1
|
Guo A, Li H, Huang Y, Ma X, Li B, Du X, Cui Y, Zhao N, Hua J. Yield-related quantitative trait loci identification and lint percentage hereditary dissection under salt stress in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:115-136. [PMID: 38573794 DOI: 10.1111/tpj.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/07/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
Salinity is frequently mentioned as a major constraint in worldwide agricultural production. Lint percentage (LP) is a crucial yield-component in cotton lint production. While the genetic factors affect cotton yield in saline soils are still unclear. Here, we employed a recombinant inbred line population in upland cotton (Gossypium hirsutum L.) and investigated the effects of salt stress on five yield and yield component traits, including seed cotton yield per plant, lint yield per plant, boll number per plant, boll weight, and LP. Between three datasets of salt stress (E1), normal growth (E2), and the difference values dataset of salt stress and normal conditions (D-value), 87, 82, and 55 quantitative trait loci (QTL) were detectable, respectively. In total, five QTL (qLY-Chr6-2, qBNP-Chr4-1, qBNP-Chr12-1, qBNP-Chr15-5, qLP-Chr19-2) detected in both in E1 and D-value were salt related QTL, and three stable QTL (qLP-Chr5-3, qLP-Chr13-1, qBW-Chr5-5) were detected both in E1 and E2 across 3 years. Silencing of nine genes within a stable QTL (qLP-Chr5-3) highly expressed in fiber developmental stages increased LP and decreased fiber length (FL), indicating that multiple minor-effect genes clustered on Chromosome 5 regulate LP and FL. Additionally, the difference in LP caused by Gh_A05G3226 is mainly in transcription level rather than in the sequence difference. Moreover, silencing of salt related gene (GhDAAT) within qBNP-Chr4-1 decreased salt tolerance in cotton. Our findings shed light on the regulatory mechanisms underlining cotton salt tolerance and fiber initiation.
Collapse
Affiliation(s)
- Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Yi Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xiaoqing Ma
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Xiaoqi Du
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Yanan Cui
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd, Haidian District, Beijing, 100193, China
| |
Collapse
|
2
|
Tan Z, Peng Y, Xiong Y, Xiong F, Zhang Y, Guo N, Tu Z, Zong Z, Wu X, Ye J, Xia C, Zhu T, Liu Y, Lou H, Liu D, Lu S, Yao X, Liu K, Snowdon RJ, Golicz AA, Xie W, Guo L, Zhao H. Comprehensive transcriptional variability analysis reveals gene networks regulating seed oil content of Brassica napus. Genome Biol 2022; 23:233. [PMID: 36345039 PMCID: PMC9639296 DOI: 10.1186/s13059-022-02801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Regulation of gene expression plays an essential role in controlling the phenotypes of plants. Brassica napus (B. napus) is an important source for the vegetable oil in the world, and the seed oil content is an important trait of B. napus. RESULTS We perform a comprehensive analysis of the transcriptional variability in the seeds of B. napus at two developmental stages, 20 and 40 days after flowering (DAF). We detect 53,759 and 53,550 independent expression quantitative trait loci (eQTLs) for 79,605 and 76,713 expressed genes at 20 and 40 DAF, respectively. Among them, the local eQTLs are mapped to the adjacent genes more frequently. The adjacent gene pairs are regulated by local eQTLs with the same open chromatin state and show a stronger mode of expression piggybacking. Inter-subgenomic analysis indicates that there is a feedback regulation for the homoeologous gene pairs to maintain partial expression dosage. We also identify 141 eQTL hotspots and find that hotspot87-88 co-localizes with a QTL for the seed oil content. To further resolve the regulatory network of this eQTL hotspot, we construct the XGBoost model using 856 RNA-seq datasets and the Basenji model using 59 ATAC-seq datasets. Using these two models, we predict the mechanisms affecting the seed oil content regulated by hotspot87-88 and experimentally validate that the transcription factors, NAC13 and SCL31, positively regulate the seed oil content. CONCLUSIONS We comprehensively characterize the gene regulatory features in the seeds of B. napus and reveal the gene networks regulating the seed oil content of B. napus.
Collapse
Affiliation(s)
- Zengdong Tan
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Yan Peng
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Yao Xiong
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Feng Xiong
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Yuting Zhang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Ning Guo
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Zhuo Tu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Zhanxiang Zong
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Xiaokun Wu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Jiang Ye
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Chunjiao Xia
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Tao Zhu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Yinmeng Liu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Hongxiang Lou
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Dongxu Liu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoping Lu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Kede Liu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Rod J. Snowdon
- grid.8664.c0000 0001 2165 8627Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Agnieszka A. Golicz
- grid.8664.c0000 0001 2165 8627Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Weibo Xie
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China ,grid.35155.370000 0004 1790 4137Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China ,grid.35155.370000 0004 1790 4137Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China ,grid.488316.00000 0004 4912 1102Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hu Zhao
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
Razzaq A, Zafar MM, Ali A, Hafeez A, Sharif F, Guan X, Deng X, Pengtao L, Shi Y, Haroon M, Gong W, Ren M, Yuan Y. The Pivotal Role of Major Chromosomes of Sub-Genomes A and D in Fiber Quality Traits of Cotton. Front Genet 2022; 12:642595. [PMID: 35401652 PMCID: PMC8988190 DOI: 10.3389/fgene.2021.642595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/25/2021] [Indexed: 02/02/2023] Open
Abstract
Lack of precise information about the candidate genes involved in a complex quantitative trait is a major obstacle in the cotton fiber quality improvement, and thus, overall genetic gain in conventional phenotypic selection is low. Recent molecular interventions and advancements in genome sequencing have led to the development of high-throughput molecular markers, quantitative trait locus (QTL) fine mapping, and single nucleotide polymorphisms (SNPs). These advanced tools have resolved the existing bottlenecks in trait-specific breeding. This review demonstrates the significance of chromosomes 3, 7, 9, 11, and 12 of sub-genomes A and D carrying candidate genes for fiber quality. However, chromosome 7 carrying SNPs for stable and potent QTLs related to fiber quality provides great insights for fiber quality-targeted research. This information can be validated by marker-assisted selection (MAS) and transgene in Arabidopsis and subsequently in cotton.
