1
|
Topić Popović N, Kazazić S, Bilić B, Babić S, Bojanić K, Bujak M, Tartaro Bujak I, Jadan M, Strunjak-Perović I, Kepec S, Čož-Rakovac R. Shewanella spp. from wastewater treatment plant-affected environment: isolation and characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82986-83003. [PMID: 35761132 DOI: 10.1007/s11356-022-21573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Bacteria from the genus Shewanella are inhabitants of marine and freshwater ecosystems, recognized fish spoilage bacteria, but less known as fish disease agents. Shewanella spp. isolated from fish living in waters close to effluents of a wastewater treatment plant (WWTP) were not previously characterized. We have tested Shewanella isolates from WWTP-affected waters and related fish. Genotypic characterization identified most strains as S. baltica and S. oneidensis. In order to investigate the sensibility and accuracy of their MALDI-TOF MS identification, they were grown on two culture media enriched by various NaCl concentrations, incubated at different temperatures and duration. We analyzed their antimicrobial susceptibility on a panel of antimicrobial drugs and capacity for biofilm production. With a view to demonstrate their capacity to produce fatty acids, we assessed the impact of different culture media on their lipid profile. We performed zebrafish embryotoxicity tests to simulate the environmental infection of the earliest life stages in S. baltica-contaminated waters. The best MALDI-TOF MS identification scores were for strains cultivated on TSA for 24 h at 22 °C and with supplementation of 1.5% NaCl. Less than 17% of isolates demonstrated antimicrobial resistance. Most isolates were weak biofilm producers. Strain-to-strain variation of MIC and MBC was low. The major fatty acids were C15:0, C16:0, C16:1, C17:1, and iC15:0. Exposure of Danio rerio to different S. baltica concentrations induced severe effects on zebrafish development: decreased heartbeat rate, locomotor activity, and melanin pigmentation. S. baltica passed through chorionic pores of zebrafish.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Snježana Kazazić
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Branka Bilić
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sanja Babić
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Krunoslav Bojanić
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maro Bujak
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivana Tartaro Bujak
- Radiation Chemistry and Dosimetry Laboratory, Ruđer Bošković Institute, Zagreb, Croatia
| | - Margita Jadan
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Slavko Kepec
- Virkom d.o.o., Public Water Supply and Wastewater Services, 33 000, Virovitica, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
- Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
2
|
Saygin H, Baysal A. Interaction of nanoplastics with simulated biological fluids and their effect on the biofilm formation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80775-80786. [PMID: 35727518 DOI: 10.1007/s11356-022-21468-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Over the last decade, it has become clear that the pollution by plastic debris presents global societal, environmental, and human health challenges. Moreover, humans are exposed to plastic particles in daily life and very limited information is available concerning human health, especially interactions with biological fluids. Therefore, the aim of this study is to investigate the interaction of plastic particles with simulated biological fluids (e.g., artificial saliva, artificial lysosomal fluid, phagolysosomal simulant fluid, and Gamble's solution) using various exposure stages (2 h to 80 h) and the effect of plastic particles on the formation of Staphylococcus aureus biofilms under simulated biological conditions. The plastic particles incubating various simulated biological fluids were characterized using surface functional groups, zeta potentials, and elemental composition. The results indicated that functional group indices (C-O, C = O, C-H, C = C, C-N, S = O, and OH) decreased compared to the control group during the incubation periods, except for the hydroxyl group index. The FTIR results showed that the hydroxyl group formed with the artificial lysosomal fluid, the phagolysosomal simulant fluid, and Gamble's solution. With the impact of the declining functional groups, the zeta potentials were more negative than in the control. Moreover, EDX results showed the release of the components in the particles with the interaction of simulated biological fluids as well as new components like P and Ca introduced to the particles. The biofilms were formed in the presence of nanoplastic particles under both controlled conditions and simulated biological conditions. The amount of biofilm formation was mainly affected by the surface characteristics under simulated biological conditions. In addition, the biofilm characteristics were influenced by the O/C and N/C ratios of the plastic particles with the impact of simulated biological fluids.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, T. C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Asli Baysal
- Health Services Vocational School of Higher Education, T. C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey.
