Notably, ST505 L. pneumophila SG 1, a strain frequently isolated from patients with legionellosis and from bath water in this area, was isolated from shower water. CONCLUSIONS Pathogenic L. pneumophila strains including ST505 strain were widely distributed in shower water in public bath facilities, with genetic diversity showing several different origins. This study highlights the need to isolate several L. pneumophila colonies from both bath water and shower water to identify public bath facilities as infection sources in legionellosis cases.
Collapse
Affiliation(s)
- Jun-Ichi Kanatani
- Department of Bacteriology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-City, Toyama 939-0363, Japan.
| | - Junko Isobe
- Department of Bacteriology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-City, Toyama 939-0363, Japan
| | - Shiho Norimoto
- Department of Bacteriology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-City, Toyama 939-0363, Japan
| | - Keiko Kimata
- Department of Bacteriology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-City, Toyama 939-0363, Japan
| | - Chieko Mitsui
- Department of Bacteriology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-City, Toyama 939-0363, Japan
| | - Junko Amemura-Maekawa
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Fumiaki Kura
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsutaro Sata
- Department of Bacteriology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-City, Toyama 939-0363, Japan
| | - Masanori Watahiki
- Department of Bacteriology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-City, Toyama 939-0363, Japan
| |
Collapse
|
17
|
Gordon M, Yakunin E, Valinsky L, Chalifa-Caspi V, Moran-Gilad J. A bioinformatics tool for ensuring the backwards compatibility of Legionella pneumophila typing in the genomic era. Clin Microbiol Infect 2017; 23:306-310. [PMID: 28082190 DOI: 10.1016/j.cmi.2017.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Whole genome sequencing (WGS) has revolutionized the subtyping of Legionella pneumophila but calling the traditional sequence-based type from genomic data is hampered by multiple copies of the mompS locus. We propose a novel bioinformatics solution for rectifying that limitation, ensuring the feasibility of WGS for cluster investigation. METHODS We designed a novel approach based on the alignment of raw reads with a reference sequence. With WGS, reads originating from either of the two mompS copies cannot be differentiated. Therefore, when non-identical copies were present, we applied a read-filtering strategy based on read alignment to a reference sequence via unique 'anchors'. If minimal read coverage was achieved after filtration (≥3X), a consensus sequence was built based on mapped reads followed by calling the sequence-based typing allele. The entire procedure was implemented using a Perl script. RESULTS The method was validated using a diverse sample of 265 L. pneumophila genomes, consisting of 59 different sequence types (STs) and 23 mompS variants; 57 of the 265 (22%) had non-identical mompS copies. In 237 of the 265 samples (89.4%), mompS calling was successful and no erroneous calling occurred. A 98.1% success was recorded among 109 samples meeting quality requirements. The method was superior to alternative approaches. CONCLUSIONS As WGS becomes more accessible, technical difficulties in routine clinical and surveillance work will arise. The case of mompS in L. pneumophila serves as an example for such limitations that necessitate the development of novel computational solutions that meet end-user demands.
Collapse
Affiliation(s)
- M Gordon
- Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - E Yakunin
- Public Health Services, Ministry of Health, Jerusalem, Israel
| | - L Valinsky
- Public Health Services, Ministry of Health, Jerusalem, Israel
| | | | - J Moran-Gilad
- Ben-Gurion University of the Negev, Beer-Sheva, Israel; Public Health Services, Ministry of Health, Jerusalem, Israel.
