1
|
El Kayal W, Darwiche L, Farhat YA, Hdeib M, AlJardaly R, Shbaro M, Iskandar CF. Agricultural Mitigation Strategies to Reduce the Impact of Romaine Lettuce Contamination. PLANTS (BASEL, SWITZERLAND) 2024; 13:2460. [PMID: 39273944 PMCID: PMC11396837 DOI: 10.3390/plants13172460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Leafy greens, particularly romaine lettuce, are often associated with outbreaks due to their susceptibility to contamination from various environmental sources. This study aimed to evaluate the presence of E. coli, Salmonella, copper, nickel, zinc, and manganese in irrigation water, lettuce leaves, and agricultural soil in the Litani River Basin (LRB), Lebanon. METHOD Samples were collected from five demonstration plots employing different agricultural practices. Heavy metal concentrations were determined using atomic absorption spectrometry, while E. coli and Salmonella testing were conducted through conventional culturing techniques. The impact of E. coli contamination on seed germination and the interaction effects between E. coli and heavy metals were also examined. The study also compared the effectiveness of various irrigation systems in reducing bacterial contamination. RESULTS The results demonstrated that contamination levels varied significantly across the plots and irrigation types. This variation underscores the necessity of site-specific mitigation strategies to enhance food safety. Our findings highlight the importance of selecting appropriate irrigation methods and implementing tailored agricultural practices to minimize the risk of contamination. CONCLUSION This research provides valuable insights for optimizing agricultural practices in the LRB to ensure food safety and environmental sustainability.
Collapse
Affiliation(s)
- Walid El Kayal
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Riad El-Solh, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Linda Darwiche
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Riad El Solh, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Yasmine A Farhat
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Riad El-Solh, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Mariane Hdeib
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Riad El-Solh, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Roaa AlJardaly
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Riad El-Solh, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Mostapha Shbaro
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Riad El-Solh, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| | - Christelle F Iskandar
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Riad El Solh, P.O. Box 11-0236, Beirut 1107-2020, Lebanon
| |
Collapse
|
2
|
Crane JK, Catanzaro MN. Role of Extracellular DNA in Bacterial Response to SOS-Inducing Drugs. Antibiotics (Basel) 2023; 12:antibiotics12040649. [PMID: 37107011 PMCID: PMC10135224 DOI: 10.3390/antibiotics12040649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
The SOS response is a conserved stress response pathway that is triggered by DNA damage in the bacterial cell. Activation of this pathway can, in turn, cause the rapid appearance of new mutations, sometimes called hypermutation. We compared the ability of various SOS-inducing drugs to trigger the expression of RecA, cause hypermutation, and produce elongation of bacteria. During this study, we discovered that these SOS phenotypes were accompanied by the release of large amounts of DNA into the extracellular medium. The release of DNA was accompanied by a form of bacterial aggregation in which the bacteria became tightly enmeshed in DNA. We hypothesize that DNA release triggered by SOS-inducing drugs could promote the horizontal transfer of antibiotic resistance genes by transformation or by conjugation.
Collapse
Affiliation(s)
- John K Crane
- Division of Infectious Diseases, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Marissa N Catanzaro
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
3
|
Antimicrobial impacts of zinc oxide nanoparticles on shiga toxin-producing Escherichia coli (serotype O26). ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
The antibacterial activity of zinc oxide nanoparticles (ZnO NPs) has received significant attention worldwide due to the emergence of multidrug-resistant microorganisms. Shiga toxin-producing Escherichia coli is a major foodborne pathogen that causes gastroenteritis that may be complicated by hemorrhagic colitis or hemolytic uremic syndrome. Therefore, this study aimed to evaluate the antimicrobial effect of ZnO NPs against E. coli O26 and its Shiga toxin type 2 (Stx2). Multidrug resistance phenotype was observed in E. coli O26, with co-resistance to several unrelated families of antimicrobial agents. Different concentrations of ZnO NPs nanoparticles (20 nm) were tested against different cell densities of E. coli O26 (108, 106 and 105 CFU/ml). The minimum inhibitory concentration (MIC) value was 1 mg/ml. Minimum bactericidal concentration (MBC) was 1.5 mg/ml, 2.5 mg/ml and 3 mg/ml, respectively, depending on ZnO NPs concentrations and bacterial cell density. Results showed a significant (P≤0.05) decrease in Stx2 level in a response to ZnO NPs treatment. As detected by quantitative real-time PCR, ZnO NPs down-regulated the expression of the Stx2 gene (P≤0.05). Moreover, various concentrations of ZnO NPs considerably reduced the total protein content in E. coli O26. There was a significant reduction in protein expression with increased ZnO NPs concentration compared to the non-treated control. Scanning electron micrographs (SEM) of the treated bacteria showed severe disruptive effects on E. coli O26 with increasing ZnO NPs concentration. The results revealed a strong correlation between the antibacterial effect and ZnO NPs concentrations. ZnO NPs exert their antibacterial activities through various mechanisms and could be used as a potent antibacterial agent against E. coli O26.