| |
Collapse
|
3
|
Tanaka Y, Yamanaka N, Koyano I, Hasunuma I, Kobayashi T, Kikuyama S, Iwamuro S. Dual Roles of Extracellular Histone H3 in Host Defense: Its Differential Regions Responsible for Antimicrobial and Cytotoxic Properties and Their Modes of Action. Antibiotics (Basel) 2022; 11:antibiotics11091240. [PMID: 36140018 PMCID: PMC9495139 DOI: 10.3390/antibiotics11091240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular histones play a dual role—antimicrobial and cytotoxic—in host defense. In this study, we evaluated the antimicrobial and cytotoxic activities of histone H3 and identified the responsible molecular regions for these properties. Broth microdilution assays indicated that histone H3 exhibits growth inhibitory activity against not only Gram-negative and -positive bacteria but also fungi. Observations under scanning electron microscopy (SEM) revealed that histone H3 induced morphological abnormalities on the cell surface of a wide range of reference pathogens. MTT assays and SEM observations indicated that histone H3 has strong cytotoxic and cell lytic effects on mammalian normal, immortal, and tumor cell lines. Assays using synthetic peptides corresponding to fragments 1–34 (H3DP1), 35–68 (H3DP2), 69–102 (H3DP3), and 103–135 (H3DP4) of histone H3 molecule demonstrated that its antimicrobial activity and cytotoxicity are elicited by the H3DP2 and H3DP3 protein regions, respectively. Enzyme-linked endotoxin binding assays indicated that histones H3 and H3DP1, H3DP2, and H3DP4, but not H3DP3, exhibited high affinities toward lipopolysaccharide and lipoteichoic acid. Our findings are expected to contribute to the development of new histone H3-based peptide antibiotics that are not cytotoxic.
Collapse
Affiliation(s)
- Yuri Tanaka
- Department of Biology, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Nanako Yamanaka
- Department of Biology, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Izumi Koyano
- Department of Biology, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Itaru Hasunuma
- Department of Biology, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Tetsuya Kobayashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Sakae Kikuyama
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Center for Advanced Biomedical Sciences, Waseda University, Tokyo 162-8480, Japan
| | - Shawichi Iwamuro
- Department of Biology, Faculty of Science, Toho University, Chiba 274-8510, Japan
- Correspondence: ; Tel.: +81-47-472-5206
| |
Collapse
|
4
|
Complete Genome Sequence and Methylome of the Type Strain of Shewanella algae. Microbiol Resour Announc 2021; 10:e0055921. [PMID: 34351223 PMCID: PMC8340859 DOI: 10.1128/mra.00559-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the complete genome sequence and base modification analysis of the Shewanella algae type strain CECT 5071 (= OK-1 = ATCC 51192 = DSM 9167 = IAM 14159). The genome is composed of a single chromosome of 4,924,764 bp, with a GC content of 53.10%.
Collapse
|
5
|
Martín‐Rodríguez AJ, Villion K, Yilmaz‐Turan S, Vilaplana F, Sjöling Å, Römling U. Regulation of colony morphology and biofilm formation in Shewanella algae. Microb Biotechnol 2021; 14:1183-1200. [PMID: 33764668 PMCID: PMC8085958 DOI: 10.1111/1751-7915.13788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial colony morphology can reflect different physiological stages such as virulence or biofilm formation. In this work we used transposon mutagenesis to identify genes that alter colony morphology and cause differential Congo Red (CR) and Brilliant Blue G (BBG) binding in Shewanella algae, a marine indigenous bacterium and occasional human pathogen. Microscopic analysis of colonies formed by the wild-type strain S. algae CECT 5071 and three transposon integration mutants representing the diversity of colony morphotypes showed production of biofilm extracellular polymeric substances (EPS) and distinctive morphological alterations. Electrophoretic and chemical analyses of extracted EPS showed differential patterns between strains, although the targets of CR and BBG binding remain to be identified. Galactose and galactosamine were the preponderant sugars in the colony biofilm EPS of S. algae. Surface-associated biofilm formation of transposon integration mutants was not directly correlated with a distinct colony morphotype. The hybrid sensor histidine kinase BarA abrogated surface-associated biofilm formation. Ectopic expression of the kinase and mutants in the phosphorelay cascade partially recovered biofilm formation. Altogether, this work provides the basic analysis to subsequently address the complex and intertwined networks regulating colony morphology and biofilm formation in this poorly understood species.
