1
|
Magnusson A, Wu R, Demirel I. Porphyromonas gingivalis triggers microglia activation and neurodegenerative processes through NOX4. Front Cell Infect Microbiol 2024; 14:1451683. [PMID: 39469453 PMCID: PMC11513391 DOI: 10.3389/fcimb.2024.1451683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024] Open
Abstract
Periodontitis and infections with periodontal bacteria have been highlighted as risk factors for dementia. In recent years, attention has been drawn to the role of microglia cells in neurodegenerative diseases. However, there is limited knowledge of the influence of periodontal bacteria on microglia cells. The aim of the present study was to investigate the interactions between the periodontal bacteria Porphyromonas gingivalis and microglia cells and to unravel whether these interactions could contribute to the pathology of Alzheimer's disease. We found, through microarray analysis, that stimulation of microglia cells with P. gingivalis resulted in the upregulation of several Alzheimer's disease-associated genes, including NOX4. We also showed that P. gingivalis lipopolysaccharides (LPS) mediated reactive oxygen species (ROS) production and interleukin 6 (IL-6) and interleukin 8 (IL-8) induction via NOX4 in microglia. The viability of neurons was shown to be reduced by conditioned media from microglia cells stimulated with P. gingivalis LPS and the reduction was NOX4 dependent. The levels of total and phosphorylated tau in neurons were increased by conditioned media from microglia cells stimulated with P. gingivalis or LPS. This increase was NOX4-dependent. In summary, our findings provide us with a potential mechanistic explanation of how the periodontal pathogen P. gingivalis could trigger or exacerbate AD pathogenesis.
Collapse
Affiliation(s)
- Anna Magnusson
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Periodontology and Implantology, Postgraduate Dental Education Center and School of Medical Sciences, Faculty of Medicine and Health, Orebro University, Örebro, Sweden
| | - Rongrong Wu
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Silva DS, Laranjeira P, Silva A, Silva I, Kaminska M, Mydel P, de Vries C, Lundberg K, da Silva JAP, Baptista IP, Paiva A. Impaired Periodontitis-Induced Cytokine Production by Peripheral Blood Monocytes and Myeloid Dendritic Cells in Patients with Rheumatoid Arthritis: A Case-Control Study. J Clin Med 2024; 13:5297. [PMID: 39274511 PMCID: PMC11395796 DOI: 10.3390/jcm13175297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Immune cells from rheumatoid arthritis (RA) patients display a reduced in vitro response to Porphyromonas gingivalis (P. gingivalis), which may have functional immune consequences. The aim of this study was to characterize, by flow cytometry, the frequency/activity of monocytes and naturally occurring myeloid dendritic cells (mDCs) in peripheral blood samples from patients with periodontitis and patients with periodontitis and RA. Methods: The relative frequency of monocytes and mDCs in the whole blood, the frequency of these cells producing TNFα or IL-6 and the protein expression levels for each cytokine, before and after stimulation with lipopolysaccharide (LPS) from Escherichia coli plus interferon-γ (IFN-γ), were assessed by flow cytometry, in peripheral blood samples from 10 healthy individuals (HEALTHY), 10 patients with periodontitis (PERIO) and 17 patients with periodontitis and RA (PERIO+RA). Results: The frequency of monocytes and mDCs producing IL-6 or TNF-α and the expression of IL-6 and TNF-α in the PERIO group were generally higher. Within the PERIO+RA group, P. gingivalis and related antibodies were negatively correlated with the monocyte and mDC expression of IL-6. A subgroup of the PERIO+RA patients that displayed statistically significantly lower frequencies of monocytes producing IL-6 after activation presented statistically significantly higher peptidylarginine deiminase (PAD)2/4 activity, anti-arg-gingipain (RgpB) IgG levels, mean probing depth (PD), periodontal inflamed surface area (PISA) and bleeding on probing (BoP). Conclusions: In the patients with PERIO+RA, innate immune cells seemed to produce lower amounts of pro-inflammatory cytokines, which are correlated with worse periodontitis-related clinical and microbiological parameters.
Collapse
Affiliation(s)
- Daniela S Silva
- Periodontology Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paula Laranjeira
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotchnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
| | - Isabel Silva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
| | - Marta Kaminska
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Piotr Mydel
- Broegelmann Research Laboratory, Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, 5021 Bergen, Norway
- Department of Microbiology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Charlotte de Vries
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institute, 17164 Solna, Sweden
| | - Karin Lundberg
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institute, 17164 Solna, Sweden
| | - José António P da Silva
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Rheumatology Department, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
| | - Isabel P Baptista
- Periodontology Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Paiva
- Group of Environmental Genetics of Coimbra Oncobiology (CIMAGO), Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra (ULS), 3004-561 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotchnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Ciências Biomédicas Laboratoriais, Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, 3046-854 Coimbra, Portugal
| |
Collapse
|
3
|
Effects of estradiol on the virulence traits of Porphyromonas gingivalis. Sci Rep 2022; 12:13881. [PMID: 35974048 PMCID: PMC9381592 DOI: 10.1038/s41598-022-17019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Porphyromonas gingivalis has been strongly associated to active periodontitis sites. A number of studies have tried to elucidate the association between female steroid sex hormones and gingival health. However, until now, there is limited knowledge on estradiol effects on the virulence traits of P. gingivalis. The aim of the study was to investigate the impact of estradiol exposure on the virulence characteristics of P. gingivalis strain W50. We found that a pre- and postmenopausal concentration of estradiol increased the growth and biofilm formation of P. gingivalis W50. We also found that estradiol increased the release of lysine and arginine gingipains from W50. We then showed that IL-1β, CXCL10 and TGF-β1 release from gingival epithelial cells was significantly lowered by W50 pre-exposed to estradiol compared to W50 alone. Real time-qPCR showed that the gene expression of IL-18, IL-6, IL-8, TGF-β1 and NLRP3 in gingival epithelial cells was significantly lowered by W50 pre-exposed to estradiol compared to W50 alone. We also found that estradiol in a dose-dependent manner increased P. gingivalis colonization and invasion of gingival epithelial cells. Taken together, our findings show that estradiol has the ability to alter the virulence traits of P. gingivalis.