| | | |
Collapse
|
18
|
Multiplication of Legionella pneumophila Sequence Types 1, 47, and 62 in Buffered Yeast Extract Broth and Biofilms Exposed to Flowing Tap Water at Temperatures of 38°C to 42°C. Appl Environ Microbiol 2016; 82:6691-6700. [PMID: 27613680 DOI: 10.1128/aem.01107-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
Legionella pneumophila proliferates in freshwater environments at temperatures ranging from 25 to 45°C. To investigate the preference of different sequence types (ST) for a specific temperature range, growth of L. pneumophila serogroup 1 (SG1) ST1 (environmental strains), ST47, and ST62 (disease-associated strains) was measured in buffered yeast extract broth (BYEB) and biofilms grown on plasticized polyvinyl chloride in flowing heated drinking water originating from a groundwater supply. The optimum growth temperatures in BYEB were approximately 37°C (ST1), 39°C (ST47), and 41°C (ST62), with maximum growth temperatures of 42°C (ST1) and 43°C (ST47 and ST62). In the biofilm at 38°C, the ST47 and ST62 strains multiplied equally well compared to growth of the environmental ST1 strain and an indigenous L. pneumophila non-SG1 strain, all attaining a concentration of approximately 107 CFU/cm-2 Raising the temperature to 41°C did not impact these levels within 4 weeks, but the colony counts of all strains tested declined (at a specific decline rate of 0.14 to 0.41 day-1) when the temperature was raised to 42°C. At this temperature, the concentration of Vermamoeba vermiformis in the biofilm, determined with quantitative PCR (qPCR), was about 2 log units lower than the concentration at 38°C. In columns operated at a constant temperature, ranging from 38 to 41°C, none of the tested strains multiplied in the biofilm at 41°C, in which also V. vermiformis was not detected. These observations suggest that strains of ST47 and ST62 did not multiply in the biofilm at a temperature of ≥41°C because of the absence of a thermotolerant host. IMPORTANCE Growth of Legionella pneumophila in tap water installations is a serious public health concern. The organism includes more than 2,100 varieties (sequence types). More than 50% of the reported cases of Legionnaires' disease are caused by a few sequence types which are very rarely detected in the environment. Strains of selected virulent sequence types proliferated in biofilms on surfaces exposed to warm (38°C) tap water to the same level as environmental varieties and multiplied well as pure culture in a nutrient-rich medium at temperatures of 42 and 43°C. However, these organisms did not grow in the biofilms at temperatures of ≥41°C. Typical host amoebae also did not multiply at these temperatures. Apparently, proliferation of thermotolerant host amoebae is needed to enable multiplication of the virulent L. pneumophila strains in the environment at elevated temperatures. The detection of these amoebae in water installations therefore is a scientific challenge with practical implications.
Collapse
|
19
|
Lévesque S, Lalancette C, Bernard K, Pacheco AL, Dion R, Longtin J, Tremblay C. Molecular Typing of Legionella pneumophila Isolates in the Province of Quebec from 2005 to 2015. PLoS One 2016; 11:e0163818. [PMID: 27706210 PMCID: PMC5051737 DOI: 10.1371/journal.pone.0163818] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
Legionella is found in natural and man-made aquatic environments, such as cooling towers and hot water plumbing infrastructures. Legionella pneumophila serogroup 1 (Lp1) is the most common etiological agent causing waterborne disease in the United States and Canada. This study reports the molecular characterization of Lp strains during a 10 year period. We conducted sequence-based typing (SBT) analysis on a large set of Lp isolates (n = 284) to investigate the province of Quebec sequence types (STs) distribution in order to identify dominant clusters. From 2005 to 2015, 181 clinical Lp isolates were typed by SBT (141 sporadic cases and 40 outbreak related cases). From the same period of time, 103 environmental isolates were also typed. Amongst the 108 sporadic cases of Lp1 typed, ST-62 was the most frequent (16.6%), followed by ST-213 (10.2%), ST-1 (8.3%) and ST-37 (8.3%). Amongst other serogroups (SG), ST-1327 (SG5) (27.3%) and ST-378 (SG10) (12.2%) were the most frequent. From the environmental isolates, ST-1 represent the more frequent SBT type (26.5%). Unweighted pair group method with arithmetic mean (UPGMA) dendrogram from the 108 sporadic cases of SG1 contains 4 major clusters (A to D) of related STs. Cluster B contains the majority of the strains (n = 61) and the three most frequent STs in our database (ST-62, ST-213 and ST-1). During the study period, we observed an important increase in the incidence rate in Quebec. All the community associated outbreaks, potentially or confirmed to be associated with a cooling tower were caused by Lp1 strains, by opposition to hospital associated outbreaks that were caused by serogroups of Lp other than SG1. The recent major Quebec City outbreak caused by ST-62, and the fact that this genotype is the most common in the province supports whole genome sequencing characterization of this particular sequence type in order to understand its evolution and associated virulence factors.
