1
|
Hopp AK, Hottiger MO. Uncovering the Invisible: Mono-ADP-ribosylation Moved into the Spotlight. Cells 2021; 10:680. [PMID: 33808662 PMCID: PMC8003356 DOI: 10.3390/cells10030680] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine diphosphate (ADP)-ribosylation is a nicotinamide adenine dinucleotide (NAD+)-dependent post-translational modification that is found on proteins as well as on nucleic acids. While ARTD1/PARP1-mediated poly-ADP-ribosylation has extensively been studied in the past 60 years, comparably little is known about the physiological function of mono-ADP-ribosylation and the enzymes involved in its turnover. Promising technological advances have enabled the development of innovative tools to detect NAD+ and NAD+/NADH (H for hydrogen) ratios as well as ADP-ribosylation. These tools have significantly enhanced our current understanding of how intracellular NAD dynamics contribute to the regulation of ADP-ribosylation as well as to how mono-ADP-ribosylation integrates into various cellular processes. Here, we discuss the recent technological advances, as well as associated new biological findings and concepts.
Collapse
Affiliation(s)
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
2
|
Almada AE, Horwitz N, Price FD, Gonzalez AE, Ko M, Bolukbasi OV, Messemer KA, Chen S, Sinha M, Rubin LL, Wagers AJ. FOS licenses early events in stem cell activation driving skeletal muscle regeneration. Cell Rep 2021; 34:108656. [PMID: 33503437 PMCID: PMC9112118 DOI: 10.1016/j.celrep.2020.108656] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/14/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
Muscle satellite cells (SCs) are a quiescent (non-proliferative) stem cell population in uninjured skeletal muscle. Although SCs have been investigated for nearly 60 years, the molecular drivers that transform quiescent SCs into the rapidly dividing (activated) stem/progenitor cells that mediate muscle repair after injury remain largely unknown. Here we identify a prominent FBJ osteosarcoma oncogene (Fos) mRNA and protein signature in recently activated SCs that is rapidly, heterogeneously, and transiently induced by muscle damage. We further reveal a requirement for FOS to efficiently initiate key stem cell functions, including cell cycle entry, proliferative expansion, and muscle regeneration, via induction of “pro-regenerative” target genes that stimulate cell migration, division, and differentiation. Disruption of one of these Fos/AP-1 targets, NAD(+)-consuming mono-ADP-ribosyl-transferase 1 (Art1), in SCs delays cell cycle entry and impedes progenitor cell expansion and muscle regeneration. This work uncovers an early-activated FOS/ART1/mono-ADP-ribosylation (MARylation) pathway that is essential for stem cell-regenerative responses. How adult stem cells are activated to repair tissues and organs after injury remains one of the greatest mysteries in regenerative biology. Almada et al. reveal a FOS-driven “pro-regenerative” transcriptional gene network, including the NAD(+)-dependent mono-ADP-ribosylating (MARylating) enzyme Art1, that drives effective muscle stem cell activation and muscle repair.
Collapse
Affiliation(s)
- Albert E Almada
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Joslin Diabetes Center, Boston, MA 02215, USA.
| | - Naftali Horwitz
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Joslin Diabetes Center, Boston, MA 02215, USA
| | - Feodor D Price
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alfredo E Gonzalez
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle Ko
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Ozge Vargel Bolukbasi
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Kathleen A Messemer
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Sonia Chen
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Manisha Sinha
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Joslin Diabetes Center, Boston, MA 02215, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Joslin Diabetes Center, Boston, MA 02215, USA.
