1
|
Chapartegui-González I, Stockton JL, Bowser S, Badten AJ, Torres AG. Unraveling the role of toxin-antitoxin systems in Burkholderia pseudomallei: exploring bacterial pathogenesis and interactions within the HigBA families. Microbiol Spectr 2024; 12:e0074824. [PMID: 38916327 PMCID: PMC11302019 DOI: 10.1128/spectrum.00748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Burkholderia pseudomallei (Bpm) is a Gram-negative intracellular pathogen that causes melioidosis in humans, a neglected, underreported, and lethal disease that can reach a fatal outcome in over 50% of the cases. It can produce both acute and chronic infections, the latter being particularly challenging to eliminate because of the intracellular life cycle of the bacteria and its ability to generate a "persister" dormant state. The molecular mechanism that allows the switch between growing and persister phenotypes is not well understood but it is hypothesized to be due at least in part to the participation of toxin-antitoxin (TA) systems. We have previously studied the link between one of those systems (defined as HigBA) with specific expression patterns associated with levofloxacin antibiotic exposure. Through in silico methods, we predicted the presence of another three pairs of genes encoding for additional putative HigBA systems. Therefore, our main goal was to establish which mechanisms are conserved as well as which pathways are specific among different Bpm TA systems from the same family. We hypothesize that the high prevalence, and sometimes even redundancy of these systems in the Bpm chromosomes indicates that they can interact with each other and not function as only individual systems, as it was traditionally thought, and might be playing an undefined role in Bpm lifecycle. Here, we show that both the toxin and the antitoxin of the different systems contribute to bacterial survival and that toxins from the same family can have a cumulative effect under environmental stressful conditions. IMPORTANCE Toxin-antitoxin (TA) systems play a significant role in bacterial persistence, a phenomenon where bacterial cells enter a dormant or slow-growing state to survive adverse conditions such as nutrient deprivation, antibiotic exposure, or host immune responses. By studying TA systems in Burkholderia pseudomallei, we can gain insights into how this pathogen survives and persists in the host environment, contributing to its virulence and ability to cause melioidosis chronic infections.
Collapse
Affiliation(s)
| | - Jacob L. Stockton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sarah Bowser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander J. Badten
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Ranta K, Skurnik M, Kiljunen S. fENko-Kae01 is a flagellum-specific jumbo phage infecting Klebsiella aerogenes. BMC Microbiol 2024; 24:234. [PMID: 38951769 PMCID: PMC11218385 DOI: 10.1186/s12866-024-03387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Klebsiella aerogenes is an opportunistic pathogen that causes a wide variety of infections. Due to the rising problem of antibiotic resistance, novel antibiotics and strategies to combat bacterial infections are needed. Host-specific bacteriophages are natural enemies of bacteria and can be used in phage therapy as an alternative form of treatment against bacterial infections. Jumbo phages are defined as phages with genomes larger than 200 kb. Relatively few studies have been done on jumbo phages compared to smaller phages. RESULTS A novel phage, fENko-Kae01, was isolated from a commercial phage cocktail. Genomic analysis revealed that fENko-Kae01 is a lytic jumbo phage with a 360 kb genome encoding 578 predicted genes. No highly similar phage genomes were identified and fENko-Kae01 may be a completely new genus representative. No known genes associated with lysogenic life cycle, bacterial virulence, or antibiotic resistance were identified. The phage had myovirus morphology and a narrow host range. Phage resistant bacterial mutants emerged under phage selection. Whole genome sequencing revealed that the biogenesis of the flagellum was affected in four mutants and the lack of functional flagellum was confirmed in motility assays. Furthermore, phage fENKo-Kae01 failed to adsorb on the non-motile mutants indicating that the bacterial flagellum is the phage-binding receptor. CONCLUSIONS fENko-Kae01 is a novel jumbo bacteriophage that is considered safe for phage therapy. fENko-Kae01 uses the flagellum as the phage-binding receptor and may represent a completely novel genus.
Collapse
Affiliation(s)
- Kira Ranta
- HUS Diagnostic Center, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saija Kiljunen
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Zhang H, Su X, Zheng X, Liu M, Zhao C, Liu X, Ma Z, Zhang S, Zhang W. vB_EcoM-P896 coliphage isolated from duck sewage can lyse both intestinal pathogenic Escherichia coli and extraintestinal pathogenic E. coli. Int Microbiol 2024:10.1007/s10123-024-00519-5. [PMID: 38613721 DOI: 10.1007/s10123-024-00519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Pathogenic Escherichia coli strains cause diseases in both humans and animals. The limiting factors to prevent as well as control infections from pathogenic E. coli strains are their pathotypes, serotypes, and drug resistance. Herein, a bacteriophage (vB_EcoM-P896) has been isolated from duck sewage. Furthermore, aside from targeting intestinal pathogenic E. coli strains like enteropathogenic E. coli, Shiga toxin-producing E. coli, entero-invasive E. coli, and enteroaggregative E. coli, vB_EcoM-P896 can cause lysis in extraintestinal pathogenic E. coli strains such as avian pathogenic E. coli. Stability analysis revealed that vB_EcoM-P896 was stable under the following conditions: temperature, 4℃-50℃; pH, 3-11. The sequencing of the vB_EcoM-P896 genome was conducted utilizing an HiSeq system (Illumina, San Diego, CA) and subjected to de novo assembling with the aid of Spades 3.11.1. The characteristics of the DNA genome were as follows: size, 170,656 bp; GC content, 40.4%; the number of putative coding regions, 294. Transmission electron microscopy analysis of morphology and genome analysis revealed that the phage vB_EcoM-P896 belonged to the order Caudovirales and the family Myoviridae. The pan-genome analysis of vB_EcoM-P896 was divided into two levels. The first level involved the analysis of 91 strains of muscle tail phages, which were mainly divided into 5 groups. The second level involved the analysis of 24 strains of myophage with high homology. Of the 1480 gene clusters, 23 were shared core genes. Neighbor-joining phylogenetic trees were constructed using the Poisson model with MEGA6.0 based on the conserved sequences of phage proteins, the amino acid sequence of the terminase large subunit, and tail fibrin. Further analysis revealed that vB_EcoM-P896 was a typical T4-like potent phage with potential clinical applications.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Food and Biology Engineering, Wuhu Institute of Technology, Wuhu, 241003, China
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China
| | - Xiazhu Su
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xiangkuan Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Meihan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Chengxin Zhao
- Fushan Economic Development Zone, Yantai Jinhai Pharmaceutical Co. LTD 28 Jilin Road, Yantai City, China
| | - Xiao Liu
- Fushan Economic Development Zone, Yantai Jinhai Pharmaceutical Co. LTD 28 Jilin Road, Yantai City, China
| | - Zhenxing Ma
- Department of Food and Biology Engineering, Wuhu Institute of Technology, Wuhu, 241003, China
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China
| | - Shuang Zhang
- Department of Food and Biology Engineering, Wuhu Institute of Technology, Wuhu, 241003, China.
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
4
|
Wang T, Cheng B, Jiao R, Zhang X, Zhang D, Cheng X, Ling N, Ye Y. Characterization of a novel high-efficiency cracking Burkholderia gladiolus phage vB_BglM_WTB and its application in black fungus. Int J Food Microbiol 2024; 414:110615. [PMID: 38325260 DOI: 10.1016/j.ijfoodmicro.2024.110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Burkholderia gladiolus (B. gladiolus) is foodborne pathogenic bacteria producing bongkrekic acid (BA), which causes food poisoning and has a mortality rate of up to 40 % or more. However, no drugs have been reported in the literature for the prevention and treatment of this infection. In this study, a phage was identified to control B. gladiolus. The novel phage vB_BglM_WTB (WTB), which lyse B. gladiolus with high efficiency, was isolated from sewage of Huaihe Road Throttle Well Sewage Treatment Plant in Hefei. Transmission electron microscopy showed that WTB had an icosahedral head (69 ± 2 nm) and a long retractable tail (108 ± 2 nm). Its optimal temperature and pH ranges to control B. gladiolus were 25 °C -65 °C and 3-11 respectively. The phage WTB was identified as a linear double-stranded DNA phage of 68, 541 bp with 60.04 % G + C content, with a long latent period of 60 min. Phylogenetic analysis and comparative genetic analysis indicated that phage WTB has low identity (<50 %) with other phages, with the highest similarity to Burkholderia phage Maja (25.7 %), which showed that it does not belong to any previous genera recognized by the International Committee on Taxonomy of Viruses (ICTV) and was a candidate for a new genus within the Caudoviricetes. We have submitted a new proposal to ICTV to create a new genus, Bglawtbvirus. No transfer RNA (tRNA), virulence associated and antibiotic resistance genes were detected in phage WTB. Experimental results indicated that WTB at 4 °C and 25 °C had excellent inhibition activity against B. gladiolus in the black fungus, with an inhibition efficiency of over 99 %. The amount of B. gladiolus in the black fungus was reduced to a minimum of 89 CFU/mL when treated by WTB at 25 °C for 2 h. The inhibition rate remained at 99.97 % even after 12 h. The findings showed that the phage WTB could be applied as a food-cleaning agent for enhancing food safety and contributed to our understanding of phage biology and diversity.
Collapse
Affiliation(s)
- Ting Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bin Cheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Jiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiyan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Diwei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiangyu Cheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
5
|
Teklemariam AD, Al Hindi R, Qadri I, Alharbi MG, Hashem AM, Alrefaei AA, Basamad NA, Haque S, Alamri T, Harakeh S. Phage cocktails - an emerging approach for the control of bacterial infection with major emphasis on foodborne pathogens. Biotechnol Genet Eng Rev 2024; 40:36-64. [PMID: 36927397 DOI: 10.1080/02648725.2023.2178870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/24/2023] [Indexed: 03/18/2023]
Abstract
Phage therapy has recently attracted a great deal of attention to counteract the rapid emergence of antibiotic-resistant bacteria. In comparison to monophage therapy, phage cocktails are typically used to treat individual and/or multi-bacterial infections since the bacterial agents are unlikely to become resistant as a result of exposure to multiple phages simultaneously. The bacteriolytic effect of phage cocktails may produce efficient killing effect in comparison to individual phage. However, multiple use of phages (complex cocktails) may lead to undesirable side effects such as dysbiosis, horizontal gene transfer, phage resistance, cross resistance, and/or higher cost of production. Cocktail formulation, therefore, representa compromise between limiting the complexity of the cocktail and achieving substantial bacterial load reduction towards the targeted host organisms. Despite some constraints, the applications of monophage therapy have been well documented in the literature. However, phage cocktails-based approaches and their role for the control of pathogens have not been well investigated. In this review, we discuss the principle of phage cocktail formulations, their optimization strategies, major phage cocktail preparations, and their efficacy in inactivating various food borne bacterial pathogens.
