1
|
Seyed Hajizadeh H, Azizi S, Aghaee A, Karakus S, Kaya O. Nano-silicone and Ascophyllum nodosum-based biostimulant down-regulates the negative effect of in vitro induced-salinity in Rosa damascena. BMC PLANT BIOLOGY 2023; 23:560. [PMID: 37957557 PMCID: PMC10644502 DOI: 10.1186/s12870-023-04584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Rosa damascena is extensively cultivated in various regions of Iran due to its aesthetic attributes, medicinal qualities, and essential oil production. This study investigated the efficacy of Ascophyllum nodosum extract (AnE) at concentrations of 0, 2, and 3 g L- 1 and Nano-silicon (nSiO2) at concentrations of 0, 50, and 100 mg L- 1 in ameliorating the impact of salinity on two genotypes of Damask rose ('Chaharfasl' and 'Kashan') under in vitro culture conditions. Additionally, various physio-chemical characteristics of R. damascena explants were assessed. RESULTS The findings revealed that exposure to 100 mM NaCl resulted in a substantial reduction in the Relative Water Content (RWC), Membrane Stability Index (MSI), leaf pigments (Chlorophyll b, Chlorophyll a, total Chlorophyll, and carotenoids), chlorophyll fluorescence parameters, and protein content in both genotypes when compared to control conditions. Salinity induced a significant increase in the parameter F0 and a decrease in the parameter Fv/Fm compared to the control conditions in both genotypes. Nonetheless, the genotype Kashan treated with 3 g L- 1 AnE + 100 mg L- 1 nSiO2 exhibited the maximum Fm value under control conditions, with a significant difference compared to other treatments. Furthermore, salinity caused a considerable reduction in Fm in both 'Kashan' and 'Chaharfasl' by 22% and 17%, respectively, when compared to the control condition. 'Kashan' displayed the maximum Fv/Fm compared to the other genotype. The maximum levels of Malondialdehyde (MAD) and hydrogen peroxide (H2O2) were also observed in explants affected by salinity. The combination of 3 g L- 1 AnE + 100 mg L- 1 nSiO2, followed by 2 g L- 1 AnE + 100 mg L- 1 nSiO2, exhibited substantial positive effects. Salinity also led to an increase in proline content and the activity of peroxidase (POD), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT) in both genotypes. The activity of these enzymes was further enhanced when AnE was applied at concentrations of 2 and 3 g L- 1 in combination with 100 mg L- 1 nSiO2. CONCLUSIONS The 'Kashan' genotype displayed greater tolerance to salinity by enhancing water balance, maintaining membrane integrity, and augmenting the activity of antioxidant enzymes compared to 'Chaharfasl'. The utilization of nSiO2 and AnE biostimulants demonstrated potential benefits for R. damascena, both under salinity and control conditions. These findings hold substantial importance for researchers, policymakers, and farmers, offering valuable insights into the development of salinity-tolerant crop varieties.
Collapse
Affiliation(s)
- Hanifeh Seyed Hajizadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran.
| | - Sahar Azizi
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran
| | - Ahmad Aghaee
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Sinem Karakus
- Çölemerik Vocational School, Hakkari University, Hakkari, 30000, Turkey
- Republic of Turkey Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, 24060, Turkey
| | - Ozkan Kaya
- Republic of Turkey Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, 24060, Turkey
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
2
|
Krieger C, Halter D, Baltenweck R, Cognat V, Boissinot S, Maia-Grondard A, Erdinger M, Bogaert F, Pichon E, Hugueney P, Brault V, Ziegler-Graff V. An Aphid-Transmitted Virus Reduces the Host Plant Response to Its Vector to Promote Its Transmission. PHYTOPATHOLOGY 2023; 113:1745-1760. [PMID: 37885045 DOI: 10.1094/phyto-12-22-0454-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The success of virus transmission by vectors relies on intricate trophic interactions between three partners, the host plant, the virus, and the vector. Despite numerous studies that showed the capacity of plant viruses to manipulate their host plant to their benefit, and potentially of their transmission, the molecular mechanisms sustaining this phenomenon has not yet been extensively analyzed at the molecular level. In this study, we focused on the deregulations induced in Arabidopsis thaliana by an aphid vector that were alleviated when the plants were infected with turnip yellows virus (TuYV), a polerovirus strictly transmitted by aphids in a circulative and nonpropagative mode. By setting up an experimental design mimicking the natural conditions of virus transmission, we analyzed the deregulations in plants infected with TuYV and infested with aphids by a dual transcriptomic and metabolomic approach. We observed that the virus infection alleviated most of the gene deregulations induced by the aphids in a noninfected plant at both time points analyzed (6 and 72 h) with a more pronounced effect at the later time point of infestation. The metabolic composition of the infected and infested plants was altered in a way that could be beneficial for the vector and the virus transmission. Importantly, these substantial modifications observed in infected and infested plants correlated with a higher TuYV transmission efficiency. This study revealed the capacity of TuYV to alter the plant nutritive content and the defense reaction against the aphid vector to promote the viral transmission.