Collapse
Affiliation(s)
- Simon Lévesque
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Québec, Canada
- Centre de recherche du centre hospitalier de l’Université de Montréal, Québec, Canada
- * E-mail:
| | - Cindy Lalancette
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Kathryn Bernard
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Ana Luisa Pacheco
- Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Réjean Dion
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
- Département de médecine sociale et préventive, École de santé publique de l’Université de Montréal, Québec, Canada
| | - Jean Longtin
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
- Centre de recherche en infectiologie de l’Université Laval, Québec, Canada
| | - Cécile Tremblay
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Québec, Canada
- Centre de recherche du centre hospitalier de l’Université de Montréal, Québec, Canada
| |
Collapse
|
20
|
Multiple major disease-associated clones of Legionella pneumophila have emerged recently and independently. Genome Res 2016; 26:1555-1564. [PMID: 27662900 PMCID: PMC5088597 DOI: 10.1101/gr.209536.116] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022]
Abstract
Legionella pneumophila is an environmental bacterium and the leading cause of Legionnaires' disease. Just five sequence types (ST), from more than 2000 currently described, cause nearly half of disease cases in northwest Europe. Here, we report the sequence and analyses of 364 L. pneumophila genomes, including 337 from the five disease-associated STs and 27 representative of the species diversity. Phylogenetic analyses revealed that the five STs have independent origins within a highly diverse species. The number of de novo mutations is extremely low with maximum pairwise single-nucleotide polymorphisms (SNPs) ranging from 19 (ST47) to 127 (ST1), which suggests emergences within the last century. Isolates sampled geographically far apart differ by only a few SNPs, demonstrating rapid dissemination. These five STs have been recombining recently, leading to a shared pool of allelic variants potentially contributing to their increased disease propensity. The oldest clone, ST1, has spread globally; between 1940 and 2000, four new clones have emerged in Europe, which show long-distance, rapid dispersal. That a large proportion of clinical cases is caused by recently emerged and internationally dispersed clones, linked by convergent evolution, is surprising for an environmental bacterium traditionally considered to be an opportunistic pathogen. To simultaneously explain recent emergence, rapid spread and increased disease association, we hypothesize that these STs have adapted to new man-made environmental niches, which may be linked by human infection and transmission.
Collapse
|
21
|
Joseph SJ, Cox D, Wolff B, Morrison SS, Kozak-Muiznieks NA, Frace M, Didelot X, Castillo-Ramirez S, Winchell J, Read TD, Dean D. Dynamics of genome change among Legionella species. Sci Rep 2016; 6:33442. [PMID: 27633769 PMCID: PMC5025774 DOI: 10.1038/srep33442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022] Open
Abstract
Legionella species inhabit freshwater and soil ecosystems where they parasitize protozoa. L. pneumonphila (LP) serogroup-1 (Lp1) is the major cause of Legionnaires' Disease (LD), a life-threatening pulmonary infection that can spread systemically. The increased global frequency of LD caused by Lp and non-Lp species underscores the need to expand our knowledge of evolutionary forces underlying disease pathogenesis. Whole genome analyses of 43 strains, including all known Lp serogroups 1-17 and 17 emergent LD-causing Legionella species (of which 33 were sequenced in this study) in addition to 10 publicly available genomes, resolved the strains into four phylogenetic clades along host virulence demarcations. Clade-specific genes were distinct for genetic exchange and signal-transduction, indicating adaptation to specific cellular and/or environmental niches. CRISPR spacer comparisons hinted at larger pools of accessory DNA sequences in Lp than predicted by the pan-genome analyses. While recombination within Lp was frequent and has been reported previously, population structure analysis identified surprisingly few DNA admixture events between species. In summary, diverse Legionella LD-causing species share a conserved core-genome, are genetically isolated from each other, and selectively acquire genes with potential for enhanced virulence.
Collapse
Affiliation(s)
- Sandeep J. Joseph
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel Cox
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bernard Wolff
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Shatavia S. Morrison
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Michael Frace
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, Norfolk Place, London, United Kingdom
| | - Santiago Castillo-Ramirez
- Programa de Genomica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Jonas Winchell
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Timothy D. Read
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deborah Dean
- Department of Medicine and University of California, San Francisco, San Francisco, California, USA
- Department of Biomedical Engineering, University of California at San Francisco and Berkeley, San Francisco and Berkeley, California, USA
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children’s Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|
22
|
Evaluation of an Optimal Epidemiological Typing Scheme for Legionella pneumophila with Whole-Genome Sequence Data Using Validation Guidelines. J Clin Microbiol 2016; 54:2135-48. [PMID: 27280420 PMCID: PMC4963484 DOI: 10.1128/jcm.00432-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/20/2016] [Indexed: 01/23/2023] Open
Abstract
Sequence-based typing (SBT), analogous to multilocus sequence typing (MLST), is the current "gold standard" typing method for investigation of legionellosis outbreaks caused by Legionella pneumophila However, as common sequence types (STs) cause many infections, some investigations remain unresolved. In this study, various whole-genome sequencing (WGS)-based methods were evaluated according to published guidelines, including (i) a single nucleotide polymorphism (SNP)-based method, (ii) extended MLST using different numbers of genes, (iii) determination of gene presence or absence, and (iv) a kmer-based method. L. pneumophila serogroup 1 isolates (n = 106) from the standard "typing panel," previously used by the European Society for Clinical Microbiology Study Group on Legionella Infections (ESGLI), were tested together with another 229 isolates. Over 98% of isolates were considered typeable using the SNP- and kmer-based methods. Percentages of isolates with complete extended MLST profiles ranged from 99.1% (50 genes) to 86.8% (1,455 genes), while only 41.5% produced a full profile with the gene presence/absence scheme. Replicates demonstrated that all methods offer 100% reproducibility. Indices of discrimination range from 0.972 (ribosomal MLST) to 0.999 (SNP based), and all values were higher than that achieved with SBT (0.940). Epidemiological concordance is generally inversely related to discriminatory power. We propose that an extended MLST scheme with ∼50 genes provides optimal epidemiological concordance while substantially improving the discrimination offered by SBT and can be used as part of a hierarchical typing scheme that should maintain backwards compatibility and increase discrimination where necessary. This analysis will be useful for the ESGLI to design a scheme that has the potential to become the new gold standard typing method for L. pneumophila.
