1
|
Tsurugizawa T, Taki A, Zalesky A, Kasahara K. Increased interhemispheric functional connectivity during non-dominant hand movement in right-handed subjects. iScience 2023; 26:107592. [PMID: 37705959 PMCID: PMC10495657 DOI: 10.1016/j.isci.2023.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/15/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Hand preference is one of the behavioral expressions of lateralization in the brain. Previous fMRI studies showed the activation in several regions including the motor cortex and the cerebellum during single-hand movement. However, functional connectivity related to hand preference has not been investigated. Here, we used the generalized psychophysiological interaction (gPPI) approach to investigate the alteration of functional connectivity during single-hand movement from the resting state in right-hand subjects. The functional connectivity in interhemispheric motor-related regions including the supplementary motor area, the precentral gyrus, and the cerebellum was significantly increased during non-dominant hand movement, while functional connectivity was not increased during dominant hand movement. The general linear model (GLM) showed activation in contralateral supplementary motor area, contralateral precentral gyrus, and ipsilateral cerebellum during right- or left-hand movement. These results indicate that a combination of GLM and gPPI analysis can detect the lateralization of hand preference more clearly.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Ai Taki
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kazumi Kasahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba-City, Ibaraki 305-8568, Japan
| |
Collapse
|
2
|
Okamoto Y, Ishii D, Yamamoto S, Ishibashi K, Kohno Y, Numata K. Effects of short-term upper limb immobilization on sensory information processing and corticospinal excitability. Exp Brain Res 2022; 240:1979-1989. [PMID: 35589856 DOI: 10.1007/s00221-022-06371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
Several studies have reported the effects of short-term immobilization of the upper limb on the excitability of the primary motor cortex. In a report examining the effects of upper limb immobilization on somatosensory information processing using somatosensory-evoked potentials (SEPs), short-term upper limb immobilization reduced the amplitude and increased the latency of the P45 component recorded over the contralateral sensorimotor cortex of SEPs. However, the effects of upper limb immobilization on other regions involved in somatosensory information processing are unknown. Therefore, we investigated the effects of short-term right upper limb immobilization on sensory information processing, particularly in motor-related areas, by measuring the cortical components of SEPs. We also evaluated the excitability of the primary motor cortex and corticospinal tract as well as motor performance (visual simple reaction time and pinch force) related to these areas. All subjects were divided into two groups: the SEP group, in which the effects of upper limb immobilization on the excitability of somatosensory processing were investigated, and the transcranial magnetic stimulation (TMS) group, in which the effects of upper limb immobilization on the excitability of the corticospinal tract and primary motor cortex were investigated. Motor performance was evaluated in all subjects. We showed that 10-h right upper limb immobilization increased the cortical component of SEPs (N30) in the SEP group and decreased the excitability of the corticospinal tract, but not of the primary motor cortex, in the TMS group. The pinch force decreased after upper limb immobilization. However, the visual simple reaction time did not change between pre- and post-immobilization. The supplementary motor area and premotor cortex are believed to be the source of the N30. Therefore, these results suggest that upper limb immobilization affected somatosensory information processing in motor-related areas. Moreover, 10-h right upper limb immobilization reduced the excitability of corticospinal tracts but not that of the primary motor cortex, suggesting that circuits outside the M1, such as the intra- and inter-hemispheric inhibitory and facilitatory circuits rather than circuits within the M1, may be responsible for the reduced excitability of the central nervous system after restraint.
Collapse
Affiliation(s)
- Yoshitaka Okamoto
- Department of Rehabilitation, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan. .,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan.
