1
|
Labouesse MA, Torres-Herraez A, Chohan MO, Villarin JM, Greenwald J, Sun X, Zahran M, Tang A, Lam S, Veenstra-VanderWeele J, Lacefield CO, Bonaventura J, Michaelides M, Chan CS, Yizhar O, Kellendonk C. A non-canonical striatopallidal Go pathway that supports motor control. Nat Commun 2023; 14:6712. [PMID: 37872145 PMCID: PMC10593790 DOI: 10.1038/s41467-023-42288-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
In the classical model of the basal ganglia, direct pathway striatal projection neurons (dSPNs) send projections to the substantia nigra (SNr) and entopeduncular nucleus to regulate motor function. Recent studies have re-established that dSPNs also possess axon collaterals within the globus pallidus (GPe) (bridging collaterals), yet the significance of these collaterals for behavior is unknown. Here we use in vivo optical and chemogenetic tools combined with deep learning approaches in mice to dissect the roles of dSPN GPe collaterals in motor function. We find that dSPNs projecting to the SNr send synchronous motor-related information to the GPe via axon collaterals. Inhibition of native activity in dSPN GPe terminals impairs motor activity and function via regulation of Npas1 neurons. We propose a model by which dSPN GPe axon collaterals (striatopallidal Go pathway) act in concert with the canonical terminals in the SNr to support motor control by inhibiting Npas1 neurons.
Collapse
Affiliation(s)
- Marie A Labouesse
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Health, Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, 8057, Zurich, Switzerland.
| | - Arturo Torres-Herraez
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Muhammad O Chohan
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Joseph M Villarin
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Julia Greenwald
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Xiaoxiao Sun
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mysarah Zahran
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Barnard College, Columbia University, New York, NY, 10027, USA
| | - Alice Tang
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
- Columbia College, Columbia University, New York, NY, 10027, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Clay O Lacefield
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, 21224, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - C Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Labouesse MA, Torres-Herraez A, Chohan MO, Villarin J, Greenwald J, Sun X, Zahran M, Tang A, Lam S, Veenstra-VanderWeele J, Lacefield C, Bonaventura J, Michaelides M, Chan CS, Yizhar O, Kellendonk C. A non-canonical striatopallidal "Go" pathway that supports motor control. RESEARCH SQUARE 2023:rs.3.rs-2524816. [PMID: 36798372 PMCID: PMC9934763 DOI: 10.21203/rs.3.rs-2524816/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In the classical model of the basal ganglia, direct pathway striatal projection neurons (dSPNs) send projections to the substantia nigra (SNr) and entopeduncular nucleus to regulate motor function. Recent studies have re-established that dSPNs also possess "bridging" collaterals within the globus pallidus (GPe), yet the significance of these collaterals for behavior is unknown. Here we use in vivo optical and chemogenetic tools combined with deep learning approaches to dissect the roles of bridging collaterals in motor function. We find that dSPNs projecting to the SNr send synchronous motor-related information to the GPe via axon collaterals. Inhibition of native activity in dSPN GPe terminals impairs motor activity and function via regulation of pallidostriatal Npas1 neurons. We propose a model by which dSPN GPe collaterals ("striatopallidal Go pathway") act in concert with the canonical terminals in the SNr to support motor control by inhibiting Npas1 signals going back to the striatum.
Collapse
Affiliation(s)
- Marie A. Labouesse
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Current address: Department of Health, Sciences and Technology, ETH Zurich, and Zurich Neuroscience Center, 8057 Zurich, Switzerland
| | - Arturo Torres-Herraez
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Equal second-author contribution
| | - Muhammad O. Chohan
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY 10032, USA
- Equal second-author contribution
| | - Joseph Villarin
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Equal second-author contribution
| | - Julia Greenwald
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Xiaoxiao Sun
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Mysarah Zahran
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Barnard College, Columbia University, New York, NY 10027, USA
| | - Alice Tang
- Columbia College, Columbia University, New York, NY 10027, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Clay Lacefield
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalonia
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD 21205, USA
| | - C. Savio Chan
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ofer Yizhar
- Departments of Brain Sciences and Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Lead contact: Christoph Kellendonk
| |
Collapse
|
3
|
Kessi M, Duan H, Xiong J, Chen B, He F, Yang L, Ma Y, Bamgbade OA, Peng J, Yin F. Attention-deficit/hyperactive disorder updates. Front Mol Neurosci 2022; 15:925049. [PMID: 36211978 PMCID: PMC9532551 DOI: 10.3389/fnmol.2022.925049] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background Attention-deficit/hyperactive disorder (ADHD) is a neurodevelopmental disorder that commonly occurs in children with a prevalence ranging from 3.4 to 7.2%. It profoundly affects academic achievement, well-being, and social interactions. As a result, this disorder is of high cost to both individuals and society. Despite the availability of knowledge regarding the mechanisms of ADHD, the pathogenesis is not clear, hence, the existence of many challenges especially in making correct early diagnosis and provision of accurate management. Objectives We aimed to review the pathogenic pathways of ADHD in children. The major focus was to provide an update on the reported etiologies in humans, animal models, modulators, therapies, mechanisms, epigenetic changes, and the interaction between genetic and environmental factors. Methods References for this review were identified through a systematic search in PubMed by using special keywords for all years until January 2022. Results Several genes have been reported to associate with ADHD: DRD1, DRD2, DRD4, DAT1, TPH2, HTR1A, HTR1B, SLC6A4, HTR2A, DBH, NET1, ADRA2A, ADRA2C, CHRNA4, CHRNA7, GAD1, GRM1, GRM5, GRM7, GRM8, TARBP1, ADGRL3, FGF1, MAOA, BDNF, SNAP25, STX1A, ATXN7, and SORCS2. Some of these genes have evidence both from human beings and animal models, while others have evidence in either humans or animal models only. Notably, most of these animal models are knockout and do not generate the genetic alteration of the patients. Besides, some of the gene polymorphisms reported differ according to the ethnic groups. The majority of the available animal models are related to the dopaminergic pathway. Epigenetic changes including SUMOylation, methylation, and acetylation have been reported in genes related to the dopaminergic pathway. Conclusion The dopaminergic pathway remains to be crucial in the pathogenesis of ADHD. It can be affected by environmental factors and other pathways. Nevertheless, it is still unclear how environmental factors relate to all neurotransmitter pathways; thus, more studies are needed. Although several genes have been related to ADHD, there are few animal model studies on the majority of the genes, and they do not generate the genetic alteration of the patients. More animal models and epigenetic studies are required.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yanli Ma
- Department of Neurology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin,
| |
Collapse
|
4
|
Neuronal Dopamine D3 Receptors: Translational Implications for Preclinical Research and CNS Disorders. Biomolecules 2021; 11:biom11010104. [PMID: 33466844 PMCID: PMC7830622 DOI: 10.3390/biom11010104] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Dopamine (DA), as one of the major neurotransmitters in the central nervous system (CNS) and periphery, exerts its actions through five types of receptors which belong to two major subfamilies such as D1-like (i.e., D1 and D5 receptors) and D2-like (i.e., D2, D3 and D4) receptors. Dopamine D3 receptor (D3R) was cloned 30 years ago, and its distribution in the CNS and in the periphery, molecular structure, cellular signaling mechanisms have been largely explored. Involvement of D3Rs has been recognized in several CNS functions such as movement control, cognition, learning, reward, emotional regulation and social behavior. D3Rs have become a promising target of drug research and great efforts have been made to obtain high affinity ligands (selective agonists, partial agonists and antagonists) in order to elucidate D3R functions. There has been a strong drive behind the efforts to find drug-like compounds with high affinity and selectivity and various functionality for D3Rs in the hope that they would have potential treatment options in CNS diseases such as schizophrenia, drug abuse, Parkinson’s disease, depression, and restless leg syndrome. In this review, we provide an overview and update of the major aspects of research related to D3Rs: distribution in the CNS and periphery, signaling and molecular properties, the status of ligands available for D3R research (agonists, antagonists and partial agonists), behavioral functions of D3Rs, the role in neural networks, and we provide a summary on how the D3R-related drug research has been translated to human therapy.