Collapse
|
4
|
Moore C, Cheng Y, Tjokro N, Zhang B, Kerr M, Hayati M, Chang KCJ, Shah N, Chen C, Jokerst JV. A Photoacoustic-Fluorescent Imaging Probe for Proteolytic Gingipains Expressed by Porphyromonas gingivalis. Angew Chem Int Ed Engl 2022; 61:e202201843. [PMID: 35583940 PMCID: PMC9296565 DOI: 10.1002/anie.202201843] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/07/2022]
Abstract
Porphyromonas gingivalis is a keystone pathogen in periodontal disease. We herein report a dual-modal fluorescent and photoacoustic imaging probe for the detection of gingipain proteases secreted by P. gingivalis. Upon proteolytic cleavage by Arg-specific gingipain (RgpB), five-fold photoacoustic enhancement and >100-fold fluorescence activation was measured with detection limits of 1.1 nM RgpB and 5.0E4 CFU mL-1 bacteria in vitro. RgpB activity was imaged in porcine jaws with low-nanomolar sensitivity. Diagnostic efficacy was evaluated in gingival crevicular fluid samples from subjects with and without periodontal disease, wherein activation was correlated to qPCR-based detection of P. gingivalis (Pearson's r=0.71). Finally, photoacoustic imaging of RgpB-cleaved probe was achieved in murine brains ex vivo, with relevance and potential utility for disease models of general infection by P. gingivalis, motivated by the recent biological link between gingipain and Alzheimer's disease.
Collapse
Affiliation(s)
- Colman Moore
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
| | - Yong Cheng
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
| | - Natalia Tjokro
- Herman Ostrow School of Dentistry, University of Southern California, 925 West 34 Street, Los Angeles, CA 90089. USA
| | - Brendan Zhang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
| | - Matthew Kerr
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
| | - Mohammed Hayati
- Herman Ostrow School of Dentistry, University of Southern California, 925 West 34 Street, Los Angeles, CA 90089. USA
| | - Kai Chiao Joe Chang
- Herman Ostrow School of Dentistry, University of Southern California, 925 West 34 Street, Los Angeles, CA 90089. USA
| | - Nisarg Shah
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
| | - Casey Chen
- Herman Ostrow School of Dentistry, University of Southern California, 925 West 34 Street, Los Angeles, CA 90089. USA
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
- Materials Science Program, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093. USA
| |
Collapse
|
5
|
Moore C, Cheng Y, Tjokro N, Zhang B, Kerr M, Hayati M, Chang KCJ, Shah N, Chen C, Jokerst JV. A Photoacoustic‐Fluorescent Imaging Probe for Proteolytic Gingipains Expressed by
Porphyromonas gingivalis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Colman Moore
- Department of NanoEngineering University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Yong Cheng
- Department of NanoEngineering University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Natalia Tjokro
- Herman Ostrow School of Dentistry University of Southern California 925 West 34th Street Los Angeles CA 90089 USA
| | - Brendan Zhang
- Department of NanoEngineering University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
- Current address: Diazyme Laboratories Inc
| | - Matthew Kerr
- Department of NanoEngineering University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Mohammed Hayati
- Herman Ostrow School of Dentistry University of Southern California 925 West 34th Street Los Angeles CA 90089 USA
| | - Kai Chiao Joe Chang
- Herman Ostrow School of Dentistry University of Southern California 925 West 34th Street Los Angeles CA 90089 USA
| | - Nisarg Shah
- Department of NanoEngineering University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
| | - Casey Chen
- Herman Ostrow School of Dentistry University of Southern California 925 West 34th Street Los Angeles CA 90089 USA
| | - Jesse V. Jokerst
- Department of NanoEngineering University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
- Materials Science Program University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
- Department of Radiology University of California, San Diego 9500 Gilman Dr. La Jolla CA 92093 USA
| |
Collapse
|
6
|
Albuquerque-Souza E, Ishikawa KH, Amado PP, Nicoli JR, Holzhausen M, Mayer MPA. Probiotics improve re-epithelialization of scratches infected by Porphyromonas gingivalis through up-regulating CXCL8-CXCR1/CXCR2 axis. Anaerobe 2021; 72:102458. [PMID: 34547426 DOI: 10.1016/j.anaerobe.2021.102458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Porphyromonas gingivalis inhibits the release of CXCL8 by gingival epithelial cells and reduces their proliferation. We previously reported that Bifidocaterium sp. and Lactobacillus sp. immunomodulate gingival epithelial cells response to this periodontal pathogen, but their effects on re-epithelialization properties are still unknown. Herein we explored these activities of potential probiotics on gingival epithelial cells and clarified their mechanisms. The immortalized OBA-9 lineage was used to perform in vitro scratches. Twelve clinical isolates and commercially available strains of Bifidobacterium sp. and Lactobacillus sp. were screened. L. casei 324 m and B. pseudolongum 1191A were selected to perform mechanistic assays with P. gingivalis W83 infection and the following parameters were measured: percentage of re-epithelialization by DAPI immunofluorescence area measurement; cell number by Trypan Blue exclusion assay; CXCL8 regulation by ELISA and RT-qPCR; and expression of CXCL8 cognate receptors-CXCR1 and CXCR2 by Flow Cytometry. Complementary mechanistic assays were performed with CXCL8, in the presence or absence of the CXCR1/CXCR2 inhibitor-reparixin. L. casei 324 m and B. pseudolongum 1191A enhanced re-epithelialization/cell proliferation as well as inhibited the harmful effects of P. gingivalis W83 on these activities through an increase in the expression and release of CXCL8 and in the number of cells positive for CXCR1/CXCR2. Further, we revealed that the beneficial effects of these potential probiotics were dependent on activation of the CXCL8-CXCR1/CXCR2 axis. The current findings indicate that these potential probiotics strains may improve wound healing in the context of the periodontal tissues by a CXCL8 dependent mechanism.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, SP, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Karin Hitomi Ishikawa
