1
|
Crombez H, Motte H, Beeckman T. Tackling Plant Phosphate Starvation by the Roots. Dev Cell 2019; 48:599-615. [PMID: 30861374 DOI: 10.1016/j.devcel.2019.01.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
Plant responses to phosphate deprivation encompass a wide range of strategies, varying from altering root system architecture, entering symbiotic interactions to excreting root exudates for phosphorous release, and recycling of internal phosphate. These processes are tightly controlled by a complex network of proteins that are specifically upregulated upon phosphate starvation. Although the different effects of phosphate starvation have been intensely studied, the full extent of its contribution to altered root system architecture remains unclear. In this review, we focus on the effect of phosphate starvation on the developmental processes that shape the plant root system and their underlying molecular pathways.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium.
| |
Collapse
|
2
|
Swarbreck SM, Guerringue Y, Matthus E, Jamieson FJC, Davies JM. Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:607-621. [PMID: 30659713 PMCID: PMC6563046 DOI: 10.1111/tpj.14233] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 05/20/2023]
Abstract
Roots form highly complex systems varying in growth direction and branching pattern to forage for nutrients efficiently. Here mutations in the KAI2 (KARRIKIN INSENSITIVE) α/β-fold hydrolase and the MAX2 (MORE AXILLARY GROWTH 2) F-box leucine-rich protein, which together perceive karrikins (smoke-derived butenolides), caused alteration in root skewing in Arabidopsis thaliana. This phenotype was independent of endogenous strigolactones perception by the D14 α/β-fold hydrolase and MAX2. Thus, KAI2/MAX2 effect on root growth may be through the perception of endogenous KAI2-ligands (KLs), which have yet to be identified. Upon perception of a ligand, a KAI2/MAX2 complex is formed together with additional target proteins before ubiquitination and degradation through the 26S proteasome. Using a genetic approach, we show that SMAX1 (SUPPRESSOR OF MAX2-1)/SMXL2 and SMXL6,7,8 (SUPPRESSOR OF MAX2-1-LIKE) are also likely degradation targets for the KAI2/MAX2 complex in the context of root skewing. In A. thaliana therefore, KAI2 and MAX2 act to limit root skewing, while kai2's gravitropic and mechano-sensing responses remained largely unaffected. Many proteins are involved in root skewing, and we investigated the link between MAX2 and two members of the SKS/SKU family. Though KLs are yet to be identified in plants, our data support the hypothesis that they are present and can affect root skewing.
Collapse
Affiliation(s)
| | - Yannick Guerringue
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
- ENS de Lyon ‐ Site MonodLyon69007France
| | - Elsa Matthus
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Fiona J. C. Jamieson
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Julia M. Davies
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| |
Collapse
|
3
|
Nziengui H, Lasok H, Kochersperger P, Ruperti B, Rébeillé F, Palme K, Ditengou FA. Root Gravitropism Is Regulated by a Crosstalk between para-Aminobenzoic Acid, Ethylene, and Auxin. PLANT PHYSIOLOGY 2018; 178:1370-1389. [PMID: 30275058 PMCID: PMC6236604 DOI: 10.1104/pp.18.00126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/13/2018] [Indexed: 05/04/2023]
Abstract
Plants respond to gravitational force through directional growth along the gravity vector. Although auxin is the central component of the root graviresponse, it works in concert with other plant hormones. Here, we show that the folate precursor para-aminobenzoic acid (PABA) is a key modulator of the auxin-ethylene interplay during root gravitropism in Arabidopsis (Arabidopsis thaliana). In gravistimulated roots, PABA promotes an asymmetric auxin response, which causes the asymmetric growth responsible for root curvature. This activity requires the auxin response transcription factors AUXIN RESPONSE FACTOR7 (ARF7) and ARF19 as well as ethylene biosynthesis and signaling, indicating that PABA activity requires both auxin and ethylene pathways. Similar to ethylene, exogenous PABA reverses the agravitropic root growth of the auxin transport mutant pin-formed2 (pin2) and the auxin biosynthetic double mutant with loss of function of weak ethylene insensitive (wei) genes, wei8wei2, but not the pin2wei8wei2 triple mutant. This finding suggests that PABA regulates the ethylene-dependent reciprocal compensation between auxin transport and biosynthesis. Furthermore, manipulation of endogenous free PABA levels by modulating the expression of the gene encoding its glucosylation enzyme, UDP-GLYCOSYL TRANSFERASE75B1, impacts the root graviresponse, suggesting that endogenous free PABA levels may play a crucial role in modulating the auxin-ethylene cross talk necessary for root gravitropism.