Collapse
Affiliation(s)
- Addisu D Teklemariam
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rashad Al Hindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona G Alharbi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccine and Immunotherapy Unit, King Fahd Medical Research Center, Jeddah, Saudi Arabia
| | - Abdullah A Alrefaei
- Molecular Virology Department, King Fahad General Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Najlaa A Basamad
- Parasitology Department, King Fahad General Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese, American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Turki Alamri
- Family and community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Xiong X, Gong J, Lu T, Yuan L, Lan Y, Tu X. Characteristics of intestinal bacteriophages and their relationship with Bacteria and serum metabolites during quail sexual maturity transition. BMC Vet Res 2024; 20:93. [PMID: 38459523 PMCID: PMC10921806 DOI: 10.1186/s12917-024-03945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Bacteriophages are prokaryotic viruses that rank among the most abundant microbes in the gut but remain among the least understood, especially in quails. In this study, we surveyed the gut bacteriophage communities in 22 quails at different ages (days 20 and 70) using shotgun metagenomic sequencing. We then systematically evaluated the relationships with gut bacteria and host serum metabolites. RESULTS We discovered that Myoviridae and Siphoviridae were the dominant bacteriophage families in quails. Through a random forest and LEfSe analysis, we identified 23 differential bacteriophages with overlapping presence. Of these, 21 bacteriophages (e.g., Enterococcus phage IME-EFm5 and Enterococcus phage IME-EFm1) showed higher abundances in the day 20 group, while two bacteriophages (Bacillus phage Silence and Bacillus virus WPh) were enriched in the day 70 group. These key bacteriophages can serve as biomarkers for quail sexual maturity. Additionally, the differential bacteriophages significantly correlated with specific bacterial species and shifts in the functional capacities of the gut microbiome. For example, Enterococcus phages (e.g., Enterococcus phage EFP01, Enterococcus phage IME-EFm5, and Enterococcus phage IME-EFm1) were significantly (P < 0.001, FDR) and positively correlated with Enterococcus faecalis. However, the relationships between the host serum metabolites and either bacteriophages or bacterial species varied. None of the bacteriophages significantly (P > 0.05, FDR) correlated with nicotinamide riboside and triacetate lactone. In contrast, some differential bacterial species (e.g., Christensenella massiliensis and Bacteroides neonati) significantly (P < 0.05, FDR) correlated with nicotinamide riboside and triacetate lactone. Furthermore, characteristic successional alterations in gut bacteriophages, bacteria, and host serum metabolites across different ages highlighted a sexual maturity transition coexpression network. CONCLUSION This study improves our understanding of the gut bacteriophage characteristics in quails and offers profound insights into the interactions among gut bacteriophages, bacteria, and host serum metabolites during the quail's sexual maturity transition.
Collapse
Affiliation(s)
- Xinwei Xiong
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi, 330032, China.
| | - Jishang Gong
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi, 330032, China
| | - Tian Lu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi, 330032, China
| | - Liuying Yuan
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi, 330032, China
| | - Yuehang Lan
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi, 330032, China
| | - Xutang Tu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi, 330032, China.
| |
Collapse
|
7
|
Turner D, Adriaenssens EM, Lehman SM, Moraru C, Kropinski AM. Bacteriophage Taxonomy: A Continually Evolving Discipline. Methods Mol Biol 2024; 2734:27-45. [PMID: 38066361 DOI: 10.1007/978-1-0716-3523-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
While taxonomy is an often underappreciated branch of science, it serves very important roles. Bacteriophage taxonomy has evolved from a discipline based mainly on morphology, characterized by the work of David Bradley and Hans-Wolfgang Ackermann, to the sequence-based approach that is taken today. The Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) takes a holistic approach to classifying prokaryote viruses by measuring overall DNA and protein similarity and phylogeny before making decisions about the taxonomic position of a new virus. The huge number of complete genomes being deposited with the National Center for Biotechnology Information (NCBI) and other public databases has resulted in a reassessment of the taxonomy of many viruses, and the future will see the introduction of new viral families and higher orders.
Collapse
Affiliation(s)
- Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, UK
| | | | - Susan M Lehman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Cristina Moraru
- Department of The Biology of Geological Processes, Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Hwang CY, Cho BC, Kang JK, Park J, Hardies SC. Genomic Analysis of Two Cold-Active Pseudoalteromonas Phages Isolated from the Continental Shelf in the Arctic Ocean. Viruses 2023; 15:2061. [PMID: 37896838 PMCID: PMC10612066 DOI: 10.3390/v15102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Cold-active bacteriophages are bacterial viruses that infect and replicate at low temperatures (≤4 °C). Understanding remains limited of how cold-active phage-host systems sustain high viral abundance despite the persistently low temperatures in pelagic sediments in polar seas. In this study, two Pseudoalteromonas phages, ACA1 and ACA2, were isolated from sediment core samples of the continental shelf in the western Arctic Ocean. These phages exhibited successful propagation at a low temperature of 1 °C and displayed typical myovirus morphology with isometric icosahedral heads and contractile tails. The complete genome sequences of phages ACA1 and ACA2 were 36,825 bp and 36,826 bp in size, respectively, sharing almost the same gene content. These are temperate phages encoding lysogeny-related proteins such as anti-repressor, immunity repressor and integrase. The absence of cross-infection between the host strains, which were genomically distinct Pseudoalteromonas species, can likely be attributed to heavy divergence in the anti-receptor apparently mediated by an associated diversity-generating retroelement. HHpred searching identified genes for all of the structural components of a P2-like phage (family Peduoviridae), although the whole of the Peduoviridae family appeared to be divided between two anciently diverged tail modules. In contrast, Blast matching and whole genome tree analysis are dominated by a nonstructural gene module sharing high similarity with Pseudoalteromonas phage C5a (founder of genus Catalunyavirus). This study expands the knowledge of diversity of P2-like phages known to inhabit Peudoalteromonas and demonstrates their presence in the Arctic niche.
Collapse
Affiliation(s)
- Chung Yeon Hwang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; (C.Y.H.); (B.C.C.); (J.K.K.); (J.P.)
| | - Byung Cheol Cho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; (C.Y.H.); (B.C.C.); (J.K.K.); (J.P.)
- Saemangeum Environmental Research Center, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jin Kyeong Kang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; (C.Y.H.); (B.C.C.); (J.K.K.); (J.P.)
| | - Jihye Park
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea; (C.Y.H.); (B.C.C.); (J.K.K.); (J.P.)
| | - Stephen C. Hardies
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Hou Y, Wu Z, Ren L, Chen Y, Zhang YA, Zhou Y. Characterization and application of a lytic jumbo phage ZPAH34 against multidrug-resistant Aeromonas hydrophila. Front Microbiol 2023; 14:1178876. [PMID: 37415809 PMCID: PMC10321303 DOI: 10.3389/fmicb.2023.1178876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023] Open
Abstract
Aeromonas hydrophila is an emerging foodborne pathogen causing human gastroenteritis. Aeromonas species isolated from food such as seafood presented multidrug-resistance (MDR), raising serious concerns regarding food safety and public health. The use of phages to infect bacteria is a defense against drug-resistant pathogens. In this study, phage ZPAH34 isolated from the lake sample exerted lytic activity against MDR A. hydrophila strain ZYAH75 and inhibited the biofilm on different food-contacting surfaces. ZPAH34 has a large dsDNA genome of 234 kb which belongs to a novel jumbo phage. However, its particle size is the smallest of known jumbo phages so far. Based on phylogenetic analysis, ZPAH34 was used to establish a new genus Chaoshanvirus. Biological characterization revealed that ZPAH34 exhibited wide environmental tolerance, and a high rapid adsorb and reproductive capacity. Food biocontrol experiments demonstrated that ZPAH34 reduces the viable count of A. hydrophila on fish fillets (2.31 log) and lettuce (3.28 log) with potential bactericidal effects. This study isolated and characterized jumbo phage ZPAH34 not only enriched the understanding of phage biological entity diversity and evolution because of its minimal virion size with large genome but also was the first usage of jumbo phage in food safety to eliminate A. hydrophila.
Collapse
Affiliation(s)
- Yuting Hou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Li Ren
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yuan Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Shenzhen Institute of Nutrition and Health, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
10
|
Dai Q, Ding J, Cui X, Zhu Y, Chen H, Zhu L. Beyond bacteria: Reconstructing microorganism connections and deciphering the predicted mutualisms in mammalian gut metagenomes. Ecol Evol 2023; 13:e9829. [PMID: 36844675 PMCID: PMC9944162 DOI: 10.1002/ece3.9829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Numerous gut microbial studies have focused on bacteria. However, archaea, viruses, fungi, protists, and nematodes are also regular residents of the gut ecosystem. Little is known about the composition and potential interactions among these six kingdoms in the same samples. Here, we unraveled the complex connection among them using approximately 123 gut metagenomes from 42 mammalian species (including carnivores, omnivores, and herbivores). We observed high variation in bacterial and fungal families and relatively low variation in archaea, viruses, protists, and nematodes. We found that some fungi in the mammalian intestine might come from environmental sources (e.g., soil and dietary plants), and some might be native to the intestine (e.g., the occurrence of Neocallimastigomycetes). The Methanobacteriaceae and Plasmodiidae families (archaea and protozoa, respectively) were predominant in these metagenomes, whereas Onchocercidae and Trichuridae were the two most common nematodes, and Siphoviridae and Myoviridae the two most common virus families in these mammalian gut metagenomes. Interestingly, most of the pairwise co-occurrence patterns were significantly positive among these six kingdoms, and significantly negative networks mainly occurred between fungi and prokaryotes (both bacteria and archaea). Our study revealed some inconvenient characteristics in the mammalian gut microorganism ecosystem: (1) the community formed by members of the analyzed kingdoms reflects the life history of the host and the potential threat posed by pathogenic protists and nematodes in mammals; and (2) the networks suggest the existence of predicted mutualism among members of these six kingdoms and of the predicted competition, mainly among fungi and other kingdoms.