| | - Satoshi Yamamoto
- Department of Physical Therapy, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan
| | - Kiyoshige Ishibashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, 4733 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0331, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, 300-0394, Japan
| | - Kenji Numata
- Department of Physical Therapy, Tokyo Professional University of Health Sciences, 2-22-10 Shiohama, Koto-ku, Tokyo, 135-0043, Japan
| |
Collapse
|
3
|
Acosta-Sojo Y, Martin BJ. Age-related differences in proprioceptive asymmetries. Neurosci Lett 2021; 757:135992. [PMID: 34051338 DOI: 10.1016/j.neulet.2021.135992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Age-related differences in proprioceptive asymmetries have received little attention. This study aimed to determine differences in asymmetry of the right/left upper limb proprioceptive systems between younger and older adults. Asymmetries were compared in two "eyes closed" experiments involving the same elbow joints. Position sense was tested in two matching conditions: ipsilateral remembered and contralateral concurrent. Movement sense was tested while reproducing with the opposite forearm the illusory movement elicited by distal tendon vibration applied to the reference forearm. Older adults exhibited a larger error when matching with the non-dominant than dominant forearm in the ipsilateral remembered condition and a disparate asymmetry in the contralateral condition when compared to younger adults. In addition, in older adults, the velocity of reproduced illusory movements was slower, and asymmetry in movement perception was not significant. The difference in proprioceptive asymmetry between younger and older adults might be attributed to a significant reduction of the sensory system gain affecting, more particularly, the left non-dominant arm sensory system via several physiological and neurophysiological mechanisms.
Collapse
Affiliation(s)
- Yadrianna Acosta-Sojo
- Center for Ergonomics, Department of Industrial and Operations Engineering, University of Michigan, 1205 Beal Ave., Ann Arbor, MI, 48109, USA.
| | - Bernard J Martin
- Center for Ergonomics, Department of Industrial and Operations Engineering, University of Michigan, 1205 Beal Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Daskalakis AA, Zomorrodi R, Blumberger DM, Rajji TK. Evidence for prefrontal cortex hypofunctioning in schizophrenia through somatosensory evoked potentials. Schizophr Res 2020; 215:197-203. [PMID: 31662233 DOI: 10.1016/j.schres.2019.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 09/11/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
Patients with schizophrenia (SCZ) exhibit a variety of symptoms related to altered processing of somatosensory information. Little is known, however, about the neural substrates underlying somatosensory impairments in SCZ. This study endeavored to evaluate somatosensory processing in patients with SCZ compared to healthy individuals by generating somatosensory evoked potentials through stimulation of the right median nerve. The median nerve was stimulated by a peripheral nerve stimulator in 34 SCZ and 33 healthy control (HC) participants. The peripheral nerve stimulus (PNS) intensity was adjusted to 300 percent of sensory threshold and delivered at 0.1 Hz. The EEG data were acquired through 64-channels per 10-20 montage. We collected and averaged 100 trials and the recording electrodes of interest were the F3/F5 electrodes representing the dorsolateral prefrontal cortex (DLPFC) and C3/CP3 representing the somatosensory cortex (S1). In response to PNS, SCZ participants experienced over the DLPFC N30 amplitude that was significantly smaller than that of HC participants. By contrast, S1 N20 was of similar amplitude between the two groups. In addition, we found an association between N20 and N30 amplitudes in SCZ but not in HC participants. Our findings suggest that patients with SCZ demonstrate aberrant processing of somatosensory activation by the DLPFC locally and not due to a connectivity disruption between S1 and DLPFC. These results could help to develop a model through which to DLPFC hypofunctioning could be studied. Our findings may also help to identify a potential biological target to treat somatosensory information processing related deficits in SCZ.
Collapse
Affiliation(s)
- Anastasios A Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
De Martino E, Seminowicz DA, Schabrun SM, Petrini L, Graven-Nielsen T. High frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex modulates sensorimotor cortex function in the transition to sustained muscle pain. Neuroimage 2019; 186:93-102. [DOI: 10.1016/j.neuroimage.2018.10.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/08/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022] Open
|
6
|
Galamb K, Szilágyi B, Magyar OM, Hortobágyi T, Nagatomi R, Váczi M, Négyesi J. Effects of side-dominance on knee joint proprioceptive target-matching asymmetries. Physiol Int 2018; 105:257-265. [PMID: 30269560 DOI: 10.1556/2060.105.2018.3.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AIMS Right- and left-side-dominant individuals reveal target-matching asymmetries between joints of the dominant and non-dominant upper limbs. However, it is unclear if such asymmetries are also present in lower limb's joints. We hypothesized that right-side-dominant participants perform knee joint target-matching tasks more accurately with their non-dominant leg compared to left-side-dominant participants. METHODS Participants performed position sense tasks using each leg by moving each limb separately and passively on an isokinetic dynamometer. RESULTS Side-dominance affected (p < 0.05) knee joint absolute position errors only in the non-dominant leg but not in the dominant leg: right-side-dominant participants produced less absolute position errors (2.82° ± 0.72°) with the non-dominant leg compared to left-side-dominant young participants (3.54° ± 0.33°). CONCLUSIONS In conclusion, right-side-dominant participants tend to perform a target-matching task more accurately with the non-dominant leg compared to left-side-dominant participants. Our results extend the literature by showing that right-hemisphere specialization under proprioceptive target-matching tasks may be not evident at the lower limb joints.
