1
|
Zheng T, Zhang X, Wang Y, Wang A. SPOCD1 regulated by miR-133a-3p promotes hepatocellular carcinoma invasion and metastasis. J Int Med Res 2022. [PMCID: PMC8733378 DOI: 10.1177/03000605211053717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective To investigate the tumorigenic role of spen paralogue and orthologue C-terminal domain-containing 1 (SPOCD1) in hepatocellular carcinoma (HCC) and identify the upstream regulatory mechanism. Methods We analyzed SPOCD1 and miR-133-3p expression in normal and HCC tissues from the Cancer Genome Atlas and UALCAN databases, and in normal hepatocytes and HCC cell lines by real-time quantitative polymerase chain reaction and western blot. We identified the miR-133a-3p-binding site on the SPOCD1 3ʹ-untranslated region using TargetScan. Hierarchical regulation was confirmed by luciferase assay and miR-133a-3p overexpression/silencing. Cell proliferation, migration, invasion, and colony formation were assessed by MTT, scratch, transwell, and clonogenic assays, respectively. Results SPOCD1 was highly expressed in HCC tissues and cell lines, while miR-133a-3p expression was significantly downregulated. Kaplan–Meier analysis indicated that high SPOCD1 expression was significantly associated with poor survival. TargetScan and luciferase reporter assay revealed that SPOCD1 was the downstream target of miR-133a-3p. Overexpression of miR-133a-3p significantly inhibited the expression of SPOCD1, while miR-133a-3p knockdown significantly increased SPOCD1 expression. Conclusion SPOCD1, regulated by miR-133a-3p, promotes HCC cell proliferation, migration, invasion, and colony formation. This study provides the first evidence for the role of the miR-133a-3p/SPOCD1 axis in HCC tumorigenesis.
Collapse
Affiliation(s)
- Tianying Zheng
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Zhang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yonggang Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Aijun Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Guo X, Piao H, Zhang Y, Sun P, Yao B. Overexpression of microRNA-129-5p in glioblastoma inhibits cell proliferation, migration, and colony-forming ability by targeting ZFP36L1. Bosn J Basic Med Sci 2020; 20:459-470. [PMID: 31999936 PMCID: PMC7664791 DOI: 10.17305/bjbms.2019.4503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/24/2019] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly invasive cancer with a high recurrence rate. The prognosis of GBM patients remains poor, even after standard surgical resection combined with chemoradiotherapy. Thus, there is an urgent need for new therapeutic targets in GBM. In recent years, microRNAs have received considerable attention due to their important role in tumor development and progression. In this study, we investigated the role of miR-129-5p and miR-129-5p/ZFP36L1 axis in GBM tumorigenesis. Analysis of GSE103228 microarray data from the GEO database showed that miR-129-5p was significantly downregulated in GBM vs. normal brain tissues. Quantitative reverse transcription PCR analysis of miR-129-5p expression in seven GBM cell lines (LN229, A172, U87, T98G, U251, H4, and LN118) vs. normal human astrocytes (NHA) showed miR-129-5p was significantly downregulated in GBM cells. Overexpression of miR-129-5p in LN229 and A172 cells significantly suppressed cell proliferation, migration, invasion, and colony-forming ability. Target Scan analysis identified ZFP36L1 as the target of miR-129-5p. UALCAN dataset analysis found that ZFP36L1 was significantly upregulated in GBM vs. normal brain tissues, and high ZFP36L1 expression was positively associated with poor survival of GBM patients. Western blot analysis demonstrated that ZFP36L1 was significantly upregulated in seven GBM cell lines vs. NHA. Overexpression of miR-129-5p in LN229 and A172 cells significantly inhibited ZFP36L1 mRNA and protein expression, while overexpression of ZFP36L1 in LN229 and A172 cells reversed miR-129-5p-mediated inhibition on GBM tumorigenesis. Our results revealed an important role of miR-129-5p in the negative regulation of ZFP36L1 expression in GBM, suggesting new candidates for targeted therapy in GBM patients.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Ye Zhang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Peixin Sun