Collapse
Affiliation(s)
- Qinlong Dai
- Sichuan Liziping National Natural ReserveShimianChina
| | | | - Xinyuan Cui
- College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Yudong Zhu
- Sichuan Liziping National Natural ReserveShimianChina
| | - Hua Chen
- Mingke Biotechnology (Hangzhou) Co., Ltd.HangzhouChina
| | - Lifeng Zhu
- College of PharmacyNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
11
|
Elois MA, da Silva R, Pilati GVT, Rodríguez-Lázaro D, Fongaro G. Bacteriophages as Biotechnological Tools. Viruses 2023; 15:349. [PMID: 36851563 PMCID: PMC9963553 DOI: 10.3390/v15020349] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Bacteriophages are ubiquitous organisms that can be specific to one or multiple strains of hosts, in addition to being the most abundant entities on the planet. It is estimated that they exceed ten times the total number of bacteria. They are classified as temperate, which means that phages can integrate their genome into the host genome, originating a prophage that replicates with the host cell and may confer immunity against infection by the same type of phage; and lytics, those with greater biotechnological interest and are viruses that lyse the host cell at the end of its reproductive cycle. When lysogenic, they are capable of disseminating bacterial antibiotic resistance genes through horizontal gene transfer. When professionally lytic-that is, obligately lytic and not recently descended from a temperate ancestor-they become allies in bacterial control in ecological imbalance scenarios; these viruses have a biofilm-reducing capacity. Phage therapy has also been advocated by the scientific community, given the uniqueness of issues related to the control of microorganisms and biofilm production when compared to other commonly used techniques. The advantages of using bacteriophages appear as a viable and promising alternative. This review will provide updates on the landscape of phage applications for the biocontrol of pathogens in industrial settings and healthcare.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Raphael da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Giulia Von Tönnemann Pilati
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
12
|
Jansen D, Matthijnssens J. The Emerging Role of the Gut Virome in Health and Inflammatory Bowel Disease: Challenges, Covariates and a Viral Imbalance. Viruses 2023; 15:173. [PMID: 36680214 PMCID: PMC9861652 DOI: 10.3390/v15010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Virome research is a rapidly growing area in the microbiome field that is increasingly associated with human diseases, such as inflammatory bowel disease (IBD). Although substantial progress has been made, major methodological challenges limit our understanding of the virota. In this review, we describe challenges that must be considered to accurately report the virome composition and the current knowledge on the virome in health and IBD. First, the description of the virome shows strong methodological biases related to wetlab (e.g., VLP enrichment) and bioinformatics approaches (viral identification and classification). Second, IBD patients show consistent viral imbalances characterized by a high relative abundance of phages belonging to the Caudovirales and a low relative abundance of phages belonging to the Microviridae. Simultaneously, a sporadic contraction of CrAss-like phages and a potential expansion of the lysogenic potential of the intestinal virome are observed. Finally, despite numerous studies that have conducted diversity analysis, it is difficult to draw firm conclusions due to methodological biases. Overall, we present the many methodological and environmental factors that influence the virome, its current consensus in health and IBD, and a contributing hypothesis called the "positive inflammatory feedback loop" that may play a role in the pathophysiology of IBD.
Collapse
Affiliation(s)
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute, Department of Microbiology, Immunology and Transplantation, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
13
|
Baran N, Carlson MCG, Sabehi G, Peleg M, Kondratyeva K, Pekarski I, Lindell D. Widespread yet persistent low abundance of TIM5-like cyanophages in the oceans. Environ Microbiol 2022; 24:6476-6492. [PMID: 36116015 PMCID: PMC10087341 DOI: 10.1111/1462-2920.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/12/2022] [Indexed: 01/12/2023]
Abstract
Ocean ecosystems are inhabited by a diverse set of viruses that impact microbial mortality and evolution. However, the distribution and abundances of specific viral lineages, particularly those from the large bank of rare viruses, remains largely unknown. Here, we assessed the diversity and abundance of the TIM5-like cyanophages. The sequencing of three new TIM5-like cyanophage genomes and environmental amplicons of a signature gene from the Red Sea revealed highly conserved gene content and sequence similarity. We adapted the polony method, a solid-phase polymerase chain reaction assay, to quantify TIM5-like cyanophages during three 2000 km expeditions in the Pacific Ocean and four annual cycles in the Red Sea. TIM5-like cyanophages were widespread, detected at all latitudes and seasons surveyed throughout the photic zone. Yet they were generally rare, ranging between <100 and 4000 viruses·ml-1 . Occasional peaks in abundance of 10- to 100-fold were observed, reaching 71,000 viruses·ml-1 . These peaks were ephemeral and seasonally variable in the Red Sea. Infection levels, quantified during one such peak, were very low. These characteristics of low diversity and abundance, as well as variable outbreaks, distinguishes the TIM5-like lineage from other major cyanophage lineages and illuminates that rare virus lineages can be persistent and widespread in the oceans.
Collapse
Affiliation(s)
- Nava Baran
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Michael C G Carlson
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Gazalah Sabehi
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Margalit Peleg
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Kira Kondratyeva
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Irena Pekarski
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| | - Debbie Lindell
- Technion - Israel Institute of Technology, Faculty of Biology, Haifa, Israel
| |
Collapse
|
14
|
Davis P, Seto D, Mahadevan P. CoreGenes5.0: An Updated User-Friendly Webserver for the Determination of Core Genes from Sets of Viral and Bacterial Genomes. Viruses 2022; 14:v14112534. [PMID: 36423143 PMCID: PMC9693508 DOI: 10.3390/v14112534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The determination of core genes in viral and bacterial genomes is crucial for a better understanding of their relatedness and for their classification. CoreGenes5.0 is an updated user-friendly web-based software tool for the identification of core genes in and data mining of viral and bacterial genomes. This tool has been useful in the resolution of several issues arising in the taxonomic analysis of bacteriophages and has incorporated many suggestions from researchers in that community. The webserver displays result in a format that is easy to understand and allows for automated batch processing, without the need for any user-installed bioinformatics software. CoreGenes5.0 uses group protein clustering of genomes with one of three algorithm options to output a table of core genes from the input genomes. Previously annotated "unknown genes" may be identified with homologues in the output. The updated version of CoreGenes is able to handle more genomes, is faster, and is more robust, providing easier analysis of custom or proprietary datasets. CoreGenes5.0 is accessible at coregenes.org, migrating from a previous site.
Collapse
Affiliation(s)
- Patrick Davis
- Department of Biology, The University of Tampa, Tampa, FL 33606, USA
| | - Donald Seto
- Department of Systems Biology, George Mason University, Manassas, VA 20110, USA
- Correspondence: (D.S.); (P.M.)
| | - Padmanabhan Mahadevan
- Department of Biology, The University of Tampa, Tampa, FL 33606, USA
- Correspondence: (D.S.); (P.M.)
| |
Collapse
|
15
|
Properties of a Novel Salmonella Phage L66 and Its Application Based on Electrochemical Sensor-Combined AuNPs to Detect Salmonella. Foods 2022; 11:foods11182836. [PMID: 36140964 PMCID: PMC9498146 DOI: 10.3390/foods11182836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/19/2022] Open
Abstract
Salmonella is widespread in nature and poses a significant threat to human health and safety. Phage is considered as a new tool for the control of food-borne pathogens. In this study, Salmonella phage L66 (phage L66) was isolated from sewage by using Salmonella Typhimurium ATCC 14028 as the host bacterium, and its basic properties were obtained by biological and bioinformatics analysis. Phage L66 had a broad host spectrum, with an optimal infection complex of 0.1 and an optimal adsorption rate of 90.06%. It also exhibited thermal stability between 30 °C~60 °C and pH stability pH from 3 to 12, and the average lysis amount was 46 PFU/cell. The genome sequence analysis showed that the genome length of phage L66 was 157,675 bp and the average GC content was 46.13%. It was predicted to contain 209 genes, 97 of which were annotated with known functions based on the evolutionary analysis, and phage L66 was attributed to the Kuttervirus genus. Subsequently, an electrochemical sensor using phage L66 as a recognition factor was developed and the working electrode GDE-AuNPs-MPA-Phage L66 was prepared by layer-by-layer assembly for the detection of Salmonella. The slope of the impedance was 0.9985 within the scope from 20 to 2 × 107 CFU/mL of bacterial concentration. The minimum detection limit of the method was 13 CFU/mL, and the average spiked recovery rate was 102.3% with a relative standard deviation of 5.16%. The specificity and stability of this sensor were excellent, and it can be applied for the rapid detection of Salmonella in various foods. It provides a phage-based electrochemical biosensor for the detection of pathogenic bacteria.
Collapse
|
16
|
Suárez CA, Carrasco ST, Brandolisio FNA, Abatangelo V, Boncompain CA, Peresutti-Bacci N, Morbidoni HR. Bioinformatic Analysis of a Set of 14 Temperate Bacteriophages Isolated from Staphylococcus aureus Strains Highlights Their Massive Genetic Diversity. Microbiol Spectr 2022; 10:e0033422. [PMID: 35880893 PMCID: PMC9430571 DOI: 10.1128/spectrum.00334-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Epidemiology and virulence studies of Staphylococcus aureus showed that temperate bacteriophages are one of the most powerful drivers for its evolution not only because of their abundance but also because of the richness of their genetic payload. Here, we report the isolation, genome sequencing, and bioinformatic analysis of 14 bacteriophages induced from lysogenic S. aureus strains from human or veterinary (cattle) origin. The bacteriophages belonged to the Siphoviridae family; were of similar genome size (40 to 45 kbp); and fell into clusters B2, B3, B5, and B7 according to a recent clustering proposal. One of the phages, namely, vB_SauS_308, was the most unusual one, belonging to the sparsely populated subcluster B7 but showing differences in protein family contents compared with the rest of the members. This phage contains a type I endolysin (one catalytic domain and noncanonical cell wall domain [CBD]) and a host recognition module lacking receptor binding protein, cell wall hydrolase, and tail fiber proteins. This phage also lacked virulence genes, which is opposite to what has been reported for subcluster B6 and B7 members. None of six phages, taken as representatives of each of the four subclusters, showed activity on coagulase-negative staphylococci (excepted for two Staphylococcus hominis strains in which propagation and a very slow adsorption rate were observed) nor transducing ability. Immunity tests on S. aureus RN4220 lysogens with each of these phages showed no cross immunity. IMPORTANCE To the best of our knowledge, this set of sequenced bacteriophages is the largest one in South America. Our report describes for the first time the utilization of MultiTwin software to analyze the relationship between phage protein families. Notwithstanding the fact that most of the genetic information obtained correlated with recently published information, due to their geographical origin, the reported analysis adds up to and confirms currently available knowledge of Staphylococcus aureus temperate bacteriophages in terms of phylogeny and role in host evolution.