Collapse
Affiliation(s)
| | - Katia Villion
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Secil Yilmaz‐Turan
- Division of GlycoscienceDepartment of ChemistryKTH Royal Institute of TechnologyAlbaNova University CentreStockholmSweden
| | - Francisco Vilaplana
- Division of GlycoscienceDepartment of ChemistryKTH Royal Institute of TechnologyAlbaNova University CentreStockholmSweden
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
6
|
Use of Quorum Sensing Inhibition Strategies to Control Microfouling. Mar Drugs 2021; 19:md19020074. [PMID: 33573187 PMCID: PMC7912365 DOI: 10.3390/md19020074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Interfering with the quorum sensing bacterial communication systems has been proposed as a promising strategy to control bacterial biofilm formation, a key process in biofouling development. Appropriate in vitro biofilm-forming bacteria models are needed to establish screening methods for innovative anti-biofilm and anti-microfouling compounds. Four marine strains, two Pseudoalteromonas spp. and two Vibrio spp., were selected and studied with regard to their biofilm-forming capacity and sensitivity to quorum sensing (QS) inhibitors. Biofilm experiments were performed using two biofilm cultivation and quantification methods: the xCELLigence® system, which allows online monitoring of biofilm formation, and the active attachment model, which allows refreshment of the culture medium to obtain a strong biofilm that can be quantified with standard staining methods. Although all selected strains produced acyl-homoserine-lactone (AHL) QS signals, only the P. flavipulchra biofilm, measured with both quantification systems, was significantly reduced with the addition of the AHL-lactonase Aii20J without a significant effect on planktonic growth. Two-species biofilms containing P. flavipulchra were also affected by the addition of Aii20J, indicating an influence on the target bacterial strain as well as an indirect effect on the co-cultured bacterium. The use of xCELLigence® is proposed as a time-saving method to quantify biofilm formation and search for eco-friendly anti-microfouling compounds based on quorum sensing inhibition (QSI) strategies. The results obtained from these two in vitro biofilm formation methods revealed important differences in the response of biosensor bacteria to culture medium and conditions, indicating that several strains should be used simultaneously for screening purposes and the cultivation conditions should be carefully optimized for each specific purpose.
Collapse
|
7
|
Martín-Rodríguez AJ, Reyes-Darias JA, Martín-Mora D, González JM, Krell T, Römling U. Reduction of alternative electron acceptors drives biofilm formation in Shewanella algae. NPJ Biofilms Microbiomes 2021; 7:9. [PMID: 33504806 PMCID: PMC7840931 DOI: 10.1038/s41522-020-00177-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/11/2020] [Indexed: 01/30/2023] Open
Abstract
Shewanella spp. possess a broad respiratory versatility, which contributes to the occupation of hypoxic and anoxic environmental or host-associated niches. Here, we observe a strain-specific induction of biofilm formation in response to supplementation with the anaerobic electron acceptors dimethyl sulfoxide (DMSO) and nitrate in a panel of Shewanella algae isolates. The respiration-driven biofilm response is not observed in DMSO and nitrate reductase deletion mutants of the type strain S. algae CECT 5071, and can be restored upon complementation with the corresponding reductase operon(s) but not by an operon containing a catalytically inactive nitrate reductase. The distinct transcriptional changes, proportional to the effect of these compounds on biofilm formation, include cyclic di-GMP (c-di-GMP) turnover genes. In support, ectopic expression of the c-di-GMP phosphodiesterase YhjH of Salmonella Typhimurium but not its catalytically inactive variant decreased biofilm formation. The respiration-dependent biofilm response of S. algae may permit differential colonization of environmental or host niches.
