1
|
Yang J, Yuan M, Zhang W. The major biogenic amine metabolites in mood disorders. Front Psychiatry 2024; 15:1460631. [PMID: 39381610 PMCID: PMC11458445 DOI: 10.3389/fpsyt.2024.1460631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, have a profound impact on more than 300 million people worldwide. It has been demonstrated mood disorders were closely associated with deviations in biogenic amine metabolites, which are involved in numerous critical physiological processes. The peripheral and central alteration of biogenic amine metabolites in patients may be one of the potential pathogeneses of mood disorders. This review provides a concise overview of the latest research on biogenic amine metabolites in mood disorders, such as histamine, kynurenine, and creatine. Further studies need larger sample sizes and multi-center collaboration. Investigating the changes of biogenic amine metabolites in mood disorders can provide biological foundation for diagnosis, offer guidance for more potent treatments, and aid in elucidating the biological mechanisms underlying mood disorders.
Collapse
Affiliation(s)
- Jingyi Yang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Benoy A, Ramaswamy S. Histamine in the neocortex: Towards integrating multiscale effectors. Eur J Neurosci 2024; 60:4597-4623. [PMID: 39032115 DOI: 10.1111/ejn.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 07/22/2024]
Abstract
Histamine is a modulatory neurotransmitter, which has received relatively less attention in the central nervous system than other neurotransmitters. The functional role of histamine in the neocortex, the brain region that controls higher-order cognitive functions such as attention, learning and memory, remains largely unknown. This article focuses on the emerging roles and mechanisms of histamine release in the neocortex. We describe gaps in current knowledge and propose the application of interdisciplinary tools to dissect the detailed multiscale functional logic of histaminergic action in the neocortex ranging from sub-cellular, cellular, dendritic and synaptic levels to microcircuits and mesoscale effects.
Collapse
Affiliation(s)
- Amrita Benoy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
| | - Srikanth Ramaswamy
- Neural Circuits Laboratory, Biosciences Institute, Newcastle University, Newcastle, UK
- Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
3
|
The Histaminergic System in Neuropsychiatric Disorders. Biomolecules 2021; 11:biom11091345. [PMID: 34572558 PMCID: PMC8467868 DOI: 10.3390/biom11091345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Histamine does not only modulate the immune response and inflammation, but also acts as a neurotransmitter in the mammalian brain. The histaminergic system plays a significant role in the maintenance of wakefulness, appetite regulation, cognition and arousal, which are severely affected in neuropsychiatric disorders. In this review, we first briefly describe the distribution of histaminergic neurons, histamine receptors and their intracellular pathways. Next, we comprehensively summarize recent experimental and clinical findings on the precise role of histaminergic system in neuropsychiatric disorders, including cell-type role and its circuit bases in narcolepsy, schizophrenia, Alzheimer's disease, Tourette's syndrome and Parkinson's disease. Finally, we provide some perspectives on future research to illustrate the curative role of the histaminergic system in neuropsychiatric disorders.