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, SP, Brazil
| | - Pâmela Penas Amado
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Jacques Robert Nicoli
- Department of Microbiology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marinella Holzhausen
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, SP, Brazil
| | - Marcia P A Mayer
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, SP, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Hammers D, Carothers K, Lee S. The Role of Bacterial Proteases in Microbe and Host-microbe Interactions. Curr Drug Targets 2021; 23:222-239. [PMID: 34370632 DOI: 10.2174/1389450122666210809094100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Secreted proteases are an important class of factors used by bacterial to modulate their extracellular environment through the cleavage of peptides and proteins. These proteases can range from broad, general proteolytic activity to high degrees of substrate specificity. They are often involved in interactions between bacteria and other species, even across kingdoms, allowing bacteria to survive and compete within their niche. As a result, many bacterial proteases are of clinical importance. The immune system is a common target for these enzymes, and bacteria have evolved ways to use these proteases to alter immune responses for their benefit. In addition to the wide variety of human proteins that can be targeted by bacterial proteases, bacteria also use these secreted factors to disrupt competing microbes, ranging from outright antimicrobial activity to disrupting processes like biofilm formation. OBJECTIVE In this review, we address how bacterial proteases modulate host mechanisms of protection from infection and injury, including immune factors and cell barriers. We also discuss the contributions of bacterial proteases to microbe-microbe interactions, including antimicrobial and anti-biofilm dynamics. CONCLUSION Bacterial secreted proteases represent an incredibly diverse group of factors that bacteria use to shape and thrive in their microenvironment. Due to the range of activities and targets of these proteases, some have been noted for having potential as therapeutics. The vast array of bacterial proteases and their targets remains an expanding field of research, and this field has many important implications for human health.
Collapse
Affiliation(s)
- Daniel Hammers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Shaun Lee
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| |
Collapse
|
8
|
Progress in Oral Microbiome Related to Oral and Systemic Diseases: An Update. Diagnostics (Basel) 2021; 11:diagnostics11071283. [PMID: 34359364 PMCID: PMC8306157 DOI: 10.3390/diagnostics11071283] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The human oral microbiome refers to an ecological community of symbiotic and pathogenic microorganisms found in the oral cavity. The oral cavity is an environment that provides various biological niches, such as the teeth, tongue, and oral mucosa. The oral cavity is the gateway between the external environment and the human body, maintaining oral homeostasis, protecting the mouth, and preventing disease. On the flip side, the oral microbiome also plays an important role in the triggering, development, and progression of oral and systemic diseases. In recent years, disease diagnosis through the analysis of the human oral microbiome has been realized with the recent development of innovative detection technology and is overwhelmingly promising compared to the previous era. It has been found that patients with oral and systemic diseases have variations in their oral microbiome compared to normal subjects. This narrative review provides insight into the pathophysiological role that the oral microbiome plays in influencing oral and systemic diseases and furthers the knowledge related to the oral microbiome produced over the past 30 years. A wide range of updates were provided with the latest knowledge of the oral microbiome to help researchers and clinicians in both academic and clinical aspects. The microbial community information can be utilized in non-invasive diagnosis and can help to develop a new paradigm in precision medicine, which will benefit human health in the era of post-metagenomics.
Collapse
|
9
|
Sampath C, Okoro EU, Gipson MJ, Chukkapalli SS, Farmer-Dixon CM, Gangula PR. Porphyromonas gingivalis infection alters Nrf2-phase II enzymes and nitric oxide in primary human aortic endothelial cells. J Periodontol 2020; 92:54-65. [PMID: 33128253 DOI: 10.1002/jper.20-0444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Periodontal disease (PD) is known to be associated with endothelial dysfunction in patients with coronary artery and/or cardiovascular disease. In our study, we sought to explore the virulence of P. gingivalis (Pg) affecting glycogen synthase kinase 3 beta (GSK-3β)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/tetrahydrobiopterin (BH4 )/ nitric oxide synthase (NOS) expression in primary human aortic endothelial cells (pHAECs). METHODS pHAECs were infected for 48 hours with Pg in vitro using the Human oxygen-Bacteria anaerobic coculture technique. Cell viability was determined, and target gene expression changes were evaluated by quantitative real-time polymerase chain reaction at the end of each incubation period. RESULTS Pg impaired pHAEC viability 24 hours post-infection. Pg infection reduced mRNA expression levels of endothelial NOS (eNOS), Nrf2, and Phase II enzymes (heme oxygenase-1, catalase, superoxide dismutase-1) in a time-dependent manner. Significant (P <0.05) increase in the inflammatory markers (interleukin [IL]-1β, IL-6, and tumor necrosis factor-α) were observed in the medium as well as in the infected cells. Interestingly, inducible NOS mRNA levels showed a significant (P <0.05) increase at 12 hours and 24 hours and were reduced at later time points. BH4 (cofactor of eNOS) biosynthesis enzyme dihydrofolate reductase (DHFR, salvage pathway) mRNA levels showed a significant (P <0.05) decrease, while mRNA levels of GSK-3β were elevated. CONCLUSIONS These results suggest that periodontal bacterial infection may cause significant changes in the endothelial GSK-3β/BH4 /eNOS/Nrf2 pathways, which may lead to impaired vascular relaxation. Greater understanding of the factors that adversely affect endothelial cell function could contribute to the development of new therapeutic compounds to treat PD-induced vascular diseases.