Collapse
Affiliation(s)
- K Galamb
- 1 Pain Clinic , Budapest, Hungary.,2 Department of Movement, Human and Health Sciences, University of Rome , Rome, Italy
| | | | | | - T Hortobágyi
- 3 Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - R Nagatomi
- 4 Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine , Sendai, Japan.,5 Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering , Sendai, Japan
| | - M Váczi
- 6 Institute of Sport Sciences and Physical Education, University of Pécs , Pécs, Hungary
| | - J Négyesi
- 1 Pain Clinic , Budapest, Hungary.,4 Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine , Sendai, Japan
| |
Collapse
|
7
|
Dancey E, Yielder P, Murphy B. Does Location of Tonic Pain Differentially Impact Motor Learning and Sensorimotor Integration? Brain Sci 2018; 8:E179. [PMID: 30250009 PMCID: PMC6210022 DOI: 10.3390/brainsci8100179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/29/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022] Open
Abstract
Recent work found that experimental pain appeared to negate alterations in cortical somatosensory evoked potentials (SEPs) that occurred in response to motor learning acquisition of a novel tracing task. The goal of this experiment was to further investigate the interactive effects of pain stimulus location on motor learning acquisition, retention, and sensorimotor processing. Three groups of twelve participants (n = 36) were randomly assigned to either a local capsaicin group, remote capsaicin group or contralateral capsaicin group. SEPs were collected at baseline, post-application of capsaicin cream, and following a motor learning task. Participants performed a motor tracing acquisition task followed by a pain-free retention task 24⁻48 h later while accuracy data was recorded. The P25 (p < 0.001) SEP peak significantly decreased following capsaicin application for all groups. Following motor learning acquisition, the N18 SEP peak decreased for the remote capsaicin group (p = 0.02) while the N30 (p = 0.002) SEP peaks increased significantly following motor learning acquisition for all groups. The local, remote and contralateral capsaicin groups improved in accuracy following motor learning (p < 0.001) with no significant differences between the groups. Early SEP alterations are markers of the neuroplasticity that accompanies acute pain and motor learning acquisition. Improved motor learning while in acute pain may be due to an increase in arousal, as opposed to increased attention to the limb performing the task.
Collapse
Affiliation(s)
- Erin Dancey
- University of Ontario Institute of Technology, Ontario, ON L1G 0C5, Canada.
| | - Paul Yielder
- University of Ontario Institute of Technology, Ontario, ON L1G 0C5, Canada.
| | - Bernadette Murphy
- University of Ontario Institute of Technology, Ontario, ON L1G 0C5, Canada.
| |
Collapse
|
8
|
Macerollo A, Brown MJ, Kilner JM, Chen R. Neurophysiological Changes Measured Using Somatosensory Evoked Potentials. Trends Neurosci 2018; 41:294-310. [DOI: 10.1016/j.tins.2018.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 01/05/2023]
|
9
|
Veldman M, Maurits N, Nijland M, Wolters N, Mizelle J, Hortobágyi T. Spectral and temporal electroencephalography measures reveal distinct neural networks for the acquisition, consolidation, and interlimb transfer of motor skills in healthy young adults. Clin Neurophysiol 2018; 129:419-430. [DOI: 10.1016/j.clinph.2017.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/22/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023]
|
10
|
Mirdamadi JL, Suzuki LY, Meehan SK. Attention modulates specific motor cortical circuits recruited by transcranial magnetic stimulation. Neuroscience 2017; 359:151-158. [PMID: 28735100 DOI: 10.1016/j.neuroscience.2017.07.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/13/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023]
Abstract
Skilled performance and acquisition is dependent upon afferent input to motor cortex. The present study used short-latency afferent inhibition (SAI) to probe how manipulation of sensory afference by attention affects different circuits projecting to pyramidal tract neurons in motor cortex. SAI was assessed in the first dorsal interosseous muscle while participants performed a low or high attention-demanding visual detection task. SAI was evoked by preceding a suprathreshold transcranial magnetic stimulus with electrical stimulation of the median nerve at the wrist. To isolate different afferent intracortical circuits in motor cortex SAI was evoked using either posterior-anterior (PA) or anterior-posterior (PA) monophasic current. In an independent sample, somatosensory processing during the same attention-demanding visual detection tasks was assessed using somatosensory-evoked potentials (SEP) elicited by median nerve stimulation. SAI elicited by AP TMS was reduced under high compared to low visual attention demands. SAI elicited by PA TMS was not affected by visual attention demands. SEPs revealed that the high visual attention load reduced the fronto-central P20-N30 but not the contralateral parietal N20-P25 SEP component. P20-N30 reduction confirmed that the visual attention task altered sensory afference. The current results offer further support that PA and AP TMS recruit different neuronal circuits. AP circuits may be one substrate by which cognitive strategies shape sensorimotor processing during skilled movement by altering sensory processing in premotor areas.