Collapse
Affiliation(s)
- Célia Krieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - David Halter
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | | | - Valérie Cognat
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | | | | | - Monique Erdinger
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Florent Bogaert
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Elodie Pichon
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | | | - Véronique Brault
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
3
|
Kutty NN, Mishra M. Dynamic distress calls: volatile info chemicals induce and regulate defense responses during herbivory. FRONTIERS IN PLANT SCIENCE 2023; 14:1135000. [PMID: 37416879 PMCID: PMC10322200 DOI: 10.3389/fpls.2023.1135000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 07/08/2023]
Abstract
Plants are continuously threatened by a plethora of biotic stresses caused by microbes, pathogens, and pests, which often act as the major constraint in crop productivity. To overcome such attacks, plants have evolved with an array of constitutive and induced defense mechanisms- morphological, biochemical, and molecular. Volatile organic compounds (VOCs) are a class of specialized metabolites that are naturally emitted by plants and play an important role in plant communication and signaling. During herbivory and mechanical damage, plants also emit an exclusive blend of volatiles often referred to as herbivore-induced plant volatiles (HIPVs). The composition of this unique aroma bouquet is dependent upon the plant species, developmental stage, environment, and herbivore species. HIPVs emitted from infested and non-infested plant parts can prime plant defense responses by various mechanisms such as redox, systemic and jasmonate signaling, activation of mitogen-activated protein (MAP) kinases, and transcription factors; mediate histone modifications; and can also modulate the interactions with natural enemies via direct and indirect mechanisms. These specific volatile cues mediate allelopathic interactions leading to altered transcription of defense-related genes, viz., proteinase inhibitors, amylase inhibitors in neighboring plants, and enhanced levels of defense-related secondary metabolites like terpenoids and phenolic compounds. These factors act as deterrents to feeding insects, attract parasitoids, and provoke behavioral changes in plants and their neighboring species. This review presents an overview of the plasticity identified in HIPVs and their role as regulators of plant defense in Solanaceous plants. The selective emission of green leaf volatiles (GLVs) including hexanal and its derivatives, terpenes, methyl salicylate, and methyl jasmonate (MeJa) inducing direct and indirect defense responses during an attack from phloem-sucking and leaf-chewing pests is discussed. Furthermore, we also focus on the recent developments in the field of metabolic engineering focused on modulation of the volatile bouquet to improve plant defenses.
Collapse
|
4
|
Khodaeiaminjan M, Knoch D, Ndella Thiaw MR, Marchetti CF, Kořínková N, Techer A, Nguyen TD, Chu J, Bertholomey V, Doridant I, Gantet P, Graner A, Neumann K, Bergougnoux V. Genome-wide association study in two-row spring barley landraces identifies QTL associated with plantlets root system architecture traits in well-watered and osmotic stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1125672. [PMID: 37077626 PMCID: PMC10106628 DOI: 10.3389/fpls.2023.1125672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Water availability is undoubtedly one of the most important environmental factors affecting crop production. Drought causes a gradual deprivation of water in the soil from top to deep layers and can occur at diverse stages of plant development. Roots are the first organs that perceive water deficit in soil and their adaptive development contributes to drought adaptation. Domestication has contributed to a bottleneck in genetic diversity. Wild species or landraces represent a pool of genetic diversity that has not been exploited yet in breeding program. In this study, we used a collection of 230 two-row spring barley landraces to detect phenotypic variation in root system plasticity in response to drought and to identify new quantitative trait loci (QTL) involved in root system architecture under diverse growth conditions. For this purpose, young seedlings grown for 21 days in pouches under control and osmotic-stress conditions were phenotyped and genotyped using the barley 50k iSelect SNP array, and genome-wide association studies (GWAS) were conducted using three different GWAS methods (MLM GAPIT, FarmCPU, and BLINK) to detect genotype/phenotype associations. In total, 276 significant marker-trait associations (MTAs; p-value (FDR)< 0.05) were identified for root (14 and 12 traits under osmotic-stress and control conditions, respectively) and for three shoot traits under both conditions. In total, 52 QTL (multi-trait or identified by at least two different GWAS approaches) were investigated to identify genes representing promising candidates with a role in root development and adaptation to drought stress.