Collapse
|
4
|
Extraintestinal Pathogenic Escherichia coli: Beta-Lactam Antibiotic and Heavy Metal Resistance. Antibiotics (Basel) 2022; 11:antibiotics11030328. [PMID: 35326791 PMCID: PMC8944441 DOI: 10.3390/antibiotics11030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
Multiple-antibiotic-resistant (MAR) extra-intestinal pathogenic Escherichia coli (ExPEC) represents one of the most frequent causes of human nosocomial and community-acquired infections, whose eradication is of major concern for clinicians. ExPECs may inhabit indefinitely as commensal the gut of humans and other animals; from the intestine, they may move to colonize other tissues, where they are responsible for a number of diseases, including recurrent and uncomplicated UTIs, sepsis and neonatal meningitis. In the pre-antibiotic era, heavy metals were largely used as chemotherapeutics and/or as antimicrobials in human and animal healthcare. As with antibiotics, the global incidence of heavy metal tolerance in commensal, as well as in ExPEC, has increased following the ban in several countries of antibiotics as promoters of animal growth. Furthermore, it is believed that extensive bacterial exposure to heavy metals present in soil and water might have favored the increase in heavy-metal-tolerant microorganisms. The isolation of ExPEC strains with combined resistance to both antibiotics and heavy metals has become quite common and, remarkably, it has been recently shown that heavy metal resistance genes may co-select antibiotic-resistance genes. Despite their clinical relevance, the mechanisms underlining the development and spread of heavy metal tolerance have not been fully elucidated. The aim of this review is to present data regarding the development and spread of resistance to first-line antibiotics, such as beta-lactams, as well as tolerance to heavy metals in ExPEC strains.
Collapse
|
5
|
Crane JK, Burke SR, Alvarado CL. Inhibition of SOS Response by Nitric Oxide Donors in Escherichia coli Blocks Toxin Production and Hypermutation. Front Cell Infect Microbiol 2022; 11:798136. [PMID: 35004358 PMCID: PMC8727911 DOI: 10.3389/fcimb.2021.798136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Background Previous reports have differed as to whether nitric oxide inhibits or stimulates the SOS response, a bacterial stress response that is often triggered by DNA damage. The SOS response is an important regulator of production of Shiga toxins (Stx) in Shiga-toxigenic E. coli (STEC). In addition, the SOS response is accompanied by hypermutation, which can lead to de novo emergence of antibiotic resistance. We studied these effects in vitro as well as in vivo. Results Nitric oxide donors inhibited induction of the SOS response by classical inducers such as mitomycin C, ciprofloxacin, and zidovudine, as measured by assays for E. coli RecA. Nitric oxide donors also inhibited Stx toxin protein production as well as stx2 RNA in vitro and in vivo. In vivo experiments were performed with ligated ileal segments in the rabbit using a 20 h infection. The NO donor S-nitroso-acetylpenicillamine (SNAP) reduced hypermutation in vitro and in vivo, as measured by emergence of rifampin resistance. SNAP blocked the ability of the RecA protein to bind to single-stranded DNA in an electrophoretic mobility shift assay (EMSA) in vitro, an early event in the SOS response. The inhibitory effects of SNAP were additive with those of zinc acetate. Conclusions Nitric oxide donors blocked the initiation step of the SOS response. Downstream effects of this blockade included inhibition of Stx production and of hypermutation. Infection of rabbit loops with STEC resulted in a downregulation, rather than stimulation, of nitric oxide host defenses at 20 h of infection.
Collapse
Affiliation(s)
- John K Crane
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Sarah R Burke
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Cassandra L Alvarado
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
Crane JK, Salehi M, Alvarado CL. Psychoactive Drugs Induce the SOS Response and Shiga Toxin Production in Escherichia coli. Toxins (Basel) 2021; 13:toxins13070437. [PMID: 34201801 PMCID: PMC8309737 DOI: 10.3390/toxins13070437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023] Open
Abstract
Several classes of non-antibiotic drugs, including psychoactive drugs, proton-pump inhibitors (PPIs), non-steroidal anti-inflammatory drugs (NSAIDs), and others, appear to have strong antimicrobial properties. We considered whether psychoactive drugs induce the SOS response in E. coli bacteria and, consequently, induce Shiga toxins in Shiga-toxigenic E. coli (STEC). We measured the induction of an SOS response using a recA-lacZ E. coli reporter strain, as RecA is an early, reliable, and quantifiable marker for activation of the SOS stress response pathway. We also measured the production and release of Shiga toxin 2 (Stx2) from a classic E. coli O157:H7 strain, derived from a food-borne outbreak due to spinach. Some, but not all, serotonin selective reuptake inhibitors (SSRIs) and antipsychotic drugs induced an SOS response. The use of SSRIs is widespread and increasing; thus, the use of these antidepressants could account for some cases of hemolytic-uremic syndrome due to STEC and is not attributable to antibiotic administration. SSRIs could have detrimental effects on the normal intestinal microbiome in humans. In addition, as SSRIs are resistant to environmental breakdown, they could have effects on microbial communities, including aquatic ecosystems, long after they have left the human body.