Collapse
Affiliation(s)
- Abdul Razzaq
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Arfan Ali
- FB Genetics Four Brothers Group, Lahore, Pakistan
| | - Abdul Hafeez
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Faiza Sharif
- University Institute of Physical Therapy, The University of Lahore, Lahore, Pakistan
| | | | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Li Pengtao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Maozhi Ren
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| | - Youlu Yuan
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| |
Collapse
|
4
|
Zafar MM, Rehman A, Razzaq A, Parvaiz A, Mustafa G, Sharif F, Mo H, Youlu Y, Shakeel A, Ren M. Genome-wide characterization and expression analysis of Erf gene family in cotton. BMC PLANT BIOLOGY 2022; 22:134. [PMID: 35317739 PMCID: PMC8939120 DOI: 10.1186/s12870-022-03521-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/04/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AP2/ERF transcription factors are important in a variety of biological activities, including plant growth, development, and responses to biotic and abiotic stressors. However, little study has been done on cotton's AP2/ERF genes, although cotton is an essential fibre crop. We were able to examine the tissue and expression patterns of AP2/ERF genes in cotton on a genome-wide basis because of the recently published whole genome sequence of cotton. Genome-wide analysis of ERF gene family within two diploid species (G. arboreum & G. raimondii) and two tetraploid species (G. barbadense, G. hirsutum) was performed. RESULTS A total of 118, 120, 213, 220 genes containing the sequence of single AP2 domain were identified in G. arboreum, G. raimondii, G. barbadense and G. hirsutum respectively. The identified genes were unevenly distributed across 13/26 chromosomes of A and D genomes of cotton. Synteny and collinearity analysis revealed that segmental duplications may have played crucial roles in the expansion of the cotton ERF gene family, as well as tandem duplications played a minor role. Cis-acting elements of the promoter sites of Ghi-ERFs genes predict the involvement in multiple hormone responses and abiotic stresses. Transcriptome and qRT-PCR analysis revealed that Ghi-ERF-2D.6, Ghi-ERF-12D.13, Ghi-ERF-6D.1, Ghi-ERF-7A.6 and Ghi-ERF-11D.5 are candidate genes against salinity tolerance in upland cotton. CONCLUSION Overwhelmingly, the present study paves the way to better understand the evolution of cotton ERF genes and lays a foundation for future investigation of ERF genes in improving salinity stress tolerance in cotton.
Collapse
Affiliation(s)
- Muhammad Mubashar Zafar
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Abdul Razzaq
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
- The Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aqsa Parvaiz
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Faiza Sharif
- University Institute of Physical Therapy, The University of Lahore, Lahore, Pakistan
| | - Huijuan Mo
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Yuan Youlu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| | - Amir Shakeel
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Maozhi Ren
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture; Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000 Henan China
| |
Collapse
|
5
|
Pan Y, Meng F, Wang X. Sequencing Multiple Cotton Genomes Reveals Complex Structures and Lays Foundation for Breeding. FRONTIERS IN PLANT SCIENCE 2020; 11:560096. [PMID: 33042184 PMCID: PMC7525069 DOI: 10.3389/fpls.2020.560096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/19/2020] [Indexed: 05/30/2023]
Abstract
Cotton is a major fiber plant, which provides raw materials for clothing, protecting humans from the harsh environment of cold or hot weathers, enriching the culture and custom of human societies. Due to its importance, the diploid and tetraploid genomes of different cotton plants have been repeatedly sequenced to obtain their complete and fine genome sequences. These valuable genome data sets revealed the evolutionary past of the cotton plants, which were recursively affected by polyploidization, with a decaploidization contributing to the formation of the genus Gossypium, and a neo-tetraploidization contributing to the formation of nowadays widely cultivated cotton plants. Post-polyploidization genome instability resulted in numerous structural changes of the genomes, such as gene loss, DNA inversion and translocation, illegitimate recombination, and accumulation of repetitive sequences, and functional innovation accompanied by elevated evolutionary rates of genes. Many these changes have been asymmetric between subgnomes of the tetraploid cottons, rendering their divergent profiles of biological regulation and function. The availability of whole-genome sequences has now paved the way to identify and clone functional genes, e.g., those relating to fiber development, and to enhance breeding efforts to cultivate cottons to produce high-yield and high-quality fibers, and to resist environmental and biological stress.
Collapse
Affiliation(s)
- Yuxin Pan
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Fanbo Meng
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Xiyin Wang
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
- National Key Laboratory for North China Crop Improvement and Regulation, Agriculture University of Hebei, Baoding, China
| |
Collapse
|
6
|
Genome-Wide Identification and Transcriptional Expression Profiles of the F-box Gene Family in Common Walnut (Juglans regia L.). FORESTS 2019. [DOI: 10.3390/f10030275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The common walnut (or Persian walnut), Juglans regia L., is an economically important temperate tree species valued for both its edible nut and high-quality wood. F-box gene family members are involved in plant development, which includes regulating plant development, reproduction, cellular protein degradation, response to biotic and abiotic stresses, and flowering. However, in common walnut (J. regia), there are no reports about the F-box gene family. Here, we report a genome-wide identification of J. regia F-box genes and analyze their phylogeny, duplication, microRNA, pathway, and transcriptional expression profile. In this study, 74 F-box genes were identified and clustered into three groups based on phylogenetic analysis and eight subfamilies based on special domains in common walnut. These common walnut F-box genes are distributed on 31 different pseudo-chromosomes. The gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and microRNA profiles showed that the F-box gene family might play a critical role in the flowering of common walnut. The expressions were significantly higher in female flowers and male flowers compared with leaf and hull tissues at a transcriptome level. The results revealed that the expressions of the F-box gene in female flowers were positively correlated with male flowers, but there was no correlation between any other tissue combinations in common walnut. Our results provided insight into the general characteristics of the F-box genes in common walnut.