Collapse
Affiliation(s)
- Mortaza Khodaeiaminjan
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Cintia F. Marchetti
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Nikola Kořínková
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Alexie Techer
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Thu D. Nguyen
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Jianting Chu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Valentin Bertholomey
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain Centre de Recherche, Chappes, France
| | - Ingrid Doridant
- Limagrain Field Seeds, Traits and Technologies, Groupe Limagrain Centre de Recherche, Chappes, France
| | - Pascal Gantet
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
- Unité Mixte de Recherche DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Andreas Graner
- Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Kerstin Neumann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Véronique Bergougnoux
- Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| |
Collapse
|
5
|
Yadav R, Kumar A, Bano N, Singh P, Pandey A, Dhar YV, Bag SK, Pande V, Sharma P, Singh SP, Iqbal HM, Sanyal I. Co-expression of Cocculus hirsutus trypsin inhibitor with Cry protein reduces resistant development in targeted insects along with complete mortality. INDUSTRIAL CROPS AND PRODUCTS 2022; 188:115674. [DOI: 10.1016/j.indcrop.2022.115674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
6
|
da Silva MS, Gomes VM, Taveira GB, de Azevedo Dos Santos L, Maracahipes ÁC, Rodrigues R, de Oliveira Carvalho A, Fernandes KVS, Oliveira AEA. Bifunctional Inhibitors from Capsicum chinense Seeds with Antimicrobial Activity and Specific Mechanism of Action Against Phytopathogenic Fungi. Protein Pept Lett 2021; 28:149-163. [PMID: 32552632 DOI: 10.2174/0929866527666200617124221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are found in the defense system in virtually all life forms, being present in many, if not all, plant species. OBJECTIVE The present work evaluated the antimicrobial, enzymatic activity and mechanism of action of the PEF2 fraction from Capsicum chinense Jack. seeds against phytopathogenic fungi. METHODS Peptides were extracted from C. chinense seeds and subjected to reverse-phase chromatography on an HPLC system using a C18 column coupled to a C8 guard column, then the obtained PEF2 fraction was rechromatographed using a C2/C18 column. Two fractions, named PEF2A and PEF2B, were obtained. The fractions were tested for antimicrobial activity on Colletotrichum gloeosporioides, Colletotrichum lindemuthianum, Fusarium oxysporum and Fusarium solani. Trypsin inhibition assays, reverse zymographic detection of protease inhibition and α-amylase activity assays were also performed. The mechanism of action by which PEF2 acts on filamentous fungi was studied through analysis of membrane permeability and production of reactive oxygen species (ROS). Additionally, we investigated mitochondrial functionality and caspase activation in fungal cells. RESULTS It is possible to observe that PEF2 significantly inhibited trypsin activity and T. molitor larval α-amylase activity. The PEF2 fraction was able to inhibit the growth of C. gloeosporioides, C. lindemuthianum and F. oxysporum. PEF2A inhibited the growth of C. lindemuthianum (75%) and F. solani (43%). PEF2B inhibited C. lindemuthianum growth (66%) and F. solani (94%). PEF2 permeabilized F. solani cell membranes and induced ROS in F. oxysporum and F. solani. PEF2 could dissipate mitochondrial membrane potential but did not cause the activation of caspases in all studied fungi. CONCLUSION The results may contribute to the biotechnological application of these AMPs in the control of pathogenic microorganisms in plants of agronomic importance.
