1
|
Egger M, Bergmann J, Krewer C, Jahn K, Müller F. Sensory Stimulation and Robot-Assisted Arm Training After Stroke: A Randomized Controlled Trial. J Neurol Phys Ther 2024; 48:178-187. [PMID: 38912852 DOI: 10.1097/npt.0000000000000486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND PURPOSE Functional recovery after stroke is often limited, despite various treatment methods such as robot-assisted therapy. Repetitive sensory stimulation (RSS) might be a promising add-on therapy that is thought to directly drive plasticity processes. First positive effects on sensorimotor function have been shown. However, clinical studies are scarce, and the effect of RSS combined with robot-assisted training has not been evaluated yet. Therefore, our objective was to investigate the feasibility and sensorimotor effects of RSS (compared to a control group receiving sham stimulation) followed by robot-assisted arm therapy. METHODS Forty participants in the subacute phase (4.4-23.9 weeks) after stroke with a moderate to severe arm paresis were randomized to RSS or control group. Participants received 12 sessions of (sham-) stimulation within 3 weeks. Stimulation of the fingertips and the robot-assisted therapy were each applied in 45-min sessions. Motor and sensory outcome assessments (e.g. Fugl-Meyer-Assessment, grip strength) were measured at baseline, post intervention and at a 3-week follow-up. RESULTS Participants in both groups improved their sensorimotor function from baseline to post and follow-up measurements, as illustrated by most motor and sensory outcome assessments. However, no significant group effects were found for any measures at any time ( P > 0.058). Stimulations were well accepted, no safety issues arose. DISCUSSION AND CONCLUSIONS Feasibility of robot-assisted therapy with preceding RSS in persons with moderate to severe paresis was demonstrated. However, RSS preceding robot-assisted training failed to show a preliminary effect compared to the control intervention. Participants might have been too severely affected to identify changes driven by the RSS, or these might have been diluted or more difficult to identify because of the additional robotic training and neurorehabilitation. VIDEO ABSTRACT AVAILABLE for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A478 ).
Collapse
Affiliation(s)
- Marion Egger
- Department of Neurology, Research Group, Schoen Clinic Bad Aibling, Bad Aibling, Germany (M.E., J.B., C.K., K.J., F.M.); Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Pettenkofer School of Public Health, Munich, Germany (M.E.); German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians-Universität in Munich, Munich, Germany (J.B., K.J.); and Chair of Human Movement Science, Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany (C.K.)
| | | | | | | | | |
Collapse
|
2
|
Seo NJ, Brinkhoff M, Fredendall S, Coker-Bolt P, McGloon K, Humanitzki E. The Use of TheraBracelet Upper Extremity Vibrotactile Stimulation in a Child with Cerebral Palsy-A Case Report. ELECTRONICS 2024; 13:3147. [PMID: 39267797 PMCID: PMC11392012 DOI: 10.3390/electronics13163147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background TheraBracelet is peripheral vibrotactile stimulation applied to the affected upper extremity via a wristwatch-like wearable device during daily activities and therapy to improve upper limb function. The objective of this study was to examine feasibility of using TheraBracelet for a child with hemiplegic cerebral palsy. Methods A nine-year-old male with cerebral palsy was provided with TheraBracelet to use during daily activities in the home and community settings for 1.5 years while receiving standard care physical/occupational therapy. Results The child used TheraBracelet independently and consistently except during summer vacations and elbow-to-wrist orthotic use from growth spurt-related contracture. The use of TheraBracelet did not impede or prevent participation in daily activities. No study-related adverse events were reported by the therapist, child, or parent. Conclusion Future research is warranted to investigate TheraBracelet as a propitious therapeutic device with focus on potential impact of use to improve the affected upper limb function in daily activities in children with hemiplegic cerebral palsy.
Collapse
Affiliation(s)
- Na Jin Seo
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Molly Brinkhoff
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425
| | | | - Patricia Coker-Bolt
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Kelly McGloon
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Elizabeth Humanitzki
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
3
|
Frank SM. Transfer of Tactile Learning to Untrained Body Parts: Emerging Cortical Mechanisms. Neuroscientist 2024:10738584241256277. [PMID: 38813891 DOI: 10.1177/10738584241256277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as tactile learning. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.
Collapse
Affiliation(s)
- Sebastian M Frank
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Maruyama Y, Kojima S, Onishi H. Discrimination of the moving direction is improved depending on the pattern of the mechanical tactile stimulation intervention. BMC Neurosci 2024; 25:15. [PMID: 38443782 PMCID: PMC10916153 DOI: 10.1186/s12868-024-00855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The mechanical tactile stimulation, such as plastic pins and airflow-driven membrane, induces cortical activity. The cortical activity depends on the mechanical tactile stimulation pattern. Therefore, the stimulation pattern of mechanical tactile stimuli intervention may influence its effect on the somatosensory function. However, the effect of the mechanical tactile stimulation input pattern on the somatosensory function has not yet been investigated at the behavioral level. The present study aimed to clarify the effects of mechanical tactile stimuli intervention with different stimulation patterns on the ability to discriminate moving directions. RESULTS Twenty healthy adults participated in the experiment. Three conditions were used for mechanical tactile stimuli intervention: (1) the whole stimulus surface was stimulated, (2) the stimulus moved within the stimulus surface, and (3) a no-stimulus condition. The effects of mechanical tactile stimuli intervention on tactile discrimination were evaluated using a simple reaction task and a choice reaction task to discriminate the movement direction. Reaction time, correct rate, and rate correct score were calculated to measure task performance. We examined the effects of mechanical tactile stimuli intervention on the ability to discriminate the moving direction for a certain period under three intervention conditions. The results showed that the mean reaction time during the simple reaction task did not differ significantly before and after the intervention under all intervention conditions. Similarly, we compared the data obtained before and after the intervention during the choice reaction task. Our results revealed that the mean reaction time and correct rate did not differ significantly under vertical and horizontal conditions. However, the rate correct score showed a significant improvement after the horizontal moving tactile stimulation intervention under both vertical and horizontal conditions. CONCLUSIONS Our results showed that the effect of mechanical tactile stimuli intervention on mechanical tactile stimulation moving direction discrimination function depended on the input pattern of mechanical tactile stimuli intervention. Our results suggest the potential therapeutic benefits of sustained tactile stimulation intervention. This study revealed that it is possible to change behavioral levels via mechanical tactile stimuli intervention as well as the potential of mechanical tactile stimuli intervention in the field of rehabilitation.
Collapse
Affiliation(s)
- Yuki Maruyama
- Graduate School, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, 950-3198, Niigata City, Niigata, Japan.
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, 950-3198, Niigata City, Niigata, Japan.
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, 950-3198, Niigata City, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 950-3198, Niigata City, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, 950-3198, Niigata City, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 950-3198, Niigata City, Niigata, Japan
| |
Collapse
|
5
|
Pillen S, Shulga A, Zrenner C, Ziemann U, Bergmann TO. Repetitive sensorimotor mu-alpha phase-targeted afferent stimulation produces no phase-dependent plasticity related changes in somatosensory evoked potentials or sensory thresholds. PLoS One 2023; 18:e0293546. [PMID: 37903116 PMCID: PMC10615264 DOI: 10.1371/journal.pone.0293546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023] Open
Abstract
Phase-dependent plasticity has been proposed as a neurobiological mechanism by which oscillatory phase-amplitude cross-frequency coupling mediates memory process in the brain. Mimicking this mechanism, real-time EEG oscillatory phase-triggered transcranial magnetic stimulation (TMS) has successfully induced LTP-like changes in corticospinal excitability in the human motor cortex. Here we asked whether EEG phase-triggered afferent stimulation alone, if repetitively applied to the peaks, troughs, or random phases of the sensorimotor mu-alpha rhythm, would be sufficient to modulate the strength of thalamocortical synapses as assessed by changes in somatosensory evoked potential (SEP) N20 and P25 amplitudes and sensory thresholds (ST). Specifically, we applied 100 Hz triplets of peripheral electrical stimulation (PES) to the thumb, middle, and little finger of the right hand in pseudorandomized trials, with the afferent input from each finger repetitively and consistently arriving either during the cortical mu-alpha trough or peak or at random phases. No significant changes in SEP amplitudes or ST were observed across the phase-dependent PES intervention. We discuss potential limitations of the study and argue that suboptimal stimulation parameter choices rather than a general lack of phase-dependent plasticity in thalamocortical synapses are responsible for this null finding. Future studies should further explore the possibility of phase-dependent sensory stimulation.
Collapse
Affiliation(s)
- Steven Pillen
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Anastasia Shulga
- Ward for Demanding Rehabilitation, Helsinki University Hospital, Department of Physical and Rehabilitation Medicine, Helsinki, Finland
- BioMag Laboratory, Helsinki University Hospital Medical Imaging Center, Helsinki, Finland
| | - Christoph Zrenner
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Til Ole Bergmann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
6
|
Dinse HR, Höffken O, Tegenthoff M. Cortical excitability in human somatosensory and visual cortex: implications for plasticity and learning - a minireview. Front Hum Neurosci 2023; 17:1235487. [PMID: 37662638 PMCID: PMC10469727 DOI: 10.3389/fnhum.2023.1235487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The balance of excitation and inhibition plays a key role in plasticity and learning. A frequently used, reliable approach to assess intracortical inhibition relies on measuring paired-pulse behavior. Moreover, recent developments of magnetic resonance spectroscopy allows measuring GABA and glutamate concentrations. We give an overview about approaches employed to obtain information about excitatory states in human participants and discuss their putative relation. We summarize paired-pulse techniques and basic findings characterizing paired-pulse suppression in somatosensory (SI) and (VI) visual areas. Paired-pulse suppression describes the effect of paired sensory stimulation at short interstimulus intervals where the cortical response to the second stimulus is significantly suppressed. Simultaneous assessments of paired-pulse suppression in SI and VI indicated that cortical excitability is not a global phenomenon, but instead reflects the properties of local sensory processing. We review studies using non-invasive brain stimulation and perceptual learning experiments that assessed both perceptual changes and accompanying changes of cortical excitability in parallel. Independent of the nature of the excitation/inhibition marker used these data imply a close relationship between altered excitability and altered performance. These results suggest a framework where increased or decreased excitability is linked with improved or impaired perceptual performance. Recent findings have expanded the potential role of cortical excitability by demonstrating that inhibition markers such as GABA concentrations, paired-pulse suppression or alpha power predict to a substantial degree subsequent perceptual learning outcome. This opens the door for a targeted intervention where subsequent plasticity and learning processes are enhanced by altering prior baseline states of excitability.