Collapse
|
7
|
Role of the SOS Response in the Generation of Antibiotic Resistance In Vivo. Antimicrob Agents Chemother 2021; 65:e0001321. [PMID: 33875437 DOI: 10.1128/aac.00013-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The SOS response to DNA damage is a conserved stress response in Gram-negative and Gram-positive bacteria. Although this pathway has been studied for years, its relevance is still not familiar to many working in the fields of clinical antibiotic resistance and stewardship. Under some conditions, the SOS response favors DNA repair and preserves the genetic integrity of the organism. On the other hand, the SOS response also includes induction of error-prone DNA polymerases, which can increase the rate of mutation, called the mutator phenotype or "hypermutation." As a result, mutations can occur in genes conferring antibiotic resistance, increasing the acquisition of resistance to antibiotics. Almost all of the work on the SOS response has been on bacteria exposed to stressors in vitro. In this study, we sought to quantitate the effects of SOS-inducing drugs in vivo, in comparison with the same drugs in vitro. We used a rabbit model of intestinal infection with enteropathogenic Escherichia coli strain E22. SOS-inducing drugs triggered the mutator phenotype response in vivo as well as in vitro. Exposure of E. coli strain E22 to ciprofloxacin or zidovudine, both of which induce the SOS response in vitro, resulted in increased antibiotic resistance to 3 antibiotics: rifampin, minocycline, and fosfomycin. Zinc was able to inhibit the SOS-induced emergence of antibiotic resistance in vivo, as previously observed in vitro. Our findings may have relevance in reducing the emergence of resistance to new antimicrobial drugs.
Collapse
|
8
|
Cuajungco MP, Ramirez MS, Tolmasky ME. Zinc: Multidimensional Effects on Living Organisms. Biomedicines 2021; 9:biomedicines9020208. [PMID: 33671781 PMCID: PMC7926802 DOI: 10.3390/biomedicines9020208] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Zinc is a redox-inert trace element that is second only to iron in abundance in biological systems. In cells, zinc is typically buffered and bound to metalloproteins, but it may also exist in a labile or chelatable (free ion) form. Zinc plays a critical role in prokaryotes and eukaryotes, ranging from structural to catalytic to replication to demise. This review discusses the influential properties of zinc on various mechanisms of bacterial proliferation and synergistic action as an antimicrobial element. We also touch upon the significance of zinc among eukaryotic cells and how it may modulate their survival and death through its inhibitory or modulatory effect on certain receptors, enzymes, and signaling proteins. A brief discussion on zinc chelators is also presented, and chelating agents may be used with or against zinc to affect therapeutics against human diseases. Overall, the multidimensional effects of zinc in cells attest to the growing number of scientific research that reveal the consequential prominence of this remarkable transition metal in human health and disease.
Collapse
|
9
|
Antimicrobial effects in oral microenvironments by a novel herbal toothpaste. Contemp Clin Trials Commun 2021; 21:100680. [PMID: 33511298 PMCID: PMC7815994 DOI: 10.1016/j.conctc.2020.100680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/07/2020] [Accepted: 11/22/2020] [Indexed: 11/22/2022] Open
Abstract
Objective This clinical study compared the antibacterial effects after brushing with a novel herbal toothpaste incorporating zinc [test] to a control fluoride toothpaste on anaerobic organisms, gram-negative bacteria and malodor bacteria of dental plaque, tongue scrapings and cheek surfaces. Methods This double-blind, two-cell study enrolled 44 adults [age range 19–63 years]. Subjects completed a 1-week washout and provided baseline oral samples i.e. dental plaque, tongue and cheek scrapings for microbiological analysis. Diluted samples for microbiological analyses were plated on agar to enumerate anaerobic organisms, gram-negative bacteria and malodor bacteria representing functional groups of organisms. Subjects were randomized to brush their teeth with either the test or control with the first brushing conducted under supervision in the dental clinic. Post-treatment samples were collected 12 h after 21 day hygiene with assigned toothpaste. After providing these samples, subjects brushed in the dental clinic with additional samples collected 4 h after brushing. Statistical analyses were conducted separately for each organism collected from each oral niche by t-test for within-treatment assessments and analysis of covariance (ANCOVA) for between-treatment comparisons. Results Treatment groups demonstrated no significant differences at baseline for anaerobic organisms, gram-negative bacteria and malodor bacteria in any oral niche (p > 0.05). The test demonstrated reductions between 42 and 68% for anaerobic bacteria in oral niches, 12 h after brushing with reductions increasing to 46–80%, 4 h after brushing. Similarly, the test demonstrated reductions between 49 and 61% for gram-negative bacteria of oral niches that increased to 54–69% at the 4 h post-brushing evaluation. Reductions in malodor organisms of 22–42% were noted 12 h after brushing that increased to 60–72%, 4 h after brushing. Conclusions In comparison to control, brushing with a novel herbal toothpaste demonstrated significant reductions in functional bacterial groups from distinct oral niches 12 h after brushing with additional microbial reductions 4 h after brushing.
Collapse
|
10
|
Effects of Essential Oils from Cymbopogon spp. and Cinnamomum verum on Biofilm and Virulence Properties of Escherichia coli O157:H7. Antibiotics (Basel) 2021; 10:antibiotics10020113. [PMID: 33504089 PMCID: PMC7911385 DOI: 10.3390/antibiotics10020113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Every year, the pharmaceutical and food industries produce over 1000 tons of essential oils (EOs) exploitable in different fields as the development of eco-friendly and safe antimicrobial inhibitors. In this work we investigated the potential of some EOs, namely Cinnamomum verum, Cymbopogon martini, Cymbopogoncitratus and Cymbopogon flexuosus, on the growth, biofilm formation and gene expression in four strains of enterohemorrhagic Escherichia coli O157:H7. All EOs were analyzed by gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity was performed by using dilutions of EOs ranging from 0.001 to 1.2% (v/v). Subinhibitory doses were used for biofilm inhibition assay. The expression profiles were obtained by RT-PCR. E. coli O157:H7 virulence was evaluated in vivo in the nematode Caenorhabditis elegans. All EOs showed minimal inhibitory concentrations (MICs) ranging from 0.0075 to 0.3% (v/v). Cinnamomum verum bark EO had the best activity (MIC of 0.0075% (v/v) in all strains) while the C. verum leaf EO had an intermediate efficacy with MIC of 0.175% (v/v) in almost all strains. The Cymbopogon spp. showed the more variable MICs (ranging from 0.075 to 0.3% (v/v)) depending on the strain used. Transcriptional analysis showed that C. martini EO repressed several genes involved in biofilm formation, virulence, zinc homeostasis and encoding some membrane proteins. All EOs affected zinc homeostasis, reducing ykgM and zinT expression, and reduced the ability of E. coli O157:H7 to infect the nematode C. elegans. In conclusion, we demonstrated that these EOs, affecting E. coli O157:H7 infectivity, have a great potential to be used against infections caused by microorganisms.