Collapse
|
4
|
Antihistamine agents and pitolisant might be useful for anorexia nervosa. Med Hypotheses 2019; 132:109342. [DOI: 10.1016/j.mehy.2019.109342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
|
5
|
Frare C, Jenkins ME, McClure KM, Drew KL. Seasonal decrease in thermogenesis and increase in vasoconstriction explain seasonal response to N 6 -cyclohexyladenosine-induced hibernation in the Arctic ground squirrel (Urocitellus parryii). J Neurochem 2019; 151:316-335. [PMID: 31273780 PMCID: PMC6819227 DOI: 10.1111/jnc.14814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023]
Abstract
Hibernation is a seasonal phenomenon characterized by a drop in metabolic rate and body temperature. Adenosine A1 receptor agonists promote hibernation in different mammalian species, and the understanding of the mechanism inducing hibernation will inform clinical strategies to manipulate metabolic demand that are fundamental to conditions such as obesity, metabolic syndrome, and therapeutic hypothermia. Adenosine A1 receptor agonist-induced hibernation in Arctic ground squirrels is regulated by an endogenous circannual (seasonal) rhythm. This study aims to identify the neuronal mechanism underlying the seasonal difference in response to the adenosine A1 receptor agonist. Arctic ground squirrels were implanted with body temperature transmitters and housed at constant ambient temperature (2°C) and light cycle (4L:20D). We administered CHA (N6 -cyclohexyladenosine), an adenosine A1 receptor agonist in euthermic-summer phenotype and euthermic-winter phenotype and used cFos and phenotypic immunoreactivity to identify cell groups affected by season and treatment. We observed lower core and subcutaneous temperature in winter animals and CHA produced a hibernation-like response in winter, but not in summer. cFos-ir was greater in the median preoptic nucleus and the raphe pallidus in summer after CHA. CHA administration also resulted in enhanced cFos-ir in the nucleus tractus solitarius and decreased cFos-ir in the tuberomammillary nucleus in both seasons. In winter, cFos-ir was greater in the supraoptic nucleus and lower in the raphe pallidus than in summer. The seasonal decrease in the thermogenic response to CHA and the seasonal increase in vasoconstriction, assessed by subcutaneous temperature, reflect the endogenous seasonal modulation of the thermoregulatory systems necessary for CHA-induced hibernation. Cover Image for this issue: doi: 10.1111/jnc.14528.
Collapse
Affiliation(s)
- Carla Frare
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Mackenzie E Jenkins
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Kelsey M McClure
- Department of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
6
|
Panula P. Histamine, histamine H 3 receptor, and alcohol use disorder. Br J Pharmacol 2019; 177:634-641. [PMID: 30801695 DOI: 10.1111/bph.14634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Alcohol use disorder is associated with several mental, physical, and social problems. Its treatment is difficult and often requires a combination of pharmacological and behavioural therapy. The brain histaminergic system, one of the wake-active systems that controls whole-brain activity, operates through three neuronal GPCRs. The histamine H3 receptor (Hrh3), which is expressed in many brain areas involved in alcohol drinking and alcohol reward, can be targeted with a number of drugs developed initially for cognitive disorders and/or disorders related to sleep, wakefulness, and alertness. In all rodent alcohol drinking models tested so far, H3 receptor antagonists have reduced alcohol drinking and alcohol-induced place preference and cue-induced alcohol reinstatement. Several H3 receptor antagonists tested and found to be safe for humans could be subjected to clinical tests to treat alcohol use disorder. Preference should be given to short-acting drugs to avoid the sleep problems associated with the wake-maintaining effects of the drugs. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Silvani A, Cerri M, Zoccoli G, Swoap SJ. Is Adenosine Action Common Ground for NREM Sleep, Torpor, and Other Hypometabolic States? Physiology (Bethesda) 2019; 33:182-196. [PMID: 29616880 DOI: 10.1152/physiol.00007.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review compares two states that lower energy expenditure: non-rapid eye movement (NREM) sleep and torpor. Knowledge on mechanisms common to these states, and particularly on the role of adenosine in NREM sleep, may ultimately open the possibility of inducing a synthetic torpor-like state in humans for medical applications and long-term space travel. To achieve this goal, it will be important, in perspective, to extend the study to other hypometabolic states, which, unlike torpor, can also be experienced by humans.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna , Bologna , Italy
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna , Bologna , Italy.,National Institute of Nuclear Physics (INFN), Section of Bologna, Bologna , Italy
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna , Bologna , Italy
| | - Steven J Swoap
- Department of Biology, Williams College , Williamstown, Massachusetts
| |
Collapse
|
8
|
Nieto-Alamilla G, Márquez-Gómez R, García-Gálvez AM, Morales-Figueroa GE, Arias-Montaño JA. The Histamine H3 Receptor: Structure, Pharmacology, and Function. Mol Pharmacol 2016; 90:649-673. [PMID: 27563055 DOI: 10.1124/mol.116.104752] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023] Open
Abstract
Among the four G protein-coupled receptors (H1-H4) identified as mediators of the biologic effects of histamine, the H3 receptor (H3R) is distinguished for its almost exclusive expression in the nervous system and the large variety of isoforms generated by alternative splicing of the corresponding mRNA. Additionally, it exhibits dual functionality as autoreceptor and heteroreceptor, and this enables H3Rs to modulate the histaminergic and other neurotransmitter systems. The cloning of the H3R cDNA in 1999 by Lovenberg et al. allowed for detailed studies of its molecular aspects. In this work, we review the characteristics of the H3R, namely, its structure, constitutive activity, isoforms, signal transduction pathways, regional differences in expression and localization, selective agonists, antagonists and inverse agonists, dimerization with other neurotransmitter receptors, and the main presynaptic and postsynaptic effects resulting from its activation. The H3R has attracted interest as a potential drug target for the treatment of several important neurologic and psychiatric disorders, such as Alzheimer and Parkinson diseases, Gilles de la Tourette syndrome, and addiction.