Collapse
|
7
|
Filippi GM, Rodio A, Fattorini L, Faralli M, Ricci G, Pettorossi VE. Plastic changes induced by muscle focal vibration: A possible mechanism for long-term motor improvements. Front Neurosci 2023; 17:1112232. [PMID: 36908788 PMCID: PMC9992721 DOI: 10.3389/fnins.2023.1112232] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Repetitive focal vibrations can induce positive and persistent after-effects. There is still no satisfactory interpretation of the underlying mechanisms. A rationale, which can provide consistency among different results, is highly desirable to guide both the use of the application and future research. To date, interpretive models are formulated to justify the results, depending on the specific protocol adopted. Indeed, protocol parameters, such as stimulus intensity and frequency, intervention time and administration period, are variable among different studies. However, in this article, we have identified features of the protocols that may allow us to suggest a possible common mechanism underlying the effectiveness of focal vibration under different physiologic and pathologic conditions. Since repetitive focal muscle vibration induces powerful and prolonged activation of muscle proprioceptors, we hypothesize that this intense activation generates adaptive synaptic changes along sensory and motor circuits. This may lead to long-term synaptic potentiation in the central network, inducing an enhancement of the learning capability. The plastic event could increase proprioceptive discriminative ability and accuracy of the spatial reference frame and, consequently, improve motor planning and execution for different motor functions and in the presence of different motor dysfunctions. The proposed mechanism may explain the surprising and sometimes particularly rapid improvements in motor execution in healthy and diseased individuals, regardless of specific physical training. This hypothetic mechanism may require experimental evidence and could lead to extend and adapt the application of the "learning without training" paradigms to other functional and recovery needs.
Collapse
Affiliation(s)
- Guido M. Filippi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society, and Health, University of Cassino and Southern Lazio, Frosinone, Italy
| | - Luigi Fattorini
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza Università di Roma, Rome, Italy
| | - Mario Faralli
- Department of Medicine and Surgery, Otorhinolaryngology Section, Università degli Studi di Perugia, Perugia, Italy
| | - Giampietro Ricci
- Department of Medicine and Surgery, Otorhinolaryngology Section, Università degli Studi di Perugia, Perugia, Italy
| | - Vito E. Pettorossi
- Department of Medicine and Surgery, Human Physiology Section, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
8
|
Lea-Carnall CA, Tanner LI, Montemurro MA. Noise-modulated multistable synapses in a Wilson-Cowan-based model of plasticity. Front Comput Neurosci 2023; 17:1017075. [PMID: 36817317 PMCID: PMC9931909 DOI: 10.3389/fncom.2023.1017075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Frequency-dependent plasticity refers to changes in synaptic strength in response to different stimulation frequencies. Resonance is a factor known to be of importance in such frequency dependence, however, the role of neural noise in the process remains elusive. Considering the brain is an inherently noisy system, understanding its effects may prove beneficial in shaping therapeutic interventions based on non-invasive brain stimulation protocols. The Wilson-Cowan (WC) model is a well-established model to describe the average dynamics of neural populations and has been shown to exhibit bistability in the presence of noise. However, the important question of how the different stable regimes in the WC model can affect synaptic plasticity when cortical populations interact has not yet been addressed. Therefore, we investigated plasticity dynamics in a WC-based model of interacting neural populations coupled with activity-dependent synapses in which a periodic stimulation was applied in the presence of noise of controlled intensity. The results indicate that for a narrow range of the noise variance, synaptic strength can be optimized. In particular, there is a regime of noise intensity for which synaptic strength presents a triple-stable state. Regulating noise intensity affects the probability that the system chooses one of the stable states, thereby controlling plasticity. These results suggest that noise is a highly influential factor in determining the outcome of plasticity induced by stimulation.
Collapse
Affiliation(s)
- Caroline A Lea-Carnall
- School of Health Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lisabel I Tanner
- School of Health Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Marcelo A Montemurro
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
9
|
Fotooh Estahbanati M, Rezaeinasab M, Akbari Chermahini S, Mirzaeekia H, Azin M, Shamsizadeh A. The Effect of Involuntary Tactile Stimulation on the Creativity and Rey Auditory-Verbal Memory of Young Adults. Basic Clin Neurosci 2022; 13:755-764. [PMID: 37323960 PMCID: PMC10262283 DOI: 10.32598/bcn.2022.147.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 08/02/2021] [Indexed: 06/17/2023] Open
Abstract
Introduction Recent studies have revealed the possibility of learning skills through alternative methods and repetitive tactile stimulation without explicit training. This study aimed to examine the effect of involuntary tactile stimulation on the memory and creativity of healthy participants. Methods A group of 92 right-handed students participated in this study voluntarily. They were assigned to the experimental (n=45) and control (n=47) groups. The participants performed two creativity tests (divergent and convergent thinking) and a verbal memory task as the pretest. Then, the experimental group received 30-min involuntary tactile stimulation on the right index finger, and the control group did not. In the posttest, both groups were asked to perform the creativity and verbal memory tasks again. Results The learning score and speed of the Rey auditory-verbal learning test in the stimulation group significantly increased (P=0.02). Moreover, in the creativity-related tests, there was a significant effect of the intervention on convergent thinking, i.e., the remote association task (P=0.03), but not for the divergent thinking, i.e., the alternative uses test (P>0.05). Conclusion Using involuntary tactile stimulation on the index finger of the right hand of individuals could enhance their performance in verbal memory and creativity-convergent thinking.
Collapse
Affiliation(s)
- Mahmood Fotooh Estahbanati
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Information Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Rezaeinasab
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Hossein Mirzaeekia
- Department of English Language, Estahban School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdieh Azin
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
10
|
Le Cong D, Sato D, Ikarashi K, Fujimoto T, Ochi G, Yamashiro K. Effect of whole-hand water flow stimulation on the neural balance between excitation and inhibition in the primary somatosensory cortex. Front Hum Neurosci 2022; 16:962936. [DOI: 10.3389/fnhum.2022.962936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sustained peripheral somatosensory stimulations, such as high-frequency repetitive somatosensory stimulation (HF-RSS) and vibrated stimulation, are effective in altering the balance between excitation and inhibition in the somatosensory cortex (S1) and motor cortex (M1). A recent study reported that whole-hand water flow (WF) stimulation induced neural disinhibition in the M1. Based on previous results, we hypothesized that whole-hand WF stimulation would lead to neural disinhibition in the S1 because there is a strong neural connection between M1 and S1 and aimed to examine whether whole-hand WF stimulation would change the neural balance between excitation and inhibition in the S1. Nineteen healthy volunteers were studied by measuring excitation and inhibition in the S1 before and after each of the four 15-min interventions. The excitation and inhibition in the S1 were assessed using somatosensory evoked potentials (SEPs) and paired-pulse inhibition (PPI) induced by single- and paired-pulse stimulations, respectively. The four interventions were as follows: control, whole-hand water immersion, whole-hand WF, and HF-RSS. The results showed no significant changes in SEPs and PPI following any intervention. However, changes in PPI with an interstimulus interval (ISI) of 30 ms were significantly correlated with the baseline value before whole-hand WF. Thus, the present findings indicated that the whole-hand WF stimulation had a greater decreased neural inhibition in participants with higher neural inhibition in the S1 at baseline. Considering previous results on M1, the present results possibly show that S1 has lower plasticity than M1 and that the duration (15 min) of each intervention may not have been enough to alter the balance of excitation and inhibition in the S1.
Collapse
|
11
|
Saito K, Otsuru N, Inukai Y, Kojima S, Miyaguchi S, Nagasaka K, Onishi H. Effect of Transcranial Electrical Stimulation over the Posterior Parietal Cortex on Tactile Spatial Discrimination Performance. Neuroscience 2022; 494:94-103. [PMID: 35569646 DOI: 10.1016/j.neuroscience.2022.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
Abstract
The intraparietal sulcus region, which is part of the posterior parietal cortex (PPC), has been shown to play an important role in discriminating object shapes using the fingers. Transcranial random noise stimulation (tRNS) and anodal transcranial pulsed current stimulation (tPCS) are noninvasive strategies widely used to modulate neural activity in cortical regions. Therefore, we investigated the effects of tRNS and anodal tPCS applied to left or right PPC on the tactile discrimination performance of the right index finger in 20 neurologically healthy subjects. A grating orientation task (GOT) was performed before and immediately after delivering tRNS (stimulus frequency 0.1-640 Hz) in Experiment 1 or anodal tPCS (pulse width 50 ms and inter-pulse interval 5 ms) in Experiment 2. Performing tRNS over the right PPC significantly improved discrimination performance on the GOT. Subjects were classified into low and high baseline performance groups. Conducting tRNS over the left PPC significantly reduced the GOT discrimination performance in the high-performance group. By contrast, anodal tPCS delivered to the PPC of the left and right hemispheres had no significant effect on the tactile GOT discrimination performance of the right hand. We show that transcranial electric stimulation over the PPC may improve tactile perception but the effect depends on stimulus modality, parameters, and on the stimulated hemisphere.