Collapse
Affiliation(s)
- Cristian A. Suárez
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Soledad T. Carrasco
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Facundo N. A. Brandolisio
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Virginia Abatangelo
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carina A. Boncompain
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Peresutti-Bacci
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor R. Morbidoni
- Laboratorio de Microbiología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
17
|
Zhang D, He Y, Gin KYH. Genomic Characterization of a Novel Freshwater Cyanophage Reveals a New Lineage of Cyanopodovirus. Front Microbiol 2022; 12:768868. [PMID: 35095789 PMCID: PMC8790148 DOI: 10.3389/fmicb.2021.768868] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are one of the dominant autotrophs in tropical freshwater communities, yet phages infecting them remain poorly characterized. Here we present the characterization of cyanophage S-SRP02, isolated from a tropical freshwater lake in Singapore, which infects Synechococcus sp. Strain SR-C1 isolated from the same lake. S-SRP02 represents a new evolutionary lineage of cyanophage. Out of 47 open reading frames (ORFs), only 20 ORFs share homology with genes encoding proteins of known function. There is lack of auxiliary metabolic genes which was commonly found as core genes in marine cyanopodoviruses. S-SRP02 also harbors unique structural genes highly divergent from other cultured phages. Phylogenetic analysis and viral proteomic tree further demonstrate the divergence of S-SRP02 from other sequenced phage isolates. Nonetheless, S-SRP02 shares synteny with phage genes of uncultured phages obtained from the Mediterranean Sea deep chlorophyll maximum fosmids, indicating the ecological importance of S-SRP02 and its related viruses. This is further supported by metagenomic mapping of environmental viral metagenomic reads onto the S-SRP02 genome.
Collapse
Affiliation(s)
- Dong Zhang
- NUS Environmental Research Institute (E2S2-CREATE), National University of Singapore, Singapore, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute (E2S2-CREATE), National University of Singapore, Singapore, Singapore.,Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Tkachev PV, Goncharov A, Dmitriev A. Temperate enterococcal bacteriophages: genetic features and practical application. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.3.213-218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Temperate bacteriophages are of interest as carriers and vectors of pathogenicity factors that determine an epidemic potential of opportunistic bacteria as well as biotechnology objects. This review describes studies of temperate bacteriophages infecting bacteria of the genus Enterococcus, including strains associated with the development of nosocomial infections. Genetic features of moderate enterococcal phages as well as their potential for practical application in medicine are considered.
Collapse
Affiliation(s)
| | - A.E. Goncharov
- Institute of Experimental Medicine (Saint-Petersburg, Russia)
| | - A.V. Dmitriev
- Institute of Experimental Medicine (Saint-Petersburg, Russia)
| |
Collapse
|
19
|
Fu B, Zhai Y, Gleason M, Beattie GA. Characterization of Erwinia tracheiphila Bacteriophage FBB1 Isolated from Spotted Cucumber Beetles that Vector E. tracheiphila. PHYTOPATHOLOGY 2021; 111:2185-2194. [PMID: 34033507 DOI: 10.1094/phyto-03-21-0093-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Erwinia tracheiphila, the causal pathogen of bacterial wilt of cucurbit crops, is disseminated by cucumber beetles. A bacteriophage, designated FBB1 (Fu-Beattie-Beetle-1), was isolated from spotted cucumber beetles (Diabrotica undecimpunctata) that were collected from a field in which E. tracheiphila is endemic. FBB1 was classified into the Myoviridae family based on its morphology, which includes an elongated icosahedral head (106 × 82 nm) and a putatively contractile tail (120 nm). FBB1 infected all 62 E. tracheiphila strains examined and three Pantoea spp. strains. FBB1 virions were stable at 55°C for 1 h and tolerated a pH range from 3 to 12. FBB1 has a genome of 175,994 bp with 316 predicted coding sequences and a GC content of 36.5%. The genome contains genes for a major bacterial outer-membrane protein, a putative exopolysaccharide depolymerase, and 22 predicted transfer RNAs. The morphology and genome indicate that FBB1 is a T4-like virus and thus in the Tevenvirinae subfamily. FBB1 is the first virulent phage of E. tracheiphila to be reported and, to date, is one of only two bacteriophages to be isolated from insect vectors of phytopathogens. Collectively, the results support FBB1 as a promising candidate for biocontrol of E. tracheiphila based on its virulent (lytic) rather than lysogenic lifestyle, its infection of all E. tracheiphila strains examined to date, and its infection of a few nonpathogenic bacteria that could be used to support phage populations when pathogen numbers are low.
Collapse
Affiliation(s)
- Benzhong Fu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Yingyan Zhai
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Mark Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011
| |
Collapse
|
20
|
Kumar P, Meghvansi MK, Kamboj DV. Isolation, phenotypic characterization and comparative genomic analysis of 2019SD1, a polyvalent enterobacteria phage. Sci Rep 2021; 11:22197. [PMID: 34772986 PMCID: PMC8590004 DOI: 10.1038/s41598-021-01419-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
Shigella has the remarkable capability to acquire antibiotic resistance rapidly thereby posing a significant public health challenge for the effective treatment of dysentery (Shigellosis). The phage therapy has been proven as an effective alternative strategy for controlling Shigella infections. In this study, we illustrate the isolation and detailed characterization of a polyvalent phage 2019SD1, which demonstrates lytic activity against Shigella dysenteriae, Escherichia coli, Vibrio cholerae, Enterococcus saccharolyticus and Enterococcus faecium. The newly isolated phage 2019SD1 shows adsorption time < 6 min, a latent period of 20 min and burst size of 151 PFU per bacterial cell. 2019SD1 exhibits considerable stability in a wide pH range and survives an hour at 50 °C. Under transmission electron microscope, 2019SD1 shows an icosahedral capsid (60 nm dia) and a 140 nm long tail. Further, detailed bioinformatic analyses of whole genome sequence data obtained through Oxford Nanopore platform revealed that 2019SD1 belongs to genus Hanrivervirus of subfamily Tempevirinae under the family Drexlerviridae. The concatenated protein phylogeny of 2019SD1 with the members of Drexlerviridae taking four genes (DNA Primase, ATP Dependent DNA Helicase, Large Terminase Protein, and Portal Protein) using the maximum parsimony method also suggested that 2019SD1 formed a distinct clade with the closest match of the taxa belonging to the genus Hanrivervirus. The genome analysis data indicate the occurrence of putative tail fiber proteins and DNA methylation mechanism. In addition, 2019SD1 has a well-established anti-host defence system as suggested through identification of putative anti-CRISPR and anti-restriction endonuclease systems thereby also indicating its biocontrol potential.
Collapse
Affiliation(s)
- Prince Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, Madhya Pradesh, 474002, India
- Regional Ayurveda Research Institute, Gwalior, Madhya Pradesh, 474009, India
| | - Mukesh K Meghvansi
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, Madhya Pradesh, 474002, India
- Bioprocess Technology Division, Defence Research & Development Establishment, Gwalior, Madhya Pradesh, 474002, India
| | - D V Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, Madhya Pradesh, 474002, India.
- Defence Research Laboratory, Tezpur, Assam, 784001, India.
| |
Collapse
|
21
|
Ramos-Vivas J, Superio J, Galindo-Villegas J, Acosta F. Phage Therapy as a Focused Management Strategy in Aquaculture. Int J Mol Sci 2021; 22:10436. [PMID: 34638776 PMCID: PMC8508683 DOI: 10.3390/ijms221910436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the management of bacterial infections of a wide range of organisms including cultured fish. Their natural immunogenicity often induces the modulation of a variated collection of immune responses within several types of immunocytes while promoting specific mechanisms of bacterial clearance. However, to achieve standardized treatments at the practical level and avoid possible side effects in cultivated fish, several improvements in the understanding of their biology and the associated genomes are required. Interestingly, a particular feature with therapeutic potential among all phages is the production of lytic enzymes. The use of such enzymes against human and livestock pathogens has already provided in vitro and in vivo promissory results. So far, the best-understood phages utilized to fight against either Gram-negative or Gram-positive bacterial species in fish culture are mainly restricted to the Myoviridae and Podoviridae, and the Siphoviridae, respectively. However, the current functional use of phages against bacterial pathogens of cultured fish is still in its infancy. Based on the available data, in this review, we summarize the current knowledge about phage, identify gaps, and provide insights into the possible bacterial control strategies they might represent for managing aquaculture-related bacterial diseases.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain; (J.R.-V.); (F.A.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Joshua Superio
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway;
| | | | - Félix Acosta
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain; (J.R.-V.); (F.A.)
| |
Collapse
|
22
|
Wu Z, Zhang Y, Xu X, Ahmed T, Yang Y, Loh B, Leptihn S, Yan C, Chen J, Li B. The Holin-Endolysin Lysis System of the OP2-Like Phage X2 Infecting Xanthomonas oryzae pv. oryzae. Viruses 2021; 13:v13101949. [PMID: 34696380 PMCID: PMC8541568 DOI: 10.3390/v13101949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023] Open
Abstract
Most endolysins of dsDNA phages are exported by a holin-dependent mechanism, while in some cases endolysins are exported via a holin-independent mechanism. However, it is still unclear whether the same endolysins can be exported by both holin-dependent and holin-independent mechanisms. This study investigated the lysis system of OP2-like phage X2 infecting Xanthomonas oryzae pv. oryzae, causing devastating bacterial leaf blight disease in rice. Based on bioinformatics and protein biochemistry methods, we show that phage X2 employs the classic "holin-endolysin" lysis system. The endolysin acts on the cell envelope and exhibits antibacterial effects in vitro, while the holin facilitates the release of the protein into the periplasm. We also characterized the role of the transmembrane domain (TMD) in the translocation of the endolysin across the inner membrane. We found that the TMD facilitated the translocation of the endolysin via the Sec secretion system. The holin increases the efficiency of protein release, leading to faster and more efficient lysis. Interestingly, in E. coli, the expression of either holin or endolysin with TMDs resulted in the formation of long rod shaped cells. We conclude that the TMD of X2-Lys plays a dual role: One is the transmembrane transport while the other is the inhibition of cell division, resulting in larger cells and thus in a higher number of released viruses per cell.