Collapse
|
5
|
Martorell-Ribera J, Venuto MT, Otten W, Brunner RM, Goldammer T, Rebl A, Gimsa U. Time-Dependent Effects of Acute Handling on the Brain Monoamine System of the Salmonid Coregonus maraena. Front Neurosci 2020; 14:591738. [PMID: 33343287 PMCID: PMC7746803 DOI: 10.3389/fnins.2020.591738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
The immediate stress response involves the activation of the monoaminergic neurotransmitter systems including serotonin, dopamine and noradrenaline in particular areas of the fish brain. We chose maraena whitefish as a stress-sensitive salmonid species to investigate the influence of acute and chronic handling on the neurochemistry of monoamines in the brain. Plasma cortisol was quantified to assess the activation of the stress axis. In addition, we analyzed the expression of 37 genes related to the monoamine system to identify genes that could be used as markers of neurophysiological stress effects. Brain neurochemistry responded to a single handling (1 min netting and chasing) with increased serotonergic activity 3 h post-challenge. This was accompanied by a modulated expression of monoaminergic receptor genes in the hindbrain and a significant increase of plasma cortisol. The initial response was compensated by an increased monoamine synthesis at 24 h post-challenge, combined with the modulated expression of serotonin-receptor genes and plasma cortisol concentrations returning to control levels. After 10 days of repeated handling (1 min per day), we detected a slightly increased noradrenaline synthesis and a down-regulated expression of dopamine-receptor genes without effect on plasma cortisol levels. In conclusion, the changes in serotonergic neurochemistry and selected gene-expression profiles, together with the initial plasma cortisol variation, indicate an acute response and a subsequent recovery phase with signs of habituation after 10 days of daily exposure to handling. Based on the basal expression patterns of particular genes and their significant regulation upon handling conditions, we suggest a group of genes as potential biomarkers that indicate handling stress on the brain monoamine systems.
Collapse
Affiliation(s)
- Joan Martorell-Ribera
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marzia Tindara Venuto
- Glycobiology Group, Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Winfried Otten
- Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ronald M Brunner
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Tom Goldammer
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ulrike Gimsa
- Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
6
|
Strong CE, Hagarty DP, Brea Guerrero A, Schoepfer KJ, Cajuste SM, Kabbaj M. Chemogenetic selective manipulation of nucleus accumbens medium spiny neurons bidirectionally controls alcohol intake in male and female rats. Sci Rep 2020; 10:19178. [PMID: 33154463 PMCID: PMC7644642 DOI: 10.1038/s41598-020-76183-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
The nucleus accumbens (NAc), considered the hub of reward circuitry, is comprised of two medium spiny neuron (MSN) subtypes that are classified by their enrichment of dopamine 1 (D1) or 2 (D2) receptors. While reports indicate that alcohol increases excitatory neurotransmission exclusively on NAc D1-MSNs in male rats, it remains unknown how NAc MSNs control alcohol intake in either sex. Therefore, this study investigated how NAc MSNs mediate alcohol intake by using Drd1a-iCre and Drd2-iCre transgenic rats of both sexes. Intra-NAc infusions of Cre-inducible viral vectors containing stimulatory (hM3Dq) or inhibitory (hM4Di) designer receptors exclusively activated by designer drugs (DREADDs) were delivered after 4-weeks of alcohol intake, and clozapine-N-oxide (CNO) was administered to selectively manipulate NAc MSNs. Our results show that activation of NAc D1-MSNs increased alcohol intake 1-, 4-, and 24-h after the start of drinking while inhibition decreased it 1-h after the start of drinking, with no sex differences observed at any time point. Activation of NAc D2-MSNs had no impact on alcohol intake while inhibition increased alcohol intake in Drd2-iCre rats for 1-h in males and 4-h in females. These findings suggest opposing roles for how NAc D1- and D2-MSNs modulate alcohol intake in rats of both sexes.
Collapse
Affiliation(s)
- C E Strong
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Medical Science Research, Room 3300-H, 1115 W. Call St., Tallahassee, FL, 32306, USA
| | - D P Hagarty
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Medical Science Research, Room 3300-H, 1115 W. Call St., Tallahassee, FL, 32306, USA
| | - A Brea Guerrero
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Medical Science Research, Room 3300-H, 1115 W. Call St., Tallahassee, FL, 32306, USA
| | - K J Schoepfer
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Medical Science Research, Room 3300-H, 1115 W. Call St., Tallahassee, FL, 32306, USA
| | - S M Cajuste
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Medical Science Research, Room 3300-H, 1115 W. Call St., Tallahassee, FL, 32306, USA
| | - M Kabbaj
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Medical Science Research, Room 3300-H, 1115 W. Call St., Tallahassee, FL, 32306, USA.
| |
Collapse
|
7
|
Linehan V, Rowe TM, Hirasawa M. Dopamine modulates excitatory transmission to orexin neurons in a receptor subtype-specific manner. Am J Physiol Regul Integr Comp Physiol 2018; 316:R68-R75. [PMID: 30462527 DOI: 10.1152/ajpregu.00150.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dopamine (DA) can promote or inhibit consummatory and reward-related behaviors by activating different receptor subtypes in the lateral hypothalamus and perifornical area (LH/PF). Because orexin neurons are involved in reward and localized in the LH/PF, DA may modulate these neurons to influence reward-related behaviors. To determine the cellular mechanism underlying dopaminergic modulation of orexin neurons, the effect of DA on excitatory transmission to these neurons was investigated using in vitro electrophysiology on rat brain slices. We found that low concentrations (0.1-1 µM) of DA increased evoked excitatory postsynaptic current amplitude while decreasing paired-pulse ratio. In contrast, high concentrations (10-100 µM) of DA did the opposite. The excitatory effect of low DA was blocked by the D1 receptor antagonist SCH-23390, whereas the inhibitory effect of high DA was blocked by the D2 receptor antagonist sulpiride. These results indicate distinct roles of D1 and D2 receptors in bidirectional presynaptic modulation of excitatory transmission. DA had stronger effects on isolated synaptic activity than repetitive ones, suggesting that sensitivity to dopaminergic modulation depends on the level of network activity. In orexin neurons from high-fat diet-fed rats, a high concentration of DA was less effective in suppressing repetitive synaptic activity compared with chow controls. Therefore, in diet-induced obesity, intense synaptic inputs may preferentially reach orexin neurons while intermittent signals are inhibited by high DA levels. In summary, our study provides a cellular mechanism by which DA may exert opposite behavioral effects in the LH/PF through bidirectional modulation of orexin neurons via different DA receptors.