Collapse
Affiliation(s)
- Kei Saito
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Yasuto Inukai
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Sho Kojima
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Shota Miyaguchi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Kazuaki Nagasaka
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| |
Collapse
|
12
|
Seo NJ, Ramakrishnan V, Woodbury ML, Bonilha L, Finetto C, Schranz C, Scronce G, Coupland K, Blaschke J, Baker A, Howard K, Meinzer C, Velozo CA, Adams RJ. Concomitant sensory stimulation during therapy to enhance hand functional recovery post stroke. Trials 2022; 23:262. [PMID: 35382902 PMCID: PMC8981199 DOI: 10.1186/s13063-022-06241-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background Post-stroke hand impairment is prevalent and persistent even after a full course of rehabilitation. Hand diminishes stroke survivors’ abilities for activities of daily living and independence. One way to improve treatment efficacy is to augment therapy with peripheral sensory stimulation. Recently, a novel sensory stimulation, TheraBracelet, has been developed in which imperceptible vibration is applied during task practice through a wrist-worn device. The objective of this trial is to determine if combining TheraBracelet with hand task practice is superior to hand task practice alone. Methods A double-blind randomized controlled trial will be used. Chronic stroke survivors will undergo a standardized hand task practice therapy program (3 days/week for 6 weeks) while wearing a device on the paretic wrist. The device will deliver TheraBracelet vibration for the treatment group and no vibration for the control group. The primary outcome is hand function measured by the Wolf Motor Function Test. Other outcomes include the Box and Block Test, Action Research Arm Test, upper extremity use in daily living, biomechanical measure of the sensorimotor grip control, and EEG-based neural communication. Discussion This research will determine clinical utility of TheraBracelet to guide future translation. The TheraBracelet stimulation is delivered via a wrist-worn device, does not interfere with hand motion, and can be easily integrated into clinical practice. Enhancing hand function should substantially increase stroke survivors' independence and quality of life and reduce caregiver burden. Trial registration NCT04569123. Registered on September 29, 2020
Collapse
Affiliation(s)
- Na Jin Seo
- Department of Rehabilitation Sciences, Department of Health Science and Research, Medical University of South Carolina, 151B Rutledge Ave, MSC 962, Charleston, SC, 29425, USA. .,Ralph H. Johnson VA Medical Center, Charleston, SC, USA. .,Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA.
| | - Viswanathan Ramakrishnan
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon St, Charleston, SC, 29425, USA
| | - Michelle L Woodbury
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, MSC 606, Charleston, SC, 29425, USA
| | - Christian Finetto
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Christian Schranz
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Gabrielle Scronce
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Kristen Coupland
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Jenna Blaschke
- Department of Rehabilitation Sciences, Department of Health Science and Research, Medical University of South Carolina, 151B Rutledge Ave, MSC 962, Charleston, SC, 29425, USA
| | - Adam Baker
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Keith Howard
- Department of Health Science and Research, Medical University of South Carolina, 77 President St, MSC 700, Charleston, SC, 29425, USA
| | - Caitlyn Meinzer
- Department of Public Health Sciences, Medical University of South Carolina, 135 Cannon St, Charleston, SC, 29425, USA
| | - Craig A Velozo
- Department of Rehabilitation Sciences, Department of Health Science and Research, Medical University of South Carolina, 151B Rutledge Ave, MSC 962, Charleston, SC, 29425, USA
| | - Robert J Adams
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, MSC 606, Charleston, SC, 29425, USA
| |
Collapse
|
13
|
Ross B, Dobri S, Jamali S, Bartel L. Entrainment of somatosensory beta and gamma oscillations accompany improvement in tactile acuity after periodic and aperiodic repetitive sensory stimulation. Int J Psychophysiol 2022; 177:11-26. [DOI: 10.1016/j.ijpsycho.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
|
14
|
Hirano M, Kimoto Y, Furuya S. Specialized Somatosensory-Motor Integration Functions in Musicians. Cereb Cortex 2021; 30:1148-1158. [PMID: 31342056 DOI: 10.1093/cercor/bhz154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022] Open
Abstract
Somatosensory signals play roles in the fine control of dexterous movements through a somatosensory-motor integration mechanism. While skilled individuals are typically characterized by fine-tuned somatosensory functions and dexterous motor skills, it remains unknown whether and in what manner their bridging mechanism, the tactile-motor and proprioceptive-motor integration functions, plastically changes through extensive sensorimotor experiences. Here, we addressed this issue by comparing physiological indices of these functions between pianists and nonmusicians. Both tactile and proprioceptive stimuli to the right index finger inhibited corticospinal excitability measured by a transcranial magnetic stimulation method. However, the tactile and proprioceptive stimuli exerted weaker and stronger inhibitory effects, respectively, on corticospinal excitability in pianists than in nonmusicians. The results of the electroencephalogram measurements revealed no significant group difference in the amplitude of cortical responses to the somatosensory stimuli around the motor and somatosensory cortices, suggesting that the group difference in the inhibitory effects reflects neuroplastic adaptation of the somatosensory-motor integration functions in pianists. Penalized regression analyses further revealed an association between these integration functions and motor performance in the pianists, suggesting that extensive piano practice reorganizes somatosensory-motor integration functions so as to enable fine control of dexterous finger movements during piano performances.
Collapse
Affiliation(s)
- Masato Hirano
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Yudai Kimoto
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories, Inc., Tokyo 141-0022, Japan.,Sophia University, Tokyo 102-8554, Japan
| |
Collapse
|
15
|
Ayoobi F, Khalili P, Azin H, Shahrokhabadi S, Azin M. Effects of tactile stimulation on the sensory, motor and cognitive function in people with multiple sclerosis. Clin Neurol Neurosurg 2021; 205:106643. [PMID: 33906001 DOI: 10.1016/j.clineuro.2021.106643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease that causes demyelination in the brain and spinal cord. Repetitive sensory stimulation (RSS) can enhance sensory perception and motor function, improve inappropriate synaptic connections and adaptable malformations, and increase cognitive function. The purpose of this study was to specify the effect of RSS on the sensory, motor, and cognitive function in people with MS. METHODS RSS was applied to 50 people with MS. In this study, the following tests were used: two-point discrimination, 9-Hole Peg Test (9-HPT), Box and Block Test (BBT), hand mental rotation (HMR), Paced Auditory Serial Addition Test (PASAT), and Symbol Digit Modalities Test (SDMT). The tests were performed before and after the intervention. RESULTS The results of this study showed significant difference before and after the stimulation in intervention and control groups two-point discrimination threshold (both groups= 0.001), BBT score (both groups: P < 0.001) and 9-HPT score (both groups: P < 0.001), HMR ability (reaction time: both groups: P = 0.003; accuracy rate: intervention: P = 0.004, control: P < 0.001), PASAT score (intervention: P < 0.001, control: P = 0.012) and SDMT score (intervention: P = 0.008, control: P < 0.001), but there was no statistical difference observed between the two groups before and after the intervention in terms of the mentioned variables (P > 0.05). CONCLUSION The application of 30 min of RSS in the right index finger of people with MS could not improve the two-point discrimination threshold and the manual dexterity. In addition, this intervention did not improve cognitive function.
Collapse
Affiliation(s)
- Fatemeh Ayoobi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parvin Khalili
- Social Determinants of Health Research Centre, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Azin
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Neurology Department, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Shohreh Shahrokhabadi
- Physiology-pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahdieh Azin
- Physiology-pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
16
|
Yokota H, Otsuru N, Saito K, Kojima S, Miyaguchi S, Inukai Y, Nagasaka K, Onishi H. Region-Specific Effects of 10-Hz Transcranial Alternate Current Stimulation Over the Left Posterior Parietal Cortex and Primary Somatosensory Area on Tactile Two-Point Discrimination Threshold. Front Neurosci 2021; 15:576526. [PMID: 33679291 PMCID: PMC7930224 DOI: 10.3389/fnins.2021.576526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Changes in α-band cortical oscillatory activity (8-13 Hz) affect perception; however, how these changes in the left posterior parietal cortex (PPC) and primary somatosensory cortex (S1), which play different roles in determining the two-point discrimination (TPD) threshold, affect TPD threshold remains unelucidated. Therefore, to determine TPD threshold, we aimed to investigate the function of the left PPC and S1 by applying α-band transcranial alternating current stimulation (α-tACS; 10 Hz). TPD threshold was examined at the pad of the right index finger, contralateral to the stimulation site, in 17 healthy adults using a custom-made, computer-controlled, two-point tactile stimulation device, with random application of either active or sham α-tACS over the left PPC (Experiment 1) and left S1 (Experiment 2). Then, 50% TPD threshold was obtained in the active and sham conditions via logistic regression analysis. Afterward, we compared the difference between the active and sham conditions at 50% TPD threshold in each region and found that α-tACS reduced TPD threshold when applied over the left PPC (P = 0.010); however, its effect was insignificant when applied over the left S1 (P = 0.74). Moreover, a comparison of the change in 50% TPD threshold among the regions revealed that α-tACS applied over the left PPC significantly reduced TPD threshold compared with that applied over the left S1 (P = 0.003). Although we did not reveal the actual changes in cortical activity induced by α-tACS, this is the first empirical evidence that α-tACS applied over the left PPC and left S1 exerts region-specific effects on determining TPD threshold assessed in the contralateral index finger pad by stimulation.