Collapse
Affiliation(s)
- J L Mirdamadi
- Human Sensorimotor Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - L Y Suzuki
- Human Sensorimotor Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - S K Meehan
- Human Sensorimotor Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Bigliassi M, Silva VB, Karageorghis CI, Bird JM, Santos PC, Altimari LR. Brain mechanisms that underlie the effects of motivational audiovisual stimuli on psychophysiological responses during exercise. Physiol Behav 2016; 158:128-36. [PMID: 26948160 DOI: 10.1016/j.physbeh.2016.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/19/2023]
Abstract
Motivational audiovisual stimuli such as music and video have been widely used in the realm of exercise and sport as a means by which to increase situational motivation and enhance performance. The present study addressed the mechanisms that underlie the effects of motivational stimuli on psychophysiological responses and exercise performance. Twenty-two participants completed fatiguing isometric handgrip-squeezing tasks under two experimental conditions (motivational audiovisual condition and neutral audiovisual condition) and a control condition. Electrical activity in the brain and working muscles was analyzed by use of electroencephalography and electromyography, respectively. Participants were asked to squeeze the dynamometer maximally for 30s. A single-item motivation scale was administered after each squeeze. Results indicated that task performance and situational motivational were superior under the influence of motivational stimuli when compared to the other two conditions (~20% and ~25%, respectively). The motivational stimulus downregulated the predominance of low-frequency waves (theta) in the right frontal regions of the cortex (F8), and upregulated high-frequency waves (beta) in the central areas (C3 and C4). It is suggested that motivational sensory cues serve to readjust electrical activity in the brain; a mechanism by which the detrimental effects of fatigue on the efferent control of working muscles is ameliorated.
Collapse
Affiliation(s)
| | - Vinícius B Silva
- Department of Physical Education, Londrina State University, Brazil
| | | | | | | | | |
Collapse
|
12
|
Brown MJ, Staines WR. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input. Neuroimage 2016; 127:97-109. [DOI: 10.1016/j.neuroimage.2015.11.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
|
13
|
Somatosensory input to non-primary motor areas is enhanced during preparation of cued contraterlateral finger sequence movements. Behav Brain Res 2015; 286:166-74. [DOI: 10.1016/j.bbr.2015.02.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/31/2022]
|
14
|
Schaefer SY. Preserved motor asymmetry in late adulthood: is measuring chronological age enough? Neuroscience 2015; 294:51-9. [PMID: 25772792 DOI: 10.1016/j.neuroscience.2015.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 02/01/2023]
Abstract
When comparing motor performance of the dominant and nondominant hands, older adults tend to be less asymmetric compared to young adults. This has suggested decreased motor lateralization and functional compensation within the aging brain. The current study further addressed this question by testing whether motor asymmetry was reduced in a sample of 44 healthy right-handed adults ages 65-89. We hypothesized that the older the age, the less the motor asymmetry, and that 'old old' participants (age 80+) would have less motor asymmetry than 'young old' participants (age 65-79). Using two naturalistic tasks that selectively biased the dominant or nondominant hands, we compared asymmetries in performance (measured as a ratio) across chronological age. Results showed preserved motor asymmetry across ages in both tasks, with no difference in asymmetry ratios in the 'old old' compared to the 'young old.' In the context of previous work, our findings suggest that the aging brain may also be characterized by additional measures besides chronological age.