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Bing Yao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
3
|
XPA deficiency affects the ubiquitin-proteasome system function. DNA Repair (Amst) 2020; 94:102937. [PMID: 32693352 DOI: 10.1016/j.dnarep.2020.102937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023]
Abstract
Xeroderma pigmentosum complementation group A (XPA), is defective in xeroderma pigmentosum patients, causing pre-disposition to skin cancer and neurological abnormalities, which is not well understood. Here, we analyzed the XPA-deficient cells transcriptional profile under oxidative stress. The imbalance in of ubiquitin-proteasome system (UPS) gene expression was observed in XPA-deficient cells and the involvement of nuclear factor erythroid 2-related factor-2 (NFE2L2) was indicated. Co-immunoprecipitation assays showed the interaction between XPA, apurinic-apyrimidinic endonuclease 1 (APE1) and NFE2L2 proteins. Decreased NFE2L2 protein expression and proteasome activity was also observed in XPA-deficient cells. The data suggest the involvement of the growth arrest and DNA-damage-inducible beta (GADD45β) in NFE2L2 functions. Similar results were obtained in xpa-1 (RNAi) Caenorhabditis elegans suggesting the conservation of XPA and NFE2L2 interactions. In conclusion, stress response activation occurs in XPA-deficient cells under oxidative stress; however, these cells fail to activate the UPS cytoprotective response, which may contribute to XPA patient's phenotypes.
Collapse
|
4
|
Meng X, Liu P, Wu Y, Liu X, Huang Y, Yu B, Han J, Jin H, Tan X. Integrin beta 4 (ITGB4) and its tyrosine-1510 phosphorylation promote pancreatic tumorigenesis and regulate the MEK1-ERK1/2 signaling pathway. Bosn J Basic Med Sci 2020; 20:106-116. [PMID: 31242404 PMCID: PMC7029197 DOI: 10.17305/bjbms.2019.4255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer death, with a 5-year survival rate of only 1–4%. Integrin-mediated cell adhesion is critical for the initiation, progression, and metastasis of cancer. In this study we investigated the role of integrin β4 (ITGB4) and its phosphorylation at tyrosine Y1510 (p-ITGB4-Y1510) in the tumorigenesis of pancreatic cancer. We analyzed the expression of ITGB4 and p-ITGB4-Y1510 in pancreatic cancer tissue and cell lines using immunohistochemistry, Western blot, or semi-quantitative reverse transcription PCR. ITGB4 and p-ITGB4-Y1510 were highly expressed in pancreatic cancer (n = 176) compared with normal pancreatic tissue (n = 171). High p-ITGB4-Y1510 expression correlated with local invasion and distant metastasis of pancreatic cancer, and high ITGB4 was significantly associated with poor survival of patients. Inhibition of ITGB4 by siRNA significantly reduced migration and invasion of PC-1.0 and AsPC-1 cells. Overexpression of the mutant ITGB4-Y1510A (a mutation of tyrosine to alanine at 1510 position) in PC-1.0 and AsPC-1 cells not only blocked the ITGB4 phosphorylation at Y1510 but also suppressed the expression of ITGB4 (p < 0.05 vs. wild-type ITGB4). The transfection of PC-1.0 and AsPC-1 cells with ITGB4-Y1510A significantly decreased the level of p-mitogen-activated protein kinase kinase (MEK)1 (T292) and p-extracellular signal-regulated kinase (ERK)1/2 but did not affect the level of p-MEK1 (T386) and p-MEK2 (T394). Overall, our study showed that ITGB4 and its phosphorylated form promote cell migration and invasion in pancreatic cancer and that p-ITGB4-Y1510 regulates the downstream MEK1-ERK1/2 signaling cascades. Targeting ITGB4 or its phosphorylation at Y1510 may be a novel therapeutic option for pancreatic cancer.