Collapse
Affiliation(s)
- Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
17
|
Lea-Carnall CA, Williams SR, Sanaei-Nezhad F, Trujillo-Barreto NJ, Montemurro MA, El-Deredy W, Parkes LM. GABA Modulates Frequency-Dependent Plasticity in Humans. iScience 2020; 23:101657. [PMID: 33163932 PMCID: PMC7599432 DOI: 10.1016/j.isci.2020.101657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Frequency-dependent reorganization of the primary somatosensory cortex, together with perceptual changes, arises following repetitive sensory stimulation. Here, we investigate the role of GABA in this process. We co-stimulated two finger tips and measured GABA and Glx using magnetic resonance (MR) spectroscopy at the beginning and end of the stimulation. Participants performed a perceptual learning task before and after stimulation. There were 2 sessions with stimulation frequency either at or above the resonance frequency of the primary somatosensory cortex (23 and 39 Hz, respectively). Perceptual learning occurred following above resonance stimulation only, while GABA reduced during this condition. Lower levels of early GABA were associated with greater perceptual learning. One possible mechanism underlying this finding is that cortical disinhibition “unmasks” lateral connections within the cortex to permit adaptation to the sensory environment. These results provide evidence in humans for a frequency-dependent inhibitory mechanism underlying learning and suggest a mechanism-based approach for optimizing neurostimulation frequency. In the context of repetitive sensory stimulation, GABA release is frequency dependent Stimulating above the resonance frequency of the somatosensory cortex reduces GABA Perceptual learning is associated with a reduction in GABA Early GABA reduction opens a window for plasticity and learning
Collapse
Affiliation(s)
- Caroline A. Lea-Carnall
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Corresponding author
| | - Stephen R. Williams
- Division of Informatics, Imaging and Data Science, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Faezeh Sanaei-Nezhad
- Division of Informatics, Imaging and Data Science, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nelson J. Trujillo-Barreto
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Marcelo A. Montemurro
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Wael El-Deredy
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
- Corresponding author
| | - Laura M. Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
18
|
Erro R, Antelmi E, Bhatia KP, Latorre A, Tinazzi M, Berardelli A, Rothwell JC, Rocchi L. Reversal of Temporal Discrimination in Cervical Dystonia after Low-Frequency Sensory Stimulation. Mov Disord 2020; 36:761-766. [PMID: 33159823 DOI: 10.1002/mds.28369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Somatosensory temporal discrimination is abnormal in dystonia and reflects reduced somatosensory inhibition. In healthy individuals, both the latter are enhanced by high-frequency repetitive somatosensory stimulation, whereas opposite effects are observed in patients with cervical dystonia. OBJECTIVES We tested whether low-frequency repetitive sensory stimulation, which in healthy individuals worsens discrimination, might have the opposite effect in patients with cervical dystonia at the physiological level and, in turn, improve their perceptual performance. METHODS Somatosensory temporal discrimination and several electrophysiological measures of sensorimotor inhibition were collected before and after 45 minutes of low-frequency repetitive sensory stimulation. RESULTS As predicted, and opposite to what happened in controls, low-frequency repetitive sensory stimulation in patients enhanced sensorimotor inhibition and normalized somatosensory temporal discrimination. CONCLUSIONS Patients with cervical dystonia have an abnormal response to repetitive sensory stimulation, which we hypothesize is attributed to abnormally sensitive homeostatic mechanisms of inhibitory circuitry in both sensory and motor systems. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi (SA), Italy
| | - Elena Antelmi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
- Department of Human Neurosciences, University of Rome "Sapienza", Rome, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, University of Rome "Sapienza", Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, UK
- Department of Human Neurosciences, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
19
|
Brickwedde M, Schmidt MD, Krüger MC, Dinse HR. 20 Hz Steady-State Response in Somatosensory Cortex During Induction of Tactile Perceptual Learning Through LTP-Like Sensory Stimulation. Front Hum Neurosci 2020; 14:257. [PMID: 32694988 PMCID: PMC7339616 DOI: 10.3389/fnhum.2020.00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/09/2020] [Indexed: 02/04/2023] Open
Abstract
The induction of synaptic plasticity requires the presence of temporally patterned neural activity. Numerous cellular studies in animals and brain slices have demonstrated that long-term potentiation (LTP) enhances synaptic transmission, which can be evoked by high-frequency intermittent stimulation. In humans, plasticity processes underlying perceptual learning can be reliably induced by repetitive, LTP-like sensory stimulation. These protocols lead to improvement of perceptual abilities parallel to widespread remodeling of cortical processing. However, whether maintained rhythmic cortical activation induced by the LTP-like stimulation is also present during human perceptual learning experiments, remains elusive. To address this question, we here applied a 20 Hz intermittent stimulation protocol for 40 min to the index-, middle- and ring-fingers of the right hand, while continuously recording EEG over the hand representation in primary somatosensory cortex in young adult participants. We find that each train of stimulation initiates a transient series of sensory-evoked potentials which accumulate after about 500 ms into a 20 Hz steady-state response persisting over the entire period of the 2-s-train. During the inter-train interval, no consistent evoked activity can be detected. This response behavior is maintained over the whole 40 min of stimulation without any indication of habituation. However, the early stimulation evoked potentials (SEPs) and the event-related desynchronization (ERD) during the steady-state response change over the 40 min of stimulation. In a second experiment, we demonstrate in a separate cohort of participants that the here-applied pneumatic type of stimulation results in improvement of tactile acuity as typically observed for electrically applied 20 Hz intermittent stimulation. Our data demonstrate that repetitive stimulation using a 20 Hz protocol drives rhythmic activation in the hand representation of somatosensory cortex, which is sustained during the entire stimulation period. At the same time, cortical excitability increases as indicated by altered ERD and SEP amplitudes. Our results, together with previous data underlining the dependence of repetitive sensory stimulation effects on NMDA-receptor activation, support the view that repetitive sensory stimulation elicits LTP-like processes in the cortex, thereby facilitating perceptual learning processes.
Collapse
Affiliation(s)
- Marion Brickwedde
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Bochum, Germany.,Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr University, Bochum, Germany.,Cognitive Neurophysiology Lab, Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Marie D Schmidt
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr University, Bochum, Germany.,Robotics Laboratory, Computer Science Institute, University of Applied Sciences Ruhr West, Mülheim an der Ruhr, Germany
| | - Marie C Krüger
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Bochum, Germany.,Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr University, Bochum, Germany
| | - Hubert R Dinse
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Bochum, Germany.,Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr University, Bochum, Germany
| |
Collapse
|
20
|
Bruns P, Dinse HR, Röder B. Differential effects of the temporal and spatial distribution of audiovisual stimuli on cross-modal spatial recalibration. Eur J Neurosci 2020; 52:3763-3775. [PMID: 32403183 DOI: 10.1111/ejn.14779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
Visual input constantly recalibrates auditory spatial representations. Exposure to isochronous audiovisual stimuli with a fixed spatial disparity typically results in a subsequent auditory localization bias (ventriloquism aftereffect, VAE), whereas exposure to spatially congruent audiovisual stimuli improves subsequent auditory localization (multisensory enhancement, ME). Here, we tested whether cross-modal recalibration is affected by the stimulation rate and/or the distribution of audiovisual spatial disparities during training. Auditory localization was tested before and after participants were exposed either to audiovisual stimuli with a constant spatial disparity of 13.5° (VAE) or to spatially congruent audiovisual stimulation (ME). In a between-subjects design, audiovisual stimuli were presented either at a low frequency of 2 Hz, as used in previous studies of VAE and ME, or intermittently at a high frequency of 10 Hz, which mimics long-term potentiation (LTP) protocols and which was found superior in eliciting unisensory perceptual learning. Compared to low-frequency stimulation, VAE was reduced after high-frequency stimulation, whereas ME occurred regardless of the stimulation protocol. In two additional groups, we manipulated the spatial distribution of audiovisual stimuli in the low-frequency condition. Stimuli were presented with varying audiovisual disparities centered around 13.5° (VAE) or 0° (ME). Both VAE and ME were equally strong compared to a fixed spatial relationship of 13.5° or 0°, respectively. Taken together, our results suggest (a) that VAE and ME represent partly dissociable forms of learning and (b) that auditory representations adjust to the overall stimulus statistics rather than to a specific audiovisual spatial relationship.
Collapse
Affiliation(s)
- Patrick Bruns
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Hubert R Dinse
- Neural Plasticity Lab, Institute of Neuroinformatics, Ruhr University Bochum, Bochum, Germany
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
21
|
Timm F, Kuehn E. A Mechanical Stimulation Glove to Induce Hebbian Plasticity at the Fingertip. Front Hum Neurosci 2020; 14:177. [PMID: 32528264 PMCID: PMC7263020 DOI: 10.3389/fnhum.2020.00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022] Open
Abstract
Repetitive sensory stimulation of the fingertip induces Hebbian plasticity in the sensorimotor cortex that benefits the tactile and motor behavior of the hand in healthy younger adults, older adults, and patients. To use this method outside the laboratory, robust and portable stimulation systems are needed that allow prolonged stimulation phases over several hours without compromising on signal intensity or personal mobility. Here, we introduce two stimulation gloves that apply finger- and frequency-specific mechanical stimulation to individual fingertips over prolonged periods. The stimulators are built into commercially available cotton gloves and apply stimulation either via loudspeaker membranes or via linear resonant actuators (LRAs). We tested the efficiency of both gloves to induce Hebbian plasticity in younger adults by using two established measures of tactile performance, the grating orientation task (GOT), and the two-point discrimination task (2PDT). Both tests were performed before and after 3 h of sensory finger stimulation using one of either glove system. As a control condition, a non-stimulated finger was tested in both tasks before and after stimulation. The results show no significant effect of sensory stimulation on GOT thresholds, but a significant decrease in the 2PDT thresholds after compared to before the training at the stimulated finger only. The loudspeaker membrane improved performance in the 2PDT in 10/16 participants, whereas the LRA improved performance in the 2PDT in 13/16 participants. Stimulation gloves with built-in modules may be used in future larger-scale cohort studies on sensorimotor plasticity, rehabilitation, and learning.
Collapse
Affiliation(s)
- Fabian Timm
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Esther Kuehn
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, Germany
| |
Collapse
|
22
|
Reduced tactile acuity in chronic low back pain is linked with structural neuroplasticity in primary somatosensory cortex and is modulated by acupuncture therapy. Neuroimage 2020; 217:116899. [PMID: 32380138 DOI: 10.1016/j.neuroimage.2020.116899] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Prior studies have shown that patients suffering from chronic Low Back Pain (cLBP) have impaired somatosensory processing including reduced tactile acuity, i.e. reduced ability to resolve fine spatial details with the perception of touch. The central mechanism(s) underlying reduced tactile acuity are unknown but may include changes in specific brain circuitries (e.g. neuroplasticity in the primary somatosensory cortex, S1). Furthermore, little is known about the linkage between changes in tactile acuity and the amelioration of cLBP by somatically-directed therapeutic interventions, such as acupuncture. In this longitudinal neuroimaging study, we evaluated healthy control adults (HC, N = 50) and a large sample of cLBP patients (N = 102) with structural brain imaging (T1-weighted MRI for Voxel-Based Morphometry, VBM; Diffusion Tensor Imaging, DTI) and tactile acuity testing using two-point discrimination threshold (2PDT) over the lower back (site of pain) and finger (control) locations. Patients were evaluated at baseline and following a 4-week course of acupuncture, with patients randomized to either verum acupuncture, two different forms of sham acupuncture (designed with or without somatosensory afference), or no-intervention usual care control. At baseline, cLBP patients demonstrated reduced acuity (greater 2PDT, P = 0.01) over the low back, but not finger (P = 0.29) locations compared to HC, suggesting that chronic pain affects tactile acuity specifically at body regions encoding the experience of clinical pain. At baseline, Gray Matter Volume (GMV) was elevated and Fractional Anisotropy (FA) was reduced, respectively, in the S1-back region of cLBP patients compared to controls (P < 0.05). GMV in cLBP correlated with greater 2PDT-back scores (ρ = 0.27, P = 0.02). Following verum acupuncture, tactile acuity over the back was improved (reduced 2PDT) and greater improvements were associated with reduced S1-back GMV (ρ = 0.52, P = 0.03) and increased S1-back adjacent white matter FA (ρ = -0.56, P = 0.01). These associations were not seen for non-verum control interventions. Thus, S1 neuroplasticity in cLBP is linked with deficits in tactile acuity and, following acupuncture therapy, may represent early mechanistic changes in somatosensory processing that track with improved tactile acuity.