Collapse
|
11
|
Goldstein J, Nuñez-Goluboay K, Pinto A. Therapeutic Strategies to Protect the Central Nervous System against Shiga Toxin from Enterohemorrhagic Escherichia coli. Curr Neuropharmacol 2021; 19:24-44. [PMID: 32077828 PMCID: PMC7903495 DOI: 10.2174/1570159x18666200220143001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 11/23/2022] Open
Abstract
Infection with Shiga toxin-producing Escherichia coli (STEC) may cause hemorrhagic colitis, hemolytic uremic syndrome (HUS) and encephalopathy. The mortality rate derived from HUS adds up to 5% of the cases, and up to 40% when the central nervous system (CNS) is involved. In addition to the well-known deleterious effect of Stx, the gram-negative STEC releases lipopolysaccharides (LPS) and may induce a variety of inflammatory responses when released in the gut. Common clinical signs of severe CNS injury include sensorimotor, cognitive, emotional and/or autonomic alterations. In the last few years, a number of drugs have been experimentally employed to establish the pathogenesis of, prevent or treat CNS injury by STEC. The strategies in these approaches focus on: 1) inhibition of Stx production and release by STEC, 2) inhibition of Stx bloodstream transport, 3) inhibition of Stx entry into the CNS parenchyma, 4) blockade of deleterious Stx action in neural cells, and 5) inhibition of immune system activation and CNS inflammation. Fast diagnosis of STEC infection, as well as the establishment of early CNS biomarkers of damage, may be determinants of adequate neuropharmacological treatment in time.
Collapse
Affiliation(s)
- Jorge Goldstein
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Krista Nuñez-Goluboay
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| | - Alipio Pinto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica “Houssay” (IFIBIO), Laboratorio de Neurofisiopatología, Facultad de Medicina, Argentina
| |
Collapse
|
12
|
Johanns VC, Epping L, Semmler T, Ghazisaeedi F, Lübke-Becker A, Pfeifer Y, Eichhorn I, Merle R, Bethe A, Walther B, Wieler LH. High-Zinc Supplementation of Weaned Piglets Affects Frequencies of Virulence and Bacteriocin Associated Genes Among Intestinal Escherichia coli Populations. Front Vet Sci 2020; 7:614513. [PMID: 33392299 PMCID: PMC7772137 DOI: 10.3389/fvets.2020.614513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
To prevent economic losses due to post-weaning diarrhea (PWD) in industrial pig production, zinc (Zn) feed additives have been widely used, especially since awareness has risen that the regular application of antibiotics promotes buildup of antimicrobial resistance in both commensal and pathogenic bacteria. In a previous study on 179 Escherichia coli collected from piglets sacrificed at the end of a Zn feeding trial, including isolates obtained from animals of a high-zinc fed group (HZG) and a corresponding control group (CG), we found that the isolate collection exhibited three different levels of tolerance toward zinc, i.e., the minimal inhibitory concentration (MIC) detected was 128, followed by 256 and 512 μg/ml ZnCl2. We further provided evidence that enhanced zinc tolerance in porcine intestinal E. coli populations is clearly linked to excessive zinc feeding. Here we provide insights about the genomic make-up and phylogenetic background of these 179 E. coli genomes. Bayesian analysis of the population structure (BAPS) revealed a lack of association between the actual zinc tolerance level and a particular phylogenetic E. coli cluster or even branch for both, isolates belonging to the HZG and CG. In addition, detection rates for genes and operons associated with virulence (VAG) and bacteriocins (BAG) were lower in isolates originating from the HZG (41 vs. 65% and 22 vs. 35%, p < 0.001 and p = 0.002, resp.). Strikingly, E. coli harboring genes defining distinct pathotypes associated with intestinal disease, i.e., enterotoxigenic, enteropathogenic, and Shiga toxin-producing E. coli (ETEC, EPEC, and STEC) constituted 1% of the isolates belonging to the HZG but 14% of those from the CG. Notably, these pathotypes were positively associated with enhanced zinc tolerance (512 μg/ml ZnCl2 MIC, p < 0.001). Taken together, zinc excess seems to influence carriage rates of VAGs and BAGs in porcine intestinal E. coli populations, and high-zinc feeding is negatively correlated with enteral pathotype occurrences, which might explain earlier observations concerning the relative increase of Enterobacterales considering the overall intestinal microbiota of piglets during zinc feeding trials while PWD rates have decreased.