Collapse
|
23
|
Quero S, García-Núñez M, Párraga-Niño N, Barrabeig I, Pedro-Botet ML, de Simon M, Sopena N, Sabrià M. Discriminatory usefulness of pulsed-field gel electrophoresis and sequence-based typing in Legionella outbreaks. Future Microbiol 2016; 11:757-65. [DOI: 10.2217/fmb-2015-0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To compare the discriminatory power of pulsed-field gel electrophoresis (PFGE) and sequence-based typing (SBT) in Legionella outbreaks for determining the infection source. Materials & methods: Twenty-five investigations of Legionnaires’ disease were analyzed by PFGE, SBT and Dresden monoclonal antibody. Results: The results suggested that monoclonal antibody could reduce the number of Legionella isolates to be characterized by molecular methods. The epidemiological concordance PFGE–SBT was 100%, while the molecular concordance was 64%. Adjusted Wallace index (AW) showed that PFGE has better discriminatory power than SBT (AWSBT→PFGE = 0.767; AWPFGE→SBT = 1). The discrepancies appeared mostly in sequence type (ST) 1, a worldwide distributed ST for which PFGE discriminated different profiles. Conclusion: SBT discriminatory power was not sufficient verifying the infection source, especially in worldwide distributed STs, which were classified into different PFGE patterns.
Collapse
Affiliation(s)
- Sara Quero
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias I Pujol, Badalona, Spain E-08916
- Universitat Autònoma de Barcelona, Cerdanyola, Spain E-08193
| | - Marian García-Núñez
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias I Pujol, Badalona, Spain E-08916
- Universitat Autònoma de Barcelona, Cerdanyola, Spain E-08193
- CIBER de Enfermedades Respiratorias, Madrid, Spain E-28029
| | - Noemí Párraga-Niño
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias I Pujol, Badalona, Spain E-08916
- Universitat Autònoma de Barcelona, Cerdanyola, Spain E-08193
- CIBER de Enfermedades Respiratorias, Madrid, Spain E-28029
| | - Irene Barrabeig
- Vigilancia Epidemiologica, Agencia de Salut Publica de Catalunya, Barcelona, Spain E-08005
| | - Maria L Pedro-Botet
- Universitat Autònoma de Barcelona, Cerdanyola, Spain E-08193
- CIBER de Enfermedades Respiratorias, Madrid, Spain E-28029
- Unitat de Malalties Infeccioses, Hospital Universitari Germans Trias i Pujol, Badalona, Spain E-08916
| | - Mercè de Simon
- Laboratori de l'Agència de Salut Pública de Barcelona, Barcelona, Spain E-08001
| | - Nieves Sopena
- Universitat Autònoma de Barcelona, Cerdanyola, Spain E-08193
- CIBER de Enfermedades Respiratorias, Madrid, Spain E-28029
- Unitat de Malalties Infeccioses, Hospital Universitari Germans Trias i Pujol, Badalona, Spain E-08916
| | - Miquel Sabrià
- Universitat Autònoma de Barcelona, Cerdanyola, Spain E-08193
- CIBER de Enfermedades Respiratorias, Madrid, Spain E-28029
- Unitat de Malalties Infeccioses, Hospital Universitari Germans Trias i Pujol, Badalona, Spain E-08916
| |
Collapse
|
24
|
Borges V, Nunes A, Sampaio DA, Vieira L, Machado J, Simões MJ, Gonçalves P, Gomes JP. Legionella pneumophila strain associated with the first evidence of person-to-person transmission of Legionnaires' disease: a unique mosaic genetic backbone. Sci Rep 2016; 6:26261. [PMID: 27196677 PMCID: PMC4872527 DOI: 10.1038/srep26261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/29/2016] [Indexed: 01/23/2023] Open
Abstract
A first strong evidence of person-to-person transmission of Legionnaires’ Disease (LD) was recently reported. Here, we characterize the genetic backbone of this case-related Legionella pneumophila strain (“PtVFX/2014”), which also caused a large outbreak of LD. PtVFX/2014 is phylogenetically divergent from the most worldwide studied outbreak-associated L. pneumophila subspecies pneumophila serogroup 1 strains. In fact, this strain is also from serogroup 1, but belongs to the L. pneumophila subspecies fraseri. Its genomic mosaic backbone reveals eight horizontally transferred regions encompassing genes, for instance, involved in lipopolysaccharide biosynthesis or encoding virulence-associated Dot/Icm type IVB secretion system (T4BSS) substrates. PtVFX/2014 also inherited a rare ~65 kb pathogenicity island carrying virulence factors and detoxifying enzymes believed to contribute to the emergence of best-fitted strains in water reservoirs and in human macrophages, as well as a inter-species transferred (from L. oakridgensis) ~37.5 kb genomic island (harboring a lvh/lvr T4ASS cluster) that had never been found intact within L. pneumophila species. PtVFX/2014 encodes another lvh/lvr cluster near to CRISPR-associated genes, which may boost L. pneumophila transition from an environmental bacterium to a human pathogen. Overall, this unique genomic make-up may impact PtVFX/2014 ability to adapt to diverse environments, and, ultimately, to be transmitted and cause human disease.