Collapse
Affiliation(s)
- Hugues Nziengui
- Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Hanna Lasok
- Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Philip Kochersperger
- Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, 35020 Legnaro (Padova), Italy
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, Commissariat à l'Energie Atomique-Grenoble, F-38054 Grenoble cedex 9, France
| | - Klaus Palme
- Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Franck Anicet Ditengou
- Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
4
|
Resistance from agar medium impacts the helical growth of Arabidopsis primary roots. J Mech Behav Biomed Mater 2018; 85:43-50. [PMID: 29852351 DOI: 10.1016/j.jmbbm.2018.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/31/2017] [Accepted: 05/09/2018] [Indexed: 10/14/2022]
Abstract
Agar is widely used in studies of root growth since it can be mixed at different concentrations to impact mechanical impedance. At high concentrations (1.2-1.5%), growth of Arabidopsis roots has been found to be wavy, but little research has explored this behavior based on a quantitative understanding of mechanical behavior. To this end, agar media with concentration ranging from 0.5% to 1.2% were prepared to produce gradient resistance during root penetration, and Young's moduli and penetrometer resistance were tested. Arabidopsis roots were then cultivated in these agar media with gradient stiffness. The result showed that Young's modulus increased linearly with the increase of concentration of agar media. For Arabidopsis primary roots, it was preferred to develop a helical pattern in agar media with concentration from 0.5% to 1.0%. As stiffness of agar increased, the percentage of helical roots and helix diameters in each agar medium declined; root lengths and auxin distributions showed variety. We demonstrate that the size of helical deformation decreases with agar stiffness as expected by theoretical analysis based on a combination of growth-induced mechanical buckling. In conclusion, the resistance from agar media impacts the properties of root helix, and helical roots growth is driven by growth force. Growth force and external mechanical forces contribute to root phenotypes in Arabidopsis.
Collapse
|
5
|
Yang X, Wang B, Farris B, Clark G, Roux SJ. Modulation of Root Skewing in Arabidopsis by Apyrases and Extracellular ATP. PLANT & CELL PHYSIOLOGY 2015; 56:2197-206. [PMID: 26412783 DOI: 10.1093/pcp/pcv134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/16/2015] [Indexed: 05/04/2023]
Abstract
When plant primary roots grow along a tilted surface that is impenetrable, they can undergo a slanted deviation from the direction of gravity called skewing. Skewing is induced by touch stimuli which the roots experience as they grow along the surface. Touch stimuli also induce the release of extracellular ATP (eATP) into the plant's extracellular matrix, and two apyrases (NTPDases) in Arabidopsis, APY1 and APY2, can help regulate the concentration of eATP. The primary roots of seedlings overexpressing APY1 show less skewing than wild-type plants. Plants suppressed in their expression of APY1 show more skewing than wild-type plants. Correspondingly, chemical inhibition of apyrase activity increased skewing in mutants and wild-type roots. Exogenous application of ATP or ATPγS also increased skewing in wild-type roots, which could be blocked by co-incubation with a purinergic receptor antagonist. These results suggest a model in which gradients of eATP set up by differential touch stimuli along roots help direct skewing in roots growing along an impenetrable surface.
Collapse
Affiliation(s)
- Xingyan Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Ben Farris
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stanley J Roux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
Masi E, Ciszak M, Comparini D, Monetti E, Pandolfi C, Azzarello E, Mugnai S, Baluška F, Mancuso S. The electrical network of maize root apex is gravity dependent. Sci Rep 2015; 5:7730. [PMID: 25588706 PMCID: PMC4295110 DOI: 10.1038/srep07730] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/09/2014] [Indexed: 12/25/2022] Open
Abstract
Investigations carried out on maize roots under microgravity and hypergravity revealed that gravity conditions have strong effects on the network of plant electrical activity. Both the duration of action potentials (APs) and their propagation velocities were significantly affected by gravity. Similarly to what was reported for animals, increased gravity forces speed-up APs and enhance synchronized electrical events also in plants. The root apex transition zone emerges as the most active, as well as the most sensitive, root region in this respect.