Collapse
|
7
|
Yan F, Li H, Zhao P. Genome-Wide Identification and Transcriptional Expression of the PAL Gene Family in Common Walnut ( Juglans Regia L.). Genes (Basel) 2019; 10:E46. [PMID: 30650597 PMCID: PMC6357058 DOI: 10.3390/genes10010046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
Juglans regia L. is an economically important crop cultivated worldwide for its high quality and quantity of wood and nuts. Phenylalanine ammonia-lyase (PAL) is the first enzyme in the phenylpropanoid pathway that plays a critical role in plant growth, development, and adaptation, but there have been few reports of the PAL gene family in common walnut. Here, we report a genome-wide study of J. regiaPAL genes and analyze their phylogeny, duplication, microRNA, and transcriptional expression. A total of 12 PAL genes were identified in the common walnut and clustered into two subfamilies based on phylogenetic analysis. These common walnut PALs are distributed on eight different pseudo-chromosomes. Seven of the 12 PALs (JrPAL2-3, JrPAL4-2, JrPAL2-1, JrPAL4-1, JrPAL8, JrPAL9, and JrPAL6) were specific found in J. regia, and JrPAL3, JrPAL5, JrPAL1-2, JrPAL7, and JrPAL2-2 were found to be closely associated with the woody plant Populus trichocarpa. Additionally, the expression patterns of JrPAL3, JrPAL7, JrPAL9, and JrPAL2-1 showed that they had high expression in female and male flowers. The miRNA ath-miR830-5p regulates two genes, JrPAL5 and JrPAL1, such that they have low expression in the male and female flowers of the common walnut. Our research provides useful information for further research into the function of PAL genes in common walnut and Juglans.
Collapse
Affiliation(s)
- Feng Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Huaizhu Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China.
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
8
|
Ijaz B, Zhao N, Kong J, Hua J. Fiber Quality Improvement in Upland Cotton ( Gossypium hirsutum L.): Quantitative Trait Loci Mapping and Marker Assisted Selection Application. FRONTIERS IN PLANT SCIENCE 2019; 10:1585. [PMID: 31921240 PMCID: PMC6917639 DOI: 10.3389/fpls.2019.01585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/12/2019] [Indexed: 05/17/2023]
Abstract
Genetic improvement in fiber quality is one of the main challenges for cotton breeders. Fiber quality traits are controlled by multiple genes and are classified as complex quantitative traits, with a negative relationship with yield potential, so the genetic gain is low in traditional genetic improvement by phenotypic selection. The availability of Gossypium genomic sequences facilitates the development of high-throughput molecular markers, quantitative trait loci (QTL) fine mapping and gene identification, which helps us to validate candidate genes and to use marker assisted selection (MAS) on fiber quality in breeding programs. Based on developments of high density linkage maps, QTLs fine mapping, marker selection and omics, we have performed trait dissection on fiber quality traits in diverse populations of upland cotton. QTL mapping combined with multi-omics approaches such as, RNA sequencing datasets to identify differentially expressed genes have benefited the improvement of fiber quality. In this review, we discuss the application of molecular markers, QTL mapping and MAS for fiber quality improvement in upland cotton.
Collapse
Affiliation(s)
- Babar Ijaz
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Jinping Hua,
| |
Collapse
|
9
|
Chandnani R, Wang B, Draye X, Rainville LK, Auckland S, Zhuang Z, Lubbers EL, May OL, Chee PW, Paterson AH. Segregation distortion and genome-wide digenic interactions affect transmission of introgressed chromatin from wild cotton species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2219-2230. [PMID: 28801756 DOI: 10.1007/s00122-017-2952-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
This study reports transmission genetics of chromosomal segments into Gossypium hirsutum from its most distant euploid relative, Gossypium mustelinum . Mutilocus interactions and structural rearrangements affect introgression and segregation of donor chromatin. Wild allotetraploid relatives of cotton are a rich source of genetic diversity that can be used in genetic improvement, but linkage drag and non-Mendelian transmission genetics are prevalent in interspecific crosses. These problems necessitate knowledge of transmission patterns of chromatin from wild donor species in cultivated recipient species. From an interspecific cross, Gossypium hirsutum × Gossypium mustelinum, we studied G. mustelinum (the most distant tetraploid relative of Upland cotton) allele retention in 35 BC3F1 plants and segregation patterns in BC3F2 populations totaling 3202 individuals, using 216 DNA marker loci. The average retention of donor alleles across BC3F1 plants was higher than expected and the average frequency of G. mustelinum alleles in BC3F2 segregating families was less than expected. Despite surprisingly high retention of G. mustelinum alleles in BC3F1, 46 genomic regions showed no introgression. Regions on chromosomes 3 and 15 lacking introgression were closely associated with possible small inversions previously reported. Nonlinear two-locus interactions are abundant among loci with single-locus segregation distortion, and among loci originating from one of the two subgenomes. Comparison of the present results with those of prior studies indicates different permeability of Upland cotton for donor chromatin from different allotetraploid relatives. Different contributions of subgenomes to two-locus interactions suggest different fates of subgenomes in the evolution of allotetraploid cottons. Transmission genetics of G. hirsutum × G. mustelinum crosses reveals allelic interactions, constraints on fixation and selection of donor alleles, and challenges with retention of introgressed chromatin for crop improvement.