Collapse
Affiliation(s)
- Vítor Borges
- Bioinformatics Unit and Research Unit, National Institute of Health, Lisbon, Portugal
| | - Alexandra Nunes
- Bioinformatics Unit and Research Unit, National Institute of Health, Lisbon, Portugal
| | - Daniel A Sampaio
- Innovation and Technology Unit, National Institute of Health, Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, National Institute of Health, Lisbon, Portugal
| | - Jorge Machado
- Coordination of the Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Maria J Simões
- National Reference Laboratory for Legionella, National Institute of Health, Lisbon, Portugal
| | - Paulo Gonçalves
- National Reference Laboratory for Legionella, National Institute of Health, Lisbon, Portugal
| | - João P Gomes
- Bioinformatics Unit and Research Unit, National Institute of Health, Lisbon, Portugal
| |
Collapse
|
25
|
Khodr A, Kay E, Gomez-Valero L, Ginevra C, Doublet P, Buchrieser C, Jarraud S. Molecular epidemiology, phylogeny and evolution of Legionella. INFECTION GENETICS AND EVOLUTION 2016; 43:108-22. [PMID: 27180896 DOI: 10.1016/j.meegid.2016.04.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/29/2016] [Accepted: 04/30/2016] [Indexed: 12/12/2022]
Abstract
Legionella are opportunistic pathogens that develop in aquatic environments where they multiply in protozoa. When infected aerosols reach the human respiratory tract they may accidentally infect the alveolar macrophages leading to a severe pneumonia called Legionnaires' disease (LD). The ability of Legionella to survive within host-cells is strictly dependent on the Dot/Icm Type 4 Secretion System that translocates a large repertoire of effectors into the host cell cytosol. Although Legionella is a large genus comprising nearly 60 species that are worldwide distributed, only about half of them have been involved in LD cases. Strikingly, the species Legionella pneumophila alone is responsible for 90% of all LD cases. The present review summarizes the molecular approaches that are used for L. pneumophila genotyping with a major focus on the contribution of whole genome sequencing (WGS) to the investigation of local L. pneumophila outbreaks and global epidemiology studies. We report the newest knowledge regarding the phylogeny and the evolution of Legionella and then focus on virulence evolution of those Legionella species that are known to have the capacity to infect humans. Finally, we discuss the evolutionary forces and adaptation mechanisms acting on the Dot/Icm system itself as well as the role of mobile genetic elements (MGE) encoding T4ASSs and of gene duplications in the evolution of Legionella and its adaptation to different hosts and lifestyles.