Collapse
|
23
|
Watanabe H, Kojima S, Otsuru N, Onishi H. The Repetitive Mechanical Tactile Stimulus Intervention Effects Depend on Input Methods. Front Neurosci 2020; 14:393. [PMID: 32410954 PMCID: PMC7198832 DOI: 10.3389/fnins.2020.00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiraku Watanabe
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- *Correspondence: Hiraku Watanabe,
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
24
|
Effect of Tactile Stimulation on Hand Mental Rotation Among Young Healthy Adults: A Randomized Controlled Trial. ARCHIVES OF NEUROSCIENCE 2020. [DOI: 10.5812/ans.99078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Aksenov DP, Miller MJ, Dixon CJ, Drobyshevsky A. Impact of anesthesia exposure in early development on learning and sensory functions. Dev Psychobiol 2020; 62:559-572. [PMID: 32115695 DOI: 10.1002/dev.21963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 01/27/2020] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
Each year, millions of children undergo anesthesia, and both human and animal studies have indicated that exposure to anesthesia at an early age can lead to neuronal damage and learning deficiency. However, disorders of sensory functions were not reported in children or animals exposed to anesthesia during infancy, which is surprising, given the significant amount of damage to brain tissue reported in many animal studies. In this review, we discuss the relationship between the systems in the brain that mediate sensory input, spatial learning, and classical conditioning, and how these systems could be affected during anesthesia exposure. Based on previous reports, we conclude that anesthesia can induce structural, functional, and compensatory changes in both sensory and learning systems. Changes in myelination following anesthesia exposure were observed as well as the neurodegeneration in the gray matter across variety of brain regions. Disproportionate cell death between excitatory and inhibitory cells induced by anesthesia exposure can lead to a long-term shift in the excitatory/inhibitory balance, which affects both learning-specific networks and sensory systems. Anesthesia may directly affect synaptic plasticity which is especially critical to learning acquisition. However, sensory systems appear to have better ability to compensate for damage than learning-specific networks.
Collapse
Affiliation(s)
| | | | - Conor J Dixon
- NorthShore University HealthSystem, Evanston, IL, USA
| | | |
Collapse
|
26
|
The effects of mechanical tactile stimulation on corticospinal excitability and motor function depend on pin protrusion patterns. Sci Rep 2019; 9:16677. [PMID: 31723202 PMCID: PMC6853977 DOI: 10.1038/s41598-019-53275-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/30/2019] [Indexed: 12/02/2022] Open
Abstract
Somatosensory stimulation modulates corticospinal excitability. Mechanical tactile stimulation (MS) activates cortical activity depending on tactile stimulation patterns. In this study, we examined whether the effects of mechanical tactile stimulation on corticospinal excitability and motor function depend on different pin protrusions patterns. This single-blind study included 18 healthy subjects. Two types of MS interventions were used: repetitive global stimulus (RGS) intervention was used to stimulate the finger by using 24 pins installed on a finger pad, and sequential stepwise displacement stimulus (SSDS) intervention was used to stimulate the finger by moving a row of 6 pins between the left and right sides on the finger pad. MS interventions were applied to the right index finger for 20 min (stim on/stim off, 1 s/5 s) at a frequency of 20 Hz. After RGS intervention, motor evoked potentials (MEPs) by transcranial magnetic stimulation were observed to be significantly smaller than pre-intervention MEPs; however, motor function using the grooved pegboard task remained unchanged. After SSDS intervention, MEPs were significantly larger and motor function significantly improved compared with pre-intervention values. Our results demonstrated that MS intervention can modulate corticospinal excitability and motor function and that the effects of MS intervention depend on MS intervention patterns.
Collapse
|
27
|
Yokota H, Otsuru N, Kikuchi R, Suzuki R, Kojima S, Saito K, Miyaguchi S, Inukai Y, Onishi H. Establishment of optimal two-point discrimination test method and consideration of reproducibility. Neurosci Lett 2019; 714:134525. [PMID: 31580886 DOI: 10.1016/j.neulet.2019.134525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 10/25/2022]
Abstract
Two-point discrimination (TPD) has been widely used as a parameter for the examination of higher-order perceptual functions in the field of rehabilitation. Previous research has shown that the threshold of TPD increases with aging or pathological conditions such as stroke or chronic pain. It has also been reported that the threshold can be decreased by continuous tactile or electrical stimulation. The cognitive process in the cortex has been shown to be involved in the determination of the TPD threshold. However, the reliability of TPD has been questioned, because differences in the firing rate of the responding receptors and afferent fibers occur, depending on how the measuring instrument is applied. To investigate the influence of the stimulus condition on the TPD threshold, we utilized a computer-controlled two-point tactile stimulator and measured the TPD threshold by alternating stimulus speed and stimulus penetration depths. We found that a stimulus speed of 5.0 mm/s or 10.0 mm/s and a stimulus penetration depth of 1.0 mm were the optimum condition for measurement, at which the TPD threshold becomes lowest. We also found that no influence is exerted on the threshold by repeated measurement under the stimulus conditions utilized in this experiment. Our findings suggest that TPD measurement should be performed under certain stimulus conditions, as identified in this present study, to obtain reliable results that reflect the highest ability of the subject for spatial discrimination.
Collapse
Affiliation(s)
- Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan.
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan
| | - Rie Kikuchi
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan
| | - Rinako Suzuki
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-shi, Niigata, 950-3198, Japan
| |
Collapse
|
28
|
Saito K, Otsuru N, Inukai Y, Miyaguchi S, Yokota H, Kojima S, Sasaki R, Onishi H. Comparison of transcranial electrical stimulation regimens for effects on inhibitory circuit activity in primary somatosensory cortex and tactile spatial discrimination performance. Behav Brain Res 2019; 375:112168. [PMID: 31442547 DOI: 10.1016/j.bbr.2019.112168] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 11/27/2022]
Abstract
Transcranial electrical stimulation (tES) can be used to modulate inhibitory circuits in primary somatosensory cortex, resulting in improved somatosensory function. However, efficacy may depend on the specific stimulus modality and patterns. For instance, transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS), and transcranial pulsed current stimulation (tPCS) were found to stably and effectively modulate neuronal excitability, while anodal transcranial direct current stimulation (tDCS) appeared less effective overall but with substantial response heterogeneity among subjects. Therefore, we compared the effects of tES applied to primary somatosensory cortex on somatosensory evoked potential paired-pulse depression (SEP-PPD) and tactile discrimination performance in 17 neurologically healthy subjects. In Experiment 1, somatosensory evoked potential N20/P25_SEP-PPD, N20_SEP-PPD, and P25_SEP-PPD responses were assessed before and immediately after anodal tDCS, tACS (stimulation frequency, 140 Hz), tRNS (stimulation frequency, 0.1-640 Hz), anodal tPCS (pulse width, 50 ms; inter-pulse interval, 5 ms), and sham stimulation applied to primary somatosensory cortex. In Experiment 2, a grating orientation task (GOT) was performed before and immediately after the same anodal tDCS, tRNS, anodal tPCS, and sham stimulation regimens. Anodal tDCS and anodal tPCS decreased N20_SEP-PPD, and tRNS increased the first N20 SEP amplitude. Furthermore, tRNS and anodal tPCS decreased GOT discrimination threshold (improved performance). These results suggest that tRNS and anodal tPCS can improve sensory perception by modulating neuronal activity in primary somatosensory cortex.
Collapse
Affiliation(s)
- Kei Saito
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Yasuto Inukai
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Shota Miyaguchi
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Hirotake Yokota
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Sho Kojima
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| |
Collapse
|
29
|
Touch and Pain Sensations in Diadynamic Current (DD) and Transcutaneous Electrical Nerve Stimulation (TENS): A Randomized Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9073073. [PMID: 31380442 PMCID: PMC6662437 DOI: 10.1155/2019/9073073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/22/2019] [Accepted: 07/07/2019] [Indexed: 11/17/2022]
Abstract
The study investigated touch and pain sensations and the correlation between them in diadynamic current (DD) and transcutaneous electrical nerve stimulation (TENS), electrotherapies commonly applied in musculoskeletal disorders and occupational rehabilitation medicine. Forty healthy subjects were treated with either DD (n=20) or TENS (n=20). Each treatment consisted of three sessions with one-week interval. Touch sensation was determined with the JVP Domes esthesiometer, pain sensation with pressure pain threshold (PPT), and pressure pain tolerance threshold (PPTO) by an algometer. During each session the measurements were performed before the application of the procedure (T0), immediately after it (T1), and 30 minutes after the end of the procedure (T2). Both DD and TENS increased touch sensation (p<0.01) and did not significantly alter PPT and PPTO (p>0.05). No statistically significant differences in short-term effects, i.e., 3 weeks of the trial, were noted between DD and TENS in their influence on touch and pain sensations (p>0.05). There was a high significant correlation between touch and pain sensations in DD (r=0.86). TENS and DD caused similar analgesic effects. DD, which is shorter in the duration of the treatment, may comprise a realistic alternative to TENS in clinical practice of pain management.