Collapse
Affiliation(s)
- Xiangli Meng
- Department of the First General Surgery, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Peng Liu
- Department of the First General Surgery, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Yunhao Wu
- Department of the First General Surgery, Shengjing Hospital affiliated to China Medical University, Shenyang, China
| | - Xinlu Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yinpeng Huang
- Minimally Invasive Area of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Boqiang Yu
- Department of General Surgery, Fushun Central Hospital, Fushun, China
| | - Jiahong Han
- Department of Surgery, Liaoning Electric Power Center Hospital, Shenyang, China.
| | - Haoyi Jin
- Department of the First General Surgery, Shengjing Hospital affiliated to China Medical University, Shenyang, China.
| | - Xiaodong Tan
- Department of the First General Surgery, Shengjing Hospital affiliated to China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Moretti AIS, Pavanelli JC, Nolasco P, Leisegang MS, Tanaka LY, Fernandes CG, Wosniak J, Kajihara D, Dias MH, Fernandes DC, Jo H, Tran NV, Ebersberger I, Brandes RP, Bonatto D, Laurindo FRM. Conserved Gene Microsynteny Unveils Functional Interaction Between Protein Disulfide Isomerase and Rho Guanine-Dissociation Inhibitor Families. Sci Rep 2017; 7:17262. [PMID: 29222525 PMCID: PMC5722932 DOI: 10.1038/s41598-017-16947-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/21/2017] [Indexed: 02/07/2023] Open
Abstract
Protein disulfide isomerases (PDIs) support endoplasmic reticulum redox protein folding and cell-surface thiol-redox control of thrombosis and vascular remodeling. The family prototype PDIA1 regulates NADPH oxidase signaling and cytoskeleton organization, however the related underlying mechanisms are unclear. Here we show that genes encoding human PDIA1 and its two paralogs PDIA8 and PDIA2 are each flanked by genes encoding Rho guanine-dissociation inhibitors (GDI), known regulators of RhoGTPases/cytoskeleton. Evolutionary histories of these three microsyntenic regions reveal their emergence by two successive duplication events of a primordial gene pair in the last common vertebrate ancestor. The arrangement, however, is substantially older, detectable in echinoderms, nematodes, and cnidarians. Thus, PDI/RhoGDI pairing in the same transcription orientation emerged early in animal evolution and has been largely maintained. PDI/RhoGDI pairs are embedded into conserved genomic regions displaying common cis-regulatory elements. Analysis of gene expression datasets supports evidence for PDI/RhoGDI coexpression in developmental/inflammatory contexts. PDIA1/RhoGDIα were co-induced in endothelial cells upon CRISP-R-promoted transcription activation of each pair component, and also in mouse arterial intima during flow-induced remodeling. We provide evidence for physical interaction between both proteins. These data support strong functional links between PDI and RhoGDI families, which likely maintained PDI/RhoGDI microsynteny along > 800-million years of evolution.
Collapse
Affiliation(s)
- Ana I S Moretti
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Jessyca C Pavanelli
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Patrícia Nolasco
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Leonardo Y Tanaka
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Carolina G Fernandes
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - João Wosniak
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Daniela Kajihara
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Matheus H Dias
- Special Laboratory for Cell Cycle, Center of Toxins, Immune-Response and Cell Signaling - CeTICS-Cepid, Butantan Institute, São Paulo, Brazil
| | - Denise C Fernandes
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Hanjoong Jo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA
| | - Ngoc-Vinh Tran
- Applied Bioinformatics Group, Institute of Cell Biology & Neuroscience, Goethe University, Frankfurt, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology & Neuroscience, Goethe University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Center (BiK-F), Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University, Frankfurt, Germany
| | - Diego Bonatto
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (Incor), University of São Paulo School of Medicine, São Paulo, Brazil.