Collapse
Affiliation(s)
- Chethan Sampath
- Department of ODS & Research, Meharry Medical College, Nashville, TN
| | - Emmanuel U Okoro
- Department of Microbiology, Immunology & Physiology, Meharry Medical College, Nashville, TN
| | - Michael J Gipson
- Department of ODS & Research, Meharry Medical College, Nashville, TN
| | | | | | - Pandu R Gangula
- Department of ODS & Research, Meharry Medical College, Nashville, TN
| |
Collapse
|
10
|
Bartnicka D, Gonzalez-Gonzalez M, Sykut J, Koziel J, Ciaston I, Adamowicz K, Bras G, Zawrotniak M, Karkowska-Kuleta J, Satala D, Kozik A, Zyla E, Gawron K, Lazarz-Bartyzel K, Chomyszyn-Gajewska M, Rapala-Kozik M. Candida albicans Shields the Periodontal Killer Porphyromonas gingivalis from Recognition by the Host Immune System and Supports the Bacterial Infection of Gingival Tissue. Int J Mol Sci 2020; 21:E1984. [PMID: 32183255 PMCID: PMC7139284 DOI: 10.3390/ijms21061984] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a pathogenic fungus capable of switching its morphology between yeast-like cells and filamentous hyphae and can associate with bacteria to form mixed biofilms resistant to antibiotics. In these structures, the fungal milieu can play a protective function for bacteria as has recently been reported for C. albicans and a periodontal pathogen-Porphyromonas gingivalis. Our current study aimed to determine how this type of mutual microbe protection within the mixed biofilm affects the contacting host cells. To analyze C. albicans and P. gingivalis persistence and host infection, several models for host-biofilm interactions were developed, including microbial exposure to a representative monocyte cell line (THP1) and gingival fibroblasts isolated from periodontitis patients. For in vivo experiments, a mouse subcutaneous chamber model was utilized. The persistence of P. gingivalis cells was observed within mixed biofilm with C. albicans. This microbial co-existence influenced host immunity by attenuating macrophage and fibroblast responses. Cytokine and chemokine production decreased compared to pure bacterial infection. The fibroblasts isolated from patients with severe periodontitis were less susceptible to fungal colonization, indicating a modulation of the host environment by the dominating bacterial infection. The results obtained for the mouse model in which a sequential infection was initiated by the fungus showed that this host colonization induced a milder inflammation, leading to a significant reduction in mouse mortality. Moreover, high bacterial counts in animal organisms were noted on a longer time scale in the presence of C. albicans, suggesting the chronic nature of the dual-species infection.
Collapse
Affiliation(s)
- Dominika Bartnicka
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Joanna Sykut
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Izabela Ciaston
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (J.K.); (I.C.); (K.A.)
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| | - Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.S.); (A.K.)
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.S.); (A.K.)
| | - Edyta Zyla
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland;
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland;
| | - Katarzyna Lazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University, Medical College, 31-155 Krakow, Poland; (K.L.-B.); (M.C.-G.)
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University, Medical College, 31-155 Krakow, Poland; (K.L.-B.); (M.C.-G.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (D.B.); (M.G.-G.); (J.S.); (G.B.); (M.Z.); (J.K.-K.)
| |
Collapse
|
11
|
Willis JR, Gabaldón T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms 2020; 8:microorganisms8020308. [PMID: 32102216 PMCID: PMC7074908 DOI: 10.3390/microorganisms8020308] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract: The human oral cavity is home to an abundant and diverse microbial community (i.e., the oral microbiome), whose composition and roles in health and disease have been the focus of intense research in recent years. Thanks to developments in sequencing-based approaches, such as 16S ribosomal RNA metabarcoding, whole metagenome shotgun sequencing, or meta-transcriptomics, we now can efficiently explore the diversity and roles of oral microbes, even if unculturable. Recent sequencing-based studies have charted oral ecosystems and how they change due to lifestyle or disease conditions. As studies progress, there is increasing evidence of an important role of the oral microbiome in diverse health conditions, which are not limited to diseases of the oral cavity. This, in turn, opens new avenues for microbiome-based diagnostics and therapeutics that benefit from the easy accessibility of the oral cavity for microbiome monitoring and manipulation. Yet, many challenges remain ahead. In this review, we survey the main sequencing-based methodologies that are currently used to explore the oral microbiome and highlight major findings enabled by these approaches. Finally, we discuss future prospects in the field.