Collapse
Affiliation(s)
- Victoria Linehan
- Division of Biomedical Sciences, Memorial University , St. John's, Newfoundland , Canada
| | - Todd M Rowe
- Division of Biomedical Sciences, Memorial University , St. John's, Newfoundland , Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Memorial University , St. John's, Newfoundland , Canada
| |
Collapse
|
8
|
Alford S, Hamm H, Rodriguez S, Zurawski Z. Gβγ SNARE Interactions and Their Behavioral Effects. Neurochem Res 2018; 44:636-649. [PMID: 29752624 DOI: 10.1007/s11064-018-2531-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
Abstract
Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses-GPCRs are present at every studied presynaptic terminal-underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca2+-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca2+-dependent K+ channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.
Collapse
Affiliation(s)
- Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA.
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| | - Shelagh Rodriguez
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| |
Collapse
|
9
|
Prieto GA. Abnormalities of Dopamine D 3 Receptor Signaling in the Diseased Brain. J Cent Nerv Syst Dis 2017; 9:1179573517726335. [PMID: 28855798 PMCID: PMC5562332 DOI: 10.1177/1179573517726335] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/19/2017] [Indexed: 01/15/2023] Open
Abstract
Dopamine D3 receptors (D3R) modulate neuronal activity in several brain regions including cortex, striatum, cerebellum, and hippocampus. A growing body of evidence suggests that aberrant D3R signaling contributes to multiple brain diseases, such as Parkinson’s disease, essential tremor, schizophrenia, and addiction. In line with these findings, D3R has emerged as a potential target in the treatment of neurological disorders. However, the mechanisms underlying neuronal D3R signaling are poorly understood, either in healthy or diseased brain. Here, I review the molecular mechanisms involved in D3R signaling via monomeric D3R and heteromeric receptor complexes (e.g., D3R-D1R, D3R-D2R, D3R-A2aR, and D3R-D3nf). I focus on D3R signaling pathways that, according to recent reports, contribute to pathological brain states. In particular, I describe evidence on both quantitative (e.g., increased number or affinity) and qualitative (e.g., switched signaling) changes in D3R that has been associated with brain dysfunction. I conclude with a description of basic mechanisms that modulate D3R signaling such as desensitization, as disruption of these mechanisms may underlie pathological changes in D3R signaling. Because several lines of evidence support the idea that imbalances in D3R signaling alter neural function, a better understanding of downstream D3R pathways is likely to reveal novel therapeutic strategies toward dopamine-related brain disorders.
Collapse
Affiliation(s)
- G Aleph Prieto
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| |
Collapse
|
10
|
Dobbs LK, Lemos JC, Alvarez VA. Restructuring of basal ganglia circuitry and associated behaviors triggered by low striatal D2 receptor expression: implications for substance use disorders. GENES BRAIN AND BEHAVIOR 2017; 16:56-70. [PMID: 27860248 PMCID: PMC5243158 DOI: 10.1111/gbb.12361] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/11/2023]
Abstract
Dopamine D2 receptors (D2Rs) consistently emerge as a critical substrate for the etiology of some major psychiatric disorders. Indeed, a central theory of substance use disorders (SUDs) postulates that a reduction in D2R levels in the striatum is a determining factor that confers vulnerability to abuse substances. A large number of clinical and preclinical studies strongly support this link between SUDs and D2Rs; however, identifying the mechanism by which low D2Rs facilitate SUDs has been hindered by the complexity of circuit connectivity, the heterogeneity of D2R expression and the multifaceted constellation of phenotypes observed in SUD patient. Animal models are well‐suited for understanding the mechanisms because they allow access to the circuitry and the genetic tools that enable a dissection of the D2R heterogeneity. This review discusses recent findings on the functional role of D2Rs and highlights the distinctive contributions of D2Rs expressed on specific neuronal subpopulations to the behavioral responses to stimulant drugs. A circuit‐wide restructuring of local and long‐range inhibitory connectivity within the basal ganglia is observed in response to manipulation of striatal D2R levels and is accompanied by multiple alterations in dopamine‐dependent behaviors. Collectively, these new findings provide compelling evidence for a critical role of striatal D2Rs in shaping basal ganglia connectivity; even among neurons that do not express D2Rs. These findings from animal models have deep clinical implications for SUD patients with low levels D2R availability where a similar restructuring of basal ganglia circuitry is expected to take place.
Collapse
Affiliation(s)
- L K Dobbs
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - J C Lemos
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - V A Alvarez
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Dopaminergic Regulation of Striatal Interneurons in Reward and Addiction: Focus on Alcohol. Neural Plast 2015; 2015:814567. [PMID: 26246915 PMCID: PMC4515529 DOI: 10.1155/2015/814567] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
Corticobasal ganglia networks coursing through the striatum are key structures for reward-guided behaviors. The ventral striatum (nucleus accumbens (nAc)) and its reciprocal connection with the ventral tegmental area (VTA) represent a primary component of the reward system, but reward-guided learning also involves the dorsal striatum and dopaminergic inputs from the substantia nigra. The majority of neurons in the striatum (>90%) are GABAergic medium spiny neurons (MSNs), but both the input to and the output from these neurons are dynamically controlled by striatal interneurons. Dopamine is a key neurotransmitter in reward and reward-guided learning, and the physiological activity of GABAergic and cholinergic interneurons is regulated by dopaminergic transmission in a complex manner. Here we review the role of striatal interneurons in modulating striatal output during drug reward, with special emphasis on alcohol.
Collapse
|
12
|
Glucagon-like peptide-1 receptor activation in the nucleus accumbens core suppresses feeding by increasing glutamatergic AMPA/kainate signaling. J Neurosci 2014; 34:6985-92. [PMID: 24828651 DOI: 10.1523/jneurosci.0115-14.2014] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) activation in the nucleus accumbens (NAc) core is pharmacologically and physiologically relevant for regulating palatable food intake. Here, we assess whether GLP-1R signaling in the NAc core of rats modulates GABAergic medium spiny neurons (MSNs) through presynaptic-glutamatergic and/or presynaptic-dopaminergic signaling to control feeding. First, ex vivo fast-scan cyclic voltammetry showed that the GLP-1R agonist exendin-4 (Ex-4) does not alter dopamine release in the NAc core. Instead, support for a glutamatergic mechanism was provided by ex vivo electrophysiological analyses showing that Ex-4 activates presynaptic GLP-1Rs in the NAc core to increase the activity of MSNs via a glutamatergic, AMPA/kainate receptor-mediated mechanism, indicated by increased mEPSC frequency and decreased paired pulse ratio in core MSNs. Only a small, direct excitatory effect on MSNs by Ex-4 was observed, suggesting that the contribution of postsynaptic GLP-1R to MSN activity is minimal. The behavioral relevance of the electrophysiological data was confirmed by the finding that intracore injection of the AMPA/kainate receptor antagonist CNQX attenuated the ability of NAc core GLP-1R activation by Ex-4 microinjection to suppress food intake and body weight gain; in contrast, intracore NMDA receptor blockade by AP-5 did not inhibit the energy balance effects of NAc core Ex-4. Together, these data provide evidence for a novel glutamatergic, but not dopaminergic, mechanism by which NAc core GLP-1Rs promote negative energy balance.