Collapse
Affiliation(s)
- A Khodr
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, France; CNRS, UMR 3525, 28, Rue du Dr Roux, 75724 Paris, France
| | - E Kay
- CIRI, International Center for Infectiology Research, Inserm, U1111, CNRS, UMR 5308, Université Lyon 1, École Normale Supérieure de Lyon, Lyon F-69008, France
| | - L Gomez-Valero
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, France; CNRS, UMR 3525, 28, Rue du Dr Roux, 75724 Paris, France
| | - C Ginevra
- CIRI, International Center for Infectiology Research, Inserm, U1111, CNRS, UMR 5308, Université Lyon 1, École Normale Supérieure de Lyon, Lyon F-69008, France; French National Reference Center of Legionella, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| | - P Doublet
- CIRI, International Center for Infectiology Research, Inserm, U1111, CNRS, UMR 5308, Université Lyon 1, École Normale Supérieure de Lyon, Lyon F-69008, France
| | - C Buchrieser
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, France; CNRS, UMR 3525, 28, Rue du Dr Roux, 75724 Paris, France
| | - S Jarraud
- CIRI, International Center for Infectiology Research, Inserm, U1111, CNRS, UMR 5308, Université Lyon 1, École Normale Supérieure de Lyon, Lyon F-69008, France; French National Reference Center of Legionella, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
26
|
Population structure and minimum core genome typing of Legionella pneumophila. Sci Rep 2016; 6:21356. [PMID: 26888563 PMCID: PMC4766850 DOI: 10.1038/srep21356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/12/2016] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila is an important human pathogen causing Legionnaires’ disease. In this study, whole genome sequencing (WGS) was used to study the characteristics and population structure of L. pneumophila strains. We sequenced and compared 53 isolates of L. pneumophila covering different serogroups and sequence-based typing (SBT) types (STs). We found that 1,896 single-copy orthologous genes were shared by all isolates and were defined as the minimum core genome (MCG) of L. pneumophila. A total of 323,224 single-nucleotide polymorphisms (SNPs) were identified among the 53 strains. After excluding 314,059 SNPs which were likely to be results of recombination, the remaining 9,165 SNPs were referred to as MCG SNPs. Population Structure analysis based on MCG divided the 53 L. pneumophila into nine MCG groups. The within-group distances were much smaller than the between-group distances, indicating considerable divergence between MCG groups. MCG groups were also supplied by phylogenetic analysis and may be considered as robust taxonomic units within L. pneumophila. Among the nine MCG groups, eight showed high intracellular growth ability while one showed low intracellular growth ability. Furthermore, MCG typing also showed high resolution in subtyping ST1 strains. The results obtained in this study provided significant insights into the evolution, population structure and pathogenicity of L. pneumophila.
Collapse
|
27
|
Genomic Analysis of Bacterial Outbreaks. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Berebichez-Fridman R, Blachman-Braun R, Azrad-Daniel S, Vázquez-Campuzano R, Vázquez-López R. Atypical pneumonias caused by Legionella pneumophila, Chlamydophila pneumoniae and Mycoplasma pneumonia. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2015. [DOI: 10.1016/j.hgmx.2015.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Bosch T, Euser SM, Landman F, Bruin JP, IJzerman EP, den Boer JW, Schouls LM. Whole-Genome Mapping as a Novel High-Resolution Typing Tool for Legionella pneumophila. J Clin Microbiol 2015; 53:3234-8. [PMID: 26202110 PMCID: PMC4572561 DOI: 10.1128/jcm.01369-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/18/2015] [Indexed: 11/20/2022] Open
Abstract
Legionella is the causative agent for Legionnaires' disease (LD) and is responsible for several large outbreaks in the world. More than 90% of LD cases are caused by Legionella pneumophila, and studies on the origin and transmission routes of this pathogen rely on adequate molecular characterization of isolates. Current typing of L. pneumophila mainly depends on sequence-based typing (SBT). However, studies have shown that in some outbreak situations, SBT does not have sufficient discriminatory power to distinguish between related and nonrelated L. pneumophila isolates. In this study, we used a novel high-resolution typing technique, called whole-genome mapping (WGM), to differentiate between epidemiologically related and nonrelated L. pneumophila isolates. Assessment of the method by various validation experiments showed highly reproducible results, and WGM was able to confirm two well-documented Dutch L. pneumophila outbreaks. Comparison of whole-genome maps of the two outbreaks together with WGMs of epidemiologically nonrelated L. pneumophila isolates showed major differences between the maps, and WGM yielded a higher discriminatory power than SBT. In conclusion, WGM can be a valuable alternative to perform outbreak investigations of L. pneumophila in real time since the turnaround time from culture to comparison of the L. pneumophila maps is less than 24 h.