| |
Collapse
|
3
|
ARH1 in Health and Disease. Cancers (Basel) 2020; 12:cancers12020479. [PMID: 32092898 PMCID: PMC7072381 DOI: 10.3390/cancers12020479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
Arginine-specific mono-adenosine diphosphate (ADP)-ribosylation is a nicotinamide adenine dinucleotide (NAD)+-dependent, reversible post-translational modification involving the transfer of an ADP-ribose from NAD+ by bacterial toxins and eukaryotic ADP-ribosyltransferases (ARTs) to arginine on an acceptor protein or peptide. ADP-ribosylarginine hydrolase 1 (ARH1) catalyzes the cleavage of the ADP-ribose-arginine bond, regenerating (arginine)protein. Arginine-specific mono-ADP-ribosylation catalyzed by bacterial toxins was first identified as a mechanism of disease pathogenesis. Cholera toxin ADP-ribosylates and activates the α subunit of Gαs, a guanine nucleotide-binding protein that stimulates adenylyl cyclase activity, increasing cyclic adenosine monophosphate (cAMP), and resulting in fluid and electrolyte loss. Arginine-specific mono-ADP-ribosylation in mammalian cells has potential roles in membrane repair, immunity, and cancer. In mammalian tissues, ARH1 is a cytosolic protein that is ubiquitously expressed. ARH1 deficiency increased tumorigenesis in a gender-specific manner. In the myocardium, in response to cellular injury, an arginine-specific mono-ADP-ribosylation cycle, involving ART1 and ARH1, regulated the level and cellular distribution of ADP-ribosylated tripartite motif-containing protein 72 (TRIM72). Confirmed substrates of ARH1 in vivo are Gαs and TRIM72, however, more than a thousand proteins, ADP-ribosylated on arginine, have been identified by proteomic analysis. This review summarizes the current understanding of the properties of ARH1, e.g., bacterial toxin action, myocardial membrane repair following injury, and tumorigenesis.
Collapse
|
4
|
Li Z, Yan X, Sun Y, Yang X. Expression of ADP-ribosyltransferase 1 Is Associated with Poor Prognosis of Glioma Patients. TOHOKU J EXP MED 2016; 239:269-78. [DOI: 10.1620/tjem.239.269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhen Li
- Department of Neurology, Yidu Central Hospital of Weifang
| | - Xinling Yan
- Department of Neurology, Yidu Central Hospital of Weifang
| | - Yuyan Sun
- Department of Neurology, Yidu Central Hospital of Weifang
| | | |
Collapse
|
5
|
Grassot V, Da Silva A, Saliba J, Maftah A, Dupuy F, Petit JM. Highlights of glycosylation and adhesion related genes involved in myogenesis. BMC Genomics 2014; 15:621. [PMID: 25051993 PMCID: PMC4223822 DOI: 10.1186/1471-2164-15-621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Myogenesis is initiated by myoblast differentiation and fusion to form myotubes and muscle fibres. A population of myoblasts, known as satellite cells, is responsible for post-natal growth of muscle and for its regeneration. This differentiation requires many changes in cell behaviour and its surrounding environment. These modifications are tightly regulated over time and can be characterized through the study of changes in gene expression associated with this process. During the initial myogenesis steps, using the myoblast cell line C2C12 as a model, Janot et al. (2009) showed significant variations in expression for genes involved in pathways of glycolipid synthesis. In this study we used murine satellite cells (MSC) and their ability to differentiate into myotubes or early fat storage cells to select glycosylation related genes whose variation of expression is myogenesis specific. RESULTS The comparison of variant genes in both MSC differentiation pathways identified 67 genes associated with myogenesis. Comparison with data obtained for C2C12 revealed that only 14 genes had similar expression profiles in both cell types and that 17 genes were specifically regulated in MSC. Results were validated statistically by without a priori clustering. Classification according to protein function encoded by these 31 genes showed that the main regulated cellular processes during this differentiation were (i) remodeling of the extracellular matrix, particularly, sulfated structures, (ii) down-regulation of O-mannosyl glycan biosynthesis, and (iii) an increase in adhesion protein expression. A functional study was performed on Itga11 and Chst5 encoding two highly up-regulated proteins. The inactivation of Chst5 by specific shRNA delayed the fusion of MSC. By contrast, the inactivation of Itga11 by specific shRNA dramatically decreased the fusion ability of MSC. This result was confirmed by neutralization of Itga11 product by specific antibodies. CONCLUSIONS Our screening method detected 31 genes specific for myogenic differentiation out of the 383 genes studied. According to their function, interaction networks of the products of these selected genes converged to cell fusion. Functional studies on Itga11 and Chst5 demonstrated the robustness of this screening.