Collapse
|
13
|
Wei W, Li L, Yu G, Ding S, Li C, Zhou FM. Supersensitive presynaptic dopamine D2 receptor inhibition of the striatopallidal projection in nigrostriatal dopamine-deficient mice. J Neurophysiol 2013; 110:2203-16. [PMID: 23945778 DOI: 10.1152/jn.00161.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The dopamine (DA) D2 receptor (D2R)-expressing medium spiny neurons (D2-MSNs) in the striatum project to and inhibit the GABAergic neurons in the globus pallidus (GP), forming an important link in the indirect pathway of the basal ganglia movement control circuit. These striatopallidal axon terminals express presynaptic D2Rs that inhibit GABA release and thus regulate basal ganglion function. Here we show that in transcription factor Pitx3 gene mutant mice with a severe DA loss in the dorsal striatum mimicking the DA denervation in Parkinson's disease (PD), the striatopallidal GABAergic synaptic transmission displayed a heightened sensitivity to presynaptic D2R-mediated inhibition with the dose-response curve shifted to the left, although the maximal inhibition was not changed. Functionally, low concentrations of DA were able to more efficaciously reduce the striatopallidal inhibition-induced pauses of GP neuron activity in DA-deficient Pitx3 mutant mice than in wild-type mice. These results demonstrate that presynaptic D2R inhibition of the striatopallidal synapse becomes supersensitized after DA loss. These supersensitive D2Rs may compensate for the lost DA in PD and also induce a strong disinhibition of GP neuron activity that may contribute to the motor-stimulating effects of dopaminergic treatments in PD.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | | | | | | | | | | |
Collapse
|
14
|
Moreno M, Economidou D, Mar AC, López-Granero C, Caprioli D, Theobald DE, Fernando A, Newman AH, Robbins TW, Dalley JW. Divergent effects of D₂/₃ receptor activation in the nucleus accumbens core and shell on impulsivity and locomotor activity in high and low impulsive rats. Psychopharmacology (Berl) 2013; 228:19-30. [PMID: 23407782 PMCID: PMC3676742 DOI: 10.1007/s00213-013-3010-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/23/2013] [Indexed: 02/02/2023]
Abstract
RATIONALE Previously we demonstrated reduced D2/3 receptor availability in the ventral striatum of hyper-impulsive rats on the five-choice serial reaction time task (5-CSRTT). However, the anatomical locus of D2/3 receptor dysfunction in high impulsive (HI) rats is unknown. OBJECTIVE In the present study, we investigated whether D2/3 receptor dysfunction in HI rats is localised to the core or shell sub-regions of the nucleus accumbens (NAcb). METHODS Rats were selected for low (low impulsive, LI) and high impulsivity on the 5-CSRTT and implanted with guide cannulae targeting the NAcb core and shell. The D2/3 receptor agonist quinpirole was locally injected in the NAcb (0.1, 0.3 and 1 μg per infusion) and its effects investigated on the performance of LI and HI rats on the 5-CSRTT as well as spontaneous locomotor activity in an open field. RESULTS Intra-NAcb core quinpirole increased premature responding in HI rats but not in LI rats. In contrast, intra-NAcb shell quinpirole strongly increased locomotor activity in HI rats, unlike LI rats. This effect was blocked by intra-NAcb shell infusions of the D2/3 receptor antagonist nafadotride (0.03 μg). However, nafadotride was ineffective in blocking the effects of intra-NAcb core quinpirole on premature responding in HI rats. CONCLUSIONS These findings indicate that impulsivity and hyperactivity are separately regulated by core and shell sub-regions of the NAcb and that HI rats show an enhanced response to D2/3 receptor activation in these regions. These results suggest that the symptom clusters of hyperactivity and impulsivity in attention-deficit hyperactivity disorder may be neurally dissociable at the level of the NAcb.
Collapse
Affiliation(s)
- M. Moreno
- Department of Psychology, University of Almeria, Almeria, Spain
| | - D. Economidou
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | - A. C. Mar
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | | | - D. Caprioli
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | - D. E. Theobald
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | - A. Fernando
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | - A. H. Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - T. W. Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
| | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ UK
| |
Collapse
|
15
|
Liu X, Herbison AE. Dopamine regulation of gonadotropin-releasing hormone neuron excitability in male and female mice. Endocrinology 2013; 154:340-50. [PMID: 23239814 DOI: 10.1210/en.2012-1602] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Numerous in vivo studies have shown that dopamine is involved in the regulation of LH secretion in mammals. However, the mechanisms through which this occurs are not known. In this study, we used green fluorescent protein-tagged GnRH neurons to examine whether and how dopamine may modulate the activity of adult GnRH neurons in the mouse. Bath-applied dopamine (10-80 μm) potently inhibited the firing of approximately 50% of GnRH neurons. This resulted from direct postsynaptic inhibitory actions through D1-like, D2-like, or both receptors. Further, one third of GnRH neurons exhibited an increase in their basal firing rate after administration of SCH23390 (D1-like antagonist) and/or raclopride (D2-like antagonist) indicating tonic inhibition by endogenous dopamine in the brain slice. The role of dopamine in presynaptic modulation of the anteroventral periventricular nucleus (AVPV) γ-aminobutyric acid/glutamate input to GnRH neurons was examined. Exogenous dopamine was found to presynaptically inhibit AVPV-evoked γ-aminobutyric acid /glutamate postsynaptic currents in about 50% of GnRH neurons. These effects were, again, mediated by both D1- and D2-like receptors. Neither postsynaptic nor presynaptic actions of dopamine were found to be different between diestrous, proestrous, and estrous females, or males. Approximately 20% of GnRH neurons were shown to receive a dopaminergic input from AVPV neurons in male and female mice. Together, these observations show that dopamine is one of the most potent inhibitors of GnRH neuron excitability and that this is achieved through complex pre- and postsynaptic actions that each involve D1- and D2-like receptor activation.
Collapse
MESH Headings
- Animals
- Benzazepines/pharmacology
- Brain/drug effects
- Brain/metabolism
- Dopamine/pharmacology
- Dopamine D2 Receptor Antagonists
- Electrophysiology
- Female
- Gonadotropin-Releasing Hormone/metabolism
- In Vitro Techniques
- Male
- Mice
- Neurons/drug effects
- Neurons/metabolism
- Raclopride/pharmacology
- Receptors, Dopamine/metabolism
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/antagonists & inhibitors
- Receptors, Dopamine D3/metabolism
- Receptors, Dopamine D4/antagonists & inhibitors
- Receptors, Dopamine D4/metabolism
- Receptors, Dopamine D5/antagonists & inhibitors
- Receptors, Dopamine D5/metabolism
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Xinhuai Liu
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, P.O. Box 913, Dunedin, New Zealand
| | | |
Collapse
|
16
|
Involvement of rat dopaminergic system of nucleus accumbens in nicotine-induced anxiogenic-like behaviors. Brain Res 2012; 1460:25-32. [DOI: 10.1016/j.brainres.2012.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/18/2012] [Accepted: 04/19/2012] [Indexed: 02/05/2023]
|
17
|
Wang W, Dever D, Lowe J, Storey GP, Bhansali A, Eck EK, Nitulescu I, Weimer J, Bamford NS. Regulation of prefrontal excitatory neurotransmission by dopamine in the nucleus accumbens core. J Physiol 2012; 590:3743-69. [PMID: 22586226 DOI: 10.1113/jphysiol.2012.235200] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Interactions between dopamine and glutamate signalling within the nucleus accumbens core are required for behavioural reinforcement and habit formation. Dopamine modulates excitatory glutamatergic signals from the prefrontal cortex, but the precise mechanism has not been identified. We combined optical and electrophysiology recordings in murine slice preparations from CB1 receptor-null mice and green fluorescent protein hemizygotic bacterial artificial chromosome transgenic mice to show how dopamine regulates glutamatergic synapses specific to the striatonigral and striatopallidal basal ganglia pathways. At low cortical frequencies, dopamine D1 receptors promote glutamate release to both D1 and D2 receptor-expressing medium spiny neurons while D2 receptors specifically inhibit excitatory inputs to D2 receptor-expressing cells by decreasing exocytosis from cortical terminals with a low probability of release. At higher cortical stimulation frequencies, this dopaminergic modulation of presynaptic activity is occluded by adenosine and endocannabinoids. Glutamatergic inputs to both D1 and D2 receptor-bearing medium spiny neurons are inhibited by adenosine, released upon activation of NMDA and AMPA receptors and adenylyl cyclase in D1 receptor-expressing cells. Excitatory inputs to D2 receptor-expressing cells are specifically inhibited by endocannabinoids, whose release is dependent on D2 and group 1 metabotropic glutamate receptors. The convergence of excitatory and inhibitory modulation of corticoaccumbal activity by dopamine, adenosine and endocannabinoids creates subsets of corticoaccumbal inputs, selectively and temporally reinforces strong cortical signals through the striatonigral pathway while inhibiting the weak, and may provide a mechanism whereby continued attention might be focused on behaviourally salient information.