Collapse
Affiliation(s)
- Rahul Chandnani
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA
| | - Baohua Wang
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA
- NESPAL Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 31793, USA
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xavier Draye
- Unité d'écophysiologie et amélioration végétale, Université Catholique de Louvain, Croix du Sud 1-10, 1348, Louvain-la-Neuve, Belgium
| | - Lisa K Rainville
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA
| | - Susan Auckland
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA
| | - Zhimin Zhuang
- NESPAL Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 31793, USA
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Edward L Lubbers
- NESPAL Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 31793, USA
| | - O Lloyd May
- NESPAL Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 31793, USA
- Monsanto Cotton Breeding, Tifton, GA, 31793, USA
| | - Peng W Chee
- NESPAL Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 31793, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA.
| |
Collapse
|
10
|
Zeng YD, Sun JL, Bu SH, Deng KS, Tao T, Zhang YM, Zhang TZ, Du XM, Zhou BL. EcoTILLING revealed SNPs in GhSus genes that are associated with fiber- and seed-related traits in upland cotton. Sci Rep 2016; 6:29250. [PMID: 27385639 PMCID: PMC4935865 DOI: 10.1038/srep29250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022] Open
Abstract
Cotton is the most important textile crop in the world due to its cellulose-enriched fibers. Sucrose synthase genes (Sus) play pivotal roles in cotton fiber and seed development. To mine and pyramid more favorable alleles for cotton molecular breeding, single nucleotide polymorphisms (SNPs) of GhSus family genes were investigated across 277 upland cotton accessions by EcoTILLING. As a result, a total of 24 SNPs in the amplified regions of eight GhSus genes were identified. These SNPs were significantly associated with at least one fiber- or seed-related trait measured in Nanjing, Anyang and Kuche in 2007-2009. Four main-effect quantitative trait nucleotides (QTNs) and five epistatic QTNs, with 0.76-3.56% of phenotypic variances explained by each QTN (PVE), were found to be associated with yield-related traits; six epistatic QTNs, with the 0.43-3.48% PVE, were found to be associated with fiber quality-related traits; and one main-effect QTN and one epistatic QTN, with the PVE of 1.96% and 2.53%, were found to be associated with seed oil content and protein content, respectively. Therefore, this study provides new information for molecular breeding in cotton.
Collapse
Affiliation(s)
- Yan-Da Zeng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun-Ling Sun
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Su-Hong Bu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang-Sheng Deng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian-Zhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiong-Ming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Bao-Liang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Xu J, Xu X, Tian L, Wang G, Zhang X, Wang X, Guo W. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton. Sci Rep 2016; 6:29022. [PMID: 27354165 PMCID: PMC4926273 DOI: 10.1038/srep29022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/14/2016] [Indexed: 12/02/2022] Open
Abstract
Verticillium dahliae, a destructive and soil-borne fungal pathogen, causes massive losses in cotton yields. However, the resistance mechanism to V. dahilae in cotton is still poorly understood. Accumulating evidence indicates that chitinases are crucial hydrolytic enzymes, which attack fungal pathogens by catalyzing the fungal cell wall degradation. As a large gene family, to date, the chitinase genes (Chis) have not been systematically analyzed and effectively utilized in cotton. Here, we identified 47, 49, 92, and 116 Chis from four sequenced cotton species, diploid Gossypium raimondii (D5), G. arboreum (A2), tetraploid G. hirsutum acc. TM-1 (AD1), and G. barbadense acc. 3-79 (AD2), respectively. The orthologous genes were not one-to-one correspondence in the diploid and tetraploid cotton species, implying changes in the number of Chis in different cotton species during the evolution of Gossypium. Phylogenetic classification indicated that these Chis could be classified into six groups, with distinguishable structural characteristics. The expression patterns of Chis indicated their various expressions in different organs and tissues, and in the V. dahliae response. Silencing of Chi23, Chi32, or Chi47 in cotton significantly impaired the resistance to V. dahliae, suggesting these genes might act as positive regulators in disease resistance to V. dahliae.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyang Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangliang Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueying Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Wang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Niu E, Cai C, Zheng Y, Shang X, Fang L, Guo W. Genome-wide analysis of CrRLK1L gene family in Gossypium and identification of candidate CrRLK1L genes related to fiber development. Mol Genet Genomics 2016; 291:1137-54. [PMID: 26833484 DOI: 10.1007/s00438-016-1169-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Members of the CrRLK1L family, a subgroup of the receptor-like kinase (RLK) gene family, are thought to act as sensors for the integrity of the cell wall and regulators of polar elongation. To better understand the various functions in fiber development, we conducted genome-wide identification and characterization analyses of CrRLK1L family in cotton. Here 44, 40, and 79 CrRLK1L genes were identified from three cotton species: diploid G. raimondii (D5), diploid G. arboreum (A2), and tetraploid G. hirsutum TM-1 (AD1), respectively. The 44 CrRLK1Ls in G. raimondii were anchored to the 12 chromosomes unevenly and were classified into six groups (I-VI), with group II and group IV being further divided into two subgroups (groups IIa and IIb, and IVa and IVb, respectively). These CrRLK1Ls displayed a highly regular pattern of developmental and spatial regulation in cotton. Using the transcriptome data of five chromosomal segment introgression lines (CSILs) and the physical integration of CrRLK1Ls with the quantitative trait loci (QTLs) related to fiber quality traits, we revealed that six CrRLK1L genes were highly associated with fiber development. This study brings new insights into the integrated genome-wide identification of CrRLK1Ls in cotton and provides references for the genetic improvement of cotton fiber.
Collapse
Affiliation(s)
- Erli Niu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Caiping Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Chen J, Burke JJ. Developing fiber specific promoter-reporter transgenic lines to study the effect of abiotic stresses on fiber development in cotton. PLoS One 2015; 10:e0129870. [PMID: 26030401 PMCID: PMC4451078 DOI: 10.1371/journal.pone.0129870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/12/2015] [Indexed: 12/30/2022] Open
Abstract
Cotton is one of the most important cash crops in US agricultural industry. Environmental stresses, such as drought, high temperature and combination of both, not only reduce the overall growth of cotton plants, but also greatly decrease cotton lint yield and fiber quality. The impact of environmental stresses on fiber development is poorly understood due to technical difficulties associated with the study of developing fiber tissues and lack of genetic materials to study fiber development. To address this important question and provide the need for scientific community, we have generated transgenic cotton lines harboring cotton fiber specific promoter (CFSP)-reporter constructs from six cotton fiber specific genes (Expansin, E6, Rac13, CelA1, LTP, and Fb late), representing genes that are expressed at different stages of fiber development. Individual CFSP::GUS or CFSP::GFP construct was introduced into Coker 312 via Agrobacterium mediated transformation. Transgenic cotton lines were evaluated phenotypically and screened for the presence of selectable marker, reporter gene expression, and insertion numbers. Quantitative analysis showed that the patterns of GUS reporter gene activity during fiber development in transgenic cotton lines were similar to those of the native genes. Greenhouse drought and heat stress study showed a correlation between the decrease in promoter activities and decrease in fiber length, increase in micronaire and changes in other fiber quality traits in transgenic lines grown under stressed condition. These newly developed materials provide new molecular tools for studying the effects of abiotic stresses on fiber development and may be used in study of cotton fiber development genes and eventually in the genetic manipulation of fiber quality.