| |
Collapse
|
6
|
Huang CC, Chen KL, Cheung CHA, Chang JY. Autophagy induced by cathepsin S inhibition induces early ROS production, oxidative DNA damage, and cell death via xanthine oxidase. Free Radic Biol Med 2013; 65:1473-1486. [PMID: 23892358 DOI: 10.1016/j.freeradbiomed.2013.07.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
Cathepsin S plays multiple roles in MHC class II antigen presentation, extracellular matrix degradation, angiogenesis, and tumorogenesis. Our previous study revealed that targeting cathepsin S could induce cellular cytotoxicity and reduce cell viability. For the current study, we further investigated the molecular mechanism responsible for targeting cathepsin S-induced cell death and its association with autophagy. Distinct from regulation of the classic autophagy pathway by reactive oxygen species (ROS), we demonstrated that autophagy is the genuine regulator of early ROS production. The molecular silencing of autophagy-dependent ATG genes (ATG5, ATG7, and LC3) and the pharmacologic inhibition of autophagy with 3-MA and wortmannin reduced ROS production significantly. In addition, xanthine oxidase (XO), which is upregulated by autophagy, is required for early ROS production, oxidative DNA damage, and consequent cell death. Autophagy inhibition suppresses the upregulation of XO, which is induced by cathepsin S inhibition, resulting in reduced ROS generation, DNA damage, and cell death. Collectively, our study reveals a noncanonical molecular pathway in which, after the inhibition of cathepsin S, autophagy induces early ROS production for oxidative DNA damage and cell death through XO.
Collapse
Affiliation(s)
- Chien-Chang Huang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, Republic of China
| | - Kuo-Li Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, Republic of China
| | - Chun Hei Antonio Cheung
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan, Republic of China; Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, Republic of China; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| |
Collapse
|
7
|
Functions of the podocyte proteins nephrin and Neph3 and the transcriptional regulation of their genes. Clin Sci (Lond) 2013; 126:315-28. [DOI: 10.1042/cs20130258] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nephrin and Neph-family proteins [Neph1–3 (nephrin-like 1–3)] belong to the immunoglobulin superfamily of cell-adhesion receptors and are expressed in the glomerular podocytes. Both nephrin and Neph-family members function in cell adhesion and signalling, and thus regulate the structure and function of podocytes and maintain normal glomerular ultrafiltration. The expression of nephrin and Neph3 is altered in human proteinuric diseases emphasizing the importance of studying the transcriptional regulation of the nephrin and Neph3 genes NPHS1 (nephrosis 1, congenital, Finnish type) and KIRREL2 (kin of IRRE-like 2) respectively. The nephrin and Neph3 genes form a bidirectional gene pair, and they share transcriptional regulatory mechanisms. In the present review, we summarize the current knowledge of the functions of nephrin and Neph-family proteins and transcription factors and agents that control nephrin and Neph3 gene expression.
Collapse
|
8
|
Bartholdi D, Asadollahi R, Oneda B, Schmitt-Mechelke T, Tonella P, Baumer A, Rauch A. Further delineation of genotype-phenotype correlation in homozygous 2p21 deletion syndromes: first description of patients without cystinuria. Am J Med Genet A 2013; 161A:1853-9. [PMID: 23794250 DOI: 10.1002/ajmg.a.35994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/28/2013] [Indexed: 02/04/2023]
Abstract
Homozygous contiguous gene deletion syndromes are rare. On 2p21, however, several overlapping homozygous gene deletion syndromes have been described, all presenting with cystinuria but otherwise distinct phenotypes. Hypotonia-cystinuria syndrome (HCS, OMIM606407) is characterized by infantile hypotonia, poor feeding, and growth hormone deficiency. Affected individuals carry homozygous deletions including the cystinuria gene SLC3A1 and the adjacent PREPL gene. Larger homozygous deletions in this region encompassing the PPM1B, SLC3A1, PREPL, and C2orf34 (CAMKMT) genes result in a more severe phenotype, the 2p21 deletion syndrome. A phenotype intermediate to HCS and the 2p21 deletion syndrome is termed atypical HCS and is caused by deletion of SLC3A1, PREPL, and C2orf34 (CAMKMT). Using high resolution SNP array molecular karyotyping we identified two siblings with a homozygous deletion of 83 kb partially encompassing the genes PREPL and C2orf34 (CAMKMT), but not the SLC3A1 gene. The affected siblings display a recognizable phenotype which is similar to atypical HCS with regard to growth failure and neuro-muscular features, but is characterized by lack of cystinuria. The patients also exhibit features which have not been reported to date such as cleft palate and genital abnormalities. In conclusion, we report the first patients with a homozygous 2p21 deletion syndrome without cystinuria and further delineate the complex genotype-phenotype correlations of homozygous microdeletion syndromes of this region.