Collapse
Affiliation(s)
- Wengang Wang
- University of Washington, Department of Neurology, Box 356465, RR650, 1955 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Aceves JJ, Rueda-Orozco PE, Hernandez-Martinez R, Galarraga E, Bargas J. Bidirectional plasticity in striatonigral synapses: a switch to balance direct and indirect basal ganglia pathways. Learn Mem 2011; 18:764-73. [PMID: 22101179 DOI: 10.1101/lm.023432.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral (direct pathway) synapses are not known. Here, we used electrophysiological techniques to describe dopamine D(1)-receptor-mediated facilitation in striatonigral synapses in the context of its interaction with glutamatergic inputs, probably coming from the subthalamic nucleus (STN) (indirect pathway) and describe a striatonigral cannabinoid-dependent long-term synaptic depression (LTD). It is shown that striatonigral afferents exhibit D(1)-receptor-mediated facilitation of synaptic transmission when NMDA receptors are inactive, a phenomenon that changes to cannabinoid-dependent LTD when NMDA receptors are active. This interaction makes SNr neurons become coincidence-detector switching ports: When inactive, NMDA receptors lead to a dopamine-dependent enhancement of direct pathway output, theoretically facilitating movement. When active, NMDA receptors result in LTD of the same synapses, thus decreasing movement. We propose that SNr neurons, working as logical gates, tune the motor system to establish a balance between both BG pathways, enabling the system to choose appropriate synergies for movement learning and postural support.
Collapse
Affiliation(s)
- Jose J Aceves
- Instituto de Fisiologia Celular-Neurociencias, Universidad Nacional Autonoma de México (UNAM), México City, DF Mexico 04510
| | | | | | | | | |
Collapse
|
19
|
Perreault ML, Hasbi A, O'Dowd BF, George SR. The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in Basal Ganglia. Front Neuroanat 2011; 5:31. [PMID: 21747759 PMCID: PMC3130461 DOI: 10.3389/fnana.2011.00031] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/16/2011] [Indexed: 12/23/2022] Open
Abstract
Dopaminergic signaling within the basal ganglia has classically been thought to occur within two distinct neuronal pathways; the direct striatonigral pathway which contains the dopamine D1 receptor and the neuropeptides dynorphin (DYN) and substance P, and the indirect striatopallidal pathway which expresses the dopamine D2 receptor and enkephalin (ENK). A number of studies have also shown, however, that D1 and D2 receptors can co-exist within the same medium spiny neuron and emerging evidence indicates that these D1/D2-coexpressing neurons, which also express DYN and ENK, may comprise a third neuronal pathway, with representation in both the striatonigral and striatopallidal projections of the basal ganglia. Furthermore, within these coexpressing neurons it has been shown that the dopamine D1 and D2 receptor can form a novel and pharmacologically distinct receptor complex, the dopamine D1–D2 receptor heteromer, with unique signaling properties. This is indicative of a functionally unique role for these neurons in brain. The aim of this review is to discuss the evidence in support of a novel third pathway coexpressing the D1 and D2 receptor, to discuss the potential relevance of this pathway to basal ganglia signaling, and to address its potential value, and that of the dopamine D1–D2 receptor heteromer, in the search for new therapeutic strategies for disorders involving dopamine neurotransmission.
Collapse
Affiliation(s)
- Melissa L Perreault
- Centre for Addiction and Mental Health, University of Toronto Toronto, ON, Canada
| | | | | | | |
Collapse
|
20
|
Abstract
Dopamine system disorders ranging from movement disorders to addiction and schizophrenia involve striatal medium spiny neurons (MSNs), yet their functional connectivity has been difficult to determine comprehensively. We generated a mouse with conditional channelrhodopsin-2 expression restricted to medium spiny neurons and assessed the specificity and strength of their intrinsic connections in the striatum and their projections to the globus pallidus and the substantia nigra. In the striatum, medium spiny neurons connected with other MSNs and tonically active cholinergic interneurons, but not with fast-spiking GABA interneurons. In the globus pallidus, medium spiny neurons connected strongly with one class of electrophysiologically identified neurons, but weakly with the other. In the substantia nigra, medium spiny neurons connected strongly with GABA, but not with dopamine neurons. Projections to the globus pallidus showed solely D2-mediated presynaptic inhibition, whereas projections to the substantia nigra showed solely D1-mediated presynaptic facilitation. This optogenetic approach defines the functional connectome of the striatal medium spiny neuron.
Collapse
|
21
|
Prieto GA, Perez-Burgos A, Palomero-Rivero M, Galarraga E, Drucker-Colin R, Bargas J. Upregulation of D2-class signaling in dopamine-denervated striatum is in part mediated by D3 receptors acting on Ca V 2.1 channels via PIP2 depletion. J Neurophysiol 2011; 105:2260-74. [PMID: 21389298 DOI: 10.1152/jn.00516.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The loss of dopaminergic neurons in the substantia nigra compacta followed by striatal dopamine depletion is a hallmark of Parkinson's disease. After dopamine depletion, dopaminergic D(2) receptor (D(2)R)-class supersensitivity develops in striatal neurons. The supersensitivity results in an enhanced modulation of Ca(2+) currents by D(2)R-class receptors. However, the relative contribution of D(2)R, D(3)R, and D(4)R types to the supersensitivity, as well as the mechanisms involved, have not been elucidated. In this study, whole cell voltage-clamp recordings were performed to study Ca(2+) current modulation in acutely dissociated striatal neurons obtained from rodents with unilateral 6-hydroxydopamine lesions in the substantia nigra compacta. Selective antagonists for D(2)R, D(3)R, and D(4)R types were used to identify whether the modulation by one of these receptors experiences a selective change after dopaminergic denervation. It was found that D(3)R-mediated modulation was particularly enhanced. Increased modulation targeted Ca(V)2.1 (P/Q) Ca(2+) channels via the depletion of phosphatidylinositol 4,5-bisphosphate, an intracellular signaling cascade hard to detect in control neurons and hypothesized as being amplified by dopamine depletion. An imbalance in the striatal expression of D(3)R and its splice variant, D(3)nf, accompanied enhanced D(3)R activity. Because Ca(V)2.1 Ca(2+) channels mediate synaptic GABA release from the terminals of striatal neurons, reinforcement of their inhibition by D(3)R may explain in part the profound decrease in synaptic strength in the connections among striatal projection neurons observed in the dopamine-depleted striatum.