Collapse
Affiliation(s)
- Marciele Souza da Silva
- Laboratorio de Fisiologia e Bioquimica de Microrganismos, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratorio de Fisiologia e Bioquimica de Microrganismos, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Gabriel Bonan Taveira
- Laboratorio de Fisiologia e Bioquimica de Microrganismos, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Layrana de Azevedo Dos Santos
- Laboratorio de Fisiologia e Bioquimica de Microrganismos, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Álan C Maracahipes
- Laboratorio de Fisiologia e Bioquimica de Microrganismos, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Rosana Rodrigues
- Laboratorio de Melhoramento e Genetica Vegetal, Centro de Ciencias e Tecnologias Agropecuarias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - André de Oliveira Carvalho
- Laboratorio de Fisiologia e Bioquimica de Microrganismos, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Katia Valevski S Fernandes
- Laboratorio de Quimica e Funcao de Proteinas e Peptideos, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Antonia Elenir A Oliveira
- Laboratorio de Quimica e Funcao de Proteinas e Peptideos, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
7
|
Saikhedkar NS, Joshi RS, Yadav AK, Seal S, Fernandes M, Giri AP. Phyto-inspired cyclic peptides derived from plant Pin-II type protease inhibitor reactive center loops for crop protection from insect pests. Biochim Biophys Acta Gen Subj 2019; 1863:1254-1262. [DOI: 10.1016/j.bbagen.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023]
|
8
|
Biochemical analysis of antimicrobial peptides in two different Capsicum genotypes after fruit infection by Colletotrichum gloeosporioides. Biosci Rep 2019; 39:BSR20181889. [PMID: 30902879 PMCID: PMC6481241 DOI: 10.1042/bsr20181889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/27/2019] [Accepted: 03/22/2019] [Indexed: 01/15/2023] Open
Abstract
There are several phytosanitary problems that have been causing serious damage to the Capsicum crops, including anthracnose. Upon attack by certain pathogens, various protein molecules are produced, which are known as proteins related to pathogenesis (PR proteins), including antimicrobial peptides such as protease inhibitors, defensins and lipid transfer proteins (LTPs). The objective of this work is to identify antimicrobial proteins and/or peptides of two genotypes from Capsicum annuum fruits infected with Colletotrichum gloeosporioides. The fungus was inoculated into Capsicum fruits by the deposition of a spore suspension (106 conidia ml−1), and after 24 and 48 h intervals, the fruits were removed from the humid chamber and subjected to a protein extraction process. Protein analysis of the extracts was performed by tricine gel electrophoresis and Western blotting. The distinctive bands between genotypes in the electrophoresis profiles were subjected to mass spectrometry sequencing. Trypsin inhibition assays, reverse zymographic detection of protease inhibition and β-1,3-glucanase activity assays were also performed and extracts were also tested for their ability to inhibit the growth of C. gloeosporioides fungi ‘in vitro’. There were several low molecular weight proteins in all treated samples, and some treatments in which antimicrobial peptides such as defensin, lipid transfer protein (LTP) and protease inhibitor have been identified. It was shown that the green fruits are more responsive to infection, showing the production of antimicrobial peptides in response to injury and inoculation of the fungus, what did not occur in ripe fruits under any treatment.
Collapse
|
9
|
Rehman S, Jørgensen B, Rasmussen SK, Aziz E, Akhtar W, Mahmood T. Expression analysis of proteinase inhibitor-II under OsRGLP2 promoter in response to wounding and signaling molecules in transgenic Nicotiana benthamiana. 3 Biotech 2018; 8:51. [PMID: 29354362 DOI: 10.1007/s13205-017-1070-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022] Open
Abstract
Proteinase inhibitor-II (PI-II) genes are important defense related genes that play critical regulatory roles in plant growth and development. In the present study, the expression of tomato PI-II gene was investigated under the control of a wound-inducible OsRGLP2 (Oryza sativa root germin like protein 2) promoter in transgenic tobacco plants after wounding, ABA and MeJA applications. Transcript level of target gene in transgenic plants was confirmed by quantitative real time PCR (qPCR). In response to ABA treatment at different concentrations, PI-II gene was strongly induced under OsRGLP2 promoter at higher concentration (100 μM), while considerable level of target gene expression was observed with MeJA application at 50 μM concentration. Upon wounding, relatively high PI-II gene expression was observed after 36-h treatment. Correspondingly, high GUS activity was detected at 36 h with histochemical assay and microscopic analysis in the vascular regions of leaves, stem and roots in wounded transgenic plants. This inducibility of PI-II gene by wounding, ABA and MeJA indirectly indicates its role in plant defense mechanism against biotic and abiotic stresses. Moreover, it was also suggested that ABA and MeJA dependent signaling pathways are involved in stimulation of PI-II gene. To the best of our knowledge, this is the first report describing the induction of PI-II gene under the regulation of OsRGLP2 promoter under stress conditions. The results of present research are useful for potential role of PI-II gene to improve stress tolerance in transgenic crops. Thus, efficacy of this gene can potentially be exploited to test the responses of different plants to various environmental stresses.