Collapse
Affiliation(s)
- Gustavo Nieto-Alamilla
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Ricardo Márquez-Gómez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Ana-Maricela García-Gálvez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - Guadalupe-Elide Morales-Figueroa
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Zacatenco, Ciudad de México, México
| |
Collapse
|
9
|
Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas HL. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2016; 67:601-55. [PMID: 26084539 DOI: 10.1124/pr.114.010249] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Paul L Chazot
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Marlon Cowart
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Ralf Gutzmer
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Rob Leurs
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Wai L S Liu
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Holger Stark
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Robin L Thurmond
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Helmut L Haas
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| |
Collapse
|
10
|
Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina. Exp Eye Res 2016; 150:90-105. [PMID: 26808487 DOI: 10.1016/j.exer.2016.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/14/2015] [Accepted: 01/14/2016] [Indexed: 02/02/2023]
Abstract
With a photoreceptor mosaic containing ∼85% cones, the ground squirrel is one of the richest known mammalian sources of these important retinal cells. It also has a visual ecology much like the human's. While the ground squirrel retina is understandably prominent in the cone biochemistry, physiology, and circuitry literature, far less is known about the remodeling potential of its retinal pigment epithelium, neurons, macroglia, or microglia. This review aims to summarize the data from ground squirrel retina to this point in time, and to relate them to data from other brain areas where appropriate. We begin with a survey of the ground squirrel visual system, making comparisons with traditional rodent models and with human. Because this animal's status as a hibernator often goes unnoticed in the vision literature, we then present a brief primer on hibernation biology. Next we review what is known about ground squirrel retinal remodeling concurrent with deep torpor and with rapid recovery upon re-warming. Notable here is rapidly-reversible, temperature-dependent structural plasticity of cone ribbon synapses, as well as pre- and post-synaptic plasticity throughout diverse brain regions. It is not yet clear if retinal cell types other than cones engage in torpor-associated synaptic remodeling. We end with the small but intriguing literature on the ground squirrel retina's remodeling responses to insult by retinal detachment. Notable for widespread loss of (cone) photoreceptors, there is surprisingly little remodeling of the RPE or Müller cells. Microglial activation appears minimal, and remodeling of surviving second- and third-order neurons seems absent, but both require further study. In contrast, traumatic brain injury in the ground squirrel elicits typical macroglial and microglial responses. Overall, the data to date strongly suggest a heretofore unrecognized, natural checkpoint between retinal deafferentiation and RPE and Müller cell remodeling events. As we continue to discover them, the unique ways by which ground squirrel retina responds to hibernation or injury may be adaptable to therapeutic use.