Collapse
Affiliation(s)
- Zhifeng Wu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
| | - Xinyang Xu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
| | - Yong Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.Y.)
| | - Belinda Loh
- University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China; (B.L.); (S.L.)
| | - Sebastian Leptihn
- University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China; (B.L.); (S.L.)
| | - Chenqi Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.Y.)
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.Y.); (C.Y.)
- Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (J.C.); (B.L.); Tel.: +86-571-8898-2412 (B.L.)
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.W.); (Y.Z.); (X.X.); (T.A.)
- Correspondence: (J.C.); (B.L.); Tel.: +86-571-8898-2412 (B.L.)
| |
Collapse
|
23
|
Ramos-Vivas J, Elexpuru-Zabaleta M, Samano ML, Barrera AP, Forbes-Hernández TY, Giampieri F, Battino M. Phages and Enzybiotics in Food Biopreservation. Molecules 2021; 26:molecules26175138. [PMID: 34500572 PMCID: PMC8433972 DOI: 10.3390/molecules26175138] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Presently, biopreservation through protective bacterial cultures and their antimicrobial products or using antibacterial compounds derived from plants are proposed as feasible strategies to maintain the long shelf-life of products. Another emerging category of food biopreservatives are bacteriophages or their antibacterial enzymes called "phage lysins" or "enzybiotics", which can be used directly as antibacterial agents due to their ability to act on the membranes of bacteria and destroy them. Bacteriophages are an alternative to antimicrobials in the fight against bacteria, mainly because they have a practically unique host range that gives them great specificity. In addition to their potential ability to specifically control strains of pathogenic bacteria, their use does not generate a negative environmental impact as in the case of antibiotics. Both phages and their enzymes can favor a reduction in antibiotic use, which is desirable given the alarming increase in resistance to antibiotics used not only in human medicine but also in veterinary medicine, agriculture, and in general all processes of manufacturing, preservation, and distribution of food. We present here an overview of the scientific background of phages and enzybiotics in the food industry, as well as food applications of these biopreservatives.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | - María Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
| | - María Luisa Samano
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain; (J.R.-V.); (M.E.-Z.); (M.L.S.)
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | - Alina Pascual Barrera
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico;
| | | | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (F.G.); (M.B.); Tel.: +339-071-220-4136 (F.G.); +339-071-220-4646 (M.B.)
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (F.G.); (M.B.); Tel.: +339-071-220-4136 (F.G.); +339-071-220-4646 (M.B.)
| |
Collapse
|
24
|
Sui B, Han L, Ren H, Liu W, Zhang C. A Novel Polyvalent Bacteriophage vB_EcoM_swi3 Infects Pathogenic Escherichia coli and Salmonella enteritidis. Front Microbiol 2021; 12:649673. [PMID: 34335489 PMCID: PMC8317433 DOI: 10.3389/fmicb.2021.649673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
A novel virulent bacteriophage vB_EcoM_swi3 (swi3), isolated from swine feces, lyzed 9% (6/65) of Escherichia coli and isolates 54% (39/72) of Salmonella enteritidis isolates, which were all clinically pathogenic multidrug-resistant strains. Morphological observation showed that phage swi3 belonged to the Myoviridae family with an icosahedral head (80 nm in diameter) and a contractile sheathed tail (120 nm in length). At the optimal multiplicity of infection of 1, the one-step growth analysis of swi3 showed a 25-min latent period with a burst size of 25-plaque-forming units (PFU)/infected cell. Phage swi3 remained stable both at pH 6.0–8.0 and at less than 50°C for at least 1 h. Genomic sequencing and bioinformatics analysis based on genomic sequences and the terminase large subunit showed that phage swi3 was a novel member that was most closely related to Salmonella phages and belonged to the Rosemountvirus genus. Phage swi3 harbored a 52-kb double-stranded DNA genome with 46.02% GC content. Seventy-two potential open reading frames were identified and annotated, only 15 of which had been assigned to functional genes. No gene associated with pathogenicity and virulence was identified. The effects of phage swi3 in treating pathologic E. coli infections in vivo were evaluated using a mouse model. The administration of a single intraperitoneal injection of swi3 (106 PFU) at 2 h after challenge with the E. coli strain (serotype K88) (108 colony-forming units) sufficiently protected all mice without toxic side effects. This finding highlighted that phage swi3 might be used as an effective antibacterial agent to prevent E. coli and S. enteritidis infection.
Collapse
Affiliation(s)
- Bingrui Sui
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lili Han
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
25
|
Application of a novel phage vB_SalS-LPSTLL for the biological control of Salmonella in foods. Food Res Int 2021; 147:110492. [PMID: 34399488 DOI: 10.1016/j.foodres.2021.110492] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023]
Abstract
Salmonella is one of the most common foodborne pathogens around the world. Phages are envisioned as a new strategy to control foodborne pathogenic bacteria and food safety. A Salmonella specific lytic phage vB_SalS-LPSTLL (LPSTLL) was selected for food applications on the basis of lytic range, lytic efficiency, functional stability and characteristics. Phage LPSTLL was able to lyse 11 Salmonella serotypes, which represents the broadest range reported Salmonella phages, and was able to suppress the growth of Salmonella enterica in liquid culture over nine hours. LPSTLL exhibited rapid reproductive activity with a short latent period and a large burst size in one-step growth experiment. LPSTLL remained active over a pH range of 3.0 to 12.0, and at incubation temperatures up to 60 °C for 60 min, indicating wide applicability for food processing and storage. Significant reductions of viable Salmonella were observed in diverse foods (milk, apple juice, chicken and lettuce) with reductions up to 2.8 log CFU/mL recorded for milk. Sensory evaluation indicated that treatment with phage LPSTLL did not alter the visual or tactile quality of food matrices. Genome analysis of LPSTLL indicated the absence of any virulence or antimicrobial resistance genes. Genomic comparisons suggest phage LPSTLL constitutes a novel member of a new genus, the LPSTLLvirus with the potential for Salmonella biocontrol in the food industry.
Collapse
|
26
|
Abstract
Here, we describe genome sequences of 17 Pseudomonas aeruginosa phages, including therapeutic candidates. They belong to the families Myoviridae, Podoviridae, and Siphoviridae and six different genera. The genomes ranged in size from 42,788 to 88,805 bp, with G+C contents of 52.5% to 64.3%, and the numbers of coding sequences from 58 to 179. Here, we describe genome sequences of 17 Pseudomonas aeruginosa phages, including therapeutic candidates. They belong to the families Myoviridae, Podoviridae, and Siphoviridae and six different genera. The genomes ranged in size from 42,788 to 88,805 bp, with G+C contents of 52.5% to 64.3% and numbers of coding sequences from 58 to 179.
Collapse
|
27
|
Ferreira R, Amado R, Padrão J, Ferreira V, Dias NM, Melo LDR, Santos SB, Nicolau A. The first sequenced Sphaerotilus natans bacteriophage- characterization and potential to control its filamentous bacterium host. FEMS Microbiol Ecol 2021; 97:6136272. [PMID: 33587121 DOI: 10.1093/femsec/fiab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/12/2021] [Indexed: 01/01/2023] Open
Abstract
Bacteriophages (phages) are ubiquitous entities present in every conceivable habitat as a result of their bacterial parasitism. Their prevalence and impact in the ecology of bacterial communities and their ability to control pathogens make their characterization essential, particularly of new phages, improving knowledge and potential application. The isolation and characterization of a new lytic phage against Sphaerotilus natans strain DSM 6575, named vB_SnaP-R1 (SnaR1), is here described. Besides being the first sequenced genome of a Sphaerotilus natans infecting phage, 99% of its 41507 bp genome lacks homology with any other sequenced phage, revealing its uniqueness and previous lack of knowledge. Moreover, SnaR1 is the first Podoviridae phage described infecting this bacterium. Sphaerotilus natans is an important filamentous bacterium due to its deleterious effect on wastewater treatment plants (WWTP) and thus, phages may play a role as novel biotechnological tools against filamentous overgrowth in WWTP. The lytic spectrum of SnaR1 was restricted to its host strain, infecting only one out of three S. natans strains and infection assays revealed its ability to reduce bacterial loads. Results suggest SnaR1 as the prototype of a new phage genus and demonstrates its potential as a non-chemical alternative to reduce S. natans DSM 6575 cells.