Collapse
|
10
|
Tanpure RS, Barbole RS, Dawkar VV, Waichal YA, Joshi RS, Giri AP, Gupta VS. Improved tolerance against Helicoverpa armigera in transgenic tomato over-expressing multi-domain proteinase inhibitor gene from Capsicum annuum. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:597-604. [PMID: 28878498 PMCID: PMC5567717 DOI: 10.1007/s12298-017-0456-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 05/12/2023]
Abstract
Plant proteinase inhibitors (PIs) are plant defense proteins and considered as potential candidates for engineering plant resistances against herbivores. Capsicum annuum proteinase inhibitor (CanPI7) is a multi-domain potato type II inhibitor (Pin-II) containing four inhibitory repeat domains (IRD), which target major classes of digestive enzymes in the gut of Helicoverpa armigera larvae. Stable integration and expression of the transgene in T1 transgenic generation, were confirmed by established molecular techniques. Protein extract of transgenic tomato lines showed increased inhibitory activity against H. armigera gut proteinases, supporting those domains of CanPI7 protein to be effective and active. When T1 generation plants were analyzed, they exhibited antibiosis effect against first instar larvae of H. armigera. Further, larvae fed on transgenic tomato leaves showed delayed growth relative to larvae fed on control plants, but did not change mortality rates significantly. Thus, better crop protection can be achieved in transgenic tomato by overexpression of multi-domain proteinase inhibitor CanPI7 gene against H. armigera larvae.
Collapse
Affiliation(s)
- Rahul S. Tanpure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411008 India
| | - Ranjit S. Barbole
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411008 India
| | - Vishal V. Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411008 India
| | - Yashashree A. Waichal
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411008 India
| | - Rakesh S. Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, MS 411007 India
| | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411008 India
| | - Vidya S. Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, MS 411008 India
| |
Collapse
|
11
|
Bhide AJ, Channale SM, Yadav Y, Bhattacharjee K, Pawar PK, Maheshwari VL, Gupta VS, Ramasamy S, Giri AP. Genomic and functional characterization of coleopteran insect-specific α-amylase inhibitor gene from Amaranthus species. PLANT MOLECULAR BIOLOGY 2017; 94:319-332. [PMID: 28405784 DOI: 10.1007/s11103-017-0609-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
The smallest 32 amino acid α-amylase inhibitor from Amaranthus hypochondriacus (AAI) is reported. The complete gene of pre-protein (AhAI) encoding a 26 amino acid (aa) signal peptide followed by the 43 aa region and the previously identified 32 aa peptide was cloned successfully. Three cysteine residues and one disulfide bond conserved within known α-amylase inhibitors were present in AhAI. Identical genomic and open reading frame was found to be present in close relatives of A. hypochondriacus namely Amaranthus paniculatus, Achyranthes aspera and Celosia argentea. Interestingly, the 3'UTR of AhAI varied in these species. The highest expression of AhAI was observed in A. hypochondriacus inflorescence; however, it was not detected in the seed. We hypothesized that the inhibitor expressed in leaves and inflorescence might be transported to the seeds. Sub-cellular localization studies clearly indicated the involvement of AhAI signal peptide in extracellular secretion. Full length rAhAI showed differential inhibition against α-amylases from human, insects, fungi and bacteria. Particularly, α-amylases from Helicoverpa armigera (Lepidoptera) were not inhibited by AhAI while Tribolium castaneum and Callosobruchus chinensis (Coleoptera) α-amylases were completely inhibited. Molecular docking of AhAI revealed tighter interactions with active site residues of T. castaneum α-amylase compared to C. chinensis α-amylase, which could be the rationale behind the disparity in their IC50. Normal growth, development and adult emergence of C. chinensis were hampered after feeding on rAhAI. Altogether, the ability of AhAI to affect the growth of C. chinensis demonstrated its potential as an efficient bio-control agent, especially against stored grain pests.