Collapse
|
11
|
Florant GL, Healy JE. The regulation of food intake in mammalian hibernators: a review. J Comp Physiol B 2011; 182:451-67. [PMID: 22080368 DOI: 10.1007/s00360-011-0630-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/20/2011] [Accepted: 10/29/2011] [Indexed: 12/20/2022]
Abstract
One of the most profound hallmarks of mammalian hibernation is the dramatic reduction in food intake during the winter months. Several species of hibernator completely cease food intake (aphagia) for nearly 7 months regardless of ambient temperature and in many cases, whether or not food is available to them. Food intake regulation has been studied in mammals that hibernate for over 50 years and still little is known about the physiological mechanisms that control this important behavior in hibernators. It is well known from lesion experiments in non-hibernators that the hypothalamus is the main brain region controlling food intake and therefore body mass. In hibernators, the regulation of food intake and body mass is presumably governed by a circannual rhythm since there is a clear seasonal rhythm to food intake: animals increase food intake in the summer and early autumn, food intake declines in autumn and actually ceases in winter in many species, and resumes again in spring as food becomes available in the environment. Changes in circulating hormones (e.g., leptin, insulin, and ghrelin), nutrients (glucose, and free fatty acids), and cellular enzymes such as AMP-activated protein kinase (AMPK) have been shown to determine the activity of neurons involved in the food intake pathway. Thus, it appears likely that the food intake pathway is controlled by a variety of inputs, but is also acted upon by upstream regulators that are presumably rhythmic in nature. Current research examining the molecular mechanisms and integration of environmental signals (e.g., temperature and light) with these molecular mechanisms will hopefully shed light on how animals can turn off food intake and survive without eating for months on end.
Collapse
Affiliation(s)
- Gregory L Florant
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
12
|
I'Anson H, Jethwa PH, Warner A, Ebling FJ. Histaminergic regulation of seasonal metabolic rhythms in Siberian hamsters. Physiol Behav 2011; 103:268-78. [PMID: 21362434 PMCID: PMC3094761 DOI: 10.1016/j.physbeh.2011.02.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/28/2011] [Accepted: 02/23/2011] [Indexed: 11/24/2022]
Abstract
We investigated whether histaminergic tone contributes to the seasonal catabolic state in Siberian hamsters by determining the effect of ablation of histaminergic neurons on food intake, metabolic rate and body weight. A ribosomal toxin (saporin) conjugated to orexin-B was infused into the ventral tuberomammillary region of the hypothalamus, since most histaminergic neurons express orexin receptors. This caused not only 75–80% loss of histaminergic neurons in the posterior hypothalamus, but also some loss of other orexin-receptor expressing cells e.g. MCH neurons. In the long-day anabolic state, lesions produced a transient post-surgical decrease in body weight, but the hamsters recovered and maintained constant body weight, whereas weight gradually increased in sham-lesioned hamsters. VO2 in the dark phase was significantly higher in the lesioned hamsters compared to shams, and locomotor activity also tended to be higher. In a second study in short days, sham-treated hamsters showed the expected seasonal decrease in body weight, but weight remained constant in the lesioned hamsters, as in the long-day study. Lesioned hamsters consumed more during the early dark phase and less during the light phase due to an increase in the frequency of meals during the dark and decreased meal size during the light, and their cumulative food intake in their home cages was greater than in the control hamsters. In summary, ablation of orexin-responsive cells in the posterior hypothalamus blocks the short-day induced decline in body weight by preventing seasonal hypophagia, evidence consistent with the hypothesis that central histaminergic mechanisms contribute to long-term regulation of body weight.
Collapse
Affiliation(s)
- Helen I'Anson
- Biology Department, Washington and Lee University, Lexington, VA, USA
| | - Preeti H. Jethwa
- School of Biomedical Sciences, University of Nottingham, UK
- Division of Nutritional Sciences, School of Biosciences, University of Nottingham, UK
| | - Amy Warner
- School of Biomedical Sciences, University of Nottingham, UK
| | - Francis J.P. Ebling
- School of Biomedical Sciences, University of Nottingham, UK
- Corresponding author at: School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK. Tel.: + 44 115 8230164; fax: + 44 115 8230142.