Collapse
Affiliation(s)
| | - José A. Reyes-Darias
- grid.418877.50000 0000 9313 223XDepartment of Environmental Protection, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - David Martín-Mora
- grid.418877.50000 0000 9313 223XDepartment of Environmental Protection, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - José M. González
- grid.10041.340000000121060879Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Tino Krell
- grid.418877.50000 0000 9313 223XDepartment of Environmental Protection, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Ute Römling
- grid.465198.7Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
8
|
Developing New Marine Antifouling Surfaces: Learning from Single-Strain Laboratory Tests. COATINGS 2021. [DOI: 10.3390/coatings11010090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The development of antifouling (AF) technology for marine environments is an area of intense research given the severe economic and ecological effects of marine biofouling. Preliminary data from in vitro assays is frequently used to screen the performance of AF coatings. It is intuitive that microbial composition plays a major role in surface colonization. The rationale behind this study is to investigate whether using a mixed population for the in vitro tests yields substantially different results than using single strains during initial screening. A polymeric coating was tested against single- and dual-species cultures of two common microfouler organisms for 49 days. A bacterium (Pseudoaltermonas tunicata) and a cyanobacterium (Cyanobium sp. LEGE 10375) were used in this study. Linear regression analysis revealed that Cyanobium sp. biofilms were significantly associated with a higher number of cells, wet weight, thickness, and biovolume compared to dual-species biofilms. P. tunicata alone had a biofilm growth kinetics similar to dual-species biofilms, although the P. tunicata–Cyanobium sp. mixture developed less dense and thinner biofilms compared to both single-species biofilms. Cyanobium sp. LEGE 10375 biofilms provided the worst-case scenario, i.e., the conditions that caused higher biofilm amounts on the surface material under test. Therefore, it is likely that assessing the AF performance of new coatings using the most stringent conditions may yield more robust results than using a mixed population, as competition between microfouler organisms may reduce the biofilm formation capacity of the consortium.
Collapse
|
9
|
|
10
|
Laport MS, Bauwens M, Collard M, George I. Phylogeny and Antagonistic Activities of Culturable Bacteria Associated with the Gut Microbiota of the Sea Urchin (Paracentrotus lividus). Curr Microbiol 2017; 75:359-367. [DOI: 10.1007/s00284-017-1389-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
|
11
|
Smolyakov G, Cauquil M, Severac C, Lachaize V, Guilbeau-Frugier C, Sénard JM, Galés C, Dague E. Biophysical properties of cardiomyocyte surface explored by multiparametric AFM. J Struct Biol 2017; 198:28-37. [PMID: 28263874 DOI: 10.1016/j.jsb.2017.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 12/10/2016] [Accepted: 03/01/2017] [Indexed: 11/30/2022]
Abstract
PeakForce Quantitative Nanomechanical Mapping (PeakForce QNM) multiparametric AFM mode was adapted to qualitative and quantitative study of the lateral membrane of cardiomyocytes (CMs), extending this powerful mode to the study of soft cells. On living CM, PeakForce QNM depicted the crests and hollows periodic alternation of cell surface architecture previously described using AFM Force Volume (FV) mode. PeakForce QNM analysis provided better resolution in terms of pixel number compared to FV mode and reduced acquisition time, thus limiting the consequences of spontaneous living adult CM dedifferentiation once isolated from the cardiac tissue. PeakForce QNM mode on fixed CMs clearly visualized subsarcolemmal mitochondria (SSM) and their loss following formamide treatment, concomitant with the interfibrillar mitochondria climbing up and forming heaps at the cell surface. Interestingly, formamide-promoted SSM loss allowed visualization of the sarcomeric apparatus ultrastructure below the plasma membrane. High PeakForce QNM resolution led to better contrasted mechanical maps than FV mode and provided correlation between adhesion, dissipation, mechanical and topographical maps. Modified hydrophobic AFM tip enhanced contrast on adhesion and dissipation maps and suggested that CM surface crests and hollows exhibit distinct chemical properties. Finally, two-dimensional Fast Fourier Transform to objectively quantify AFM maps allowed characterization of periodicity of both sarcomeric Z-line and M-band. Overall, this study validated PeakForce QNM as a valuable and innovative mode for the exploration of living and fixed CMs. In the future, it could be applied to depict cell membrane architectural, mechanical and chemical defects as well as sarcomeric abnormalities associated with cardiac diseases.
Collapse
Affiliation(s)
- Georges Smolyakov
- ITAV, Université de Toulouse, CNRS, France; LAAS-CNRS, Université de Toulouse, CNRS, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France
| | - Marie Cauquil
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Université de Toulouse, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France
| | | | - Véronique Lachaize
- ITAV, Université de Toulouse, CNRS, France; LAAS-CNRS, Université de Toulouse, CNRS, France; Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Université de Toulouse, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France
| | - Céline Guilbeau-Frugier
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Université de Toulouse, France; Centre de Microscopie Électronique Appliquée à la Biologie, Université de Toulouse, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France
| | - Jean-Michel Sénard
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Université de Toulouse, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France
| | - Céline Galés
- ITAV, Université de Toulouse, CNRS, France; Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1048, Université de Toulouse, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France.