Collapse
Affiliation(s)
- Junping Chen
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, Agricultural Research Service, United State Department of Agriculture, Lubbock, Texas, United States of America
- * E-mail:
| | - John J. Burke
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, Agricultural Research Service, United State Department of Agriculture, Lubbock, Texas, United States of America
| |
Collapse
|
14
|
Yan Q, Liu HS, Yao D, Li X, Chen H, Dou Y, Wang Y, Pei Y, Xiao YH. The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization. PLoS One 2015; 10:e0126558. [PMID: 25992947 PMCID: PMC4436304 DOI: 10.1371/journal.pone.0126558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/03/2015] [Indexed: 12/05/2022] Open
Abstract
Basic/helix-loop-helix (bHLH) proteins comprise one of the largest transcription factor families and play important roles in diverse cellular and molecular processes. Comprehensive analyses of the composition and evolution of the bHLH family in cotton are essential to elucidate their functions and the molecular basis of cotton development. By searching bHLH homologous genes in sequenced diploid cotton genomes (Gossypium raimondii and G. arboreum), a set of cotton bHLH reference genes containing 289 paralogs were identified and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and cacao, cotton bHLH proteins generally increased in number, but unevenly in different subfamilies. To further uncover evolutionary changes of bHLH genes during tetraploidization of cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors were cloned and compared, and their transcript profiles were determined in upland cotton. A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progenitors) maintained in tetraploid cottons. The major sequence changes in upland cotton included a 15-bp in-frame deletion in GhbHLH130D and a long terminal repeat retrotransposon inserted in GhbHLH062A, which eliminated GhbHLH062A expression in various tissues. The S5a and S5b bHLH genes of A and D genomes (except GobHLH062) showed similar transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fibers, while the A- and D-genome genes of GobHLH110 and GobHLH130 displayed clearly different transcript profiles during fiber development. In total, this study represented a genome-wide analysis of cotton bHLH family, and revealed significant changes in sequence and expression of these genes in tetraploid cottons, which paved the way for further functional analyses of bHLH genes in the cotton genus.
Collapse
Affiliation(s)
- Qian Yan
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Hou-Sheng Liu
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Dan Yao
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Xin Li
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Han Chen
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yang Dou
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yi Wang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yan Pei
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yue-Hua Xiao
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
- * E-mail:
| |
Collapse
|
15
|
Gene-expression novelty in allopolyploid cotton: a proteomic perspective. Genetics 2015; 200:91-104. [PMID: 25735302 DOI: 10.1534/genetics.115.174367] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/28/2015] [Indexed: 01/20/2023] Open
Abstract
Allopolyploidization is accompanied by changes in gene expression that are thought to contribute to phenotypic diversification. Here we describe global changes in the single-celled cotton fiber proteome of two natural allopolyploid species (Gossypium hirsutum and G. barbadense) and living models of their diploid parents using two different proteomic approaches. In total, 1323 two-dimensional gel electrophoresis spots and 1652 identified proteins by isobaric tags for relative and absolute quantitation were quantitatively profiled during fiber elongation. Between allopolyploids and their diploid A- and D-genome progenitors, amounts of differential expression ranged from 4.4 to 12.8%. Over 80% of the allopolyploid proteome was additively expressed with respect to progenitor diploids. Interestingly, the fiber proteome of G. hirsutum resembles the parental A-genome more closely, where long, spinable fiber first evolved, than does the fiber proteome of G. barbadense. More protein expression patterns were A-dominant than D-dominant in G. hirsutum, but in G. barbadense, the direction of expression-level dominance switched from the D-genome to the A-genome during fiber development. Comparison of developmental changes between the two allopolyploid species revealed a high level of proteomic differentiation despite their shared ancestry, relatively recent evolutionary divergence, and similar gross morphology. These results suggest that the two allopolyploid species have achieved superficially similar modern fiber phenotypes through different evolutionary routes at the proteome level. We also detected homeolog-specific expression for 1001 proteins and present a novel approach to infer the relationship between homeolog-specific and duplicate expression patterns. Our study provides a proteomic perspective on understanding evolutionary consequences of allopolyploidization, showing how protein expression has been altered by polyploidization and subsequently has diversified among species.