Collapse
|
30
|
Brickwedde M, Krüger MC, Dinse HR. Somatosensory alpha oscillations gate perceptual learning efficiency. Nat Commun 2019; 10:263. [PMID: 30651567 PMCID: PMC6335466 DOI: 10.1038/s41467-018-08012-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Cognition and perception are closely coupled to alpha power, but whether there is a link between alpha power and perceptual learning efficacy is unknown. Here we show that somatosensory alpha power can be successfully up- and down-regulated with short-term neurofeedback training, which in turn controls subsequent tactile perceptual learning. We find that neurofeedback-induced increases in alpha power lead to enhanced learning, whereas reductions in alpha power impede learning. As a consequence, interindividual learning variability is substantially reduced. No comparable impact is observed for oscillatory power in theta, beta, and lower gamma frequency bands. Our results demonstrate that high pre-learning alpha levels are a requirement for reaching high learning efficiency. These data provide further evidence that alpha oscillations shape the functional architecture of the brain network by gating neural resources and thereby modulating levels of preparedness for upcoming processing.
Collapse
Affiliation(s)
- Marion Brickwedde
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, 44780, Bochum, Germany
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Marie C Krüger
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, 44780, Bochum, Germany
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany
| | - Hubert R Dinse
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, 44780, Bochum, Germany.
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789, Bochum, Germany.
| |
Collapse
|
31
|
Marzoll A, Saygi T, Dinse HR. The effect of LTP- and LTD-like visual stimulation on modulation of human orientation discrimination. Sci Rep 2018; 8:16156. [PMID: 30385849 PMCID: PMC6212525 DOI: 10.1038/s41598-018-34276-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/15/2018] [Indexed: 12/04/2022] Open
Abstract
Studies showing that repetitive visual stimulation protocols alter perception and induce cortical reorganization, as well-reported for the tactile domain, have been sparse. In this study, we investigated how “long-term potentiation [LTP]-like” and “long-term depression [LTD]-like” repetitive visual stimulation affects orientation discrimination ability in human observers. LTP-like stimulation with features most closely resembling the stimuli used during behavioral assessment evoked the largest improvement, while the effects were smaller in protocols that differed in shape or orientation features. This gradient suggests lower learning specificity than classical perceptual learning experiments, possibly because of an interplay of task- and feature-based factors. All modulatory effects of repetitive stimulation were superimposed on top of spontaneous task learning. Moreover, blockwise analysis revealed that LTP-like stimulation, in contrast to LTD-like or sham stimulation, prevented a loss of practice-related gain of orientation discrimination thresholds. This observation highlights a critical role of LTP-like stimulation for consolidation, typically observed during sleep.
Collapse
Affiliation(s)
- Andreas Marzoll
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, Bochum, Germany
| | - Tan Saygi
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, Bochum, Germany
| | - Hubert R Dinse
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University Bochum, Bochum, Germany. .,Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
32
|
Erro R, Rocchi L, Antelmi E, Liguori R, Tinazzi M, Berardelli A, Rothwell J, Bhatia KP. High frequency somatosensory stimulation in dystonia: Evidence fordefective inhibitory plasticity. Mov Disord 2018; 33:1902-1909. [PMID: 30376603 DOI: 10.1002/mds.27470] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/20/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Apart from motor symptoms, multiple deficits of sensory processing have been demonstrated in dystonia. The most consistent behavioural measure of this is abnormal somatosensory temporal discrimination threshold, which has recently been associated with physiological measures of reduced inhibition within the primary somatosensory area. High-frequency repetitive sensory stimulation is a patterned electric stimulation applied to the skin through surface electrodes that has been recently reported to shorten somatosensory temporal discrimination in healthy subjects and to increase the resting level of excitability in several different types of inhibitory interaction in the somatosensory and even motor areas. OBJECTIVES We tested whether high-frequency repetitive sensory stimulation could augment cortical inhibition and, in turn, ameliorate somatosensory temporal discrimination in cervical dystonia. METHODS Somatosensory temporal discrimination and a number of electrophysiological measures of sensorimotor inhibition and facilitation were measured before and after 45 minutes of high-frequency repetitive sensory stimulation. RESULTS As compared with a group of healthy volunteers of similar age, in whom high-frequency repetitive sensory stimulation increased inhibition and shortened somatosensory temporal discrimination, patients with cervical dystonia showed a consistent, paradoxical response: they had reduced suppression of paired-pulse somatosensory evoked potentials, as well as reduced high-frequency oscillations, lateral inhibition, and short interval intracortical inhibition. Somatosensory temporal discrimination deteriorated after the stimulation protocol, and correlated with reduced measures of inhibition within the primary somatosensory cortex. CONCLUSIONS We suggest that patients with dystonia have abnormal homeostatic inhibitory plasticity within the sensorimotor cortex and that this is responsible for their paradoxical response to high-frequency repetitive sensory stimulation. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Roberto Erro
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,Center for Neurodegenerative Diseases, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana,", University of Salerno, Baronissi (Salerno), Italy
| | - Lorenzo Rocchi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,Department of Neurology and Psychiatry, University of Rome "Sapienza,", Rome, Italy
| | - Elena Antelmi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK.,Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna, Italy
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, University of Rome "Sapienza,", Rome, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Institute, Via Atinense, Pozzilli, Italy
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Kailash P Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| |
Collapse
|
33
|
Tactile learning transfer from the hand to the face but not to the forearm implies a special hand-face relationship. Sci Rep 2018; 8:11752. [PMID: 30082760 PMCID: PMC6079060 DOI: 10.1038/s41598-018-30183-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/20/2018] [Indexed: 02/04/2023] Open
Abstract
In the primary somatosensory cortex, large-scale cortical and perceptual changes have been demonstrated following input deprivation. Recently, we found that the cortical and perceptual changes induced by repetitive somatosensory stimulation (RSS) at a finger transfer to the face. However, whether such cross-border changes are specific to the face remains elusive. Here, we investigated whether RSS-induced acuity changes at the finger can also transfer to the forearm, which is the body part represented on the other side of the hand representation. Our results confirmed the transfer of tactile learning from the stimulated finger to the lip, but no significant changes were observed at the forearm. A second experiment revealed that the same regions on the forearm exhibited improved tactile acuity when RSS was applied there, excluding the possibility of low plastic ability at the arm representation. This provides also the first evidence that RSS can be efficient on body parts other than the hand. These results suggest that RSS-induced tactile learning transfers preferentially from the hand to the face rather than to the forearm. This specificity could arise from a stronger functional connectivity between the cortical hand and face representations, reflecting a fundamental coupling between these body parts.
Collapse
|
34
|
Saito K, Otsuru N, Inukai Y, Kojima S, Miyaguchi S, Tsuiki S, Sasaki R, Onishi H. Inhibitory Mechanisms in Primary Somatosensory Cortex Mediate the Effects of Peripheral Electrical Stimulation on Tactile Spatial Discrimination. Neuroscience 2018; 384:262-274. [DOI: 10.1016/j.neuroscience.2018.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 10/14/2022]
|
35
|
Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation. Neural Plast 2018; 2018:5383514. [PMID: 29849557 PMCID: PMC5903327 DOI: 10.1155/2018/5383514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/25/2017] [Accepted: 01/22/2018] [Indexed: 11/26/2022] Open
Abstract
We investigated the effects of different patterns of mechanical tactile stimulation (MS) on corticospinal excitability by measuring the motor-evoked potential (MEP). This was a single-blind study that included nineteen healthy subjects. MS was applied for 20 min to the right index finger. MS intervention was defined as simple, lateral, rubbing, vertical, or random. Simple intervention stimulated the entire finger pad at the same time. Lateral intervention stimulated with moving between left and right on the finger pad. Rubbing intervention stimulated with moving the stimulus probe, fixed by protrusion pins. Vertical intervention stimulated with moving in the forward and backward directions on the finger pad. Random intervention stimulated to finger pad with either row protrudes. MEPs were measured in the first dorsal interosseous muscle to transcranial magnetic stimulation of the left motor cortex before, immediately after, and 5–20 min after intervention. Following simple intervention, MEP amplitudes were significantly smaller than preintervention, indicating depression of corticospinal excitability. Following lateral, rubbing, and vertical intervention, MEP amplitudes were significantly larger than preintervention, indicating facilitation of corticospinal excitability. The modulation of corticospinal excitability depends on MS patterns. These results contribute to knowledge regarding the use of MS as a neurorehabilitation tool to neurological disorder.
Collapse
|
36
|
Kattenstroth JC, Kalisch T, Sczesny-Kaiser M, Greulich W, Tegenthoff M, Dinse HR. Daily repetitive sensory stimulation of the paretic hand for the treatment of sensorimotor deficits in patients with subacute stroke: RESET, a randomized, sham-controlled trial. BMC Neurol 2018; 18:2. [PMID: 29316895 PMCID: PMC5759807 DOI: 10.1186/s12883-017-1006-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/11/2017] [Indexed: 11/10/2022] Open
Abstract
Background Repetitive sensory stimulation (RSS) adapts the timing of stimulation protocols used in cellular studies to induce synaptic plasticity. In healthy subjects, RSS leads to widespread sensorimotor cortical reorganization paralleled by improved sensorimotor behavior. Here, we investigated whether RSS reduces sensorimotor upper limb impairment in patients with subacute stroke more effectively than conventional therapy. Methods A single-blinded sham-controlled clinical trial assessed the effectiveness of RSS in treating sensorimotor deficits of the upper limbs. Patients with subacute unilateral ischemic stroke were randomly assigned to receive standard therapy in combination with RSS or with sham RSS. Patients were masked to treatment allocation. RSS consisted of intermittent 20 Hz electrical stimulation applied on the affected hand for 45 min/day, 5 days per week, for 2 weeks, and was transmitted using custom-made stimulation-gloves with built-in electrodes contacting each fingertip separately. Before and after the intervention, we assessed light-touch and tactile discrimination, proprioception, dexterity, grip force, and subtasks of the Jebsen Taylor hand-function test for the non-affected and the affected hand. Data from these quantitative tests were combined into a total performance index serving as primary outcome measure. In addition, tolerability and side effects of RSS intervention were recorded. Results Seventy one eligible patients were enrolled and randomly assigned to receive RSS treatment (n = 35) or sham RSS (n = 36). Data of 25 patients were not completed because they were transferred to another hospital, resulting in n = 23 for each group. Before treatment, sensorimotor performance between groups was balanced (p = 0.237). After 2 weeks of the intervention, patients in the group receiving standard therapy with RSS showed significantly better restored sensorimotor function than the control group (standardized mean difference 0.57; 95% CI -0.013–1.16; p = 0.027) RSS treatment was superior in all domains tested. Repetitive sensory stimulation was well tolerated and accepted, and no adverse events were observed. Conclusions Rehabilitation including RSS enhanced sensorimotor recovery more effectively than standard therapy alone. Rehabilitation outcome between the effects of RSS and standard therapy was largest for sensory and motor improvement; however, the results for proprioception and everyday tasks were encouraging warranting further studies in more severe patients. Trial registration The trial was retrospectively registered January 31, 2012 under DRKS00003515 (https://www.drks.de/drks_web/navigate.do;jsessionid=AEE2585CCB82A22A2B285470B37C47C8?navigationId=results).