Collapse
Affiliation(s)
- Deborah Bartholdi
- Institute of Medical Genetics, University of Zurich, Schwerzenbach, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
9
|
Ding J, Chen FY, Ren SY, Qiao K, Chen B, Wang KJ. Molecular characterization and promoter analysis of crustacean heat shock protein 10 in Scylla paramemosain. Genome 2013; 56:273-81. [PMID: 23789995 DOI: 10.1139/gen-2013-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (Hsps) are an evolutionarily conserved group of molecules present in all eukaryotic and prokaryotic organisms. Hsp10 and Hsp60 were originally described as the essential mitochondrial proteins involved in protein folding. Recent studies demonstrate that Hsp10 has additional roles including immune modulation. In our study, an homologous Hsp10 (Sp-Hsp10) was identified in the mud crab Scylla paramemosain, and its genomic DNA organization was determined. The cDNA sequence of Sp-Hsp10 contains an open reading frame of 309 bp, encoding a putative protein of 102 amino acid residues with approximately 10 kDa. The Sp-Hsp10 gene is located next to the Sp-Hsp60 gene and shares a 1916-bp intergenic region. The promoter activity of the Sp-Hsp10 flanking gene was analyzed using luciferase reporter assays in transfected endothelial progenitor cells. The upregulation of Sp-Hsp10 expression was detected after exposure of hemocytes to a heat shock of 1 h at 37 °C compared with unstressed hemocytes raised at 20 °C. To our knowledge, this is the first report characterizing the genomic organization of a new Hsp10 in a crustacean.
Collapse
Affiliation(s)
- Jian Ding
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, P.R. China
| | | | | | | | | | | |
Collapse
|
10
|
Didych DA, Shamsutdinov MF, Smirnov NA, Akopov SB, Monastyrskaya GS, Uspenskaya NY, Nikolaev LG, Sverdlov ED. Human PSENEN and U2AF1L4 genes are concertedly regulated by a genuine bidirectional promoter. Gene 2012; 515:34-41. [PMID: 23246698 DOI: 10.1016/j.gene.2012.11.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 11/16/2022]
Abstract
Head-to-head genes with a short distance between their transcription start sites may constitute up to 10% of all genes in the genomes of various species. It was hypothesized that this intergenic space may represent bidirectional promoters which are able to initiate transcription of both genes, but the true bidirectionality was proved only for a few of them. We present experimental evidence that, according to several criteria, a 269 bp region located between the PSENEN and U2AF1L4 human genes is a genuine bidirectional promoter regulating a concerted divergent transcription of these genes. Concerted transcription of PSENEN and U2AF1L4 can be necessary for regulation of T-cell activity.
Collapse
Affiliation(s)
- D A Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lone AM, Bachovchin DA, Westwood D, Speers AE, Spicer TP, Fernandez-Vega V, Chase P, Hodder PS, Rosen H, Cravatt BF, Saghatelian A. A substrate-free activity-based protein profiling screen for the discovery of selective PREPL inhibitors. J Am Chem Soc 2011; 133:11665-74. [PMID: 21692504 PMCID: PMC3145007 DOI: 10.1021/ja2036095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptidases play vital roles in physiology through the biosynthesis, degradation, and regulation of peptides. Prolyl endopeptidase-like (PREPL) is a newly described member of the prolyl peptidase family, with significant homology to mammalian prolyl endopeptidase and the bacterial peptidase oligopeptidase B. The biochemistry and biology of PREPL are of fundamental interest due to this enzyme's homology to the biomedically important prolyl peptidases and its localization in the central nervous system. Furthermore, genetic studies of patients suffering from hypotonia-cystinuria syndrome (HCS) have revealed a deletion of a portion of the genome that includes the PREPL gene. HCS symptoms thought to be caused by lack of PREPL include neuromuscular and mild cognitive deficits. A number of complementary approaches, ranging from biochemistry to genetics, will be required to understand the biochemical, cellular, physiological, and pathological mechanisms regulated by PREPL. We are particularly interested in investigating physiological substrates and pathways controlled by PREPL. Here, we use a fluorescence polarization activity-based protein profiling (fluopol-ABPP) assay to discover selective small-molecule inhibitors of PREPL. Fluopol-ABPP is a substrate-free approach that is ideally suited for studying serine hydrolases for which no substrates are known, such as PREPL. After screening over 300,000 compounds using fluopol-ABPP, we employed a number of secondary assays to confirm assay hits and characterize a group of 3-oxo-1-phenyl-2,3,5,6,7,8-hexahydroisoquinoline-4-carbonitrile and 1-alkyl-3-oxo-3,5,6,7-tetrahydro-2H-cyclopenta[c]pyridine-4-carbonitrile PREPL inhibitors that are able to block PREPL activity in cells. Moreover, when administered to mice, 1-isobutyl-3-oxo-3,5,6,7-tetrahydro-2H-cyclopenta[c]pyridine-4-carbonitrile distributes to the brain, indicating that it may be useful for in vivo studies. The application of fluopol-ABPP has led to the first reported PREPL inhibitors, and these inhibitors will be of great value in studying the biochemistry of PREPL and in eventually understanding the link between PREPL and HCS.