Collapse
Affiliation(s)
- Thijs Bosch
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Sjoerd M Euser
- Regional Public Health Laboratory Kennemerland, Haarlem, the Netherlands
| | - Fabian Landman
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Jacob P Bruin
- Regional Public Health Laboratory Kennemerland, Haarlem, the Netherlands
| | - Ed P IJzerman
- Regional Public Health Laboratory Kennemerland, Haarlem, the Netherlands
| | - Jeroen W den Boer
- Regional Public Health Laboratory Kennemerland, Haarlem, the Netherlands
| | - Leo M Schouls
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
30
|
Xiong L, Zhao H, Mo Z, Shi L. Prevalence of 7 virulence genes of Legionella strains isolated from environmental water sources of public facilities and sequence types diversity of L. pneumopila strains in Macau. Biosci Trends 2015; 9:214-20. [PMID: 26355222 DOI: 10.5582/bst.2015.01075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, we analyzed 7 virulence genes in 55 Legionella species (including 29 L. pneumophila and 26 non-L. pneumophila strains) which isolated from environmental water sources of the public facilities in Macau by using PCR and real-time PCR. In addition, 29 Legionella pneumophila isolates were subjected to genotyping by sequence-based typing scheme and compared with the data reported. The detection rate of flaA, pilE, asd, mip, mompS, proA and neuA genes in the L. pneumophila were 100.0%, respectively. The neuA gene was not detected in the non-L. pneumophila strains, but flaA, pilE, asd, mip, mompS, and proA genes could be amplified with a positive rate of 15.4%, 15.4%, 53.8%, 38.5%, 15.4%, and 38.5%, respectively. The results from real-time PCR were generally consistent with that of PCR. Those L. pneumophila strains were assigned into 10 sequence types (STs) and ST1 (9/29) was the dominant STs. Four new STs were found to be unique in Macau. The analysis of population structure of L. pneumophila strains which isolated from Macau, Guangzhou and Shenzhen indicated that the similar clones were existed and ST1 was the most prevalent STs. However, the distribution of the subtypes isolated from Macau was not the same extensive as those from Guangzhou and Shenzhen. The different detection rates of the 7 virulence genes in different species of Legionella might reflect their own potential for environmental adaptability and pathogenesis. And the data analyzed from STs diversity indicated the Macau L. pneumophila possessed obvious regional specificity and high genetic diversity.
Collapse
Affiliation(s)
- Lina Xiong
- School of Light Industry and Food Sciences, South China University of Technology
| | | | | | | |
Collapse
|
31
|
Geographical and Temporal Structures of Legionella pneumophila Sequence Types in Comunitat Valenciana (Spain), 1998 to 2013. Appl Environ Microbiol 2015; 81:7106-13. [PMID: 26231651 DOI: 10.1128/aem.02196-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023] Open
Abstract
Legionella pneumophila is an accidental human pathogen associated with aerosol formation in water-related sources. High recombination rates make Legionella populations genetically diverse, and nearly 2,000 different sequence types (STs) have been described to date for this environmental pathogen. The spatial distribution of STs is extremely heterogeneous, with some variants being present worldwide and others being detected at only a local scale. Similarly, some STs have been associated with disease outbreaks, such as ST578 or ST23. Spain is among the European countries with the highest incidences of reported legionellosis cases, and specifically, Comunitat Valenciana (CV) is the second most affected area in the country. In this work, we aimed at studying the overall diversity of Legionella pneumophila populations found in the period from 1998 to 2013 in 79 localities encompassing 23 regions within CV. To do so, we performed sequence-based typing (SBT) on 1,088 L. pneumophila strains detected in the area from both environmental and clinical sources. A comparison with the genetic structuring detected in a global data set that included 20 European and 7 non-European countries was performed. Our results reveal a level of diversity in CV that can be considered representative of the diversity found in other countries worldwide.
Collapse
|
32
|
Moran-Gilad J, Prior K, Yakunin E, Harrison TG, Underwood A, Lazarovitch T, Valinsky L, Lück C, Krux F, Agmon V, Grotto I, Harmsen D. Design and application of a core genome multilocus sequence typing scheme for investigation of Legionnaires' disease incidents. Euro Surveill 2015. [DOI: 10.2807/1560-7917.es2015.20.28.21186] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Binary file ES_Abstracts_Final_ECDC.txt matches
Collapse
Affiliation(s)
- J Moran-Gilad
- Public Health Services, Ministry of Health, Jerusalem, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Surveillance and Pathogenomics Israeli Centre of Excellence, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - K Prior
- Department of Periodontology, University of Münster, Münster, Germany
| | - E Yakunin
- Central Laboratories, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - T G Harrison
- Reference Microbiology Services, Public Health England, London, United Kingdom
| | - A Underwood
- Reference Microbiology Services, Public Health England, London, United Kingdom
| | - T Lazarovitch
- Department of Clinical Microbiology, Assaf Harofeh Medical Centre, Zerifin, Israel
| | - L Valinsky
- Central Laboratories, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - C Lück
- Institute of Medical Microbiology and Hygiene, University of Technology, Dresden, Germany
| | - F Krux
- Department of Periodontology, University of Münster, Münster, Germany
| | - V Agmon
- Central Laboratories, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - I Grotto