Collapse
Affiliation(s)
- Jan C Kattenstroth
- Institute for Neuroinformatik, Neural Plasticity Lab, Ruhr-University of Bochum, Bochum, Germany
| | - Tobias Kalisch
- Institute for Neuroinformatik, Neural Plasticity Lab, Ruhr-University of Bochum, Bochum, Germany.,Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Sczesny-Kaiser
- Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | | | - Martin Tegenthoff
- Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Hubert R Dinse
- Institute for Neuroinformatik, Neural Plasticity Lab, Ruhr-University of Bochum, Bochum, Germany. .,Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany. .,Department of Neuroinformatik, Neural Plasticity Lab, Ruhr-University of Bochum, Building NB3, 44780, Bochum, Germany.
| |
Collapse
|
37
|
Structural changes in brain morphology induced by brief periods of repetitive sensory stimulation. Neuroimage 2018; 165:148-157. [DOI: 10.1016/j.neuroimage.2017.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/25/2017] [Accepted: 10/08/2017] [Indexed: 01/29/2023] Open
|
38
|
Dinse HR, Tegenthoff M. Repetitive Sensory Stimulation—A Canonical Approach to Control the Induction of Human Learning at a Behavioral and Neural Level. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00021-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Little DF, Zhang YX, Wright BA. Disruption of Perceptual Learning by a Brief Practice Break. Curr Biol 2017; 27:3699-3705.e3. [PMID: 29174894 DOI: 10.1016/j.cub.2017.10.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/21/2017] [Accepted: 10/11/2017] [Indexed: 11/27/2022]
Abstract
Some forms of associative learning require only a single experience to create a lasting memory [1, 2]. In contrast, perceptual learning often requires extensive practice within a day for performance to improve across days [3, 4]. This suggests that the requisite practice for durable perceptual learning is integrated throughout each day. If the total amount of daily practice is the only important variable, then a practice break within a day should not disrupt across-day improvement. To test this idea, we trained human listeners on an auditory frequency-discrimination task over multiple days and compared the performance of those who engaged in a single continuous practice session each day [4] with those who were given a 30-min break halfway through each practice session. Continuous practice yielded significant perceptual learning [4]. In contrast, practice with a rest break led to no improvement, indicating that the integration process had decayed within 30 min. In a separate experiment, a 30-min practice break also disrupted durable learning on a non-native phonetic classification task. These results suggest that practice trials are integrated up to a learning threshold within a transient memory store before they are sent en masse into a memory that lasts across days. Thus, the oft cited benefits of distributed over massed training [5, 6] may arise from different mechanisms depending on whether the breaks occur before or after a learning threshold has been reached. Trial integration could serve as an early gatekeeper to plasticity, helping to ensure that longer-lasting changes are only made when deemed worthwhile.
Collapse
Affiliation(s)
- David F Little
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208-3550, USA; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Yu-Xuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Beverly A Wright
- Department of Communication Sciences and Disorders, Knowles Hearing Center, Northwestern Institute for Neuroscience, Northwestern University, Evanston, IL 60208-3550, USA
| |
Collapse
|
40
|
Regionally Specific Regulation of Sensorimotor Network Connectivity Following Tactile Improvement. Neural Plast 2017; 2017:5270532. [PMID: 29230329 PMCID: PMC5688375 DOI: 10.1155/2017/5270532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/28/2017] [Indexed: 01/15/2023] Open
Abstract
Correlations between inherent, task-free low-frequency fluctuations in the blood oxygenation level-dependent (BOLD) signals of the brain provide a potent tool to delineate its functional architecture in terms of intrinsic functional connectivity (iFC). Still, it remains unclear how iFC is modulated during learning. We employed whole-brain resting-state magnetic resonance imaging prior to and after training-independent repetitive sensory stimulation (rSS), which is known to induce somatosensory cortical reorganization. We investigated which areas in the sensorimotor network are susceptible to neural plasticity (i.e., where changes in functional connectivity occurred) and where iFC might be indicative of enhanced tactile performance. We hypothesized iFC to increase in those brain regions primarily receiving the afferent tactile input. Strengthened intrinsic connectivity within the sensorimotor network after rSS was found not only in the postcentral gyrus contralateral to the stimulated hand, but also in associative brain regions, where iFC correlated positively with tactile performance or learning. We also observed that rSS led to attenuation of the network at higher cortical levels, which possibly promotes facilitation of tactile discrimination. We found that resting-state BOLD fluctuations are linked to behavioral performance and sensory learning, indicating that network fluctuations at rest are predictive of behavioral changes and neuroplasticity.
Collapse
|
41
|
Vibrotactile Thresholds on the Mastoid and Forehead Position of Deaf Patients Using Radioear B71 and B81. Ear Hear 2017; 38:714-723. [DOI: 10.1097/aud.0000000000000456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Lea-Carnall CA, Trujillo-Barreto NJ, Montemurro MA, El-Deredy W, Parkes LM. Evidence for frequency-dependent cortical plasticity in the human brain. Proc Natl Acad Sci U S A 2017; 114:8871-8876. [PMID: 28765375 PMCID: PMC5565407 DOI: 10.1073/pnas.1620988114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Frequency-dependent plasticity (FDP) describes adaptation at the synapse in response to stimulation at different frequencies. Its consequence on the structure and function of cortical networks is unknown. We tested whether cortical "resonance," favorable stimulation frequencies at which the sensory cortices respond maximally, influenced the impact of FDP on perception, functional topography, and connectivity of the primary somatosensory cortex using psychophysics and functional imaging (fMRI). We costimulated two digits on the hand synchronously at, above, or below the resonance frequency of the somatosensory cortex, and tested subjects' accuracy and speed on tactile localization before and after costimulation. More errors and slower response times followed costimulation at above- or below-resonance, respectively. Response times were faster after at-resonance costimulation. In the fMRI, the cortical representations of the two digits costimulated above-resonance shifted closer, potentially accounting for the poorer performance. Costimulation at-resonance did not shift the digit regions, but increased the functional coupling between them, potentially accounting for the improved response time. To relate these results to synaptic plasticity, we simulated a network of oscillators incorporating Hebbian learning. Two neighboring patches embedded in a cortical sheet, mimicking the two digit regions, were costimulated at different frequencies. Network activation outside the stimulated patches was greatest at above-resonance frequencies, reproducing the spread of digit representations seen with fMRI. Connection strengths within the patches increased following at-resonance costimulation, reproducing the increased fMRI connectivity. We show that FDP extends to the cortical level and is influenced by cortical resonance.
Collapse
Affiliation(s)
- Caroline A Lea-Carnall
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom;
| | - Nelson J Trujillo-Barreto
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Marcelo A Montemurro
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Wael El-Deredy
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
- School of Biomedical Engineering, University of Valparaiso, Valparaiso 2366103, Chile
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
43
|
Dinse HR, Kattenstroth JC, Lenz M, Tegenthoff M, Wolf OT. The stress hormone cortisol blocks perceptual learning in humans. Psychoneuroendocrinology 2017; 77:63-67. [PMID: 28024270 DOI: 10.1016/j.psyneuen.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Abstract
Cortisol, the primary glucocorticoid (GC) in humans, influences neuronal excitability and plasticity by acting on mineralocorticoid and glucocorticoid receptors. Cellular studies demonstrated that elevated GC levels affect neuronal plasticity, for example through a reduction of hippocampal long-term potentiation (LTP). At the behavioural level, after treatment with GCs, numerous studies have reported impaired hippocampal function, such as impaired memory retrieval. In contrast, relatively little is known about the impact of GCs on cortical plasticity and perceptual learning in adult humans. Therefore, in this study, we explored the impact of elevated GC levels on human perceptual learning. To this aim, we used a training-independent learning approach, where lasting changes in human perception can be induced by applying passive repetitive sensory stimulation (rss), the timing of which was determined from cellular LTP studies. In our placebo-controlled double-blind study, we used tactile LTP-like stimulation to induce improvements in tactile acuity (spatial two-point discrimination). Our results show that a single administration of hydrocortisone (30mg) completely blocked rss-induced changes in two-point discrimination. In contrast, the placebo group showed the expected rss-induced increase in two-point discrimination of over 14%. Our data demonstrate that high GC levels inhibit rss-induced perceptual learning. We suggest that the suppression of LTP, as previously reported in cellular studies, may explain the perceptual learning impairments observed here.
Collapse
Affiliation(s)
- Hubert R Dinse
- Neural Plasticity Lab, Institute for Neuroinformatik, Ruhr-University Bochum, Bochum, Germany; Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, Germany.
| | - J C Kattenstroth
- Neural Plasticity Lab, Institute for Neuroinformatik, Ruhr-University Bochum, Bochum, Germany.
| | - M Lenz
- Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, Germany.
| | - M Tegenthoff
- Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, Germany.
| | - O T Wolf
- Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Ruhr University Bochum, Germany.
| |
Collapse
|
44
|
Vieira AI, Nogueira D, de Azevedo Reis E, da Lapa Rosado M, Vânia Nunes M, Castro-Caldas A. Hand tactile discrimination, social touch and frailty criteria in elderly people: A cross sectional observational study. Arch Gerontol Geriatr 2016; 66:73-81. [DOI: 10.1016/j.archger.2016.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/07/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
|
45
|
Muret D, Daligault S, Dinse HR, Delpuech C, Mattout J, Reilly KT, Farnè A. Neuromagnetic correlates of adaptive plasticity across the hand-face border in human primary somatosensory cortex. J Neurophysiol 2016; 115:2095-104. [PMID: 26888099 DOI: 10.1152/jn.00628.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] Open
Abstract
It is well established that permanent or transient reduction of somatosensory inputs, following hand deafferentation or anesthesia, induces plastic changes across the hand-face border, supposedly responsible for some altered perceptual phenomena such as tactile sensations being referred from the face to the phantom hand. It is also known that transient increase of hand somatosensory inputs, via repetitive somatosensory stimulation (RSS) at a fingertip, induces local somatosensory discriminative improvement accompanied by cortical representational changes in the primary somatosensory cortex (SI). We recently demonstrated that RSS at the tip of the right index finger induces similar training-independent perceptual learning across the hand-face border, improving somatosensory perception at the lips (Muret D, Dinse HR, Macchione S, Urquizar C, Farnè A, Reilly KT.Curr Biol24: R736-R737, 2014). Whether neural plastic changes across the hand-face border accompany such remote and adaptive perceptual plasticity remains unknown. Here we used magnetoencephalography to investigate the electrophysiological correlates underlying RSS-induced behavioral changes across the hand-face border. The results highlight significant changes in dipole location after RSS both for the stimulated finger and for the lips. These findings reveal plastic changes that cross the hand-face border after an increase, instead of a decrease, in somatosensory inputs.