Collapse
Affiliation(s)
- Jesse R. Willis
- Barcelona Supercomputing Centre (BCS-CNS), Jordi Girona, 29., 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Jordi Girona, 29., 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
12
|
Chang C, Wang H, Liu J, Pan C, Zhang D, Li X, Pan Y. Porphyromonas gingivalis Infection Promoted the Proliferation of Oral Squamous Cell Carcinoma Cells through the miR-21/PDCD4/AP-1 Negative Signaling Pathway. ACS Infect Dis 2019; 5:1336-1347. [PMID: 31243990 DOI: 10.1021/acsinfecdis.9b00032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent epidemiological studies have revealed that Porphyromonas gingivalis, a major pathogen in periodontal disease, is associated with the development of oral squamous cell carcinoma (OSCC). However, the underlying mechanisms induced by P. gingivalis have not been well-defined. We aimed to determine the role of P. gingivalis in OSCC proliferation and the relevant molecular mechanisms. A cellular proliferation model of OSCC Tca8113 cells infected by P. gingivalis at a multiplicity of infection (MOI) of 50 was established. Cell proliferation was drastically increased in the infected cells compared with the control cells, while the proportion of cells in S phase was increased and the proportion of cells in G1 phase was decreased in the infected cells compared with the control cells. Additionally, the levels of activator protein 1 (AP-1; c-Jun and c-Fos) and its target gene cyclin D1 were increased in P. gingivalis-infected Tca8113 cells compared with control cells. miR-21 expression was elevated when programmed cell death 4 (PDCD4) expression was downregulated. Cyclin D1 expression was regulated by miR-21, PDCD4, and AP-1. The disruption of the pathway by silencing c-Jun, blocking miR-21 expression, or overexpressing PDCD4 led to decreased cyclin D1 expression and inhibited cell proliferation. P. gingivalis DNA levels were positively correlated with miR-21 and c-Jun expression and negatively correlated with PDCD4 expression in clinical OSCC samples. Our findings indicated that P. gingivalis might promote OSCC proliferation by regulating cyclin D1 expression via the miR-21/PDCD4/AP-1 negative feedback signaling pathway.
Collapse
Affiliation(s)
- Chunrong Chang
- Department of Periodontics, School of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, Liaoning 110002, China
| | - Hongyan Wang
- Department of Periodontics, School of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, Liaoning 110002, China
| | - Junchao Liu
- Department of Periodontics, School of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, Liaoning 110002, China
| | - Chunling Pan
- Department of Periodontics, School of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, Liaoning 110002, China
| | - Dongmei Zhang
- Department of Periodontics, School of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, Liaoning 110002, China
| | - Xin Li
- Department of Periodontics, School of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, Liaoning 110002, China
| | - Yaping Pan
- Department of Periodontics, School of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, Liaoning 110002, China
- Department of Oral Biology, School of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, Liaoning 110002, China
| |
Collapse
|
13
|
Albuquerque‐Souza E, Balzarini D, Ando‐Suguimoto ES, Ishikawa KH, Simionato MRL, Holzhausen M, Mayer MPA. Probiotics alter the immune response of gingival epithelial cells challenged byPorphyromonas gingivalis. J Periodontal Res 2018; 54:115-127. [DOI: 10.1111/jre.12608] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/12/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Emmanuel Albuquerque‐Souza
- Division of PeriodonticsDepartment of StomatologySchool of DentistryUniversity of São Paulo São Paulo Brazil
- Department of MicrobiologyInstitute of Biomedical SciencesUniversity of São Paulo São Paulo Brazil
| | - Danilo Balzarini
- Division of PeriodonticsDepartment of StomatologySchool of DentistryUniversity of São Paulo São Paulo Brazil
| | - Ellen S. Ando‐Suguimoto
- Department of MicrobiologyInstitute of Biomedical SciencesUniversity of São Paulo São Paulo Brazil
| | - Karin H. Ishikawa
- Department of MicrobiologyInstitute of Biomedical SciencesUniversity of São Paulo São Paulo Brazil
| | - Maria R. L. Simionato
- Department of MicrobiologyInstitute of Biomedical SciencesUniversity of São Paulo São Paulo Brazil
| | - Marinella Holzhausen
- Division of PeriodonticsDepartment of StomatologySchool of DentistryUniversity of São Paulo São Paulo Brazil
| | - Marcia P. A. Mayer
- Division of PeriodonticsDepartment of StomatologySchool of DentistryUniversity of São Paulo São Paulo Brazil
- Department of MicrobiologyInstitute of Biomedical SciencesUniversity of São Paulo São Paulo Brazil
| |
Collapse
|
14
|
Jayaprakash K, Demirel I, Khalaf H, Bengtsson T. Porphyromonas gingivalis-induced inflammatory responses in THP1 cells are altered by native and modified low-density lipoproteins in a strain-dependent manner. APMIS 2018; 126:667-677. [DOI: 10.1111/apm.12860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/19/2018] [Indexed: 01/08/2023]
Affiliation(s)
| | - Isak Demirel
- Department of Medical Sciences; Örebro University; Örebro Sweden
| | - Hazem Khalaf
- Department of Medical Sciences; Örebro University; Örebro Sweden
| | | |
Collapse
|
15
|
Jayaprakash K, Demirel I, Gunaltay S, Khalaf H, Bengtsson T. PKC, ERK/p38 MAP kinases and NF-κB targeted signalling play a role in the expression and release of IL-1β and CXCL8 in Porphyromonas gingivalis-infected THP1 cells. APMIS 2017; 125:623-633. [PMID: 28493507 DOI: 10.1111/apm.12701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
Porphyromonas gingivalis is a keystone pathogen in periodontitis and is gaining importance in cardiovascular pathogenesis. Protease-activated receptors (PARs), toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD) on monocytes recognize the structural components on P. gingivalis, inducing inflammatory intermediates. Here, we elucidate the modulation of PARs, TLRs, NODs, and the role of MAPK and NF-κB in IL-1β and CXCL8 release. THP1 cells were stimulated with P. gingivalis wild-type W50 and its isogenic gingipain mutants: Rgp mutant E8 and Kgp mutant K1A. We observed modulation of PARs, TLRs, NOD, IL-1β and CXCL8 expression by P. gingivalis. Gingipains hydrolyse IL-1β and CXCL8, which is more evident for IL-1β accumulation at 24 h. Inhibition of PKC (protein kinase C), p38 and ERK (extracellular signal-regulated kinases) partially reduced P. gingivalis-induced IL-1β at 6 h, whereas PKC and ERK reduced CXCL8 at both 6 and 24 h. Following NF-κB inhibition, P. gingivalis-induced IL-1β and CXCL8 were completely suppressed to basal levels. Overall, TLRs, PARs and NOD possibly act in synergy with PKC, MAPK ERK/p38 and NF-κB in P. gingivalis-induced IL-1β and CXCL8 release from THP1 cells. These pro-inflammatory cytokines could affect leucocytes in circulation and exacerbate other vascular inflammatory conditions such as atherosclerosis.