Collapse
|
16
|
Yu JZ, Ulloa M, Hoffman SM, Kohel RJ, Pepper AE, Fang DD, Percy RG, Burke JJ. Mapping genomic loci for cotton plant architecture, yield components, and fiber properties in an interspecific (Gossypium hirsutum L. × G. barbadense L.) RIL population. Mol Genet Genomics 2014; 289:1347-67. [PMID: 25314923 DOI: 10.1007/s00438-014-0930-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 09/20/2014] [Indexed: 12/27/2022]
Abstract
A quantitative trait locus (QTL) mapping was conducted to better understand the genetic control of plant architecture (PA), yield components (YC), and fiber properties (FP) in the two cultivated tetraploid species of cotton (Gossypium hirsutum L. and G. barbadense L.). One hundred and fifty-nine genomic regions were identified on a saturated genetic map of more than 2,500 SSR and SNP markers, constructed with an interspecific recombinant inbred line (RIL) population derived from the genetic standards of the respective cotton species (G. hirsutum acc. TM-1 × G. barbadense acc. 3-79). Using the single nonparametric and MQM QTL model mapping procedures, we detected 428 putative loci in the 159 genomic regions that confer 24 cotton traits in three diverse production environments [College Station F&B Road (FB), TX; Brazos Bottom (BB), TX; and Shafter (SH), CA]. These putative QTL loci included 25 loci for PA, 60 for YC, and 343 for FP, of which 3, 12, and 60, respectively, were strongly associated with the traits (LOD score ≥ 3.0). Approximately 17.7 % of the PA putative QTL, 32.9 % of the YC QTL, and 48.3 % of the FP QTL had trait associations under multiple environments. The At subgenome (chromosomes 1-13) contributed 72.7 % of loci for PA, 46.2 % for YC, and 50.4 % for FP while the Dt subgenome (chromosomes 14-26) contributed 27.3 % of loci for PA, 53.8 % for YC, and 49.6 % for FP. The data obtained from this study augment prior evidence of QTL clusters or gene islands for specific traits or biological functions existing in several non-homoeologous cotton chromosomes. DNA markers identified in the 159 genomic regions will facilitate further dissection of genetic factors underlying these important traits and marker-assisted selection in cotton.
Collapse
Affiliation(s)
- John Z Yu
- USDA-ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX, 77845, USA,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Homeologous genes involved in mannitol synthesis reveal unequal contributions in response to abiotic stress in Coffea arabica. Mol Genet Genomics 2014; 289:951-63. [PMID: 24861101 DOI: 10.1007/s00438-014-0864-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 05/06/2014] [Indexed: 01/10/2023]
Abstract
Polyploid plants can exhibit transcriptional modulation in homeologous genes in response to abiotic stresses. Coffea arabica, an allotetraploid, accounts for 75% of the world's coffee production. Extreme temperatures, salinity and drought limit crop productivity, which includes coffee plants. Mannitol is known to be involved in abiotic stress tolerance in higher plants. This study aimed to investigate the transcriptional responses of genes involved in mannitol biosynthesis and catabolism in C. arabica leaves under water deficit, salt stress and high temperature. Mannitol concentration was significantly increased in leaves of plants under drought and salinity, but reduced by heat stress. Fructose content followed the level of mannitol only in heat-stressed plants, suggesting the partitioning of the former into other metabolites during drought and salt stress conditions. Transcripts of the key enzymes involved in mannitol biosynthesis, CaM6PR, CaPMI and CaMTD, were modulated in distinct ways depending on the abiotic stress. Our data suggest that changes in mannitol accumulation during drought and salt stress in leaves of C. arabica are due, at least in part, to the increased expression of the key genes involved in mannitol biosynthesis. In addition, the homeologs of the Coffea canephora subgenome did not present the same pattern of overall transcriptional response, indicating differential regulation of these genes by the same stimulus. In this way, this study adds new information on the differential expression of C. arabica homeologous genes under adverse environmental conditions showing that abiotic stresses can influence the homeologous gene regulation pattern, in this case, mainly on those involved in mannitol pathway.
Collapse
|
18
|
Yang Z, Peng Z, Wei S, Yu Y. Cloning and characterization of endo-β-1,4-glucanase genes in the common wheat line three pistils. Genet Mol Biol 2013; 36:400-7. [PMID: 24130448 PMCID: PMC3795180 DOI: 10.1590/s1415-47572013000300015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/03/2013] [Indexed: 01/12/2023] Open
Abstract
In this work, we report the cloning and characterization of endo-β-1,4-glucanase (EGase) genes (TaEG) in the common wheat line three pistils. Three TaEG homoeologous genes (TaEG-4A, TaEG-4B and TaEG-4D) were isolated and found to be located on chromosomes 4AL, 4BS and 4DS, respectively. The three genes showed high conservation of their coding nucleotide sequences and 3 untranslated region. The putative TaEG protein had a molecular mass of 69 kDa, a theoretical pI of 9.39 and a transmembrane domain of 74-96 amino acids in the N-terminus that anchored the protein to the membrane. The genome sequences of TaEG-4A, TaEG-4B and TaEG-4D contained six exons and five introns. All of the introns, except for intron IV, varied in length and sequence composition. Phylogenetic analysis revealed that TaEG was most closely related to rice (Oryza sativa) OsGLU1. The TaEG transcript levels increased significantly during the subsidiary pistil primordium differentiation phase (spike size ∼7-10 mm) in Chuanmai 28 TP (CM28TP). These data provide a basis for future research into the function of TaEG and offer insights into the molecular mechanism of the three pistils mutation in wheat.
Collapse
Affiliation(s)
- Zaijun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong City, Sichuan, People's Republic of China
| | | | | | | |
Collapse
|
19
|
Zou C, Lu C, Shang H, Jing X, Cheng H, Zhang Y, Song G. Genome-wide analysis of the Sus gene family in cotton. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:643-53. [PMID: 23691964 DOI: 10.1111/jipb.12068] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/15/2013] [Indexed: 05/09/2023]
Abstract
Sucrose synthase (Sus) is a key enzyme in plant sucrose metabolism. In cotton, Sus (EC 2.4.1.13) is the main enzyme that degrades sucrose imported into cotton fibers from the phloem of the seed coat. This study demonstrated that the genomes of Gossypium arboreum L., G. raimondii Ulbr., and G. hirsutum L., contained 8, 8, and 15 Sus genes, respectively. Their structural organizations, phylogenetic relationships, and expression profiles were characterized. Comparisons of genomic and coding sequences identified multiple introns, the number and positions of which were highly conserved between diploid and allotetraploid cotton species. Most of the phylogenetic clades contained sequences from all three species, suggesting that the Sus genes of tetraploid G. hirsutum derived from those of its diploid ancestors. One Sus group (Sus I) underwent expansion during cotton evolution. Expression analyses indicated that most Sus genes were differentially expressed in various tissues and had development-dependent expression profiles in cotton fiber cells. Members of the same orthologous group had very similar expression patterns in all three species. These results provide new insights into the evolution of the cotton Sus gene family, and insight into its members' physiological functions during fiber growth and development.