Collapse
Affiliation(s)
- Amey J Bhide
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Sonal M Channale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Yashpal Yadav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Kabita Bhattacharjee
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Pankaj K Pawar
- Department of Biochemistry, Shivaji University, Kolhapur, 416 004, India
| | - V L Maheshwari
- School of Life Sciences, North Maharashtra University, Jalgaon, 425 001, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Sureshkumar Ramasamy
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.
| |
Collapse
|
12
|
Rehman S, Aziz E, Akhtar W, Ilyas M, Mahmood T. Structural and functional characteristics of plant proteinase inhibitor-II (PI-II) family. Biotechnol Lett 2017; 39:647-666. [PMID: 28185031 DOI: 10.1007/s10529-017-2298-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
Plant proteinase inhibitor-II (PI-II) proteins are one of the promising defensive proteins that helped the plants to resist against different kinds of unfavorable conditions. Different roles for PI-II have been suggested such as regulation of endogenous proteases, modulation of plant growth and developmental processes and mediating stress responses. The basic knowledge on genetic and molecular diversity of these proteins has provided significant insight into their gene structure and evolutionary relationships in various members of this family. Phylogenetic comparisons of these family genes in different plants suggested that the high rate of retention of gene duplication and inhibitory domain multiplication may have resulted in the expansion and functional diversification of these proteins. Currently, a large number of transgenic plants expressing PI-II genes are being developed for enhancing the defensive capabilities against insects, bacteria and pathogenic fungi. Much emphasis is yet to be given to exploit this ever expanding repertoire of genes for improving abiotic stress resistance in transgenic crops. This review presents an overview about the current knowledge on PI-II family genes, their multifunctional role in plant defense and physiology with their potential applications in biotechnology.
Collapse
Affiliation(s)
- Shazia Rehman
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ejaz Aziz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Wasim Akhtar
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Ilyas
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
13
|
Jadhav AR, War AR, Nikam AN, Adhav AS, Gupta VS, Sharma HC, Giri AP, Tamhane VA. Capsicum annuum proteinase inhibitor ingestion negatively impacts the growth of sorghum pest Chilo partellus and promotes differential protease expression. Biochem Biophys Rep 2016; 8:302-309. [PMID: 28955969 PMCID: PMC5614469 DOI: 10.1016/j.bbrep.2016.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/17/2023] Open
Abstract
Background Chilo partellus is an important insect pest infesting sorghum and maize. The larvae internalize in the stem, rendering difficulties in pest management. We investigated the effects of Capsicum annuum proteinase inhibitors (CanPIs) on C. partellus larvae by in-vitro and in-vivo experiments. Methods Recombinant CanPI-7 (with four-Inhibitory Repeat Domains, IRDs), -22 (two-IRDs) and insect proteinase activities were estimated by proteinase assays, dot blot assays and in gel activity assays. Feeding bioassays of lab reared C. partellus with CanPI-7 and -22 were performed. C. partellus proteinase gene expression was done by RT-PCR. In-silico structure prediction of proteinases and CanPI IRDs was carried out, their validation and molecular docking was done for estimating the interaction strength. Results Larval proteinases of C. partellus showed higher activity at alkaline pH and expressed few proteinase isoforms. Both CanPIs showed strong inhibition of C. partellus larval proteinases. Feeding bioassays of C. partellus with CanPIs revealed a dose dependent retardation of larval growth, reduction of pupal mass and fecundity, while larval and pupal periods increased significantly. Ingestion of CanPIs resulted in differential up-regulation of C. partellus proteinase isoforms, which were sensitive to CanPI-7 but were insensitive to CanPI-22. In-silico interaction studies indicated the strong interaction of IRD-9 (of CanPI-22) with Chilo proteinases tested. Conclusions Of the two PIs tested, CanPI-7 prevents induction of inhibitor insensitive proteinases in C. partellus so it can be explored for developing C. partellus tolerance in sorghum. General significance Ingestion of CanPIs, effectively retards C. partellus growth; while differentially regulating the proteinases. CanPI-7 and -22 ingestion led to dose-dependent growth and development retardation in Chilo partellus. Ingestion of CanPIs showed up-regulation of proteinase activity and differential proteinase isoforms in C. partellus. CanPI-7/-22 induced differential proteinases of C. partellus were sensitive to CanPI-7 and were insensitive to CanPI-22. Molecular interaction studies of C. partellus proteinases and CanPIs identified a potent inhibitor.