Collapse
Affiliation(s)
- Vincent Grassot
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Anne Da Silva
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - James Saliba
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Abderrahman Maftah
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Fabrice Dupuy
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Jean-Michel Petit
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| |
Collapse
|
6
|
Su Y, Guan XQ, Liu FQ, Wang YL. The effects of MIBG on the invasive properties of HepG2 hepatocellular carcinoma cells. Int J Mol Med 2014; 34:842-8. [PMID: 24970008 DOI: 10.3892/ijmm.2014.1819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/19/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of meta-iodobenzylguanidine (MIBG) on the invasive properties of hepatocellular carcinoma (HCC) cells and examine whether these effects are due to the ability of MIBG to inhibit arginine-specific mono-ADP-ribosylation. Samples from patients with HCC were divided into 2 groups, a metastatic group and a non-metastatic group. Immunohistochemistry and RT-PCR were used to detect the protein and mRNA expression of arginine-specific adenosine diphosphate-ribosyltransferase 1 (ART1) and integrin α7 in the HCC tissues. In addition, the expression of ART1 was measured in HepG2 HCC cells by immunofluorescence. The inhibition of the metastasis of HepG2 cells by MIBG at various concentrations was measured by MTT assay. In addition, the effects of MIBG on HepG2 cell metastasis were measured using a scratch wound assay and a transwell invasion assay. Western blot analysis was used to detect the protein expression of ART1, integrin α7, focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K) and urokinase-type plasminogen activator (uPA) in the HepG2 cells. The mRNA and protein levels of ART1 and integrin α7 were higher in the metastatic HCC samples than in the non-metastatic HCC samples. ART1 expression was detected in the HepG2 cells. The half maximal inhibition concentration (IC50) of MIBG in the HepG2 cells was 200 µmol/l (P<0.05). Within a certain dose range, MIBG exerted inhibitory effects on HepG2 cell migration in a dose-dependent manner. Treatment with MIBG significantly inhibited the migration and invasion of the HepG2 cells relative to the control cells (P<0.05) and reduced the protein expression of ART1, integrin α7, FAK, PI3K and uPA (P<0.05). Our data demonstrate that ART1 and integrin α7 may be involved in the invasive and metastatic properties of HCC cells. MIBG inhibited the migration and invasion of HepG2 cells, possibly through the inhibition of arginine-specific single-adenosine diphosphate ribosylation and the suppression of the protein expression of integrin α7β1, FAK and PI3K and the secretion of uPA, leading to reduced invasion by HepG2 cells.
Collapse
Affiliation(s)
- Yan Su
- Molecular Medicine and Cancer Research Center, Department of Pathology, Chongqing Medical University, Chongqing, P.R. China
| | - Xiao-Qin Guan
- Molecular Medicine and Cancer Research Center, Department of Pathology, Chongqing Medical University, Chongqing, P.R. China
| | - Feng-Qiu Liu
- Molecular Medicine and Cancer Research Center, Department of Pathology, Chongqing Medical University, Chongqing, P.R. China
| | - Ya-Lan Wang
- Molecular Medicine and Cancer Research Center, Department of Pathology, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
7
|
Müller GA, Quaas M, Schümann M, Krause E, Padi M, Fischer M, Litovchick L, DeCaprio JA, Engeland K. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes. Nucleic Acids Res 2011; 40:1561-78. [PMID: 22064854 PMCID: PMC3287175 DOI: 10.1093/nar/gkr793] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G(0)/G(1). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G(0). Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G(0)/G(1), but also for activation in S, G(2) and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle.
Collapse
Affiliation(s)
- Gerd A Müller
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstrasse 14, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sohr S, Engeland K. The tumor suppressor p53 induces expression of the pregnancy-supporting human chorionic gonadotropin (hCG) CGB7 gene. Cell Cycle 2011; 10:3758-67. [PMID: 22032922 DOI: 10.4161/cc.10.21.17946] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Successful pregnancy requires a functionally normal blastocyst encountering a receptive maternal endometrium. Interestingly, the cell cycle regulator and tumor suppressor p53 has been reported to support reproduction in mice by regulating the expression of the leukemia inhibitory factor gene in the maternal endometrium. However, in humans the hormonal system orchestrating successful pregnancy is considerably different from rodents. Particularly, the primate-specific dimeric glycoprotein hormone human chorionic gonadotropin (hCG) is essential for blastocyst implantation and maintenance of early human pregnancy. Here we provide evidence that p53 selectively induces expression of the hCGbeta7 (CGB7) gene. None of the other CGB genes was found to be regulated by p53. We show that expression of the CGB7 gene is upregulated upon p53 induction in human HFF, HCT116 and DLD1 cells as well as in cell preparations enriched in human primary first-trimester trophoblasts. The increase in CGB7 levels upon doxorubicin treatment is lost after siRNA-directed knockdown of p53. Furthermore, we describe CGB7 as a direct transcriptional target gene of p53 by identifying a p53-responsive element in the CGB7 promoter using reporter assays, electrophoretic mobility shift assays and chromatin immunoprecipitations. With these results we provide a new link between p53 transcriptional activity and human reproduction.