Collapse
Affiliation(s)
- Sydney Y Schaefer
- Emma Eccles Jones College of Education and Human Services, Utah State University, 7000 Old Main Hill, Logan, UT 84322, USA; Department of Physical Therapy, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; The Center on Aging, University of Utah, 30 North 1900 East, AB193 SOM, Salt Lake City, UT 84132, USA.
| |
Collapse
|
15
|
Modulatory effects of movement sequence preparation and covert spatial attention on early somatosensory input to non-primary motor areas. Exp Brain Res 2014; 233:503-17. [DOI: 10.1007/s00221-014-4131-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
|
16
|
Thacker JS, Middleton LE, McIlroy WE, Staines WR. The influence of an acute bout of aerobic exercise on cortical contributions to motor preparation and execution. Physiol Rep 2014; 2:2/10/e12178. [PMID: 25355852 PMCID: PMC4254103 DOI: 10.14814/phy2.12178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Increasing evidence supports the use of physical activity for modifying brain activity and overall neurological health. Specifically, aerobic exercise appears to have a positive effect on cognitive function, which some have suggested to be a result of increasing levels of arousal. However, the role of aerobic exercise on movement-related cortical activity is less clear. We tested the hypothesis that (1) an acute bout of exercise modulates excitability within motor areas and (2) transient effects would be sustained as long as sympathetic drive remained elevated (indicated by heart rate). In experiment 1, participants performed unimanual self-paced wrist extension movements before and after a 20-min, moderate intensity aerobic exercise intervention on a recumbent cycle ergometer. After the cessation of exercise, Bereitschaftspotentials (BP), representative cortical markers for motor preparation, were recorded immediately postexercise (Post) and following a return to baseline heart rate (Post[Rest]). Electroencephalography (EEG) was used to measure the BP time-locked to onset of muscle activity and separated into three main components: early, late and reafferent potentials. In experiment 2, two additional time points postexercise were added to the original protocol following the Post[Rest] condition. Early BP but not late BP was influenced by aerobic exercise, evidenced by an earlier onset, indicative of a regionally selective effect across BP generators. Moreover, this effect was sustained for up to an hour following exercise cessation and this effect was following a return to baseline heart rate. These data demonstrate that acute aerobic exercise may alter and possibly enhance the cortical substrates required for the preparation of movement.
Collapse
Affiliation(s)
- Jonathan S Thacker
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Laura E Middleton
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - William E McIlroy
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - W Richard Staines
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
17
|
Legon W, Dionne JK, Staines WR. Continuous theta burst stimulation of the supplementary motor area: effect upon perception and somatosensory and motor evoked potentials. Brain Stimul 2013; 6:877-83. [PMID: 23706289 DOI: 10.1016/j.brs.2013.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The supplementary motor area (SMA) has been implicated in many aspects of movement preparation and execution. In addition to motor roles, the SMA is responsive to somesthetic stimuli though it is unclear exactly what role the SMA plays in a somatosensory network. OBJECTIVE/HYPOTHESIS It is the purpose of this study to assess how continuous theta burst stimulation (cTBS) of the SMA affects both somatosensory (SEPs) and motor evoked potentials (MEPs) and if cTBS leads to alterations in tactile perception thresholds of the index fingertip. METHODS In experiment 1, cTBS was delivered over scalp sites FCZ (SMA stimulation) (n = 10) and CZ (control stimulation) (n = 10) in separate groups for 40 s (600 pulses) at 90% of participants' resting motor threshold. For both groups, median nerve SEPs were elicited from the right wrist at rest via electrical stimulation (0.5 ms pulse) before and at 10 min intervals post-cTBS out to 30 min (t = pre, 10, 20, and 30 min). Subjects' perceptual thresholds were assessed at similar time intervals as the SEP data using a biothesiometer (120 Hz vibration). In experiment 2 (n = 10) the effect of cTBS to SMA upon single and paired-pulse MEP amplitudes from the right first dorsal interosseous (FDI) was assessed. RESULTS cTBS to scalp site FCZ (SMA stimulation) reduced the frontal N30 SEP and increased tactile perceptual thresholds 30 min post-stimulation. However, parietal SEPs and MEP amplitudes from both single and paired-pulse stimulation were unaffected at all time points post-stimulation. cTBS to stimulation site CZ (control) did not result in any physiological or behavioral changes. CONCLUSION(S) These data demonstrate cTBS to the SMA reduces the amplitude of the N30 coincident with an increase in vibration sensation threshold but does not affect primary somatosensory or motor cortex excitability. The SMA may play a significant role in a somatosensory tactile attention network.