Collapse
Affiliation(s)
- G Aleph Prieto
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
22
|
Klinker F, Hasan K, Dowling P, Paulus W, Liebetanz D. Dopamine D(3) receptor deficiency sensitizes mice to iron deficiency-related deficits in motor learning. Behav Brain Res 2011; 220:358-61. [PMID: 21354213 DOI: 10.1016/j.bbr.2011.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/21/2011] [Accepted: 02/16/2011] [Indexed: 12/26/2022]
Abstract
Iron deficiency is a widespread form of malnutrition and is known to interfere with cognitive performance and development. To elucidate the role of dopamine D3 and iron deficiency (ID) in inducing cognitive deficits, we studied wildtype and D3 knockout mice on normal or iron-deficient diets subjected to a running wheel-based motor skill sequence. Surprisingly, ID alone had no effect on motor learning in this study, whereas combined ID and dopamine D(3) receptor (D3R)-deficiency significantly interfered with the acquisition of motor skills. Reduced D3R function may serve as a predisposing factor towards ID-related effects on motor learning.
Collapse
Affiliation(s)
- F Klinker
- Department of Clinical Neurophysiology, University Medical Centre Göttingen, Georg August University, Robert-Koch-Strasse 40, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
23
|
Perreault ML, Hasbi A, Alijaniaram M, Fan T, Varghese G, Fletcher PJ, Seeman P, O'Dowd BF, George SR. The dopamine D1-D2 receptor heteromer localizes in dynorphin/enkephalin neurons: increased high affinity state following amphetamine and in schizophrenia. J Biol Chem 2010; 285:36625-34. [PMID: 20864528 DOI: 10.1074/jbc.m110.159954] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The distribution and function of neurons coexpressing the dopamine D1 and D2 receptors in the basal ganglia and mesolimbic system are unknown. We found a subset of medium spiny neurons coexpressing D1 and D2 receptors in varying densities throughout the basal ganglia, with the highest incidence in nucleus accumbens and globus pallidus and the lowest incidence in caudate putamen. These receptors formed D1-D2 receptor heteromers that were localized to cell bodies and presynaptic terminals. In rats, selective activation of D1-D2 heteromers increased grooming behavior and attenuated AMPA receptor GluR1 phosphorylation by calcium/calmodulin kinase IIα in nucleus accumbens, implying a role in reward pathways. D1-D2 heteromer sensitivity and functional activity was up-regulated in rat striatum by chronic amphetamine treatment and in globus pallidus from schizophrenia patients, indicating that the dopamine D1-D2 heteromer may contribute to psychopathologies of drug abuse, schizophrenia, or other disorders involving elevated dopamine transmission.
Collapse
Affiliation(s)
- Melissa L Perreault
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dynamics of the Parkinsonian striatal microcircuit: entrainment into a dominant network state. J Neurosci 2010; 30:11326-36. [PMID: 20739553 DOI: 10.1523/jneurosci.1380-10.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuronal synchronization in basal ganglia circuits plays a key role in the encoding of movement, procedural memory storage and habit formation. Striatal dopamine (DA) depletion during Parkinsonism causes abnormal synchronization in corticobasal ganglia loops resulting in motor dysfunction. However, the dynamics of the striatal microcircuit underlying abnormal synchronization in Parkinsonism is poorly understood. Here we used targeted whole-cell recordings, calcium imaging allowing the recording from dozens of cells simultaneously and analytical approaches, to describe the striking alterations in network dynamics that the striatal microcircuit undergoes following DA depletion in a rat model of Parkinson disease (PD): In addition to a significant enhancement of basal neuronal activity frequent periods of spontaneous synchronization were observed. Multidimensional reduction techniques of vectorized network dynamics revealed that increased synchronization resulted from a dominant network state that absorbed most spontaneously active cells. Abnormal synchronous activity can be virtually abolished by glutamatergic antagonists, while blockade of GABAergic transmission facilitates the engagement of striatal cell assemblies in the dominant state. Finally, a dopaminergic receptor agonist was capable of uncoupling neurons from the dominant state. Abnormal synchronization and "locking" into a dominant state may represent the basic neuronal mechanism that underlies movement disorders at the microcircuit level.
Collapse
|
25
|
Lurz RW. Belief Attribution in Animals: On How to Move Forward Conceptually and Empirically. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s13164-010-0042-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex. J Neurosci 2010; 30:7236-48. [PMID: 20505090 DOI: 10.1523/jneurosci.0736-10.2010] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Similar to dopamine (DA), cannabinoids strongly influence prefrontal cortical functions, such as working memory, emotional learning, and sensory perception. Although endogenous cannabinoid receptors (CB(1)Rs) are abundantly expressed in the prefrontal cortex (PFC), very little is known about endocannabinoid (eCB) signaling in this brain region. Recent behavioral and electrophysiological evidence has suggested a functional interplay between the dopamine and cannabinoid receptor systems, although the cellular mechanisms underlying this interaction remain to be elucidated. We examined this issue by combining neuroanatomical and electrophysiological techniques in PFC of rats and mice (both genders). Using immunoelectron microscopy, we show that CB(1)Rs and dopamine type 2 receptors (D(2)Rs) colocalize at terminals of symmetrical, presumably GABAergic, synapses in the PFC. Indeed, activation of either receptor can suppress GABA release onto layer 5 pyramidal cells. Furthermore, coactivation of both receptors via repetitive afferent stimulation triggers eCB-mediated long-term depression of inhibitory transmission (I-LTD). This I-LTD is heterosynaptic in nature, requiring glutamate release to activate group I metabotropic glutamate receptors. D(2)Rs most likely facilitate eCB signaling at the presynaptic site as disrupting postsynaptic D(2)R signaling does not diminish I-LTD. Facilitation of eCB-LTD may be one mechanism by which DA modulates neuronal activity in the PFC and regulates PFC-mediated behavior in vivo.
Collapse
|
27
|
Humphries MD, Prescott TJ. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 2009; 90:385-417. [PMID: 19941931 DOI: 10.1016/j.pneurobio.2009.11.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 11/27/2022]
Abstract
The basal ganglia are often conceptualised as three parallel domains that include all the constituent nuclei. The 'ventral domain' appears to be critical for learning flexible behaviours for exploration and foraging, as it is the recipient of converging inputs from amygdala, hippocampal formation and prefrontal cortex, putatively centres for stimulus evaluation, spatial navigation, and planning/contingency, respectively. However, compared to work on the dorsal domains, the rich potential for quantitative theories and models of the ventral domain remains largely untapped, and the purpose of this review is to provide the stimulus for this work. We systematically review the ventral domain's structures and internal organisation, and propose a functional architecture as the basis for computational models. Using a full schematic of the structure of inputs to the ventral striatum (nucleus accumbens core and shell), we argue for the existence of many identifiable processing channels on the basis of unique combinations of afferent inputs. We then identify the potential information represented in these channels by reconciling a broad range of studies from the hippocampal, amygdala and prefrontal cortex literatures with known properties of the ventral striatum from lesion, pharmacological, and electrophysiological studies. Dopamine's key role in learning is reviewed within the three current major computational frameworks; we also show that the shell-based basal ganglia sub-circuits are well placed to generate the phasic burst and dip responses of dopaminergic neurons. We detail dopamine's modulation of ventral basal ganglia's inputs by its actions on pre-synaptic terminals and post-synaptic membranes in the striatum, arguing that the complexity of these effects hint at computational roles for dopamine beyond current ideas. The ventral basal ganglia are revealed as a constellation of multiple functional systems for the learning and selection of flexible behaviours and of behavioural strategies, sharing the common operations of selection-by-disinhibition and of dopaminergic modulation.