| |
Collapse
|
13
|
Osorio-Espinoza A, Alatorre A, Ramos-Jiménez J, Garduño-Torres B, García-Ramírez M, Querejeta E, Arias-Montaño JA. Pre-synaptic histamine H₃ receptors modulate glutamatergic transmission in rat globus pallidus. Neuroscience 2010; 176:20-31. [PMID: 21195747 DOI: 10.1016/j.neuroscience.2010.12.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 02/04/2023]
Abstract
The globus pallidus, a neuronal nucleus involved in the control of motor behavior, expresses high levels of histamine H(3) receptors (H(3)Rs) most likely located on the synaptic afferents to the nucleus. In this work we studied the effect of the activation of rat pallidal H(3)Rs on depolarization-evoked neurotransmitter release from slices, neuronal firing rate in vivo and turning behavior. Perfusion of globus pallidus slices with the selective H(3)R agonist immepip had no effect on the release of [(3)H]-GABA ([(3)H]-γ-aminobutyric acid) or [(3)H]-dopamine evoked by depolarization with high (20 mM) K(+), but significantly reduced [(3)H]-d-aspartate release (-44.8 ± 2.6% and -63.7 ± 6.2% at 30 and 100 nM, respectively). The effect of 30 nM immepip was blocked by 10 μM of the selective H(3)R antagonist A-331440 (4'-[3-[(3(R)-dimethylamino-1-pyrrolidinyl]propoxy]-[1,1-biphenyl]-4'-carbonitrile). Intra-pallidal injection of immepip (0.1 μl, 100 μM) decreased spontaneous neuronal firing rate in anaesthetized rats (peak inhibition 68.8±10.3%), and this effect was reversed in a partial and transitory manner by A-331440 (0.1 μl, 1 mM). In free-moving rats the infusion of immepip (0.5 μl; 10, 50 and 100 μM) into the globus pallidus induced dose-related ipsilateral turning following systemic apomorphine (0.5 mg/kg, s.c.). Turning behavior induced by immepip (0.5 μl, 50 μM) and apomorphine was partially prevented by the local injection of A-331440 (0.5 μl, 1 mM) and was not additive to the turning evoked by the intra-pallidal injection of antagonists at ionotropic glutamate receptors (0.5 μl, 1 mM each of AP-5, dl-2-amino-5-phosphonovaleric acid, and CNQX, 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione). These results indicate that pre-synaptic H(3)Rs modulate glutamatergic transmission in rat globus pallidus and thus participate in the control of movement by basal ganglia.
Collapse
Affiliation(s)
- A Osorio-Espinoza
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Zacatenco, 07360 México, D.F., México
| | | | | | | | | | | | | |
Collapse
|
14
|
Nuutinen S, Vanhanen J, Pigni MC, Panula P. Effects of histamine H3 receptor ligands on the rewarding, stimulant and motor-impairing effects of ethanol in DBA/2J mice. Neuropharmacology 2010; 60:1193-9. [PMID: 21044640 DOI: 10.1016/j.neuropharm.2010.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/29/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
Histamine H3 receptor (H3R) antagonists are currently being investigated for the possible therapeutic use in various cognitive deficits such as those in schizophrenia, attention deficit hyperactivity disorder and Alzheimer's disease. Our previous studies suggest a role for H3Rs in ethanol-related behaviors in rat and mice. Here we have examined the role of different H3R ligands on the effects of ethanol in conditioned place preference (CPP) paradigm, stimulation of locomotor activity and motor impairment in rotarod and balance beam in male DBA/2J mice. We found that H3R antagonists ciproxifan and JNJ-10181457 inhibited the ethanol-evoked CPP whereas H3R agonist immepip did not alter ethanol-induced place preference. Acute stimulatory response by ethanol was also modulated by H3R ligands. Ciproxifan increased ethanol activation when ethanol was given 1g/kg but not at 1.5g/kg dose. Immepip pretreatment diminished ethanol stimulation and increased motor-impairing effects of ethanol on the balance beam. In conclusion, these findings give further evidence of the involvement of H3R in the regulation of the effects of ethanol. The inhibition of ethanol reward by H3R antagonism implies that H3R might be a possible target to suppress compulsory ethanol seeking. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Saara Nuutinen
- Neuroscience Center, Biomedicum Helsinki, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
15
|