Collapse
Affiliation(s)
- Sindy Sohr
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
9
|
Richard AF, Demignon J, Sakakibara I, Pujol J, Favier M, Strochlic L, Le Grand F, Sgarioto N, Guernec A, Schmitt A, Cagnard N, Huang R, Legay C, Guillet-Deniau I, Maire P. Genesis of muscle fiber-type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression. Dev Biol 2011; 359:303-20. [DOI: 10.1016/j.ydbio.2011.08.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/22/2011] [Accepted: 08/15/2011] [Indexed: 01/28/2023]
|
10
|
Böhlig L, Friedrich M, Engeland K. p53 activates the PANK1/miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins. Nucleic Acids Res 2010; 39:440-53. [PMID: 20833636 PMCID: PMC3025554 DOI: 10.1093/nar/gkq796] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The tumor suppressor p53 is a central regulator of cell-cycle arrest and apoptosis by acting as a transcription factor to regulate numerous genes. We identified all human p53-regulated mRNAs by microarray analyses and searched for protein-coding genes which contain intronic miRNAs. Among others, this analysis yielded the panthothenate kinase 1 (PANK1) gene and its intronic miRNA-107. We showed that miRNA-107 and PANK1 are coregulated by p53 in different cell systems. The PANK1 protein, which catalyzes the rate-limiting step of coenzyme A biosynthesis, is also upregulated by p53. We observed that p53 directly activates PANK1 and miRNA-107 transcription through a binding site in the PANK1 promoter. Furthermore, p53 is recruited to the PANK1 promoter after DNA damage. In order to get more insight into miRNA-107 function we investigated its potential target genes. Cell-cycle regulators are significantly enriched among predicted miRNA-107 targets. We found miRNA-107-dependent regulation of two important regulators of G(1)/S progression, CDK6 and the RB-related 2 gene RBL2 (p130). CDK6 and p130 proteins are downregulated upon miRNA-107 expression. Our results uncover a novel miRNA-dependent signaling pathway which leads to downregulation of cell cycle proteins in the absence of transcriptional repression.
Collapse
Affiliation(s)
- Levin Böhlig
- Department of Obstetrics and Gynecology, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
11
|
Grahnert A, Grahnert A, Klein C, Schilling E, Wehrhahn J, Hauschildt S. Review: NAD +: a modulator of immune functions. Innate Immun 2010; 17:212-33. [PMID: 20388721 DOI: 10.1177/1753425910361989] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Latterly, nicotinamide adenine dinucleotide (NAD+) has emerged as a molecule with versatile functions and of enormous impact on the maintenance of cell integrity. Besides playing key roles in almost all major aspects of energy metabolism, there is mounting evidence that NAD+ and its degradation products affect various biological activities including calcium homeostasis, gene transcription, DNA repair, and intercellular communication. This review is aimed at giving a brief insight into the life cycle of NAD+ in the cell, referring to synthesis, action and degradation aspects. With respect to their immunological relevance, the importance and function of the major NAD+ metabolizing enzymes, namely CD38/CD157, ADP-ribosyltransferases (ARTs), poly-ADP-ribose-polymerases (PARPs), and sirtuins are summarized and roles of NAD+ and its main degradation product adenosine 5'-diphosphoribose (ADPR) in cell signaling are discussed. In addition, an outline of the variety of immunological processes depending on the activity of nicotinamide phosphoribosyltransferase (Nampt), the key enzyme of the salvage pathway of NAD+ synthesis, is presented. Taken together, an efficient supply of NAD+ seems to be a crucial need for a multitude of cell functions, underlining the yet only partly revealed potency of this small molecule to influence cell fate.
Collapse
Affiliation(s)
- Andreas Grahnert
- Department of Immunobiology, Institute of Biology, University of Leipzig, Talstrasse 33, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|