Collapse
Affiliation(s)
| | - Isak Demirel
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Sezin Gunaltay
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Hazem Khalaf
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | | |
Collapse
|
16
|
Chhibber-Goel J, Singhal V, Bhowmik D, Vivek R, Parakh N, Bhargava B, Sharma A. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients. NPJ Biofilms Microbiomes 2016. [PMID: 28649401 PMCID: PMC5460270 DOI: 10.1038/s41522-016-0009-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coronary artery disease is an inflammatory disorder characterized by narrowing of coronary arteries due to atherosclerotic plaque formation. To date, the accumulated epidemiological evidence supports an association between oral bacterial diseases and coronary artery disease, but has failed to prove a causal link between the two. Due to the recent surge in microbial identification and analyses techniques, a number of bacteria have been independently found in atherosclerotic plaque samples from coronary artery disease patients. In this study, we present meta-analysis from published studies that have independently investigated the presence of bacteria within atherosclerotic plaque samples in coronary artery disease patients. Data were collated from 63 studies covering 1791 patients spread over a decade. Our analysis confirms the presence of 23 oral commensal bacteria, either individually or in co-existence, within atherosclerotic plaques in patients undergoing carotid endarterectomy, catheter-based atherectomy, or similar procedures. Of these 23 bacteria, 5 (Campylobacter rectus, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia, Prevotella nigrescens) are unique to coronary plaques, while the other 18 are additionally present in non-cardiac organs, and associate with over 30 non-cardiac disorders. We have cataloged the wide spectrum of proteins secreted by above atherosclerotic plaque-associated bacteria, and discuss their possible roles during microbial migration via the bloodstream. We also highlight the prevalence of specific poly-microbial communities within atherosclerotic plaques. This work provides a resource whose immediate implication is the necessity to systematically catalog landscapes of atherosclerotic plaque-associated oral commensal bacteria in human patient populations. A review of bacterial populations in the mouth and in diseased arteries will help research into the role of bacteria in heart disease. Amit Sharma and colleagues at the International Centre for Genetic Engineering and Biotechnology, with co-workers at the All India Institute of Medical Sciences, both in New Delhi, India, analyzed 63 studies covering 1791 patients spread over a decade. They summarize evidence of 23 types of oral bacteria that are also found in atherosclerotic plaques in artery walls. The review also cataloged the proteins secreted by the bacteria and discussed possible involvement of these proteins in the migration of bacteria through the bloodstream. Full genetic details are available for 19 of the 23 bacterial species, which should greatly assist further investigations into the significance of bacteria in the onset of heart disease.
Collapse
Affiliation(s)
- Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Varsha Singhal
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Debaleena Bhowmik
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Vivek
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeraj Parakh
- Cardiothoracic Sciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Balram Bhargava
- Cardiothoracic Sciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
17
|
Ho MH, Guo ZM, Chunga J, Goodwin JS, Xie H. Characterization of Innate Immune Responses of Human Endothelial Cells Induced by Porphyromonas gingivalis and Their Derived Outer Membrane Vesicles. Front Cell Infect Microbiol 2016; 6:139. [PMID: 27826542 PMCID: PMC5078693 DOI: 10.3389/fcimb.2016.00139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of the blood vessels, is one of the most common causes of morbidity and mortality world-wide. Involvement of Porphyromonas gingivalis in atherosclerosis is supported by observations from epidemiological, clinical, immunological, and molecular studies. Previously we reported that P. gingivalis vesicles have a much higher invasive efficiency than their originating cells. Here, we further compare the role of P. gingivalis cells and their vesicles in expression of chemoattractant proteins including CXCL1, CXCL2, and CXCL8, and adhesive molecules such as E-selectin in human umbilical vein endothelial cells (HUVECs). Both P. gingivalis 33277 cells and vesicles were able to up-regulate expression of these molecules, while the vesicles acted as more potent inducers of the inflammatory response associated with the development of atherosclerosis, consequently resulting in significant monocyte adhesion to a monolayer of HUVECs. Interestingly, we found that elevated expression of CXCL8 and E-selectin in endothelial cells induced by P. gingivalis correlated with the invasive ability of P. gingivalis cells and vesicles. Non-invasive bacterial cells and vesicles had no effect on expression of these genes. This study highlights the potential risk of P. gingivalis cells and vesicles in initiation of atherosclerosis and provides a potential target for the development of novel therapeutics against bacteria-associated atherosclerosis.