Barrett P, van den Top M, Wilson D, Mercer JG, Song CK, Bartness TJ, Morgan PJ, Spanswick D. Short photoperiod-induced decrease of histamine H3 receptors facilitates activation of hypothalamic neurons in the Siberian hamster. Endocrinology 2009; 150:3655-63. [PMID: 19372203 PMCID: PMC5393275 DOI: 10.1210/en.2008-1620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nonhibernating seasonal mammals have adapted to temporal changes in food availability through behavioral and physiological mechanisms to store food and energy during times of predictable plenty and conserve energy during predicted shortage. Little is known, however, of the hypothalamic neuronal events that lead to a change in behavior or physiology. Here we show for the first time that a shift from long summer-like to short winter-like photoperiod, which induces physiological adaptation to winter in the Siberian hamster, including a body weight decrease of up to 30%, increases neuronal activity in the dorsomedial region of the arcuate nucleus (dmpARC) assessed by electrophysiological patch-clamping recording. Increased neuronal activity in short days is dependent on a photoperiod-driven down-regulation of H3 receptor expression and can be mimicked in long-day dmpARC neurons by the application of the H3 receptor antagonist, clobenproprit. Short-day activation of dmpARC neurons results in increased c-Fos expression. Tract tracing with the trans-synaptic retrograde tracer, pseudorabies virus, delivered into adipose tissue reveals a multisynaptic neuronal sympathetic outflow from dmpARC to white adipose tissue. These data strongly suggest that increased activity of dmpARC neurons, as a consequence of down-regulation of the histamine H3 receptor, contributes to the physiological adaptation of body weight regulation in seasonal photoperiod.
Collapse
Affiliation(s)
- P Barrett
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen AB21 9SB, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
16
|
The role of histamine 3 receptors in the control of food intake in a seasonal model of obesity: the Siberian hamster. Behav Pharmacol 2009; 20:155-65. [DOI: 10.1097/fbp.0b013e32832a8099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Abstract
Histamine is a transmitter in the nervous system and a signaling molecule in the gut, the skin, and the immune system. Histaminergic neurons in mammalian brain are located exclusively in the tuberomamillary nucleus of the posterior hypothalamus and send their axons all over the central nervous system. Active solely during waking, they maintain wakefulness and attention. Three of the four known histamine receptors and binding to glutamate NMDA receptors serve multiple functions in the brain, particularly control of excitability and plasticity. H1 and H2 receptor-mediated actions are mostly excitatory; H3 receptors act as inhibitory auto- and heteroreceptors. Mutual interactions with other transmitter systems form a network that links basic homeostatic and higher brain functions, including sleep-wake regulation, circadian and feeding rhythms, immunity, learning, and memory in health and disease.
Collapse
Affiliation(s)
- Helmut L Haas
- Institute of Neurophysiology, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | |
Collapse
|
18
|
Herwig A, Ivanova EA, Lydon H, Barrett P, Steinlechner S, Loudon AS. Histamine H3 receptor and orexin A expression during daily torpor in the Djungarian hamster (Phodopus sungorus). J Neuroendocrinol 2007; 19:1001-7. [PMID: 18001330 DOI: 10.1111/j.1365-2826.2007.01620.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Seasonal animals use different strategies to reduce energy expenditure in the face of reduced seasonal food availability. For example, the ground squirrel enters a hibernation state with reduced metabolism, hypothermia and suppressed central nervous system activity, whereas the Djungarian hamster (Phodopus sungorus) employs daily bouts of torpor associated with reduced body temperature and energy expenditure. Studies in the hibernating ground squirrel implicate an increase in histamine synthesis and histamine H(3) receptor expression in the brain as a central mechanism governing hibernation. In the present study, we demonstrate an up-regulation of H(3) receptors in several brain nuclei in the Djungarian hamster during bouts of daily torpor, a shallow form of hypothermia, suggesting that histaminergic pathways may play a general role in maintaining low body temperature and torpor state in mammals. These regions include the arcuate nucleus, dorsomedial hypothalamus, suprachiasmatic nucleus, dorsal lateral geniculate nucleus and tuberomammillary nucleus. Interestingly, expression of the mRNA for orexins, a group of neuropeptides that increase wakefulness, remains unchanged during the arousal from daily torpor, suggesting that this classic 'arousal' pathway is not involved in the transition from a hypothermic to the euthermic state.