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Public Health Services, Ministry of Health, Jerusalem, Israel
| | - D Harmsen
- Department of Periodontology, University of Münster, Münster, Germany
| |
Collapse
|
33
|
Population structure of Legionella spp. from environmental samples in Gabon, 2013. INFECTION GENETICS AND EVOLUTION 2015; 33:299-303. [DOI: 10.1016/j.meegid.2015.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022]
|
34
|
Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for Whole-Genome Sequence-Based Typing of Listeria monocytogenes. J Clin Microbiol 2015; 53:2869-76. [PMID: 26135865 PMCID: PMC4540939 DOI: 10.1128/jcm.01193-15] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing (WGS) has emerged today as an ultimate typing tool to characterize Listeria monocytogenes outbreaks. However, data analysis and interlaboratory comparability of WGS data are still challenging for most public health laboratories. Therefore, we have developed and evaluated a new L. monocytogenes typing scheme based on genome-wide gene-by-gene comparisons (core genome multilocus the sequence typing [cgMLST]) to allow for a unique typing nomenclature. Initially, we determined the breadth of the L. monocytogenes population based on MLST data with a Bayesian approach. Based on the genome sequence data of representative isolates for the whole population, cgMLST target genes were defined and reappraised with 67 L. monocytogenes isolates from two outbreaks and serotype reference strains. The Bayesian population analysis generated five L. monocytogenes groups. Using all available NCBI RefSeq genomes (n = 36) and six additionally sequenced strains, all genetic groups were covered. Pairwise comparisons of these 42 genome sequences resulted in 1,701 cgMLST targets present in all 42 genomes with 100% overlap and ≥90% sequence similarity. Overall, ≥99.1% of the cgMLST targets were present in 67 outbreak and serotype reference strains, underlining the representativeness of the cgMLST scheme. Moreover, cgMLST enabled clustering of outbreak isolates with ≤10 alleles difference and unambiguous separation from unrelated outgroup isolates. In conclusion, the novel cgMLST scheme not only improves outbreak investigations but also enables, due to the availability of the automatically curated cgMLST nomenclature, interlaboratory exchange of data that are crucial, especially for rapid responses during transsectorial outbreaks.
Collapse
|
35
|
Mercante JW, Winchell JM. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev 2015; 28:95-133. [PMID: 25567224 PMCID: PMC4284297 DOI: 10.1128/cmr.00029-14] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Legionnaires' disease (LD) is an often severe and potentially fatal form of bacterial pneumonia caused by an extensive list of Legionella species. These ubiquitous freshwater and soil inhabitants cause human respiratory disease when amplified in man-made water or cooling systems and their aerosols expose a susceptible population. Treatment of sporadic cases and rapid control of LD outbreaks benefit from swift diagnosis in concert with discriminatory bacterial typing for immediate epidemiological responses. Traditional culture and serology were instrumental in describing disease incidence early in its history; currently, diagnosis of LD relies almost solely on the urinary antigen test, which captures only the dominant species and serogroup, Legionella pneumophila serogroup 1 (Lp1). This has created a diagnostic "blind spot" for LD caused by non-Lp1 strains. This review focuses on historic, current, and emerging technologies that hold promise for increasing LD diagnostic efficiency and detection rates as part of a coherent testing regimen. The importance of cooperation between epidemiologists and laboratorians for a rapid outbreak response is also illustrated in field investigations conducted by the CDC with state and local authorities. Finally, challenges facing health care professionals, building managers, and the public health community in combating LD are highlighted, and potential solutions are discussed.
Collapse
Affiliation(s)
- Jeffrey W Mercante
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonas M Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Sequence types diversity of Legionella pneumophila isolates from environmental water sources in Guangzhou and Jiangmen, China. INFECTION GENETICS AND EVOLUTION 2015; 29:35-41. [DOI: 10.1016/j.meegid.2014.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/17/2014] [Accepted: 10/25/2014] [Indexed: 11/18/2022]
|
37
|
Recombination drives genome evolution in outbreak-related Legionella pneumophila isolates. Nat Genet 2014; 46:1205-11. [PMID: 25282102 DOI: 10.1038/ng.3114] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 09/12/2014] [Indexed: 11/09/2022]
Abstract
Legionella pneumophila is a strictly environmental pathogen and the etiological agent of legionellosis. It is known that non-vertical processes have a major role in the short-term evolution of pathogens, but little is known about the relevance of these and other processes in environmental bacteria. We report the whole-genome sequencing of 69 L. pneumophila strains linked to recurrent outbreaks in a single location (Alcoy, Spain) over 11 years. We found some examples where the genome sequences of isolates of the same sequence type and outbreak did not cluster together and were more closely related to sequences from different outbreaks. Our analyses identify 16 recombination events responsible for almost 98% of the SNPs detected in the core genome and an apparent acceleration in the evolutionary rate. These results have profound implications for the understanding of microbial populations and for public health interventions in Legionella outbreak investigations.
Collapse
|