Collapse
Affiliation(s)
- Meng-Hsuan Ho
- Oral Biology, School of Dentistry, Meharry Medical CollegeNashville, TN, USA
| | - Zhong-Mao Guo
- Department of Physiology, Meharry Medical CollegeNashville, TN, USA
| | | | - J. Shawn Goodwin
- Department of Biochemistry and Cancer Biology, Meharry Medical CollegeNashville, TN, USA
| | - Hua Xie
- Oral Biology, School of Dentistry, Meharry Medical CollegeNashville, TN, USA
| |
Collapse
|
18
|
Zhang B, Sirsjö A, Khalaf H, Bengtsson T. Transcriptional profiling of human smooth muscle cells infected with gingipain and fimbriae mutants of Porphyromonas gingivalis. Sci Rep 2016; 6:21911. [PMID: 26907358 PMCID: PMC4764818 DOI: 10.1038/srep21911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/01/2016] [Indexed: 12/30/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is considered to be involved in the development of atherosclerosis. However, the role of different virulence factors produced by P. gingivalis in this process is still uncertain. The aim of this study was to investigate the transcriptional profiling of human aortic smooth muscle cells (AoSMCs) infected with wild type, gingipain mutants or fimbriae mutants of P. gingivalis. AoSMCs were exposed to wild type (W50 and 381), gingipain mutants (E8 and K1A), or fimbriae mutants (DPG-3 and KRX-178) of P. gingivalis. We observed that wild type P. gingivalis changes the expression of a considerable larger number of genes in AoSMCs compare to gingipain and fimbriae mutants, respectively. The results from pathway analysis revealed that the common differentially expressed genes for AoSMCs infected by 3 different wild type P. gingivalis strains were enriched in pathways of cancer, cytokine-cytokine receptor interaction, regulation of the actin cytoskeleton, focal adhesion, and MAPK signaling pathway. Disease ontology analysis showed that various strains of P. gingivalis were associated with different disease profilings. Our results suggest that gingipains and fimbriae, especially arginine-specific gingipain, produced by P. gingivalis play important roles in the association between periodontitis and other inflammatory diseases, including atherosclerosis.
Collapse
Affiliation(s)
- Boxi Zhang
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| | - Allan Sirsjö
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| | - Hazem Khalaf
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| | - Torbjörn Bengtsson
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
19
|
Links between atherosclerotic and periodontal disease. Exp Mol Pathol 2016; 100:220-35. [DOI: 10.1016/j.yexmp.2016.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 02/06/2023]
|
20
|
Zorina OA, Aimadinova NK, Basova AA, Rebrikov DV. [The relationship of molecular genetic markers with clinical signs and risk factors of periodontitis]. STOMATOLOGIIA 2016; 95:12-18. [PMID: 27876716 DOI: 10.17116/stomat201695512-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The study revealed positive correlation between bleeding on probing and teeth loss risk with periodontal hypercolonization by Porphyromonas gingivalis, Prevotella intermedia and Treponema denticola. Pathological tooth mobility was associated with hypercolonization by P. intermedia and Tannerella forsythensis. Expression of IL8, TNF-α, MMP8 and MMP9 genes was also assessed in patient groups divided according to the depth of periodontal pockets and-the severity of chronic periodontitis revealing IL8 as positive diagnostic marker.
Collapse
Affiliation(s)
- O A Zorina
- Sechenov First Moscow State Medical University, Moscow, Russia; Central Research Institute of Dentistry and Maxillofacial Surgery of Ministry of Health of Russian Federation, Moscow, Russia
| | - N K Aimadinova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A A Basova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - D V Rebrikov
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
21
|
Ao M, Miyauchi M, Furusho H, Inubushi T, Kitagawa M, Nagasaki A, Sakamoto S, Kozai K, Takata T. Dental Infection of Porphyromonas gingivalis Induces Preterm Birth in Mice. PLoS One 2015; 10:e0137249. [PMID: 26322971 PMCID: PMC4556457 DOI: 10.1371/journal.pone.0137249] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/13/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Epidemiological studies have revealed a link between dental infection and preterm birth or low birth weight (PTB/LBW), however, the underlying mechanisms remain unclear. Progress in understanding the associated mechanisms has been limited in part by lack of an animal model for chronic infection-induced PTB/LBW, mimicking pregnancy under conditions of periodontitis. We aimed to establish a mouse model of chronic periodontitis in order to investigate the link between periodontitis and PTB/LBW. METHODS To establish chronic inflammation beginning with dental infection, we surgically opened mouse (female, 8 weeks old) 1st molar pulp chambers and directly infected with w83 strain Porphyromonas gingivalis (P.g.), a keystone periodontal pathogen. Mating was initiated at 6 wks post-infection, by which time dental granuloma tissue had developed and live P.g. was cultured from extracted tooth root, which serves as a persistent source of P.g. The gestational day (gd) and birth weight were recorded during for P.g.-infected and control mice, and serum and placental tissues were collected at gd 15 to evaluate the systemic and local conditions during pregnancy. RESULTS Dental infection with P.g. significantly increased circulating TNF-α (2.5-fold), IL-17 (2-fold), IL-6 (2-fold) and IL-1β (2-fold). The P.g.-infected group delivered at gd 18.25 vs. gd 20.45 in the non-infected control (NC) group (p < 0.01), and pups exhibited LBW compared to controls (p < 0.01). P.g. was localized to placental tissues by immunohistochemistry and PCR, and defects in placental tissues of P.g. infected mice included premature rupture of membrane, placental detachment, degenerative changes in trophoblasts and endothelial cells, including necrotic areas. P.g. infection caused significantly increased numbers of polymorphonuclear leukocytes (PMNLs) and macrophages in placental tissues, associated with increased local expression of pro-inflammatory mediators including TNF-α and COX-2. Further placental tissue damage was indicated in P.g. infected mice by decreased CD-31 in endothelial cells, increased expression of 8OHdG, an indicator of oxidative DNA damage, and cleaved caspase-3, a marker of apoptosis. In vitro, P.g. lipopolysaccharide significantly increased expression of COX-2, IL-8 and TNF-α, in HTR-8 trophoblasts in an NF-κB-dependent fashion. CONCLUSIONS Our novel mouse model supports previous epidemiological studies signifying dental infection as predisposing factor for PTB/LBW. We demonstrate PTB and LBW in infected mice, translocation of P.g to placental tissues, increased circulating and local pro-inflammatory markers, and the capability of P.g. LPS to directly induce cytokine production in trophoblasts, in vitro. These findings further underscore the importance of local and systemic infections and inflammation during pregnancy and suggest that prevention and/or elimination of dental infections such as marginal or periapical periodontitis before pregnancy may have a beneficial effect on PTB/LBW.