Collapse
Affiliation(s)
- Vanessa C. Johanns
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | - Lennard Epping
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Fereshteh Ghazisaeedi
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Yvonne Pfeifer
- Nosocomial Pathogens and Antibiotic Resistance (FG13), Robert Koch Institute, Wernigerode, Germany
| | - Inga Eichhorn
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Astrid Bethe
- Center for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | | |
Collapse
|
13
|
Fançony C, Soares Â, Lavinha J, Barros H, Brito M. Iron deficiency anaemia among 6-to-36-month children from northern Angola. BMC Pediatr 2020; 20:298. [PMID: 32552666 PMCID: PMC7298958 DOI: 10.1186/s12887-020-02185-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Angola is one of the southern African countries with the highest prevalence of anaemia. Identifying anaemia determinants is an important step for the design of evidence-based control strategies. In this study, we aim at documenting the factors associated with Iron Deficiency Anaemia (IDA) in 948 children recruited at the Health Research Center of Angola study area during 2015. METHODS Data on demographic, socio-economic and parental practices regarding water, sanitation, hygiene, malaria infection and infant and young child feeding were collected, as well as parasitological, biochemical and molecular data. Total and age-stratified multivariate multinomial regression models were fitted to estimate the magnitude of associations between anaemia and its determinants. RESULTS Anaemia was found in 44.4% of children, of which 46.0% had IDA. Overall, regression models associated IDA with age, gender and inflammation and non-IDA with age, zinc deficiency and overload, P. falciparum infection, sickle cell trait/anaemia. Among 6-to-23-month-old children IDA was associated with continued breastfeeding and among 24-to-36-month-old children IDA was associated with stunting. Furthermore, zinc deficiency was associated with non-IDA among both age groups children. Inflammation was associated with IDA and non-IDA in either 6-to-23 and 24-to-36 months old children. CONCLUSION The main variables associated with IDA and non-IDA within this geographic setting were commonly reported in Africa, but not specifically associated with anaemia. Additionally, the associations of anaemia with inflammation, zinc deficiency and infections could be suggesting the occurrence of nutritional immunity and should be further investigated. In age groups, zinc overload was observed to protect under 6 months children from Non-IDA, while continued breastfeeding was associated with increased IDA prevalence in 6-to-23 months children, and stunting was suggested to increase the odds of IDA in 24-to-36 month children. This site-specific aetiology profile provides an essential first set of evidences able to inform the planification of preventive and corrective actions/programs. Nevertheless, regional and country representative data is needed.
Collapse
Affiliation(s)
- Cláudia Fançony
- Health Research Center of Angola (CISA, translated), Caxito, Angola
- Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Ânia Soares
- Health Research Center of Angola (CISA, translated), Caxito, Angola
| | - João Lavinha
- Departamento de Genetica Humana, Instituto nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- BioISI, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Henrique Barros
- Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - Miguel Brito
- Health Research Center of Angola (CISA, translated), Caxito, Angola
- Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| |
Collapse
|
14
|
Ghazisaeedi F, Ciesinski L, Bednorz C, Johanns V, Pieper L, Tedin K, Wieler LH, Günther S. Phenotypic zinc resistance does not correlate with antimicrobial multi-resistance in fecal E. coli isolates of piglets. Gut Pathog 2020; 12:4. [PMID: 31988666 PMCID: PMC6972033 DOI: 10.1186/s13099-019-0342-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Background Following the ban on antimicrobial usage for growth promotion in animal husbandry in the EU, non-antimicrobial agents including heavy metal ions (e.g. zinc and copper), prebiotics or probiotics have been suggested as alternatives. Zinc has extensively been used in pig farming, particularly during weaning of piglets to improve animal health and growth rates. Recent studies, however, have suggested that high dietary zinc feeding during weaning of piglets increases the proportion of multi-drug resistant E. coli in the gut, contraindicating the appropriateness of zinc as an alternative. The underlying mechanisms of zinc effects on resistant bacteria remains unclear, but co-selection processes could be involved. In this study, we determined whether E. coli isolates from intestinal contents of piglets that had been supplemented with high concentrations of zinc acquired a higher tolerance towards zinc, and whether multi-drug resistant isolates tolerated higher zinc concentrations. In addition, we compared phenotypic zinc and copper resistance of E. coli isolates for possible correlation between phenotypic resistance/tolerance to different bivalent ionic metals. Results We screened phenotypic zinc/copper tolerance of 210 isolates (including antimicrobial resistant, multi-drug resistant, and non-resistant E. coli) selected from two, independent zinc-feeding animal trials by determining a zinc/copper minimal inhibitory concentration (Merlin, Bornheim-Hersel, Germany). In both trials, groups of piglets were supplemented either with high dietary zinc (> 2000 ppm) or control (50–70 ppm, background) concentrations. Our observations showed that high concentration zinc exposure did not have an effect on either zinc or copper phenotypic tolerance of E. coli isolates from the animals. No significant association was found between antimicrobial resistance and phenotypic zinc/copper tolerance of the same isolates. Conclusion Our findings argue against a co-selection mechanism of antimicrobial drug-resistance and zinc tolerance after dietary zinc supplementation in weaning piglets. An explanation for an increase in multi-drug resistant isolates from piglets with high zinc dietary feeding could be that resistant bacteria to antimicrobial agents are more persistent to stresses such as zinc or copper exposure.