Collapse
Affiliation(s)
- Anna Mari Lone
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Daniel A. Bachovchin
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - David Westwood
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Anna E. Speers
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Timothy P. Spicer
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Virneliz Fernandez-Vega
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Peter Chase
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Peter S. Hodder
- Scripps Research Institute Molecular Screening Center, Lead Identification Division, Translational Research Institute, 130 Scripps Way, Jupiter, FL 33458
- Department of Molecular Therapeutics, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458
| | - Hugh Rosen
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
- The Scripps Research Institute Molecular Screening Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Alan Saghatelian
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
12
|
Liu B, Chen J, Shen B. Genome-wide analysis of the transcription factor binding preference of human bi-directional promoters and functional annotation of related gene pairs. BMC SYSTEMS BIOLOGY 2011; 5 Suppl 1:S2. [PMID: 21689477 PMCID: PMC3121118 DOI: 10.1186/1752-0509-5-s1-s2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Bi-directional gene pairs have received considerable attention for their prevalence in vertebrate genomes. However, their biological relevance and exact regulatory mechanism remain less understood. To study the inner properties of this gene organization and the difference between bi- and uni-directional genes, we conducted a genome-wide investigation in terms of their sequence composition, functional association and regulatory motif discovery. Results We identified 1210 bi-directional gene pairs based on the GRCh37 assembly data, accounting for 11.6% of all the human genes owning RNAs. CpG islands were detected in 98.42% of bi-directional promoters and 61.07% of unidirectional promoters. Functional enrichment analysis in GO and GeneGO both revealed that bi-directional genes tend to be associated with housekeeping functions in metabolism pathways and nuclear processes, and 46.84% of the pair members are involved in the same biological function. By fold-enrichment analysis, we characterized 73 and 43 putative transcription factor binding sites(TFBS) that preferentially occur in bi-directional promoters from TRANSFAC and JASPAR database respectively. By text mining, some of them were verified by individual experiments and several novel binding motifs were also identified. Conclusions Bi-directional promoters feature a significant enrichment of CpG-islands as well as a high GC content. We provided insight into the function constraints of bi-directional genes and found that paired genes are biased toward functional similarities. We hypothesized that the functional association underlies the co-expression of bi-directional genes. Furthermore, we proposed a set of putative regulatory motifs in the bi-directional promoters for further experimental studies to investigate transcriptional regulation of bi-directional genes.