Collapse
Affiliation(s)
- Wynn Legon
- Department of Kinesiology, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada
| | | | | |
Collapse
|
18
|
Lakhani B, Vette AH, Mansfield A, Miyasike-daSilva V, McIlroy WE. Electrophysiological correlates of changes in reaction time based on stimulus intensity. PLoS One 2012; 7:e36407. [PMID: 22570711 PMCID: PMC3343079 DOI: 10.1371/journal.pone.0036407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/09/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although reaction time is commonly used as an indicator of central nervous system integrity, little is currently understood about the mechanisms that determine processing time. In the current study, we are interested in determining the differences in electrophysiological events associated with significant changes in reaction time that could be elicited by changes in stimulus intensity. The primary objective is to assess the effect of increasing stimulus intensity on the latency and amplitude of afferent inputs to the somatosensory cortex, and their relation to reaction time. METHODS Median nerve stimulation was applied to the non-dominant hand of 12 healthy young adults at two different stimulus intensities (HIGH & LOW). Participants were asked to either press a button as fast as possible with their dominant hand or remain quiet following the stimulus. Electroencephalography was used to measure somatosensory evoked potentials (SEPs) and event related potentials (ERPs). Electromyography from the flexor digitorum superficialis of the button-pressing hand was used to assess reaction time. Response time was the time of button press. RESULTS Reaction time and response time were significantly shorter following the HIGH intensity stimulus compared to the LOW intensity stimulus. There were no differences in SEP (N20 & P24) peak latencies and peak-to-peak amplitude for the two stimulus intensities. ERPs, locked to response time, demonstrated a significantly larger pre-movement negativity to positivity following the HIGH intensity stimulus over the Cz electrode. DISCUSSION This work demonstrates that rapid reaction times are not attributable to the latency of afferent processing from the stimulated site to the somatosensory cortex, and those latency reductions occur further along the sensorimotor transformation pathway. Evidence from ERPs indicates that frontal planning areas such as the supplementary motor area may play a role in transforming the elevated sensory volley from the somatosensory cortex into a more rapid motor response.
Collapse
Affiliation(s)
- Bimal Lakhani
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada
- Mobility Research Team, Toronto Rehab, Toronto, Ontario, Canada
| | - Albert H. Vette
- Mobility Research Team, Toronto Rehab, Toronto, Ontario, Canada
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Avril Mansfield
- Mobility Research Team, Toronto Rehab, Toronto, Ontario, Canada
| | | | - William E. McIlroy
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada
- Mobility Research Team, Toronto Rehab, Toronto, Ontario, Canada
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
Adamo DE, Scotland S, Martin BJ. Upper limb kinesthetic asymmetries: gender and handedness effects. Neurosci Lett 2012; 516:188-92. [PMID: 22490887 DOI: 10.1016/j.neulet.2012.03.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/24/2012] [Accepted: 03/26/2012] [Indexed: 11/16/2022]
Abstract
Proprioceptive and motor information contribute to movement representation; however, the equivalence of homologous contralateral sensorimotor processes as a function of gender and handedness has received little attention. The present work investigated asymmetry in contralateral reproductions of movements elicited by tendon vibration in right and left handed young adults of both genders. With eyes closed, illusions of elbow flexion movement elicited by a 100 Hz vibration applied to the distal tendon of the right or left triceps muscle were matched concurrently with the opposite limb. Overall, movement velocity was larger for females than males, asymmetric and handedness dependent in males. Conversely, consistent symmetry was found between left and right-handed females. These findings lead us to suggest that hand preference and gender contribute to differences in movement representation that may result from the combination of cortical structural differences and information processing specific to each hemisphere and gender.
Collapse
Affiliation(s)
- Diane E Adamo
- Department of Health Care Sciences, Wayne State University, 259 Mack Av., Detroit, MI 48201, USA.
| | | | | |
Collapse
|