Collapse
Affiliation(s)
- Fereshteh Ghazisaeedi
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - L Ciesinski
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - C Bednorz
- 2Institute of Chemical Physiology, Ludwig-Maximilians-Universität, Veterinärstr. 13, 80539 Munich, Germany
| | - V Johanns
- 3Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - L Pieper
- 4Institute of Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - K Tedin
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - L H Wieler
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.,3Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Sebastian Günther
- 1Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.,5Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
| |
Collapse
|
15
|
Blázquez J, Rodríguez-Beltrán J, Matic I. Antibiotic-Induced Genetic Variation: How It Arises and How It Can Be Prevented. Annu Rev Microbiol 2019; 72:209-230. [PMID: 30200850 DOI: 10.1146/annurev-micro-090817-062139] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
By targeting essential cellular processes, antibiotics provoke metabolic perturbations and induce stress responses and genetic variation in bacteria. Here we review current knowledge of the mechanisms by which these molecules generate genetic instability. They include production of reactive oxygen species, as well as induction of the stress response regulons, which lead to enhancement of mutation and recombination rates and modulation of horizontal gene transfer. All these phenomena influence the evolution and spread of antibiotic resistance. The use of strategies to stop or decrease the generation of resistant variants is also discussed.
Collapse
Affiliation(s)
- Jesús Blázquez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain; .,Unidad de Enfermedades Infecciosas, Microbiologia y Medicina Preventiva, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain.,Red Española de Investigacion en Patologia Infecciosa, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Ivan Matic
- Faculté de Médecine Paris Descartes, INSERM 1001, CNRS, Université Paris-Descartes-Sorbonne Paris Cité, 75014 Paris, France;
| |
Collapse
|
16
|
Kakoullis L, Papachristodoulou E, Chra P, Panos G. Shiga toxin-induced haemolytic uraemic syndrome and the role of antibiotics: a global overview. J Infect 2019; 79:75-94. [DOI: 10.1016/j.jinf.2019.05.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 11/17/2022]
|
17
|
Crane JK, Cheema MB, Olyer MA, Sutton MD. Zinc Blockade of SOS Response Inhibits Horizontal Transfer of Antibiotic Resistance Genes in Enteric Bacteria. Front Cell Infect Microbiol 2018; 8:410. [PMID: 30519543 PMCID: PMC6258817 DOI: 10.3389/fcimb.2018.00410] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 11/30/2022] Open
Abstract
The SOS response is a conserved response to DNA damage that is found in Gram-negative and Gram-positive bacteria. When DNA damage is sustained and severe, activation of error-prone DNA polymerases can induce a higher mutation rate than is normally observed, which is called the SOS mutator phenotype or hypermutation. We previously showed that zinc blocked the hypermutation response induced by quinolone antibiotics and mitomycin C in Escherichia coli and Klebsiella pneumoniae. In this study, we demonstrate that zinc blocks the SOS-induced development of chloramphenicol resistance in Enterobacter cloacae. Zinc also blocked the transfer of an extended spectrum beta-lactamase (ESBL) gene from Enterobacter to a susceptible E. coli strain. A zinc ionophore, zinc pyrithione, was ~100-fold more potent than zinc salts in inhibition of ciprofloxacin-induced hypermutation in E. cloacae. Other divalent metals, such as iron and manganese, failed to inhibit these responses. Electrophoretic mobility shift assays (EMSAs) revealed that zinc, but not iron or manganese, blocked the ability of the E. coli RecA protein to bind to single-stranded DNA, an important early step in the recognition of DNA damage in enteric bacteria. This suggests a mechanism for zinc's inhibitory effects on bacterial SOS responses, including hypermutation.
Collapse
Affiliation(s)
- John K Crane
- Division of Infectious Diseases, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Muhammad B Cheema
- Division of Infectious Diseases, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Michael A Olyer
- Division of Infectious Diseases, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Mark D Sutton
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
18
|
Critical Role of Zinc in a New Murine Model of Enterotoxigenic Escherichia coli Diarrhea. Infect Immun 2018; 86:IAI.00183-18. [PMID: 29661930 PMCID: PMC6013668 DOI: 10.1128/iai.00183-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveler's diarrhea as well as of endemic diarrhea and stunting in children in developing areas. However, a small-mammal model has been badly needed to better understand and assess mechanisms, vaccines, and interventions. We report a murine model of ETEC diarrhea, weight loss, and enteropathy and investigate the role of zinc in the outcomes. ETEC strains producing heat-labile toxins (LT) and heat-stable toxins (ST) that were given to weaned C57BL/6 mice after antibiotic disruption of normal microbiota caused growth impairment, watery diarrhea, heavy stool shedding, and mild to moderate intestinal inflammation, the latter being worse with zinc deficiency. Zinc treatment promoted growth in zinc-deficient infected mice, and subinhibitory levels of zinc reduced expression of ETEC virulence genes cfa1, cexE, sta2, and degP but not of eltA in vitro Zinc supplementation increased shedding and the ileal burden of wild-type (WT) ETEC but decreased shedding and the tissue burden of LT knockout (LTKO) ETEC. LTKO ETEC-infected mice had delayed disease onset and also had less inflammation by fecal myeloperoxidase (MPO) assessment. These findings provide a new murine model of ETEC infection that can help elucidate mechanisms of growth, diarrhea, and inflammatory responses as well as potential vaccines and interventions.