| | - Etienne Dague
- ITAV, Université de Toulouse, CNRS, France; LAAS-CNRS, Université de Toulouse, CNRS, France; Service de Pharmacologie, CHU de Toulouse, Université de Toulouse, Toulouse, France.
| |
Collapse
|
12
|
Di Luca M, Navari E, Esin S, Menichini M, Barnini S, Trampuz A, Casani A, Batoni G. Detection of Biofilms in Biopsies from Chronic Rhinosinusitis Patients: In Vitro Biofilm Forming Ability and Antimicrobial Susceptibility Testing in Biofilm Mode of Growth of Isolated Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1057:1-27. [PMID: 28389992 DOI: 10.1007/5584_2017_34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic rhinosinusitis (CRS) is the most common illness among chronic disorders that remains poorly understood from a pathogenic standpoint and has a significant impact on patient quality of life, as well as healthcare costs. Despite being widespread, little is known about the etiology of the CRS. Recent evidence, showing the presence of biofilms within the paranasal sinuses, suggests a role for biofilm in the pathogenesis. To elucidate the role of biofilm in the pathogenesis of CRS, we assessed the presence of biofilm at the infection site and the ability of the aerobic flora isolated from CRS patients to form biofilm in vitro. For selected bacterial strains the susceptibility profiles to antibiotics in biofilm condition was also evaluated.Staphylococci represented the majority of the isolates obtained from the infection site, with S. epidermidis being the most frequently isolated species. Other isolates were represented by Enterobacteriaceae or by species present in the oral flora. Confocal laser scanning microscopy (CLSM) of the mucosal biopsies taken from patients with CRS revealed the presence of biofilm in the majority of the samples. Strains isolated from the specific infection site of the CRS patients were able to form biofilm in vitro at moderate or high levels, when tested in optimized conditions. No biofilm was observed by CLSM in the biopsies from control patients, although the same biopsies were positive for staphylococci in microbiological culture analysis. Drug-susceptibility tests demonstrated that the susceptibility profile of planktonic bacteria differs from that of sessile bacteria in biofilms.
Collapse
Affiliation(s)
- Mariagrazia Di Luca
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa, Italy. .,NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy. .,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany.
| | - Elena Navari
- Department of Medical and Surgical Pathology, Otorhinolaryngology Unit, Pisa University Hospital, Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa, Italy.,Microbiology Unit, Pisa University Hospital, Pisa, Italy
| | - Melissa Menichini
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa, Italy.,Microbiology Unit, Pisa University Hospital, Pisa, Italy
| | - Simona Barnini
- Microbiology Unit, Pisa University Hospital, Pisa, Italy
| | - Andrej Trampuz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany.,Center for Musculoskeletal Surgery, Septic Unit Charité-Universitätsmedizin, Berlin, Germany
| | - Augusto Casani
- Department of Medical and Surgical Pathology, Otorhinolaryngology Unit, Pisa University Hospital, Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, Pisa, Italy.,Microbiology Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
13
|
Culturable bacterial communities associated to Brazilian Oscarella species (Porifera: Homoscleromorpha) and their antagonistic interactions. Antonie van Leeuwenhoek 2016; 110:489-499. [DOI: 10.1007/s10482-016-0818-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023]
|
14
|
Oliveira IB, Groh KJ, Stadnicka-Michalak J, Schönenberger R, Beiras R, Barroso CM, Langford KH, Thomas KV, Suter MJF. Tralopyril bioconcentration and effects on the gill proteome of the Mediterranean mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:198-210. [PMID: 27295630 DOI: 10.1016/j.aquatox.2016.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/21/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
Antifouling (AF) systems are used worldwide as one of the most cost-effective ways of protecting submerged structures against heavy biofouling. The emergence of environmentally friendly AF biocides requires knowledge on their environmental fate and toxicity. In this study we measured the bioconcentration of the emerging AF biocide tralopyril (TP) in the Mediterranean mussel Mytilus galloprovincialis and investigated the effects of TP on the mussel gill proteome following acute (2days) and chronic (30days) exposure, as well as after a 10-day depuration period. The experiments were carried out with 1μg/L TP; blank and solvent (5×10(-5)% DMSO) controls were also included. Proteomics analysis was performed by mass spectrometry-based multidimensional protein identification technology (MudPIT). Differentially expressed proteins were identified using a label-free approach based on spectral counts and G-test. Our results show that TP is rapidly accumulated by mussels at concentrations up to 362ng/g dw (whole tissues), reaching steady-state condition within 13days. Ten days of depuration resulted in 80% elimination of accumulated TP from the organism, suggesting that a complete elimination could be reached with longer depuration times. In total, 46 proteins were found to be regulated in the different exposure scenarios. Interestingly, not only TP but also DMSO alone significantly modulated the protein expression in mussel gills following acute and chronic exposure. Both compounds regulated proteins involved in bioenergetics, immune system, active efflux and oxidative stress, often in the opposite way. Alterations of several proteins, notably several cytoskeletal ones, were still observed after the depuration period. These may reflect either the continuing chemical effect due to incomplete elimination or an onset of recovery processes in the mussel gills. Our study shows that exposure of adult mussels to sublethal TP concentration results in the bioconcentration of this biocide in the tissues and modulates the expression of several proteins that may intervene in important metabolic pathways.