Collapse
Affiliation(s)
- A Herwig
- Institute of Zoology, University of Veterinary Medicine, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 2007; 102:1713-1726. [PMID: 17555547 PMCID: PMC3600610 DOI: 10.1111/j.1471-4159.2007.04675.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Torpor during hibernation defines the nadir of mammalian metabolism where whole animal rates of metabolism are decreased to as low as 2% of basal metabolic rate. This capacity to decrease profoundly the metabolic demand of organs and tissues has the potential to translate into novel therapies for the treatment of ischemia associated with stroke, cardiac arrest or trauma where delivery of oxygen and nutrients fails to meet demand. If metabolic demand could be arrested in a regulated way, cell and tissue injury could be attenuated. Metabolic suppression achieved during hibernation is regulated, in part, by the central nervous system through indirect and possibly direct means. In this study, we review recent evidence for mechanisms of central nervous system control of torpor in hibernating rodents including evidence of a permissive, hibernation protein complex, a role for A1 adenosine receptors, mu opiate receptors, glutamate and thyrotropin-releasing hormone. Central sites for regulation of torpor include the hippocampus, hypothalamus and nuclei of the autonomic nervous system. In addition, we discuss evidence that hibernation phenotypes can be translated to non-hibernating species by H(2)S and 3-iodothyronamine with the caveat that the hypothermia, bradycardia, and metabolic suppression induced by these compounds may or may not be identical to mechanisms employed in true hibernation.
Collapse
Affiliation(s)
- Kelly L. Drew
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - C. Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, USA
| | - Brian M. Barnes
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Sherri L. Christian
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Brian T. Rasley
- Department of Chemistry and Biochemistry, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Michael B. Harris
- Institute of Arctic Biology, Alaska Basic Neuroscience Program, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
20
|
HAMPTON MARSHALL, ANDREWS MATTHEWT. A simple molecular mathematical model of mammalian hibernation. J Theor Biol 2007; 247:297-302. [PMID: 17459419 PMCID: PMC2580757 DOI: 10.1016/j.jtbi.2007.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 03/04/2007] [Accepted: 03/06/2007] [Indexed: 02/07/2023]
Abstract
A simple model of the dynamics of the body temperature of a hibernating mammal is presented. Our model provides a good match to experimental data, showing the interruption of low-temperature torpor bouts with periodic interbout arousals (IBAs). In this paper we present a mathematical model of the molecules that participate in the initiation, regulation, and maintenance of the hibernating state. This model can be used to describe the role of regulatory molecules, signal transducers, downstream target enzymes, structural proteins, or metabolites. Because many of the biochemical mechanisms are unknown, this is a preliminary and largely phenomenological model that we hope will inspire further investigation.