Collapse
Affiliation(s)
- Bingchuan Liu
- Center for Systems Biology, Soochow University, Suzhou, China
| | | | | |
Collapse
|
13
|
Oh-Hashi K, Koga H, Ikeda S, Shimada K, Hirata Y, Kiuchi K. Role of an ER stress response element in regulating the bidirectional promoter of the mouse CRELD2 - ALG12 gene pair. BMC Genomics 2010; 11:664. [PMID: 21106106 PMCID: PMC3091781 DOI: 10.1186/1471-2164-11-664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/25/2010] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recently, we identified cysteine-rich with EGF-like domains 2 (CRELD2) as a novel endoplasmic reticulum (ER) stress-inducible gene and characterized its transcriptional regulation by ATF6 under ER stress conditions. Interestingly, the CRELD2 and asparagine-linked glycosylation 12 homolog (ALG12) genes are arranged as a bidirectional (head-to-head) gene pair and are separated by less than 400 bp. In this study, we characterized the transcriptional regulation of the mouse CRELD2 and ALG12 genes that is mediated by a common bidirectional promoter. RESULTS This short intergenic region contains an ER stress response element (ERSE) sequence and is well conserved among the human, rat and mouse genomes. Microarray analysis revealed that CRELD2 and ALG12 mRNAs were induced in Neuro2a cells by treatment with thapsigargin (Tg), an ER stress inducer, in a time-dependent manner. Other ER stress inducers, tunicamycin and brefeldin A, also increased the expression of these two mRNAs in Neuro2a cells. We then tested for the possible involvement of the ERSE motif and other regulatory sites of the intergenic region in the transcriptional regulation of the mouse CRELD2 and ALG12 genes by using variants of the bidirectional reporter construct. With regards to the promoter activities of the CRELD2-ALG12 gene pair, the entire intergenic region hardly responded to Tg, whereas the CRELD2 promoter constructs of the proximal region containing the ERSE motif showed a marked responsiveness to Tg. The same ERSE motif of ALG12 gene in the opposite direction was less responsive to Tg. The direction and the distance of this motif from each transcriptional start site, however, has no impact on the responsiveness of either gene to Tg treatment. Additionally, we found three putative sequences in the intergenic region that antagonize the ERSE-mediated transcriptional activation. CONCLUSIONS These results show that the mouse CRELD2 and ALG12 genes are arranged as a unique bidirectional gene pair and that they may be regulated by the combined interactions between ATF6 and multiple other transcriptional factors. Our studies provide new insights into the complex transcriptional regulation of bidirectional gene pairs under pathophysiological conditions.
Collapse
Affiliation(s)
- Kentaro Oh-Hashi
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Dávila López M, Martínez Guerra JJ, Samuelsson T. Analysis of gene order conservation in eukaryotes identifies transcriptionally and functionally linked genes. PLoS One 2010; 5:e10654. [PMID: 20498846 PMCID: PMC2871058 DOI: 10.1371/journal.pone.0010654] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 04/26/2010] [Indexed: 01/03/2023] Open
Abstract
The order of genes in eukaryotes is not entirely random. Studies of gene order conservation are important to understand genome evolution and to reveal mechanisms why certain neighboring genes are more difficult to separate during evolution. Here, genome-wide gene order information was compiled for 64 species, representing a wide variety of eukaryotic phyla. This information is presented in a browser where gene order may be displayed and compared between species. Factors related to non-random gene order in eukaryotes were examined by considering pairs of neighboring genes. The evolutionary conservation of gene pairs was studied with respect to relative transcriptional direction, intergenic distance and functional relationship as inferred by gene ontology. The results show that among gene pairs that are conserved the divergently and co-directionally transcribed genes are much more common than those that are convergently transcribed. Furthermore, highly conserved pairs, in particular those of fungi, are characterized by a short intergenic distance. Finally, gene pairs of metazoa and fungi that are evolutionary conserved and that are divergently transcribed are much more likely to be related by function as compared to poorly conserved gene pairs. One example is the ribosomal protein gene pair L13/S16, which is unusual as it occurs both in fungi and alveolates. A specific functional relationship between these two proteins is also suggested by the fact that they are part of the same operon in both eubacteria and archaea. In conclusion, factors associated with non-random gene order in eukaryotes include relative gene orientation, intergenic distance and functional relationships. It seems likely that certain pairs of genes are conserved because the genes involved have a transcriptional and/or functional relationship. The results also indicate that studies of gene order conservation aid in identifying genes that are related in terms of transcriptional control.
Collapse
Affiliation(s)
- Marcela Dávila López
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Juan José Martínez Guerra
- Departmento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes, Mexico
| | - Tore Samuelsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
- * E-mail:
| |
Collapse
|