Collapse
Affiliation(s)
- Isabel B Oliveira
- Biology department and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal; Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ECIMAT, University of Vigo, 36331 Vigo, Galicia, Spain; Norwegian Institute for Water Research (NIVA), 0349 Oslo, Norway
| | - Ksenia J Groh
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Julita Stadnicka-Michalak
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - René Schönenberger
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Carlos M Barroso
- Biology department and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Kevin V Thomas
- Norwegian Institute for Water Research (NIVA), 0349 Oslo, Norway
| | - Marc J-F Suter
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Environmental Systems Science, 8092 Zürich, Switzerland.
| |
Collapse
|
15
|
Smolyakov G, Formosa-Dague C, Severac C, Duval R, Dague E. High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments. Micron 2016; 85:8-14. [DOI: 10.1016/j.micron.2016.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
|
16
|
Oliveira IB, Schönenberger R, Barroso CM, Suter MJF. LC-MS/MS determination of tralopyril in water samples. CHEMOSPHERE 2016; 145:445-449. [PMID: 26694794 DOI: 10.1016/j.chemosphere.2015.11.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/13/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
A targeted analytical method was established to determine tralopyril (4-bromo-2-(4-chlorophenyl)-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile) in water. This compound has been recently introduced as a biocide in ship antifouling paints, becoming a potential new environmental contaminant. The method presented here allows for the first time the direct determination of tralopyril in environmental samples without the need of a pre-concentration step. The injected sample is separated by a 30 min HPLC-gradient on a reversed phase column and the compound identified and quantified by negative ion LC-MS/MS. Tralopyril solutions in DMSO, seawater, river Glatt water and E3 medium (used for zebrafish experiments) were analysed to demonstrate the applicability of the method. The method provides good retention time reproducibility and a quantitation limit (LOQ) of 0.025 μg L(-1) for DMSO, seawater and E3 exposure medium and 0.05 μg L(-1) for river Glatt water. Calculated tralopyril half-lives were 6.1 h for seawater, 8.1 h for river Glatt water and 7.4 h for E3 medium at 18 °C.
Collapse
Affiliation(s)
- Isabel B Oliveira
- Cesam and Biology Department of the University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Ueberlandstrasse 133, Dübendorf, 8600, Switzerland
| | - René Schönenberger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Ueberlandstrasse 133, Dübendorf, 8600, Switzerland
| | - Carlos M Barroso
- Cesam and Biology Department of the University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Ueberlandstrasse 133, Dübendorf, 8600, Switzerland; ETH Zürich, Environmental Systems Science, Zürich, 8092, Switzerland.
| |
Collapse
|
17
|
Mangwani N, Shukla SK, Kumari S, Das S, Rao TS. Effect of biofilm parameters and extracellular polymeric substance composition on polycyclic aromatic hydrocarbon degradation. RSC Adv 2016. [DOI: 10.1039/c6ra12824f] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study with ten marine isolates demonstrates that the attached phenotypes of the marine bacteria showed significant variation in biofilm architecture and, in turn, biodegradation of PAHs.