Collapse
|
19
|
Bahrin LG, Rosca I, Clima L, Shova S, Bejan D, Nicolescu A, Marangoci NL, Sardaru MC, Lozan V, Rotaru A. Zinc(II) coordination polymer on the base of 3′-(1 H -tetrazol-5- yl )-[1,1′-biphenyl]-4-carboxylic acid: Synthesis, crystal structure and antimicrobial properties. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Molecular Mechanisms Governing "Hair-Trigger" Induction of Shiga Toxin-Encoding Prophages. Viruses 2018; 10:v10050228. [PMID: 29710828 PMCID: PMC5977221 DOI: 10.3390/v10050228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 01/12/2023] Open
Abstract
Shiga toxin (Stx)-encoding E. coli (STEC) strains are responsible for sporadic outbreaks of food poisoning dating to 1982, when the first STEC strain, E. coli O157:H7, was isolated. Regardless of STEC serotype, the primary symptoms of STEC infections are caused by Stx that is synthesized from genes resident on lambdoid prophage present in STEC. Despite similar etiology, the severity of STEC-mediated disease varies by outbreak. However, it is unclear what modulates the severity of STEC-mediated disease. Stx production and release is controlled by lytic growth of the Stx-encoding bacteriophage, which in turn, is controlled by the phage repressor. Here, we confirm our earlier suggestion that the higher spontaneous induction frequency of Stx-encoding prophage is a consequence, in part, of lower intracellular repressor levels in STEC strains versus non-STEC strains. We also show that this lowered intracellular repressor concentration is a consequence of the utilization of alternative binding/regulatory strategies by the phage repressor. We suggest that a higher spontaneous induction frequency would lead to increased virulence.
Collapse
|
21
|
Cole BK, Scott E, Ilikj M, Bard D, Akins DR, Dyer DW, Chavez-Bueno S. Route of infection alters virulence of neonatal septicemia Escherichia coli clinical isolates. PLoS One 2017; 12:e0189032. [PMID: 29236742 PMCID: PMC5728477 DOI: 10.1371/journal.pone.0189032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/05/2017] [Indexed: 12/03/2022] Open
Abstract
Escherichia coli is the leading cause of Gram-negative neonatal septicemia in the United States. Invasion and passage across the neonatal gut after ingestion of maternal E. coli strains produce bacteremia. In this study, we compared the virulence properties of the neonatal E. coli bacteremia clinical isolate SCB34 with the archetypal neonatal E. coli meningitis strain RS218. Whole-genome sequencing data was used to compare the protein coding sequences among these clinical isolates and 33 other representative E. coli strains. Oral inoculation of newborn animals with either strain produced septicemia, whereas intraperitoneal injection caused septicemia only in pups infected with RS218 but not in those injected with SCB34. In addition to being virulent only through the oral route, SCB34 demonstrated significantly greater invasion and transcytosis of polarized intestinal epithelial cells in vitro as compared to RS218. Protein coding sequences comparisons highlighted the presence of known virulence factors that are shared among several of these isolates, and revealed the existence of proteins exclusively encoded in SCB34, many of which remain uncharacterized. Our study demonstrates that oral acquisition is crucial for the virulence properties of the neonatal bacteremia clinical isolate SCB34. This characteristic, along with its enhanced ability to invade and transcytose intestinal epithelium are likely determined by the specific virulence factors that predominate in this strain.
Collapse
Affiliation(s)
- Bryan K. Cole
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Edgar Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Marko Ilikj
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David Bard
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Darrin R. Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Susana Chavez-Bueno
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
22
|
Bunnell BE, Escobar JF, Bair KL, Sutton MD, Crane JK. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli. PLoS One 2017; 12:e0178303. [PMID: 28542496 PMCID: PMC5440055 DOI: 10.1371/journal.pone.0178303] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/10/2017] [Indexed: 01/22/2023] Open
Abstract
Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx) and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.
Collapse
Affiliation(s)
- Bryan E. Bunnell
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States of America
| | - Jillian F. Escobar
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States of America
| | - Kirsten L. Bair
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States of America
| | - Mark D. Sutton
- Department of Biochemistry, University at Buffalo, Buffalo, NY, United States of America
| | - John K. Crane
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
23
|
Collu G, Farci D, Esposito F, Pintus F, Kirkpatrick J, Piano D. New insights into the operative network of FaEO, an enone oxidoreductase from Fragaria x ananassa Duch. PLANT MOLECULAR BIOLOGY 2017; 94:125-136. [PMID: 28283921 DOI: 10.1007/s11103-017-0597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
The 2-methylene-furan-3-one reductase or Fragaria x ananassa Enone Oxidoreductase (FaEO) catalyses the last reductive step in the biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a major component in the characteristic flavour of strawberries. In the present work, we describe the association between FaEO and the vacuolar membrane of strawberry fruits. Even if FaEO lacks epitopes for stable or transient membrane-interactions, it contains a calmodulin-binding region, suggesting that in vivo FaEO may be associated with the membrane via a peripheral protein complex with calmodulin. Moreover, we also found that FaEO occurs in dimeric form in vivo and, as frequently observed for calmodulin-regulated proteins, it may be expressed in different isoforms by alternative gene splicing. Further mass spectrometry analysis confirmed that the isolated FaEO consists in the already known isoform and that it is the most characteristic during ripening. Finally, a characterization by absorption spectroscopy showed that FaEO has specific flavoprotein features. The relevance of these findings and their possible physiological implications are discussed.