Collapse
Affiliation(s)
- Mark D Humphries
- Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield, S10 2TN, UK.
| | | |
Collapse
|
28
|
Grilli M, Zappettini S, Zoli M, Marchi M. Pre-synaptic nicotinic and D2receptors functionally interact on dopaminergic nerve endings of rat and mouse nucleus accumbens. J Neurochem 2009; 108:1507-14. [DOI: 10.1111/j.1471-4159.2009.05933.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Kline DD, Hendricks G, Hermann G, Rogers RC, Kunze DL. Dopamine inhibits N-type channels in visceral afferents to reduce synaptic transmitter release under normoxic and chronic intermittent hypoxic conditions. J Neurophysiol 2009; 101:2270-8. [PMID: 19244351 DOI: 10.1152/jn.91304.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamatergic synaptic currents elicited in second-order neurons in the nucleus of the solitary tract (nTS) by activation of chemosensory and other visceral afferent fibers are severely reduced following 10 days of chronic intermittent hypoxia (CIH). The mechanism by which this occurs is unknown. A strong candidate for producing the inhibition is dopamine, which is also released from the presynaptic terminals and which we have shown exerts a tonic presynaptic inhibition on glutamate release. We postulated that tonic activation of the D2 receptors inhibits presynaptic calcium currents to reduce transmitter release and that in CIH this occurs in conjunction with an increase in the dopamine inhibitory response due to the increase in presynaptic D2 receptors or an increase in dopamine release further suppressing the evoked excitatory postsynaptic current (eEPSC). Thus we predicted that blockade of the D2 receptors would return the EPSC to values of animals maintained under normoxic conditions. We found that dopamine and quinpirole, the selective D2-like agonist, inhibit calcium currents via the D2 receptors by acting on the N-type calcium channel in presynaptic neurons and their nTS central terminals. However, in brain slice studies from CIH animals, although the D2 antagonist sulpiride increased the CIH-reduced amplitude of synaptic currents, EPSCs were not restored to normal levels. This indicates that while the dopamine inhibitory effect remains intact in CIH, most of the reduction in the eEPSC amplitude occurs via alternative mechanisms.
Collapse
Affiliation(s)
- David D Kline
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | | | | | |
Collapse
|
30
|
Sahlholm K, Nilsson J, Marcellino D, Fuxe K, Arhem P. Voltage-dependence of the human dopamine D2 receptor. Synapse 2008; 62:476-80. [PMID: 18361445 DOI: 10.1002/syn.20509] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dopamine D2 receptor plays a critical role in activity-dependent synaptic plasticity in the striatum, and regulates the transitions between different states of electrical activity. The D2 receptor is the main target for antipsychotics, and its affinity towards dopamine has been shown to be increased in psychotic patients. Recently, voltage-sensitivity has been reported for the ligand binding and G protein-coupling properties of some neurotransmitter receptors, raising the question whether the D2 receptor is also regulated by voltage. Our present electrophysiology data from Xenopus oocytes indicate that the D2 receptor is indeed voltage-sensitive. Comparing concentration-response relationships for the activation of G protein-coupled inward rectifier potassium (GIRK) channels via D2 receptor stimulation by quinpirole or dopamine at -80 and at +40 mV revealed rightward shifts upon depolarisation of nearly tenfold, for both agonists. Our results are likely to bear relevance to the function of the D2 receptor in gating synaptic input and in regulating plasticity.
Collapse
Affiliation(s)
- Kristoffer Sahlholm
- Department of Neuroscience, Karolinska Institutet, SE-117 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
31
|
Baufreton J, Bevan MD. D2-like dopamine receptor-mediated modulation of activity-dependent plasticity at GABAergic synapses in the subthalamic nucleus. J Physiol 2008; 586:2121-42. [PMID: 18292127 DOI: 10.1113/jphysiol.2008.151118] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Reciprocally connected glutamatergic subthalamic nucleus (STN) and GABAergic external globus pallidus (GP) neurons normally exhibit weakly correlated, irregular activity but following the depletion of dopamine in Parkinson's disease they express more highly correlated, rhythmic bursting activity. Patch clamp recording was used to test the hypothesis that dopaminergic modulation reduces the capability of GABAergic inputs to pattern 'pathological' activity in STN neurons. Electrically evoked GABA(A) receptor-mediated IPSCs exhibited activity-dependent plasticity in STN neurons, i.e. IPSCs evoked at frequencies between 1 and 50 Hz exhibited depression that increased with the frequency of activity. Dopamine, the D(2)-like dopamine receptor agonist quinpirole and external media containing a low [Ca(2+)] reduced both the magnitude of IPSCs evoked at 1-50 Hz and synaptic depression at 10-50 Hz. Dopamine/quinpirole also reduced the frequency but not the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. D(1)-like and D(4) agonists were ineffective and D(2/3) but not D4 receptor antagonists reversed the effects of dopamine or quinpirole. Together these data suggest that presynaptic D(2/3) dopamine receptors modulate the short-term dynamics of GABAergic transmission in the STN by lowering the initial probability of transmitter release. Simulated GABA(A) receptor-mediated synaptic conductances representative of control or modulated transmission were then generated in STN neurons using the dynamic clamp technique. Dopamine-modulated transmission was less effective at resetting autonomous activity or generating rebound burst firing than control transmission. The data therefore support the conclusion that dopamine acting at presynaptic D(2)-like receptors reduces the propensity for GABAergic transmission to generate correlated, bursting activity in STN neurons.
Collapse
Affiliation(s)
- Jérôme Baufreton
- Northwestern University, Department of Physiology, Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
32
|
Abstract
Presynaptic receptors for dopamine, histamine and serotonin that are located on dopaminergic, histaminergic and sertonergic axon terminals, respectively, function as autoreceptors. Presynaptic receptors also occur as heteroreceptors on other axon terminals. Auto- and heteroreceptors mainly affect Ca(2+) -dependent exocytosis from the receptor-bearing nerve ending. Some additionally subserve other presynaptic functions.Presynaptic dopamine, histamine and serotonin receptors are involved in various (patho)physiological conditions. Examples are the following:Dopamine autoreceptors play a role in Parkinson's disease, schizophrenia and drug addiction. Dopamine heteroreceptors affecting the release of acetylcholine and of amino acid neurotransmitters in the basal ganglia are also relevant for Parkinson's disease. Peripheral dopamine heteroreceptors on postganglionic sympathetic terminals influence heart rate and vascular resistance through modulation of noradrenaline release. Blockade of histamine autoreceptors increases histamine synthesis and release and may support higher CNS functions such as arousal, cognition and learning. Peripheral histamine heteroreceptors on C fiber and on postganglionic sympathetic fiber terminals diminish neuropeptide and noradrenaline release, respectively. Both inhibititory effects are beneficial in myocardial ischemia. The inhibition of neuropeptide release also explains the antimigraine effects of some agonists of presynaptic histamine receptors. Upregulation of presynaptic serotonin autoreceptors is probably involved in the pathogenesis of major depression. Correspondingly, antidepressant treatments can be linked with a reduced density of 5-HT autoreceptors. 5-HT Heteroreceptor activation diminishes acetylcholine and GABA release and may therefore increase anxiety. In the periphery, presynaptic 5-HT heteroreceptor agonists shorten migraine attacks by inhibition of the release of neuropeptides from trigeminal afferents, apart from their constrictive action on meningeal vessels.