Collapse
Affiliation(s)
- Changsong Zou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Li A, Xia T, Xu W, Chen T, Li X, Fan J, Wang R, Feng S, Wang Y, Wang B, Peng L. An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. PLANTA 2013; 237:1585-97. [PMID: 23508664 DOI: 10.1007/s00425-013-1868-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 03/04/2013] [Indexed: 05/20/2023]
Abstract
Cotton fiber is an excellent model system of cellulose biosynthesis; however, it has not been widely studied due to the lack of information about the cellulose synthase (CESA) family of genes in cotton. In this study, we initially identified six full-length CESA genes designated as GhCESA5-GhCESA10. Phylogenetic analysis and gene co-expression profiling revealed that CESA1, CESA2, CESA7, and CESA8 were the major isoforms for secondary cell wall biosynthesis, whereas CESA3, CESA5, CESA6, CESA9, and CESA10 should involve in primary cell wall formation for cotton fiber initiation and elongation. Using integrative analysis of gene expression patterns, CESA protein levels, and cellulose biosynthesis in vivo, we detected that CESA8 could play an enhancing role for rapid and massive cellulose accumulation in Gossypium hirsutum and Gossypium barbadense. We found that CESA2 displayed a major expression in non-fiber tissues and that CESA1, a housekeeping gene like, was predominantly expressed in all tissues. Further, a dynamic alteration was observed in cell wall composition and a significant discrepancy was observed between the cotton species during fiber elongation, suggesting that pectin accumulation and xyloglucan reduction might contribute to cell wall transition. In addition, we discussed that callose synthesis might be regulated in vivo for massive cellulose production during active secondary cell wall biosynthesis in cotton fibers.
Collapse
Affiliation(s)
- Ao Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen A, He S, Li F, Li Z, Ding M, Liu Q, Rong J. Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns. BMC PLANT BIOLOGY 2012; 12:85. [PMID: 22694895 PMCID: PMC3505178 DOI: 10.1186/1471-2229-12-85] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/16/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND In plants, sucrose synthase (Sus) is widely considered as a key enzyme involved in sucrose metabolism. Several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, while limited information of Sus genes is available to date for cotton. RESULTS Here, we report the molecular cloning, structural organization, phylogenetic evolution and expression profiles of seven Sus genes (GaSus1 to 7) identified from diploid fiber cotton (Gossypium arboreum). Comparisons between cDNA and genomic sequences revealed that the cotton GaSus genes were interrupted by multiple introns. Comparative screening of introns in homologous genes demonstrated that the number and position of Sus introns are highly conserved among Sus genes in cotton and other more distantly related plant species. Phylogenetic analysis showed that GaSus1, GaSus2, GaSus3, GaSus4 and GaSus5 could be clustered together into a dicot Sus group, while GaSus6 and GaSus7 were separated evenly into other two groups, with members from both dicot and monocot species. Expression profiles analyses of the seven Sus genes indicated that except GaSus2, of which the transcripts was undetectable in all tissues examined, and GaSus7, which was only expressed in stem and petal, the other five paralogues were differentially expressed in a wide ranges of tissues, and showed development-dependent expression profiles in cotton fiber cells. CONCLUSIONS This is a comprehensive study of the Sus gene family in cotton plant. The results presented in this work provide new insights into the evolutionary conservation and sub-functional divergence of the cotton Sus gene family in response to cotton fiber growth and development.
Collapse
Affiliation(s)
- Aiqun Chen
- School of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shae He
- School of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Feifei Li
- School of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Zhao Li
- School of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Mingquan Ding
- School of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Qingpo Liu
- School of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Junkang Rong
- School of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
22
|
Han X, Xu X, Fang DD, Zhang T, Guo W. Cloning and expression analysis of novel Aux/IAA family genes in Gossypium hirsutum. Gene 2012; 503:83-91. [PMID: 22575728 DOI: 10.1016/j.gene.2012.03.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 01/16/2023]
Abstract
Members of the Aux/IAA gene family encode proteins that mediate the responses of auxin-regulated gene expression and regulate various aspects of plant morphological development. Here, we provide the first identification and characterization of nine cDNAs encoding the complete open reading frame (ORF) of the Aux/IAA family in cotton. These were designated GhAux1 to GhAux9 (Gossypiumhirsutum Aux/IAA). The proteins encoded by these nine genes had either whole or partially conserved domains of the Aux/IAA superfamily, with sequence identity ranging from 14% to 69%. A pair of homeologs exists for each Aux/IAA in G. hirsutum acc. TM-1 with high identity both in ORF sequences and amino acid level. Tissue- and organ-specific analysis showed that transcripts of GhAux1, GhAux2, and GhAux3 were abundant in vegetative organs, whereas GhAux4, GhAux5, GhAux6, and GhAux7 were preferentially expressed in ovules on the day of anthesis. GhAux8 and GhIAA16 (previously reported) were also preferentially expressed during fiber developmental stages, especially GhAux8 in fiber early elongation stages, and GhIAA16 in fiber initiation and secondary cell wall thickening stage. GhAux9 was specifically expressed in developing fibers. During the fiber initiation stage, except for GhAux3 and GhAux6, the expression of the other eight GhAuxs in various lintless-fuzzless and linted-fuzzless mutants demonstrated that they were significantly up-regulated compared with linted-fuzzy TM-1.