Collapse
Affiliation(s)
- Rute Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Amado
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jorge Padrão
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Vânia Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nicolina M Dias
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sílvio B Santos
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Nicolau
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
28
|
Islam MS, Yang X, Euler CW, Han X, Liu J, Hossen MI, Zhou Y, Li J. Application of a novel phage ZPAH7 for controlling multidrug-resistant Aeromonas hydrophila on lettuce and reducing biofilms. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Sofy AR, El-Dougdoug NK, Refaey EE, Dawoud RA, Hmed AA. Characterization and Full Genome Sequence of Novel KPP-5 Lytic Phage against Klebsiella pneumoniae Responsible for Recalcitrant Infection. Biomedicines 2021; 9:342. [PMID: 33800632 PMCID: PMC8066614 DOI: 10.3390/biomedicines9040342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Klebsiella pneumoniae is a hazardous opportunistic pathogen that is involved in many serious human diseases and is considered to be an important foodborne pathogen found in many food types. Multidrug resistance (MDR) K. pneumoniae strains have recently spread and increased, making bacteriophage therapy an effective alternative to multiple drug-resistant pathogens. As a consequence, this research was conducted to describe the genome and basic biological characteristics of a novel phage capable of lysing MDR K. pneumoniae isolated from food samples in Egypt. The host range revealed that KPP-5 phage had potent lytic activity and was able to infect all selected MDR K. pneumoniae strains from different sources. Electron microscopy images showed that KPP-5 lytic phage was a podovirus morphology. The one-step growth curve exhibited that KPP-5 phage had a relatively short latent period of 25 min, and the burst size was about 236 PFU/infected cells. In addition, KPP-5 phage showed high stability at different temperatures and pH levels. KPP-5 phage has a linear dsDNA genome with a length of 38,245 bp with a GC content of 50.8% and 40 predicted open reading frames (ORFs). Comparative genomics and phylogenetic analyses showed that KPP-5 is most closely associated with the Teetrevirus genus in the Autographviridae family. No tRNA genes have been identified in the KPP-5 phage genome. In addition, phage-borne virulence genes or drug resistance genes were not present, suggesting that KPP-5 could be used safely as a phage biocontrol agent.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.E.R.); (A.A.H.)
| | - Noha K. El-Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt;
| | - Ehab E. Refaey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.E.R.); (A.A.H.)
| | - Rehab A. Dawoud
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
- Department of Biology, Faculty of Science, Jazan University, Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.E.R.); (A.A.H.)
| |
Collapse
|
30
|
Turner D, Kropinski AM, Adriaenssens EM. A Roadmap for Genome-Based Phage Taxonomy. Viruses 2021; 13:v13030506. [PMID: 33803862 PMCID: PMC8003253 DOI: 10.3390/v13030506] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteriophage (phage) taxonomy has been in flux since its inception over four decades ago. Genome sequencing has put pressure on the classification system and recent years have seen significant changes to phage taxonomy. Here, we reflect on the state of phage taxonomy and provide a roadmap for the future, including the abolition of the order Caudovirales and the families Myoviridae, Podoviridae, and Siphoviridae. Furthermore, we specify guidelines for the demarcation of species, genus, subfamily and family-level ranks of tailed phage taxonomy.
Collapse
Affiliation(s)
- Dann Turner
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | - Andrew M. Kropinski
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
31
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Weng S, López A, Sáez-Orviz S, Marcet I, García P, Rendueles M, Díaz M. Effectiveness of bacteriophages incorporated in gelatine films against Staphylococcus aureus. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Kumar P, Meghvansi MK, Kamboj DV. Phenotypic Characterization and Whole-Genome Analysis of a Novel Bacteriophage HCF1 Infecting Citrobacter amalonaticus and C. freundii. Front Microbiol 2021; 12:644013. [PMID: 33569047 PMCID: PMC7868345 DOI: 10.3389/fmicb.2021.644013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
Citrobacter species often occur in sewage, food, soil, wastewater, and in the intestinal tract of animals and humans. Citrobacter spp. cause urinary tract infections (UTIs) and infantile meningitis in humans. Due to the presence of plasmid-encoded resistance genes, Citrobacter spp. are often resistant to many antibiotics. In this study, Citrobacter virus HCF1, a novel virulent bacteriophage capable of killing Citrobacter amalonaticus and Citrobacter freundii, was isolated from the sewage water. The isolated bacteriophage was characterized with respect to transmission electron microscopy, one-step growth curve, host range, in vitro efficacy, storage stability, and environmental stress tolerance. The one-step growth curve analysis revealed that the latent period of HCF1 was 30 min and the estimated burst size was 121 plaque-forming units (PFU) per bacterial cell. Host range testing indicated that the HCF1 was specific to the Citrobacter genus. In vitro efficacy assay in the effluent of an anaerobic biodigester showed that the HCF1 completely eliminated the host within 4 and 5 h at MOI:100 and MOI:10, respectively, thereby indicating its potential for combating C. amalonaticus infections. The isolated bacteriophage is considerably stable and tolerant to environmental stress. Furthermore, the complete genome of HCF1 was sequenced using Oxford Nanopore sequencing and the data were subjected to detailed bioinformatic analyses. NCBI-BLASTn analysis revealed that the HCF1 genome had a query coverage of 15-21% and a maximum similarity of 77.27-78.49% with 11 bacteriophages of the Drexlerviridae family. Detailed bioinformatic analysis of the genome profile suggests that HCF1 is a novel T1svirus belonging to the Tempevirinae subfamily of the Drexlerviridae family.
Collapse
Affiliation(s)
| | | | - Dev V. Kamboj
- Biotechnology Division, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
34
|
Patterson-West J, Tai CH, Son B, Hsieh ML, Iben JR, Hinton DM. Overexpression of the Bacteriophage T4 motB Gene Alters H-NS Dependent Repression of Specific Host DNA. Viruses 2021; 13:v13010084. [PMID: 33435393 PMCID: PMC7827196 DOI: 10.3390/v13010084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
The bacteriophage T4 early gene product MotB binds tightly but nonspecifically to DNA, copurifies with the host Nucleoid Associated Protein (NAP) H-NS in the presence of DNA and improves T4 fitness. However, the T4 transcriptome is not significantly affected by a motB knockdown. Here we have investigated the phylogeny of MotB and its predicted domains, how MotB and H-NS together interact with DNA, and how heterologous overexpression of motB impacts host gene expression. We find that motB is highly conserved among Tevenvirinae. Although the MotB sequence has no homology to proteins of known function, predicted structure homology searches suggest that MotB is composed of an N-terminal Kyprides-Onzonis-Woese (KOW) motif and a C-terminal DNA-binding domain of oligonucleotide/oligosaccharide (OB)-fold; either of which could provide MotB’s ability to bind DNA. DNase I footprinting demonstrates that MotB dramatically alters the interaction of H-NS with DNA in vitro. RNA-seq analyses indicate that expression of plasmid-borne motB up-regulates 75 host genes; no host genes are down-regulated. Approximately 1/3 of the up-regulated genes have previously been shown to be part of the H-NS regulon. Our results indicate that MotB provides a conserved function for Tevenvirinae and suggest a model in which MotB functions to alter the host transcriptome, possibly by changing the association of H-NS with the host DNA, which then leads to conditions that are more favorable for infection.
Collapse
Affiliation(s)
- Jennifer Patterson-West
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.P.-W.); (B.S.); (M.-L.H.)
| | - Chin-Hsien Tai
- Center for Cancer Research, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Bokyung Son
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.P.-W.); (B.S.); (M.-L.H.)
| | - Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.P.-W.); (B.S.); (M.-L.H.)
| | - James R. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.P.-W.); (B.S.); (M.-L.H.)
- Correspondence: ; Tel.: +1-301-496-9885
| |
Collapse
|
35
|
Shebs-Maurine EL, Giotto FM, Laidler ST, de Mello AS. Effects of bacteriophages and peroxyacetic acid applications on beef contaminated with Salmonella during different grinding stages. Meat Sci 2020; 173:108407. [PMID: 33338779 DOI: 10.1016/j.meatsci.2020.108407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
Research has suggested that the incidence of Salmonella in ground beef may be associated with contaminated lymph nodes that are not removed from trimmings destined for grinding. In this study, we tested the application of bacteriophages and peroxyacetic acid solutions on trimmings and on coarse and fine ground beef to simulate different scenarios of contamination. Overall, peroxyacetic acid applications did not reduce Salmonella loads on ground beef when applied on trimmings or at any stage of grinding. When applied on contaminated trim, bacteriophage solutions at 1 × 108 PFU/g and 1 × 109 PFU/g reduced more than 1 log cfu/g of Salmonella. When applied directly on contaminated coarse or fine ground beef, bacteriophage solutions at 1 × 109 PFU/g reduced approximately 1.6 log cfu/g. Results of this study suggest that bacteriophage applications on contaminated, comminuted beef may be used as an aid to decrease Salmonella loads.
Collapse
Affiliation(s)
- E L Shebs-Maurine
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - F M Giotto
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - S T Laidler
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America
| | - A S de Mello
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, 1664 N. Virginia St. mailstop 202, Reno, NV 89557, United States of America.
| |
Collapse
|
36
|
Skorynina AV, Piligrimova EG, Kazantseva OA, Kulyabin VA, Baicher SD, Ryabova NA, Shadrin AM. Bacillus-infecting bacteriophage Izhevsk harbors thermostable endolysin with broad range specificity. PLoS One 2020; 15:e0242657. [PMID: 33232350 PMCID: PMC7685451 DOI: 10.1371/journal.pone.0242657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Several bacterial species belonging to the Bacillus cereus group are known to be causative agents of food poisoning and severe human diseases. Bacteriophages and their lytic enzymes called endolysins have been widely shown to provide for a supplemental or primary means of treating bacterial infections. In this work we present a new broad-host-range phage Izhevsk, which infects the members of the Bacillus cereus group. Transmission electron microscopy, genome sequencing and comparative analyses revealed that Izhevsk is a temperate phage with Siphoviridae morphology and belongs to the same genus as the previously described but taxonomically unclassified bacteriophages Tsamsa and Diildio. The Ply57 endolysin of Izhevsk phage has broad-spectrum activity against B. cereus sensu lato. The thermolability of Ply57 is higher than that of the PlyG of Wβ phage. This work contributes to our current understanding of phage biodiversity and may be useful for further development of efficient antimicrobials aimed at diagnosing and treating infectious diseases and food contaminations caused by the Bacillus cereus group of bacteria.
Collapse
Affiliation(s)
- Anna V. Skorynina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Emma G. Piligrimova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Olesya A. Kazantseva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Vladislav A. Kulyabin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | - Svetlana D. Baicher
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
| | | | - Andrey M. Shadrin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, Pushchino, Russia
- * E-mail: ,
| |
Collapse
|
37
|
Park SY, Han JE, Kwon H, Park SC, Kim JH. Recent Insights into Aeromonas salmonicida and Its Bacteriophages in Aquaculture: A Comprehensive Review. J Microbiol Biotechnol 2020; 30:1443-1457. [PMID: 32807762 PMCID: PMC9728264 DOI: 10.4014/jmb.2005.05040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
The emergence and spread of antimicrobial resistance in pathogenic bacteria of fish and shellfish have caused serious concerns in the aquaculture industry, owing to the potential health risks to humans and animals. Among these bacteria, Aeromonas salmonicida, which is one of the most important primary pathogens in salmonids, is responsible for significant economic losses in the global aquaculture industry, especially in salmonid farming because of its severe infectivity and acquisition of antimicrobial resistance. Therefore, interest in the use of alternative approaches to prevent and control A. salmonicida infections has increased in recent years, and several applications of bacteriophages (phages) have provided promising results. For several decades, A. salmonicida and phages infecting this fish pathogen have been thoroughly investigated in various research areas including aquaculture. The general overview of phage usage to control bacterial diseases in aquaculture, including the general advantages of this strategy, has been clearly described in previous reviews. Therefore, this review specifically focuses on providing insights into the phages infecting A. salmonicida, from basic research to biotechnological application in aquaculture, as well as recent advances in the study of A. salmonicida.