Collapse
Affiliation(s)
- Neelam Mangwani
- Laboratory of Environmental Microbiology and Ecology
- Department of Life Science
- National Institute of Technology
- Rourkela-769 008
- India
| | - Sudhir K. Shukla
- Biofouling & Biofilm Processes Section
- Water & Steam Chemistry Division
- BARC
- Kalpakkam-603 102
- India
| | - Supriya Kumari
- Laboratory of Environmental Microbiology and Ecology
- Department of Life Science
- National Institute of Technology
- Rourkela-769 008
- India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology
- Department of Life Science
- National Institute of Technology
- Rourkela-769 008
- India
| | - T. Subba Rao
- Biofouling & Biofilm Processes Section
- Water & Steam Chemistry Division
- BARC
- Kalpakkam-603 102
- India
| |
Collapse
|
18
|
Rodrigues CJC, de Carvalho CCCR. Rhodococcus erythropolis cells adapt their fatty acid composition during biofilm formation on metallic and non-metallic surfaces. FEMS Microbiol Ecol 2015; 91:fiv135. [PMID: 26538565 DOI: 10.1093/femsec/fiv135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2015] [Indexed: 11/13/2022] Open
Abstract
Several parameters are involved in bacterial adhesion and biofilm formation including surface type, medium composition and cellular surface hydrophobicty. When the cells are placed inside tubes, parameters such as oxygen availability should also influence cell adhesion. To understand which cellular lipids are involved in the molecular events of biofilm formation in Rhodococcus erythropolis, cell adhesion was promoted on different metallic and non-metallic surfaces immersed in culture media. These cells were able to modulate the fatty acid composition of the cell membrane in response to both the surface to which they adhered and the growth medium used. To assess the response of the cells to both surfaces and operational conditions, biofilms were also promoted inside a reactor built with five different types of tubes and with medium recirculation. The biofilm biomass could be directly related not to the hydrophobicity of the tubes used but to the oxygen permeability of the tubes. Besides this, cell age influenced the adhesion of the R. erythropolis cells to the tubes. Principal component analysis showed that the lipid composition of the cells could separate cells attached to metallic from those on non-metallic surfaces in the plane formed by PC1 and PC2, and influence biofilm biomass.
Collapse
Affiliation(s)
- Carlos J C Rodrigues
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carla C C R de Carvalho
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
19
|
Figuerola B, Sala-Comorera L, Angulo-Preckler C, Vázquez J, Jesús Montes M, García-Aljaro C, Mercadé E, Blanch AR, Avila C. Antimicrobial activity of Antarctic bryozoans: an ecological perspective with potential for clinical applications. MARINE ENVIRONMENTAL RESEARCH 2014; 101:52-59. [PMID: 25232675 DOI: 10.1016/j.marenvres.2014.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/29/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
The antimicrobial activity of Antarctic bryozoans and the ecological functions of the chemical compounds involved remain largely unknown. To determine the significant ecological and applied antimicrobial effects, 16 ether and 16 butanol extracts obtained from 13 different bryozoan species were tested against six Antarctic (including Psychrobacter luti, Shewanella livingstonensis and 4 new isolated strains) and two bacterial strains from culture collections (Escherichia coli and Bacillus cereus). Results from the bioassays reveal that all ether extracts exhibited antimicrobial activity against some bacteria. Only one butanol extract produced inhibition, indicating that antimicrobial compounds are mainly lipophilic. Ether extracts of the genus Camptoplites inhibited the majority of bacterial strains, thus indicating a broad-spectrum of antimicrobial activity. Moreover, most ether extracts presented activities against bacterial strains from culture collections, suggesting the potential use of these extracts as antimicrobial drugs against pathogenic bacteria.
Collapse
Affiliation(s)
- Blanca Figuerola
- Department of Animal Biology (Invertebrates) and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Barcelona, Catalunya, Spain.
| | - Laura Sala-Comorera
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Catalunya, Spain
| | - Carlos Angulo-Preckler
- Department of Animal Biology (Invertebrates) and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Barcelona, Catalunya, Spain
| | - Jennifer Vázquez
- Department of Animal Biology (Invertebrates) and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Barcelona, Catalunya, Spain
| | - M Jesús Montes
- Department of Health Microbiology and Parasitology, Faculty of Pharmacy, University of Barcelona, Barcelona, Catalunya, Spain
| | - Cristina García-Aljaro
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Catalunya, Spain
| | - Elena Mercadé
- Department of Health Microbiology and Parasitology, Faculty of Pharmacy, University of Barcelona, Barcelona, Catalunya, Spain
| | - Anicet R Blanch
- Department of Microbiology, Faculty of Biology, University of Barcelona, Barcelona, Catalunya, Spain
| | - Conxita Avila
- Department of Animal Biology (Invertebrates) and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Barcelona, Catalunya, Spain
| |
Collapse
|