Collapse
Affiliation(s)
- Min Ao
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
- Department of Pediatric Dentistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Toshihiro Inubushi
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Masae Kitagawa
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Atsuhiro Nagasaki
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Shinichi Sakamoto
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
- * E-mail:
| |
Collapse
|
22
|
The role of toll-like and protease-activated receptors in the expression of cytokines by gingival fibroblasts stimulated with the periodontal pathogen Porphyromonas gingivalis. Cytokine 2015; 76:424-432. [PMID: 26318255 DOI: 10.1016/j.cyto.2015.08.263] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 12/25/2022]
Abstract
Porphyromonas gingivalis is a periodontitis-associated pathogen and interactions between the bacterium and gingival fibroblasts play an important role in development and progression of periodontitis, an inflammatory disease leading to degeneration of tooth-supporting structures. Gingival fibroblasts, which expresses protease activated receptors (PARs) as well as toll-like receptors (TLRs), produces inflammatory mediators upon bacterial challenges. In this study, we elucidated the importance of PAR1, PAR2, TLR2 and TLR4 for the expression and secretion of CXCL8, interleukin-6 (IL-6), transforming growth factor-β1 (TGF-β1) and secretory leukocyte inhibitor (SLPI). Human gingival fibroblasts were transfected with small-interfering RNA against the target genes, and then stimulated with P. gingivalis wild-type W50 and W50-derived double rgp mutant E8 and kgp mutant K1A. TLR2-silencing reduced P. gingivalis-induced CXCL8 and IL-6. IL-6 was also reduced after PAR1-silencing. No effects were observed for TGF-β1. SLPI was suppressed by P. gingivalis and silencing of PAR1 as well as TLR2, gave additional suppression at the mRNA level. TLR4 was not involved in the regulation of the investigated mediators. CXCL8 and IL-6 are important for progression and development of periodontitis, leading to a chronic inflammation that may contribute to the tissue destruction that follows an exacerbated host response. Therefore, regulating the expression of TLR2 and subsequent release of CXCL8 and IL-6 in periodontitis could attenuate the tissue destruction seen in periodontitis.
Collapse
|
23
|
Gingipains from the Periodontal Pathogen Porphyromonas gingivalis Play a Significant Role in Regulation of Angiopoietin 1 and Angiopoietin 2 in Human Aortic Smooth Muscle Cells. Infect Immun 2015; 83:4256-65. [PMID: 26283334 DOI: 10.1128/iai.00498-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/11/2015] [Indexed: 12/24/2022] Open
Abstract
Angiopoietin 1 (Angpt1) and angiopoietin 2 (Angpt2) are the ligands of tyrosine kinase (Tie) receptors, and they play important roles in vessel formation and the development of inflammatory diseases, such as atherosclerosis. Porphyromonas gingivalis is a Gram-negative periodontal bacterium that is thought to contribute to the progression of cardiovascular disease. The aim of this study was to investigate the role of P. gingivalis infection in the modulation of Angpt1 and Angpt2 in human aortic smooth muscle cells (AoSMCs). We exposed AoSMCs to wild-type (W50 and 381), gingipain mutant (E8 and K1A), and fimbrial mutant (DPG-3 and KRX-178) P. gingivalis strains and to different concentrations of tumor necrosis factor (TNF). The atherosclerosis risk factor TNF was used as a positive control in this study. We found that P. gingivalis (wild type, K1A, DPG3, and KRX178) and TNF upregulated the expression of Angpt2 and its transcription factor ETS1, respectively, in AoSMCs. In contrast, Angpt1 was inhibited by P. gingivalis and TNF. However, the RgpAB mutant E8 had no effect on the expression of Angpt1, Angpt2, or ETS1 in AoSMCs. The results also showed that ETS1 is critical for P. gingivalis induction of Angpt2. Exposure to Angpt2 protein enhanced the migration of AoSMCs but had no effect on proliferation. This study demonstrates that gingipains are crucial to the ability of P. gingivalis to markedly increase the expressed Angpt2/Angpt1 ratio in AoSMCs, which determines the regulatory role of angiopoietins in angiogenesis and their involvement in the development of atherosclerosis. These findings further support the association between periodontitis and cardiovascular disease.
Collapse
|
24
|
Jayaprakash K, Demirel I, Khalaf H, Bengtsson T. The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutrophils and the periodontal pathogenPorphyromonas gingivalis. Mol Oral Microbiol 2015; 30:361-75. [DOI: 10.1111/omi.12099] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2015] [Indexed: 01/11/2023]
Affiliation(s)
- K. Jayaprakash
- School of Health and Medical Sciences; Örebro University; Örebro Sweden
| | - I. Demirel
- School of Health and Medical Sciences; Örebro University; Örebro Sweden
| | - H. Khalaf
- School of Health and Medical Sciences; Örebro University; Örebro Sweden
| | - T. Bengtsson
- School of Health and Medical Sciences; Örebro University; Örebro Sweden
| |
Collapse
|