Collapse
Affiliation(s)
- Seon Young Park
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jee Eun Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyemin Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea,S.C.Park Phone: +82-2-880-1282 Fax: +82-2-880-1213 E-mail:
| | - Ji Hyung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea,Corresponding authors J.H.Kim Phone: +82-42-879-8272 Fax: +82-42-879-8498 E-mail:
| |
Collapse
|
38
|
Bao H, Zhou Y, Shahin K, Zhang H, Cao F, Pang M, Zhang X, Zhu S, Olaniran A, Schmidt S, Wang R. The complete genome of lytic Salmonella phage vB_SenM-PA13076 and therapeutic potency in the treatment of lethal Salmonella Enteritidis infections in mice. Microbiol Res 2020; 237:126471. [PMID: 32298944 DOI: 10.1016/j.micres.2020.126471] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/20/2020] [Accepted: 03/18/2020] [Indexed: 01/05/2023]
|
39
|
Complete Genome Sequences of 10 Phages Lytic against Multidrug-Resistant Pseudomonas aeruginosa. Microbiol Resour Announc 2020; 9:9/29/e00503-20. [PMID: 32675185 PMCID: PMC7365796 DOI: 10.1128/mra.00503-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report the genome sequences of 10 Pseudomonas aeruginosa phages studied for their potential for formulation of a therapeutic cocktail; they represent the families Myoviridae, Podoviridae, and Siphoviridae Genome sizes ranged from 43,299 to 88,728 nucleotides, with G+C contents of 52.1% to 62.2%. The genomes contained 68 to 168 coding sequences.
Collapse
|
40
|
Sofy AR, Abd El Haliem NF, Refaey EE, Hmed AA. Polyvalent Phage CoNShP-3 as a Natural Antimicrobial Agent Showing Lytic and Antibiofilm Activities against Antibiotic-Resistant Coagulase-Negative Staphylococci Strains. Foods 2020; 9:E673. [PMID: 32456227 PMCID: PMC7278617 DOI: 10.3390/foods9050673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Synthetic antimicrobials have a negative impact on food quality and consumer health, which is why natural antimicrobials are urgently needed. Coagulase-negative staphylococci (CoNS) has gained considerable importance for food poisoning and infection in humans and animals, particularly in biofilms. As a result, this study was conducted to control the CoNS isolated from food samples in Egypt. CoNS isolates were selected on the basis of their antibiotic susceptibility profiles and their biofilm-associated behavior. In this context, a total of 29 different bacteriophages were isolated and, in particular, lytic phages (6 isolates) were selected. The host range and physiological parameters of the lytic phages have been studied. Electron microscopy images showed that lytic phages were members of the families Myoviridae (CoNShP-1, CoNShP-3, and CoNSeP-2 isolates) and Siphoviridae (CoNShP-2, CoNSsP-1, and CoNSeP-1 isolates). CoNShP-1, CoNShP-2, and CoNShP-3 were found to be virulent to Staphylococcus haemolyticus, CoNSsP-1 to Staphylococcus saprophyticus and CoNSeP-1 and CoNSeP-2 to Staphylococcus epidermidis. Interestingly, the CoNShP-exhibited a typical polyvalent behavior, where not only lysis CoNS, but also other genera include Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), Bacillus cereus and Bacillus subtilis. In addition, CoNShP-3 phage showed high stability at different temperatures and pH levels. Indeed, CoNShP-3 phage showed an antibiofilm effect against Staphylococcus epidermidis CFS79 and Staphylococcus haemolyticus CFS43, respectively, while Staphylococcus saprophyticus CFS28 biofilm was completely removed. Finally, CoNShP-3 phage demonstrated a high preservative efficacy over short and long periods of storage against inoculated CoNS in chicken breast sections. In conclusion, this study highlights the control of CoNS pathogens using a polyvalent lytic phage as a natural antibacterial and antibiofilm agent from a food safety perspective.
Collapse
Affiliation(s)
- Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Naglaa F. Abd El Haliem
- Microbiology and Immunology Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Ehab E. Refaey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt;
| |
Collapse
|
41
|
Application of a Novel Phage LPSEYT for Biological Control of Salmonella in Foods. Microorganisms 2020; 8:microorganisms8030400. [PMID: 32178465 PMCID: PMC7142823 DOI: 10.3390/microorganisms8030400] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 01/21/2023] Open
Abstract
Salmonella is a leading cause of foodborne diseases, and in recent years, many isolates have exhibited a high level of antibiotic resistance, which has led to huge pressures on public health. Phages are a promising strategy to control food-borne pathogens. In this study, one of our environmental phage isolates, LPSEYT, was to be able to restrict the growth of zoonotic Salmonellaenterica in vitro over a range of multiplicity of infections. Phage LPSEYT exhibited wide-ranging pH and thermal stability and rapid reproductive activity with a short latent period and a large burst size. Phage LPSEYT demonstrated potential efficiency as a biological control agent against Salmonella in a variety of food matrices, including milk and lettuce. Morphological observation, comparative genomic, and phylogenetic analysis revealed that LPSEYT does not belong to any of the currently identified genera within the Myoviridae family, and we suggest that LPSEYT represents a new genus, the LPSEYTvirus. This study contributes a phage database, develops beneficial phage resources, and sheds light on the potential application value of phages LPSEYT on food safety.
Collapse
|
42
|
Podgorski J, Calabrese J, Alexandrescu L, Jacobs-Sera D, Pope W, Hatfull G, White S. Structures of Three Actinobacteriophage Capsids: Roles of Symmetry and Accessory Proteins. Viruses 2020; 12:v12030294. [PMID: 32182721 PMCID: PMC7150772 DOI: 10.3390/v12030294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Here, we describe the structure of three actinobacteriophage capsids that infect Mycobacterium smegmatis. The capsid structures were resolved to approximately six angstroms, which allowed confirmation that each bacteriophage uses the HK97-fold to form their capsid. One bacteriophage, Rosebush, may have a novel variation of the HK97-fold. Four novel accessory proteins that form the capsid head along with the major capsid protein were identified. Two of the accessory proteins were minor capsid proteins and showed some homology, based on bioinformatic analysis, to the TW1 bacteriophage. The remaining two accessory proteins are decoration proteins that are located on the outside of the capsid and do not resemble any previously described bacteriophage decoration protein. SDS-PAGE and mass spectrometry was used to identify the accessory proteins and bioinformatic analysis of the accessory proteins suggest they are used in many actinobacteriophage capsids.
Collapse
Affiliation(s)
- Jennifer Podgorski
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA; (J.P.); (J.C.); (L.A.)
| | - Joshua Calabrese
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA; (J.P.); (J.C.); (L.A.)
| | - Lauren Alexandrescu
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA; (J.P.); (J.C.); (L.A.)
| | - Deborah Jacobs-Sera
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA; (D.J.-S.); (W.P.); (G.H.)
| | - Welkin Pope
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA; (D.J.-S.); (W.P.); (G.H.)
| | - Graham Hatfull
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA; (D.J.-S.); (W.P.); (G.H.)
| | - Simon White
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA; (J.P.); (J.C.); (L.A.)
- Correspondence:
| |
Collapse
|
43
|
Barylski J, Enault F, Dutilh BE, Schuller MBP, Edwards RA, Gillis A, Klumpp J, Knezevic P, Krupovic M, Kuhn JH, Lavigne R, Oksanen HM, Sullivan MB, Jang HB, Simmonds P, Aiewsakun P, Wittmann J, Tolstoy I, Brister JR, Kropinski AM, Adriaenssens EM. Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages. Syst Biol 2020; 69:110-123. [PMID: 31127947 PMCID: PMC7409376 DOI: 10.1093/sysbio/syz036] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
Tailed bacteriophages are the most abundant and diverse viruses in the world, with genome sizes ranging from 10 kbp to over 500 kbp. Yet, due to historical reasons, all this diversity is confined to a single virus order-Caudovirales, composed of just four families: Myoviridae, Siphoviridae, Podoviridae, and the newly created Ackermannviridae family. In recent years, this morphology-based classification scheme has started to crumble under the constant flood of phage sequences, revealing that tailed phages are even more genetically diverse than once thought. This prompted us, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV), to consider overall reorganization of phage taxonomy. In this study, we used a wide range of complementary methods-including comparative genomics, core genome analysis, and marker gene phylogenetics-to show that the group of Bacillus phage SPO1-related viruses previously classified into the Spounavirinae subfamily, is clearly distinct from other members of the family Myoviridae and its diversity deserves the rank of an autonomous family. Thus, we removed this group from the Myoviridae family and created the family Herelleviridae-a new taxon of the same rank. In the process of the taxon evaluation, we explored the feasibility of different demarcation criteria and critically evaluated the usefulness of our methods for phage classification. The convergence of results, drawing a consistent and comprehensive picture of a new family with associated subfamilies, regardless of method, demonstrates that the tools applied here are particularly useful in phage taxonomy. We are convinced that creation of this novel family is a crucial milestone toward much-needed reclassification in the Caudovirales order.