Collapse
Affiliation(s)
- Abhilash R Jadhav
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India
| | - Abdul R War
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Ashwini N Nikam
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India
| | - Anmol S Adhav
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Hari C Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Vaijayanti A Tamhane
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind Road, Pune 411 007, Maharashtra, India
| |
Collapse
|
14
|
Alagna F, Kallenbach M, Pompa A, De Marchis F, Rao R, Baldwin IT, Bonaventure G, Baldoni L. Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:413-25. [PMID: 25727685 DOI: 10.1111/jipb.12343] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/25/2015] [Indexed: 05/20/2023]
Abstract
Olive fly (Bactrocera oleae R.) is the most harmful insect pest of olive (Olea europaea L.) which strongly affects fruits and oil production. Despite the expanding economic importance of olive cultivation, up to now, only limited information on plant responses to B. oleae is available. Here, we demonstrate that olive fruits respond to B. oleae attack by producing changes in an array of different defensive compounds including phytohormones, volatile organic compounds (VOCs), and defense proteins. Bactrocera oleae-infested fruits induced a strong ethylene burst and transcript levels of several putative ethylene-responsive transcription factors became significantly upregulated. Moreover, infested fruits induced significant changes in the levels of 12-oxo-phytodienoic acid and C12 derivatives of the hydroperoxide lyase. The emission of VOCs was also changed quantitatively and qualitatively in insect-damaged fruits, indicating that B. oleae larval feeding can specifically affect the volatile blend of fruits. Finally, we show that larval infestation maintained high levels of trypsin protease inhibitors in ripe fruits, probably by affecting post-transcriptional mechanisms. Our results provide novel and important information to understand the response of the olive fruit to B. oleae attack; information that can shed light onto potential new strategies to combat this pest.
Collapse
Affiliation(s)
- Fiammetta Alagna
- CNR-Institute of Biosciences and Bioresources (IBBR), Perugia, 06128, Italy
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, Jena, 07745, Germany
| | - Andrea Pompa
- CNR-Institute of Biosciences and Bioresources (IBBR), Perugia, 06128, Italy
| | | | - Rosa Rao
- Department of Agronomy, University of Naples "Federico II", 80055, Portici, Italy
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, Jena, 07745, Germany
| | - Gustavo Bonaventure
- Department of Molecular Ecology, Max Planck Institute of Chemical Ecology, Jena, 07745, Germany
| | - Luciana Baldoni
- CNR-Institute of Biosciences and Bioresources (IBBR), Perugia, 06128, Italy
| |
Collapse
|
15
|
Rasoolizadeh A, Goulet MC, Sainsbury F, Cloutier C, Michaud D. Single substitutions to closely related amino acids contribute to the functional diversification of an insect-inducible, positively selected plant cystatin. FEBS J 2016; 283:1323-35. [DOI: 10.1111/febs.13671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/12/2016] [Accepted: 01/25/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Frank Sainsbury
- Département de Phytologie; Université Laval; Québec City Canada
| | - Conrad Cloutier
- Département de Biologie; Université Laval; Québec City Canada
| | | |
Collapse
|
16
|
Vorster J, Rasoolizadeh A, Goulet MC, Cloutier C, Sainsbury F, Michaud D. Positive selection of digestive Cys proteases in herbivorous Coleoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:10-19. [PMID: 26264818 DOI: 10.1016/j.ibmb.2015.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 07/22/2015] [Accepted: 07/31/2015] [Indexed: 06/04/2023]
Abstract
Positive selection is thought to contribute to the functional diversification of insect-inducible protease inhibitors in plants in response to selective pressures exerted by the digestive proteases of their herbivorous enemies. Here we assessed whether a reciprocal evolutionary process takes place on the insect side, and whether ingestion of a positively selected plant inhibitor may translate into a measurable rebalancing of midgut proteases in vivo. Midgut Cys proteases of herbivorous Coleoptera, including the major pest Colorado potato beetle (Leptinotarsa decemlineata), were first compared using a codon-based evolutionary model to look for the occurrence of hypervariable, positively selected amino acid sites among the tested sequences. Hypervariable sites were found, distributed within -or close to- amino acid regions interacting with Cys-type inhibitors of the plant cystatin protein family. A close examination of L. decemlineata sequences indicated a link between their assignment to protease functional families and amino acid identity at positively selected sites. A function-diversifying role for positive selection was further suggested empirically by in vitro protease assays and a shotgun proteomic analysis of L. decemlineata Cys proteases showing a differential rebalancing of protease functional family complements in larvae fed single variants of a model cystatin mutated at positively selected amino acid sites. These data confirm overall the occurrence of hypervariable, positively selected amino acid sites in herbivorous Coleoptera digestive Cys proteases. They also support the idea of an adaptive role for positive selection, useful to generate functionally diverse proteases in insect herbivores ingesting functionally diverse, rapidly evolving dietary cystatins.