Collapse
Affiliation(s)
- Dollyane Muret
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France;
| | | | - Hubert R Dinse
- Neural Plasticity Laboratory, Institute of Neuroinformatics, Ruhr University, Bochum, Germany; Clinic of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany; and
| | | | - Jérémie Mattout
- University Claude Bernard Lyon I, Lyon, France; Dycog Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France
| | - Karen T Reilly
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| | - Alessandro Farnè
- ImpAct Team, Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon, France; University Claude Bernard Lyon I, Lyon, France
| |
Collapse
|
46
|
Heba S, Puts NAJ, Kalisch T, Glaubitz B, Haag LM, Lenz M, Dinse HR, Edden RAE, Tegenthoff M, Schmidt-Wilcke T. Local GABA Concentration Predicts Perceptual Improvements After Repetitive Sensory Stimulation in Humans. Cereb Cortex 2015; 26:1295-301. [PMID: 26637451 PMCID: PMC4737612 DOI: 10.1093/cercor/bhv296] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Learning mechanisms are based on synaptic plasticity processes. Numerous studies on synaptic plasticity suggest that the regulation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) plays a central role maintaining the delicate balance of inhibition and excitation. However, in humans, a link between learning outcome and GABA levels has not been shown so far. Using magnetic resonance spectroscopy of GABA prior to and after repetitive tactile stimulation, we show here that baseline GABA+ levels predict changes in perceptual outcome. Although no net changes in GABA+ are observed, the GABA+ concentration prior to intervention explains almost 60% of the variance in learning outcome. Our data suggest that behavioral effects can be predicted by baseline GABA+ levels, which provide new insights into the role of inhibitory mechanisms during perceptual learning.
Collapse
Affiliation(s)
- Stefanie Heba
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-0006, USA F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Tobias Kalisch
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany Institute for Neuroinformatics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Benjamin Glaubitz
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Lauren M Haag
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Melanie Lenz
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Hubert R Dinse
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany Institute for Neuroinformatics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-0006, USA F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Tobias Schmidt-Wilcke
- Department of Neurology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| |
Collapse
|
47
|
Seo NJ, Lakshminarayanan K, Bonilha L, Lauer AW, Schmit BD. Effect of imperceptible vibratory noise applied to wrist skin on fingertip touch evoked potentials - an EEG study. Physiol Rep 2015; 3:3/11/e12624. [PMID: 26603457 PMCID: PMC4673650 DOI: 10.14814/phy2.12624] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 11/24/2022] Open
Abstract
Random vibration applied to skin can change the sense of touch. Specifically, low amplitude white-noise vibration can improve fingertip touch perception. In fact, fingertip touch sensation can improve even when imperceptible random vibration is applied to other remote upper extremity areas such as wrist, dorsum of the hand, or forearm. As such, vibration can be used to manipulate sensory feedback and improve dexterity, particularly during neurological rehabilitation. Nonetheless, the neurological bases for remote vibration enhanced sensory feedback are yet poorly understood. This study examined how imperceptible random vibration applied to the wrist changes cortical activity for fingertip sensation. We measured somatosensory evoked potentials to assess peak-to-peak response to light touch of the index fingertip with applied wrist vibration versus without. We observed increased peak-to-peak somatosensory evoked potentials with wrist vibration, especially with increased amplitude of the later component for the somatosensory, motor, and premotor cortex with wrist vibration. These findings corroborate an enhanced cortical-level sensory response motivated by vibration. It is possible that the cortical modulation observed here is the result of the establishment of transient networks for improved perception.
Collapse
Affiliation(s)
- Na Jin Seo
- Division of Occupational Therapy, Department of Health Professions, Department of Health Sciences and Research, Medical University of South Carolina, Charleston, South Carolina
| | - Kishor Lakshminarayanan
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Leonardo Bonilha
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Abigail W Lauer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
48
|
David M, Dinse HR, Mainka T, Tegenthoff M, Maier C. High-Frequency Repetitive Sensory Stimulation as Intervention to Improve Sensory Loss in Patients with Complex Regional Pain Syndrome I. Front Neurol 2015; 6:242. [PMID: 26635719 PMCID: PMC4648023 DOI: 10.3389/fneur.2015.00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
Achieving perceptual gains in healthy individuals or facilitating rehabilitation in patients is generally considered to require intense training to engage neuronal plasticity mechanisms. Recent work, however, suggested that beneficial outcome similar to training can be effectively acquired by a complementary approach in which the learning occurs in response to mere exposure to repetitive sensory stimulation (rSS). For example, high-frequency repetitive sensory stimulation (HF-rSS) enhances tactile performance and induces cortical reorganization in healthy subjects and patients after stroke. Patients with complex regional pain syndrome (CRPS) show impaired tactile performance associated with shrinkage of cortical maps. We here investigated the feasibility and efficacy of HF-rSS, and low-frequency rSS (LF-rSS) to enhance tactile performance and reduce pain intensity in 20 patients with CRPS type I. Intermittent high- or low-frequency electrical stimuli were applied for 45 min/day to all fingertips of the affected hand for 5 days. Main outcome measures were spatial two-point-discrimination thresholds and mechanical detection thresholds measured on the tip of the index finger bilaterally. Secondary endpoint was current pain intensity. All measures were assessed before and on day 5 after the last stimulation session. HF-rSS applied in 16 patients improved tactile discrimination on the affected hand significantly without changes contralaterally. Current pain intensity remained unchanged on average, but decreased in four patients by ≥30%. This limited pain relief might be due to the short stimulation period of 5 days only. In contrast, after LF-rSS, tactile discrimination was impaired in all four patients, while detection thresholds and pain were not affected. Our data suggest that HF-rSS could be used as a novel approach in CRPS treatment to improve sensory loss. Longer treatment periods might be required to induce consistent pain relief.
Collapse
Affiliation(s)
- Marianne David
- Department of Pain Medicine, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University Bochum , Bochum , Germany
| | - Hubert R Dinse
- Neural Plasticity Laboratory, Institute for Neuroinformatics, Ruhr-University Bochum , Bochum , Germany ; Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University Bochum , Bochum , Germany
| | - Tina Mainka
- Department of Pain Medicine, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University Bochum , Bochum , Germany ; Department of Neurology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Martin Tegenthoff
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University Bochum , Bochum , Germany
| | - Christoph Maier
- Department of Pain Medicine, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-University Bochum , Bochum , Germany
| |
Collapse
|
49
|
Gallasch E, Christova M, Kunz A, Rafolt D, Golaszewski S. Modulation of sensorimotor cortex by repetitive peripheral magnetic stimulation. Front Hum Neurosci 2015; 9:407. [PMID: 26236220 PMCID: PMC4500907 DOI: 10.3389/fnhum.2015.00407] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/01/2015] [Indexed: 11/13/2022] Open
Abstract
This study examines with transcranial magnetic stimulation (TMS) and with functional magnetic resonance imaging (fMRI) whether 20 min of repetitive peripheral magnetic stimulation (rPMS) has a facilitating effect on associated motor controlling regions. Trains of rPMS with a stimulus intensity of 150% of the motor threshold (MT) were applied over right hand flexor muscles of healthy volunteers. First, with TMS, 10 vs. 25 Hz rPMS was examined and compared to a control group. Single and paired pulse motor evoked potentials (MEPs) from flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles were recorded at baseline (T0), post rPMS (T1), 30 min post (T2), 1 h post (T3) and 2 h post rPMS (T4). Then, with fMRI, 25 Hz rPMS was compared to sham stimulation by utilizing a finger tapping activation paradigm. Changes in bloodoxygen level dependent (BOLD) contrast were examined at baseline (PRE), post rPMS (POST1) and 1 h post rPMS (POST2). With TMS facilitation was observed in the target muscle (FCR) following 25 Hz rPMS: MEP recruitment curves (RCs) were increased at T1, T2 and T3, and intracortical facilitation (ICF) was increased at T1 and T2. No effects were observed following 10 Hz rPMS. With fMRI the BOLD contrast at the left sensorimotor area was increased at POST1. Compared to inductions protocols based on transcutaneous electrical stimulation and mechanical stimulation, the rPMS induced effects appeared shorter lasting.
Collapse
Affiliation(s)
- Eugen Gallasch
- Department of Physiology, Medical University of Graz Graz, Austria
| | - Monica Christova
- Department of Physiology, Medical University of Graz Graz, Austria ; Institute of Physiotherapy, University of Applied Sciences FH-Joanneum Graz, Austria
| | - Alexander Kunz
- Department of Neurology, Paracelsus Medical University of Salzburg Salzburg, Austria
| | - Dietmar Rafolt
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna Vienna, Austria
| | - Stefan Golaszewski
- Department of Neurology, Paracelsus Medical University of Salzburg Salzburg, Austria
| |
Collapse
|
50
|
Parianen Lesemann FH, Reuter EM, Godde B. Tactile stimulation interventions: Influence of stimulation parameters on sensorimotor behavior and neurophysiological correlates in healthy and clinical samples. Neurosci Biobehav Rev 2015; 51:126-37. [DOI: 10.1016/j.neubiorev.2015.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
|