Collapse
Affiliation(s)
- MARSHALL HAMPTON
- Department of Mathematics and Statistics, University of Minnesota, Duluth, 1117 University Drive,, Duluth, MN, 55812
| | - MATTHEW T. ANDREWS
- Department of Biology, University of Minnesota, Duluth, 1035 Kirby Drive, Duluth, MN, 55812
| |
Collapse
|
21
|
Tamura Y, Monden M, Shintani M, Kawai A, Shiomi H. Neuroprotective effects of hibernation-regulating substances against low-temperature-induced cell death in cultured hamster hippocampal neurons. Brain Res 2006; 1108:107-16. [PMID: 16854391 DOI: 10.1016/j.brainres.2006.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 06/01/2006] [Accepted: 06/05/2006] [Indexed: 01/20/2023]
Abstract
The neuroprotective effects of hibernation-regulating substances (HRS) such as adenosine (ADO), opioids, histamine and thyrotropin-releasing hormone (TRH) on low-temperature-induced cell death (LTCD) were examined using primary cultured hamster hippocampal neurons. LTCD was induced when cultures were maintained at <22 degrees C for 7 days. ADO (10-100 microM) protected cultured neurons from LTCD in a dose-dependent manner. The neuroprotective effects of ADO were reversed by both 8-cyclopenthyltheophilline (CPT; A(1) receptor antagonist) and 3,7-dimethyl-1-propargylxanthine (DMPX; A(2) receptor antagonist). Morphine (a non-selective opioid receptor agonist) was also effective in attenuating LTCD at an in vitro dose range of 10-100 muM. The neuroprotective effects of morphine were antagonized by naloxone (a non-selective opioid receptor antagonist). In addition, although [D-Ala(2), N-Me-Phe(4), Gly-ol(5)]-enkephalin (DAMGO; mu-opioid receptor agonist), [D-Pen(2,5)]-enkephalin (DPDPE; delta-opioid receptor agonist) and U-69593 (kappa-opioid receptor agonist) were also effective, LTCD of cultured hippocampal neurons was not affected by TRH. Furthermore, histamine produced hypothermia in Syrian hamsters and protected hippocampal neurons in vitro at 100 microM. The neuroprotective effect of histamine was reversed by pyrilamine (H(1) receptor antagonist). Apoptosis was probably involved in LTCD. These results suggest that ADO protected hippocampal neurons in vitro via its agonistic actions on both A(1) and A(2) receptors, whereas morphine probably elicited its neuroprotective effects via agonistic effects on the mu-, delta- and kappa-opioid receptors. In addition, histamine also protected hippocampal neurons via its agonistic action on the H(1) receptor. Thus, HRS-like adenosine-, opioid- and histamine-like hypothermic actions would most likely induce neuroprotective effects against LTCD in vitro.
Collapse
Affiliation(s)
- Yutaka Tamura
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan
| | | | | | | | | |
Collapse
|
22
|
Canonaco M, Madeo M, Alò R, Giusi G, Granata T, Carelli A, Canonaco A, Facciolo RM. The Histaminergic Signaling System Exerts a Neuroprotective Role against Neurodegenerative-Induced Processes in the Hamster. J Pharmacol Exp Ther 2005; 315:188-95. [PMID: 15976014 DOI: 10.1124/jpet.105.088153] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neurotoxic 3-nitropropionic acid (3-NP), a freckled milk vetch-derived inhibitor of mitochondrial enzymatic processes that is capable of mimicking the typical pathological features of neurodegenerative disorders, behaved in a differentiated manner in a hibernating rodent (hamster) with respect to a nonhibernating rodent (rat). Treatment of the two rodents with both an acute and chronic 3-NP dose supplied deleterious neuronal effects due to distinct histamine receptor (H(n)R) transcriptional activities, especially in the case of the rat. In hamsters, these treatment modalities accounted for overall reduced global activity in a freely moving environment and overt motor symptoms such as hindlimb dystonia and clasping with respect to the greater abnormal motor behaviors in rats. This behavioral difference appeared to be strongly related to qualitative fewer neuronal alterations and, namely, lesser crenated cell membranes, swollen mitochondria, and darkened nuclei in hamster brain areas. Moreover, a mixed H(1,3)R mRNA expression pattern was reported for both rodents treated with a chronic 3-NP dose as demonstrated by predominantly low H1R mRNA levels (>50%) in rat striatum and cortex, whereas extremely high H3R levels (>80%) characterized the lateral and central amygdala nuclei plus the striatum of hamsters. Interestingly, the H3R antagonist (thioperamide) blocked 3-NP-dependent behaviors plus induced an up-regulation of H1R levels in mainly the above-reported hamster amygdalar nuclei. Overall, these results show, for the first time, that a major protective role against neurodegenerative events appears to be strongly related to the expression activity of H(1,3)R subtypes of amygdalar neurons in this hibernating model.
Collapse
Affiliation(s)
- Marcello Canonaco
- Comparative Neuroanatomy Laboratory, Ecology Department, University of Calabria, Ponte P. Bucci, 87030 Arcavacata di Rende, Cosenza, Italy.
| | | | | | | | | | | | | | | |
Collapse
|