Collapse
|
23
|
Jiang Y, Guo W, Zhu H, Ruan YL, Zhang T. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:301-12. [PMID: 22044435 DOI: 10.1111/j.1467-7652.2011.00662.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cotton (Gossypium spp.) is an important economic crop and the largest source of textile fiber in the world. However, to date, only a few genes have been identified that exhibit critical roles in fiber development, and few has shown positive effects on fiber yield and quality in transgenic cotton. Here, we report the characterization of a novel sucrose synthase (SusA1) gene from a superior quality fiber germplasm line 7235 in Gossypium hirsutum. By association analysis, GhSusA1 was highly correlated with fiber qualities in (7235× TM-1) recombinant inbred lines based on polymorphism of GhSusA1 between 7235 and TM-1. Subsequently, based on an interspecific population of 141 BC₁ individuals generated from the cross between TM-1 and Gossypium barbadense line, Hai7124, we further mapped GhSusA1 genes on homeologous chromosomes A8 (chro.8) and D8 (chro.24). Suppression of GhSusA1 in transgenic cotton reduced fiber quality and decreased the boll size and seed weight. Importantly, overexpression of this gene increased fiber length and strength, with the latter indicated by the enhanced thickening of cell wall during secondary wall formation stage. Moreover, increasing GhSusA1 transcript abundance in vegetative tissues led to elevated seedling biomass. Together, these findings identified GhSusA1 as a key regulator of sink strength in cotton, which is tightly associated with productivity, and hence a promising candidate gene that can be developed to increase cotton fiber yield and quality.
Collapse
MESH Headings
- Cell Wall/genetics
- Cell Wall/metabolism
- Cell Wall/physiology
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Chromosomes, Plant/metabolism
- Cloning, Molecular
- Cotton Fiber
- Crosses, Genetic
- Evolution, Molecular
- Gene Expression Regulation, Plant
- Genes, Plant
- Glucosyltransferases/genetics
- Glucosyltransferases/metabolism
- Gossypium/genetics
- Gossypium/metabolism
- Gossypium/physiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Seedlings/genetics
- Seedlings/metabolism
- Seedlings/physiology
- Seeds/metabolism
- Seeds/physiology
- Tetraploidy
Collapse
Affiliation(s)
- Yanjie Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
24
|
Molecular evolution and phylogenetic analysis of genes related to cotton fibers development from wild and domesticated cotton species in Gossypium. Mol Phylogenet Evol 2012; 63:589-97. [PMID: 22381639 DOI: 10.1016/j.ympev.2012.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 12/23/2022]
Abstract
The domestication of both diploid and tetraploid cotton species was carried out for fiber utilization. To understand the origin and domestication of fibers, 18 genes related to fiber development were individually cloned and sequenced from 22 different cotton species. Their structures, phylogenetic relationship and molecular evolution were further studied. In the orthologous and homeologous loci of the 18 genes, the sequence and structure of 72.22% were conserved and 27.78% were diverse. Tree topologies constructed based on the combined sequences showed that all 13 D-genome species were congruent with Fryxell's subsection taxonomy, the A- and D-subgenomes independently evolved in the allopolyploid after polyploid formation, and Gossypium raimondii had the closest relationship with all allotetraploids of D-subgenomes. The molecular evolutionary rates revealed approximately equivalent rates among different D-genome species, and purifying selection acted on all genes in the wild D-genome species. Among orthologs and homeologs, the D-subgenomes had higher evolutionary rates than the A-subgenomes in tetraploid cotton species, and the cultivars had higher evolutionary rates than either the semi-domesticated or wild species. Our study revealed that human domestication altered the molecular evolutionary pattern of genes related to fiber development, and Gossypium hirsutum endured greater selective pressures than Gossypium barbadense during the domestication process.
Collapse
|
25
|
Kim HJ, Triplett BA, Zhang HB, Lee MK, Hinchliffe DJ, Li P, Fang DD. Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.). Gene 2011; 494:181-9. [PMID: 22200568 DOI: 10.1016/j.gene.2011.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 12/25/2022]
Abstract
Cellulose synthase catalytic subunits (CesAs) are the catalytic sites within a multisubunit complex for cellulose biosynthesis in plants. CesAs have been extensively studied in diploid plants, but are not well characterized in polyploid plants. Gossypium hirsutum is an allotetraploid cotton species producing over 90% of the world's cotton fibers. Although G. hirsutum CesAs (GhCesAs) are responsible for cellulose production in cotton fiber, very limited numbers of GhCesA genes have been identified. Here, we report isolating and characterizing a pair of homeologous CesA2 genes and their full-length cDNAs from allotetraploid cotton. The GhCesA2-A(T) gene from the A-subgenome and GhCesA2-D(T) gene from the D-subgenome were screened from a G. hirsutum BAC library. These genes shared 92% sequence similarity throughout the entire sequence. The coding sequences were nearly identical, and the deduced amino acid sequences from GhCesA2-A(T) (1,039 amino acids) and GhCesA2-D(T) (1,040 amino acids) were identical except four amino acids, whereas the noncoding sequences showed divergence. Sequence analyses showed that all exons of GhCesA2-A(T) contained consensus splice donor dinucleotides, but one exon in GhCesA2-D(T) contained nonconsensus splice donor dinucleotides. Although the nonconsensus splice donor dinucleotides were previously suggested to be involved in alternative splice or pseudogenization, our results showed that a majority of GhCesA2-A(T) and GhCesA2-D(T) transcripts consisted of functional and full-length transcripts with little evidence for alternative mRNA isoforms in developing cotton fibers. Expression analyses showed that GhCesA2-A(T) and GhCesA2-D(T) shared common temporal and spatial expression patterns, and they were highly and preferentially expressed during the cellulose biosynthesis stage in developing cotton fibers. The observations of higher expression levels of both GhCesA2-A(T) and GhCesA2-D(T) in developing fibers of one near-isogenic line (NIL) with higher fiber bundle strength over the other NIL with lower fiber bundle strength suggested that the differential expression of genes associated with secondary cell wall cellulose biosynthesis in developing fiber might affect cotton fiber properties.
Collapse
Affiliation(s)
- Hee Jin Kim
- USDA-ARS, Southern Regional Research Center, Cotton Fiber Bioscience, 1100 Robert E. Lee Blvd, New Orleans, LA 70124 USA.
| | | | | | | | | | | | | |
Collapse
|