Collapse
MESH Headings
- Animals
- Dopamine/metabolism
- Dopamine Agents/pharmacology
- Dopamine Agents/therapeutic use
- Histamine Antagonists/pharmacology
- Histamine Antagonists/therapeutic use
- Humans
- Nervous System Diseases/drug therapy
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/metabolism
- Receptors, Dopamine/physiology
- Receptors, Histamine/drug effects
- Receptors, Histamine/metabolism
- Receptors, Histamine/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/metabolism
- Receptors, Presynaptic/physiology
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Receptors, Serotonin/physiology
- Serotonin Agents/pharmacology
- Serotonin Agents/therapeutic use
Collapse
Affiliation(s)
- Thomas J Feuerstein
- Neurochirurgische Universitätsklinik Breisacherstrasse, 64 D - 79106, Freiburg, Germany.
| |
Collapse
|
33
|
Dickerson SM, Gore AC. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Rev Endocr Metab Disord 2007; 8:143-59. [PMID: 17674209 DOI: 10.1007/s11154-007-9048-y] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are natural or synthetic compounds that interfere with the normal function of an organism's endocrine system. Many EDCs are resistant to biodegradation, due to their structural stability, and persist in the environment. The focus of this review is on natural and artificial EDCs that act through estrogenic mechanisms to affect reproductive neuroendocrine systems. This endocrine axis comprises the hypothalamic gonadotropin-releasing hormone (GnRH), pituitary gonadotropins, and gonadal steroid hormones, including estrogens. Although it is not surprising that EDCs that mimic or antagonize estrogen receptors may exert actions upon reproductive targets, the mechanisms for these effects are complex and involve all three levels of the hypothalamic-pituitary-gonadal (HPG) system. Nevertheless, considerable evidence links exposure to estrogenic environmental EDCs with neuroendocrine reproductive deficits in wildlife and in humans. The effects of an EDC are variable across the life cycle of an animal, and are particularly potent when exposure occurs during fetal and early postnatal development. As a consequence, abnormal sexual differentiation, disrupted reproductive function, or inappropriate sexual behavior may be detected later in life. This review will cover the effects of two representative classes of estrogenic EDCs, phytoestrogens and polychlorinated biphenyls (PCBs), on neuroendocrine reproductive function, from molecules to behavior, across the vertebrate life cycle. Finally, we identify the gaps of knowledge in this field and suggest future directions for study.
Collapse
Affiliation(s)
- Sarah M Dickerson
- Division of Pharmacology and Toxicology, The University of Texas at Austin, P.O. Box A1915, Austin, TX 78712, USA.
| | | |
Collapse
|
34
|
Tecuapetla F, Carrillo-Reid L, Bargas J, Galarraga E. Dopaminergic modulation of short-term synaptic plasticity at striatal inhibitory synapses. Proc Natl Acad Sci U S A 2007; 104:10258-63. [PMID: 17545307 PMCID: PMC1885397 DOI: 10.1073/pnas.0703813104] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circuit properties, such as the selection of motor synergies, have been posited as relevant tasks for the recurrent inhibitory synapses between spiny projection neurons of the neostriatum, a nucleus of the basal ganglia participating in procedural learning and voluntary motor control. Here we show how the dopaminergic system regulates short-term plasticity (STP) in these synapses. STP is thought to endow neuronal circuits with computational powers such as gain control, filtering, and the emergence of transitory net states. But little is known about STP regulation. Employing unitary and population synaptic recordings, we observed that activation of dopamine receptors can modulate STP between spiny neurons. A D(1)-class agonist enhances, whereas a D(2)-class agonist decreases, short-term depression most probably by synaptic redistribution. Presynaptic receptors appear to be responsible for this modulation. In contrast, STP between fast-spiking interneurons and spiny projection neurons is largely unregulated despite expressing presynaptic receptors. Thus, the present experiments provide an explanation for dopamine actions at the circuit level: the control of STP between lateral connections of output neurons and the reorganization of the balance between different forms of inhibitory transmission. Theoretically, D(1) receptors would promote a sensitive, responsive state for temporal precision (dynamic component), whereas D(2) receptors would sense background activity (static component).
Collapse
Affiliation(s)
- Fatuel Tecuapetla
- Depto de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, 04510 México D.F., México
| | - Luis Carrillo-Reid
- Depto de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, 04510 México D.F., México
| | - José Bargas
- Depto de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, 04510 México D.F., México
- *To whom correspondence should be addressed. E-mail:
| | - Elvira Galarraga
- Depto de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, P.O. Box 70-253, 04510 México D.F., México
| |
Collapse
|
35
|
Geldwert D, Norris JM, Feldman IG, Schulman JJ, Joyce MP, Rayport S. Dopamine presynaptically and heterogeneously modulates nucleus accumbens medium-spiny neuron GABA synapses in vitro. BMC Neurosci 2006; 7:53. [PMID: 16813648 PMCID: PMC1538613 DOI: 10.1186/1471-2202-7-53] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 06/30/2006] [Indexed: 11/21/2022] Open
Abstract
Background The striatal complex is the major target of dopamine action in the CNS. There, medium-spiny GABAergic neurons, which constitute about 95% of the neurons in the area, form a mutually inhibitory synaptic network that is modulated by dopamine. When put in culture, the neurons reestablish this network. In particular, they make autaptic connections that provide access to single, identified medium-spiny to medium-spiny neuron synaptic connections. Results We examined medium-spiny neuron autaptic connections in postnatal cultures from the nucleus accumbens, the ventral part of the striatal complex. These connections were subject to presynaptic dopamine modulation. D1-like receptors mediated either inhibition or facilitation, while D2-like receptors predominantly mediated inhibition. Many connections showed both D1 and D2 modulation, consistent with a significant functional colocalization of D1 and D2-like receptors at presynaptic sites. These same connections were subject to GABAA, GABAB, norepinephrine and serotonin modulation, revealing a multiplicity of modulatory autoreceptors and heteroreceptors on individual varicosities. In some instances, autaptic connections had two components that were differentially modulated by dopamine agonists, suggesting that dopamine receptors could be distributed heterogeneously on the presynaptic varicosities making up a single synaptic (i.e. autaptic) connection. Conclusion Differential trafficking of dopamine receptors to different presynaptic varicosities could explain the many controversial studies reporting widely varying degrees of dopamine receptor colocalization in medium-spiny neurons, as well as more generally the diversity of dopamine actions in target areas. Longer-term changes in the modulatory actions of dopamine in the striatal complex could be due to plasticity in the presynaptic distribution of dopamine receptors on medium-spiny neuron varicosities.
Collapse
Affiliation(s)
- Daron Geldwert
- Department of Neuroscience, NYS Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - J Madison Norris
- Department of Neuroscience, NYS Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Igor G Feldman
- Department of Neuroscience, NYS Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Joshua J Schulman
- Department of Neuroscience, NYS Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Myra P Joyce
- Department of Neuroscience, NYS Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, Unit 62, NewYork, NY 10032, USA
| | - Stephen Rayport
- Department of Neuroscience, NYS Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, Unit 62, NewYork, NY 10032, USA
- Center for Neurobiology & Behavior, Columbia University, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| |
Collapse
|