Collapse
Affiliation(s)
- Juan Vorster
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada; Department of Plant and Soil Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Asieh Rasoolizadeh
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Marie-Claire Goulet
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Conrad Cloutier
- Département de biologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Frank Sainsbury
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada; The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St. Lucia, Queensland 4072, Australia
| | - Dominique Michaud
- Département de phytologie, CRIV-Biotechnologie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
17
|
Mahajan NS, Dewangan V, Lomate PR, Joshi RS, Mishra M, Gupta VS, Giri AP. Structural features of diverse Pin-II proteinase inhibitor genes from Capsicum annuum. PLANTA 2015; 241:319-331. [PMID: 25269396 DOI: 10.1007/s00425-014-2177-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
The proteinase inhibitor (PI) genes from Capsicum annuum were characterized with respect to their UTR, introns and promoter elements. The occurrence of PIs with circularly permuted domain organization was evident. Several potato inhibitor II (Pin-II) type proteinase inhibitor (PI) genes have been analyzed from Capsicum annuum (L.) with respect to their differential expression during plant defense response. However, complete gene characterization of any of these C. annuum PIs (CanPIs) has not been carried out so far. Complete gene architectures of a previously identified CanPI-7 (Beads-on-string, Type A) and a member of newly isolated Bracelet type B, CanPI-69 are reported in this study. The 5' UTR (untranslated region), 3'UTR, and intronic sequences of both the CanPI genes were obtained. The genomic sequence of CanPI-7 exhibited, exon 1 (49 base pair, bp) and exon 2 (740 bp) interrupted by a 294-bp long type I intron. We noted the occurrence of three multi-domain PIs (CanPI-69, 70, 71) with circularly permuted domain organization. CanPI-69 was found to possess exon 1 (49 bp), exon 2 (551 bp) and a 584-bp long type I intron. The upstream sequence analysis of CanPI-7 and CanPI-69 predicted various transcription factor-binding sites including TATA and CAAT boxes, hormone-responsive elements (ABRELATERD1, DOFCOREZM, ERELEE4), and a defense-responsive element (WRKY71OS). Binding of transcription factors such as zinc finger motif MADS-box and MYB to the promoter regions was confirmed using electrophoretic mobility shift assay followed by mass spectrometric identification. The 3' UTR analysis for 25 CanPI genes revealed unique/distinct 3' UTR sequence for each gene. Structures of three domain CanPIs of type A and B were predicted and further analyzed for their attributes. This investigation of CanPI gene architecture will enable the better understanding of the genetic elements present in CanPIs.
Collapse
Affiliation(s)
- Neha S Mahajan
- Division of Biochemical Sciences, Plant Molecular Biology Unit, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, Maharashtra, India
| | | | | | | | | | | | | |
Collapse
|
18
|
Mahajan NS, Mishra M, Tamhane VA, Gupta VS, Giri AP. Stress inducible proteomic changes in Capsicum annuum leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:212-7. [PMID: 24316010 DOI: 10.1016/j.plaphy.2013.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/15/2013] [Indexed: 05/24/2023]
Abstract
Herbivore attack induces defense responses in plants, activating several signaling cascades. As a result, molecules deterrent to the herbivores are produced and accumulated in plants. Expression of defense mechanism/traits requires reorganization of the plant metabolism, redirecting the resources otherwise meant for growth. In the present work, protein profile of Capsicum annuum leaves was examined after herbivore attack/induction. Majority of proteins identified as differentially accumulated, were having roles in redox metabolism and photosynthesis. For example, superoxide dismutase and NADP oxidoreductase were upregulated by 10- and 6-fold while carbonic anhydrase and fructose-1,6-bisphosphatase were downregulated by 9- and 4-fold, respectively. Also, superoxide dismutase, NADPH quinone oxidoreductase and NADP dependent isocitrate dehydrogenase transcripts showed a higher accumulation in induced leaf tissues at early time points. In general, proteins having role in defense and damage repair were upregulated while those involved in photosynthesis appeared downregulated. Thus metabolic reconfiguration to balance defense and tolerance was evident in the stress-induced leaves.
Collapse
Affiliation(s)
- Neha S Mahajan
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Manasi Mishra
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Vaijayanti A Tamhane
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India.
| |
Collapse
|
19
|
Wen L, Tan TL, Shu JB, Chen Y, Liu Y, Yang ZF, Zhang QP, Yin MZ, Tao J, Guan CY. Using proteomic analysis to find the proteins involved in resistance against Sclerotinia sclerotiorum in adult Brassica napus. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2013; 137:505-523. [DOI: 10.1007/s10658-013-0262-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|