Collapse
Affiliation(s)
- Jakub Barylski
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Collegium Biologicum - Umultowska 89, 61-614 Poznań, Poland
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGE, F-63000 Clermont-Ferrand, France
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Margo BP Schuller
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Robert A Edwards
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
- Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Croix du Sud 2-L7.05.12, 1348 Louvain-la-Neuve, Belgium
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland
| | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Fort Detrick, Frederick, MD 21702, USA
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 - box 2462, 3001 Leuven, Belgium
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 56 (Viikinkaari 9B), 00014 Helsinki, Finland
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
| | - Ho Bin Jang
- Department of Microbiology, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, 496 W 12thAvenue, Columbus, OH 43210, USA
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford OX1 3SY, UK
| | - Pakorn Aiewsakun
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford OX1 3SY, UK
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Johannes Wittmann
- Leibniz-Institut DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda MD 20894, USA
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda MD 20894, USA
| | - Andrew M Kropinski
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
- Department of Pathobiology, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Evelien M Adriaenssens
- Department of Functional & Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
- Gut Microbes & Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich NR4 7UQ Norwich, UK
| |
Collapse
|
44
|
Correlation of Host Range Expansion of Therapeutic Bacteriophage Sb-1 with Allele State at a Hypervariable Repeat Locus. Appl Environ Microbiol 2019; 85:AEM.01209-19. [PMID: 31492663 DOI: 10.1128/aem.01209-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Staphylococci are frequent agents of health care-associated infections and include methicillin-resistant Staphylococcus aureus (MRSA), which is resistant to first-line antibiotic treatments. Bacteriophage (phage) therapy is a promising alternative antibacterial option to treat MRSA infections. S. aureus-specific phage Sb-1 has been widely used in Georgia to treat a variety of human S. aureus infections. Sb-1 has a broad host range within S. aureus, including MRSA strains, and its host range can be further expanded by adaptation to previously resistant clinical isolates. The susceptibilities of a panel of 25 genetically diverse clinical MRSA isolates to Sb-1 phage were tested, and the phage had lytic activity against 23 strains (92%). The adapted phage stock (designated Sb-1A) was tested in comparison with the parental phage (designated Sb-1P). Sb-1P had lytic activity against 78/90 strains (87%) in an expanded panel of diverse global S. aureus isolates, while eight additional strains in this panel were susceptible to Sb-1A (lytic against 86/90 strains [96%]). The Sb-1A stock was shown to be a mixed population of phage clones, including approximately 4% expanded host range mutants, designated Sb-1M. In an effort to better understand the genetic basis for this host range expansion, we sequenced the complete genomes of the parental Sb-1P and two Sb-1M mutants. Comparative genomic analysis revealed a hypervariable complex repeat structure in the Sb-1 genome that had a distinct allele that correlated with the host range expansion. This hypervariable region was previously uncharacterized in Twort-like phages and represents a novel putative host range determinant.IMPORTANCE Because of limited therapeutic options, infections caused by methicillin-resistant Staphylococcus aureus represent a serious problem in both civilian and military health care settings. Phages have potential as alternative antibacterial agents that can be used in combination with antibiotic drugs. For decades, phage Sb-1 has been used in former Soviet Union countries for antistaphylococcal treatment in humans. The therapeutic spectrum of activity of Sb-1 can be increased by selecting mutants of the phage with expanded host ranges. In this work, the host range of phage Sb-1 was expanded in the laboratory, and a hypervariable region in its genome was identified with a distinct allele state that correlated with this host range expansion. These results provide a genetic basis for better understanding the mechanisms of phage host range expansion.
Collapse
|
45
|
Sváb D, Horváth B, Rohde M, Maróti G, Tóth I. R18C is a new viable P2-like bacteriophage of rabbit origin infecting Citrobacter rodentium and Shigella sonnei strains. Arch Virol 2019; 164:3157-3160. [PMID: 31641840 PMCID: PMC6823313 DOI: 10.1007/s00705-019-04424-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022]
Abstract
Here, we report a novel virulent P2-like bacteriophage, R18C, isolated from rabbit faeces, which, in addition to Escherichia coli K-12 strains, was able to be propagated on Citrobacter rodentium strain ICC169 and a range of Shigella sonnei strains with high efficiency of plating (EOP). It represents the first lytic bacteriophage originating from rabbit and the first infectious P2-like phage of animal origin. In the three characteristic moron-containing regions of P2-like phages, R18C contains genes with unknown function that have so far only been found in cryptic P2-like prophages.
Collapse
Affiliation(s)
- Domonkos Sváb
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Brunswick, Germany
| | - Gergely Maróti
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - István Tóth
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
46
|
Piligrimova EG, Kazantseva OA, Nikulin NA, Shadrin AM. Bacillus Phage vB_BtS_B83 Previously Designated as a Plasmid May Represent a New Siphoviridae Genus. Viruses 2019; 11:v11070624. [PMID: 31284652 PMCID: PMC6669507 DOI: 10.3390/v11070624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/25/2022] Open
Abstract
The Bacillus cereus group of bacteria includes, inter alia, the species known to be associated with human diseases and food poisoning. Here, we describe the Bacillus phage vB_BtS_B83 (abbreviated as B83) infecting the species of this group. Transmission electron microscopy (TEM) micrographs indicate that B83 belongs to the Siphoviridae family. B83 is a temperate phage using an arbitrium system for the regulation of the lysis–lysogeny switch, and is probably capable of forming a circular plasmid prophage. Comparative analysis shows that it has been previously sequenced, but was mistaken for a plasmid. B83 shares common genome organization and >46% of proteins with other the Bacillus phage, BMBtp14. Phylograms constructed using large terminase subunits and a pan-genome presence–absence matrix show that these phages form a clade distinct from the closest viruses. Based on the above, we propose the creation of a new genus named Bembunaquatrovirus that includes B83 and BMBtp14.
Collapse
Affiliation(s)
- Emma G Piligrimova
- Laboratory of Bacteriophage Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, 142290 Pushchino, Russia.
- Department of Microbiology, Federal State Budgetary Educational Institution of Higher Education "Vyatka State University", 610000 Kirov, Russia.
| | - Olesya A Kazantseva
- Laboratory of Bacteriophage Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, 142290 Pushchino, Russia
| | - Nikita A Nikulin
- Laboratory of Bacteriophage Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, 142290 Pushchino, Russia
- Department of Microbiology, Federal State Budgetary Educational Institution of Higher Education "Vyatka State University", 610000 Kirov, Russia
| | - Andrey M Shadrin
- Laboratory of Bacteriophage Biology, Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, 142290 Pushchino, Russia.
| |
Collapse
|
47
|
|
48
|
Alarcón-Schumacher T, Guajardo-Leiva S, Antón J, Díez B. Elucidating Viral Communities During a Phytoplankton Bloom on the West Antarctic Peninsula. Front Microbiol 2019; 10:1014. [PMID: 31139164 PMCID: PMC6527751 DOI: 10.3389/fmicb.2019.01014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
In Antarctic coastal waters where nutrient limitations are low, viruses are expected to play a major role in the regulation of bloom events. Despite this, research in viral identification and dynamics is scarce, with limited information available for the Southern Ocean (SO). This study presents an integrative-omics approach, comparing variation in the viral and microbial active communities on two contrasting sample conditions from a diatom-dominated phytoplankton bloom occurring in Chile Bay in the West Antarctic Peninsula (WAP) in the summer of 2014. The known viral community, initially dominated by Myoviridae family (∼82% of the total assigned reads), changed to become dominated by Phycodnaviridae (∼90%), while viral activity was predominantly driven by dsDNA members of the Phycodnaviridae (∼50%) and diatom infecting ssRNA viruses (∼38%), becoming more significant as chlorophyll a increased. A genomic and phylogenetic characterization allowed the identification of a new viral lineage within the Myoviridae family. This new lineage of viruses infects Pseudoalteromonas and was dominant in the phage community. In addition, a new Phycodnavirus (PaV) was described, which is predicted to infect Phaeocystis antarctica, the main blooming haptophyte in the SO. This work was able to identify the changes in the main viral players during a bloom development and suggests that the changes observed in the virioplankton could be used as a model to understand the development and decay of blooms that occur throughout the WAP.
Collapse
Affiliation(s)
- Tomás Alarcón-Schumacher
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sergio Guajardo-Leiva
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Josefa Antón
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Climate and Resilience Research (CR2), University of Chile, Santiago, Chile
| |
Collapse
|
49
|
Biological and molecular characterization of a bacteriophage infecting Xanthomonas campestris pv. campestris, isolated from brassica fields. Arch Virol 2019; 164:1857-1862. [PMID: 31065851 DOI: 10.1007/s00705-019-04263-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/29/2019] [Indexed: 11/27/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot of crucifers. Here, we report a virus that infects Xcc isolated from brassica fields in Brazil. Morphological, molecular and phylogenetic analysis indicated that the isolated virus is a new member of the genus Pbunavirus, family Myoviridae, and we propose the name "Xanthomonas virus XC 2" for this virus. The isolated virus has a narrow host range, infecting only Xcc isolates, and it did not infect unrelated bacteria. These results indicate that the isolated bacteriophage is highly specific for Xcc and may be a potential agent for biological control.
Collapse
|
50
|
Bin Jang H, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, Brister JR, Kropinski AM, Krupovic M, Lavigne R, Turner D, Sullivan MB. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 2019; 37:632-639. [PMID: 31061483 DOI: 10.1038/s41587-019-0100-8] [Citation(s) in RCA: 460] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/11/2019] [Indexed: 01/03/2023]
Abstract
Microbiomes from every environment contain a myriad of uncultivated archaeal and bacterial viruses, but studying these viruses is hampered by the lack of a universal, scalable taxonomic framework. We present vConTACT v.2.0, a network-based application utilizing whole genome gene-sharing profiles for virus taxonomy that integrates distance-based hierarchical clustering and confidence scores for all taxonomic predictions. We report near-identical (96%) replication of existing genus-level viral taxonomy assignments from the International Committee on Taxonomy of Viruses for National Center for Biotechnology Information virus RefSeq. Application of vConTACT v.2.0 to 1,364 previously unclassified viruses deposited in virus RefSeq as reference genomes produced automatic, high-confidence genus assignments for 820 of the 1,364. We applied vConTACT v.2.0 to analyze 15,280 Global Ocean Virome genome fragments and were able to provide taxonomic assignments for 31% of these data, which shows that our algorithm is scalable to very large metagenomic datasets. Our taxonomy tool can be automated and applied to metagenomes from any environment for virus classification.
Collapse
Affiliation(s)
- Ho Bin Jang
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Simon Roux
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Evelien M Adriaenssens
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of BioScience Engineering, KU Leuven, Leuven, Belgium
| | - Dann Turner
- Centre for Research in Biosciences, Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, USA. .,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA.
| |
Collapse
|