Collapse
Affiliation(s)
- Gabriella Collu
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123, Cagliari, Italy
| | - Domenica Farci
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123, Cagliari, Italy
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 52175, Bonn, Germany
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Italy
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042, Monserrato, Italy
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutebergstraβe 11, 07745, Jena, Germany
| | - Dario Piano
- Laboratory of Plant Physiology and Photobiology, Department of Life and Environmental Sciences, University of Cagliari, V.le S. Ignazio da Laconi 13, 09123, Cagliari, Italy.
| |
Collapse
|
24
|
Disarming the enemy: targeting bacterial toxins with small molecules. Emerg Top Life Sci 2017; 1:31-39. [PMID: 33525814 DOI: 10.1042/etls20160013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/17/2022]
Abstract
The rapid emergence of antibiotic-resistant bacterial strains has prompted efforts to find new and more efficacious treatment strategies. Targeting virulence factors produced by pathogenic bacteria has gained particular attention in the last few years. One of the inherent advantages of this approach is that it provides less selective pressure for the development of resistance mechanisms. In addition, antivirulence drugs could potentially be the answer for diseases in which the use of conventional antibiotics is counterproductive. That is the case for bacterial toxin-mediated diseases, in which the severity of the symptoms is a consequence of the exotoxins produced by the pathogen. Examples of these are haemolytic-uraemic syndrome produced by Shiga toxins, the profuse and dangerous dehydration caused by Cholera toxin or the life-threatening colitis occasioned by clostridial toxins. This review focuses on the recent advances on the development of small molecules with antitoxin activity against Enterohaemorrhagic Escherichia coli, Vibrio cholerae and Clostridium difficile given their epidemiological importance. The present work includes studies of small molecules with antitoxin properties that act directly on the toxin (direct inhibitors) or that act by preventing expression of the toxin (indirect inhibitors).
Collapse
|
25
|
Colon MP, Chakraborty D, Pevzner Y, Koudelka GB. Mechanisms that Determine the Differential Stability of Stx⁺ and Stx(-) Lysogens. Toxins (Basel) 2016; 8:96. [PMID: 27043626 PMCID: PMC4848623 DOI: 10.3390/toxins8040096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 01/29/2023] Open
Abstract
Phages 933W, BAA2326, 434, and λ are evolutionarily-related temperate lambdoid phages that infect Escherichia coli. Although these are highly-similar phages, BAA2326 and 933W naturally encode Shiga toxin 2 (Stx+), but phage 434 and λ do not (Stx−). Previous reports suggest that the 933W Stx+ prophage forms less stable lysogens in E. coli than does the Stx− prophages λ, P22, and 434. The higher spontaneous induction frequency of the Stx+ prophage may be correlated with both virulence and dispersion of the Stx2-encoding phage. Here, we examined the hypothesis that lysogen instability is a common feature of Stx+ prophages. We found in both the absence and presence of prophage inducers (DNA damaging agents, salts), the Stx+ prophages induce at higher frequencies than do Stx− prophages. The observed instability of Stx+ prophages does not appear to be the result of any differences in phage development properties between Stx+ and Stx− phages. Our results indicate that differential stability of Stx+ and Stx− prophages results from both RecA-dependent and RecA-independent effects on the intracellular concentration of the respective cI repressors.
Collapse
Affiliation(s)
- Michael P Colon
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.
| | | | - Yonatan Pevzner
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.
| | - Gerald B Koudelka
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
26
|
Fung DKC, Ma Y, Xia T, Luk JCH, Yan A. Signaling by the heavy-metal sensor CusS involves rearranged helical interactions in specific transmembrane regions. Mol Microbiol 2016; 100:774-87. [DOI: 10.1111/mmi.13348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Danny Ka Chun Fung
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | - Yongzheng Ma
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | - Tingying Xia
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
| | | | - Aixin Yan
- School of Biological Sciences; The University of Hong Kong; Hong Kong SAR
- Institute of Scientific and Industrial Research, Osaka University; Yamadaoka 1-1 Suita Osaka 565-0871 Japan
| |
Collapse
|
27
|
Castillo Y, Tachibana M, Nakatsu Y, Watanabe K, Shimizu T, Watarai M. Combination of Zinc and All-Trans Retinoic Acid Promotes Protection against Listeria monocytogenes Infection. PLoS One 2015; 10:e0137463. [PMID: 26351852 PMCID: PMC4564104 DOI: 10.1371/journal.pone.0137463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022] Open
Abstract
Zinc (Zn) is the second most abundant transition metal after iron. It plays a vital role in living organisms and affects multiple aspects of the immune system. All-trans retinoic acid (atRA) is an isomeric form of the vitamin A or retinol. It possesses the greatest biological activity of Vitamin A. Vitamin A and related retinoids influence many aspects of immunity. In this study, we demonstrated that treatment with a combination of Zn and atRA contributes to host resistance against infection by Listeria monocytogenes. Pretreatment with Zn and atRA enhanced resistance against L. monocytogenes infection in mice and treatment with both Zn and atRA showed a higher protective effect than treatment with either alone. Supplementation with Zn, atRA or their combination decreased the number of L. monocytogenes present in target organs. In vitro, supplementation increased the bacterial uptake by macrophage cells and reduced the replication of L. monocytogenes. Our results suggest that the combination of Zn and atRA has a great bacteriostatic impact on L. monocytogenes and its infection.
Collapse
Affiliation(s)
- Yussaira Castillo
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Masato Tachibana
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Yukiko Nakatsu
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
- * E-mail:
| |
Collapse
|