Collapse
Affiliation(s)
- Elisa Masi
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Marzena Ciszak
- 1] LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy [2] CNR, National Institute of Optics (INO), L.go E. Fermi 6, 50125 Florence, Italy
| | - Diego Comparini
- 1] LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy [2] LINV@Kitakyushu Research Center, University of Kitakyushu, 808-0135 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, Japan
| | - Emanuela Monetti
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Camilla Pandolfi
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Elisa Azzarello
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Sergio Mugnai
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Frantisek Baluška
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Stefano Mancuso
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
7
|
Nakano M, Samejima R, Iida H. Mechanosensitive channel candidate MCA2 is involved in touch-induced root responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:421. [PMID: 25191336 PMCID: PMC4140169 DOI: 10.3389/fpls.2014.00421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/06/2014] [Indexed: 05/26/2023]
Abstract
The Ca(2+)-permeable mechanosensitive (MS) channel is a mechanical stress sensor. We previously reported that Arabidopsis MCA1 and its paralog MCA2 functioned individually as Ca(2+)-permeable MS channels. In the present study, we showed that the primary roots of the mca2-null mutant behaved abnormally on the surface of hard medium. First, primary roots are known to exhibit a skewing growth pattern on the surface of vertically placed agar medium. On such surface, the primary roots of mca2-null skewed more than those of the wild type. Second, when seedlings were grown on a tilted agar surface, the primary root of mca2-null showed abnormal waving patterns. Third, wild-type seedlings eventually died when grown on horizontally placed 3.2% gelrite medium, which was too hard to allow the primary roots of the wild type to penetrate, because their primary roots sprang from the surface of the medium and may have been unable to absorb water and nutrients. In contrast, the primary roots of mca2-null, but not those of mca1-null, were able to creep over the surface of the medium and grow. Fourth, when grown on the surface of 3.2% agar medium supplemented with 30 mM CaCl2, only mca2-null grew with a root that coiled in a clockwise direction. Lastly, on the surface of vertically placed rectangular plates that allowed primary roots to grow vertically down to the frame of the plate, wild-type primary roots grew horizontally after touching the frame at an angle of 90(∘). During the horizontal growth, only the extreme root tips maintained contact with the frame. In contrast, the primary roots of mca2-null allowed not only the extreme root tips, but also the meristem and elongation zones to maintain contact with the frame during horizontal growth. These results suggest that MCA2 is involved in touch-related root responses.
Collapse
Affiliation(s)
| | | | - Hidetoshi Iida
- *Correspondence: Hidetoshi Iida, Department of Biology, Tokyo Gakugei University, 4-1-1 Kukui kita-machi, Koganei-shi, Tokyo 184-8501, Japan e-mail:
| |
Collapse
|
8
|
Ruyters G, Braun M. Plant biology in space: recent accomplishments and recommendations for future research. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:4-11. [PMID: 24373009 DOI: 10.1111/plb.12127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/02/2013] [Indexed: 05/14/2023]
Abstract
Gravity has shaped the evolution of life since its origin. However, experiments in the absence of this overriding force, necessary to precisely analyse its role, e.g. for growth, development, and orientation of plants and single cells, only became possible with the advent of spaceflight. Consequently, this research has been supported especially by space agencies around the world for decades, mainly for two reasons: first, to enable fundamental research on gravity perception and transduction during growth and development of plants; and second, to successfully grow plants under microgravity conditions with the goal of establishing a bioregenerative life support system providing oxygen and food for astronauts in long-term exploratory missions. For the second time, the International Space Life Sciences Working Group (ISLSWG), comprised of space agencies with substantial life sciences programmes in the world, organised a workshop on plant biology research in space. The present contribution summarises the outcome of this workshop. In the first part, an analysis is undertaken, if and how the recommendations of the first workshop held in Bad Honnef, Germany, in 1996 have been implemented. A chapter summarising major scientific breakthroughs obtained in the last 15 years from plant research in space concludes this first part. In the second part, recommendations for future research in plant biology in space are put together that have been elaborated in the various discussion sessions during the workshop, as well as provided in written statements from the session chairs. The present paper clearly shows that plant biology in space has contributed significantly to progress in plant gravity perception, transduction and responses - processes also relevant for general plant biology, including agricultural aspects. In addition, the interplay between light and gravity effects has increasingly received attention. It also became evident that plants will play a major role as components of bioregenerative life support and energy systems that are necessary to complement physico-chemical systems in upcoming long-term exploratory missions. In order to achieve major progress in the future, however, standardised experimental conditions and more advanced analytical tools, such as state-of-the-art onboard analysis, are required.
Collapse
Affiliation(s)
- G Ruyters
- German Space Administration (DLR), Bonn, Germany
| | | |
Collapse
|
9
|
Kordyum EL. Plant cell gravisensitivity and adaptation to microgravity. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:79-90. [PMID: 23731198 DOI: 10.1111/plb.12047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/09/2013] [Indexed: 05/11/2023]
Abstract
A short overview on the effects of real and simulated microgravity on certain cell components and processes, including new information obtained recently, is presented. Attention is focused on the influence of real and simulated microgravity on plant cells that are not specialised to gravity perception and on seed formation. The paper considers the possibility of full adaptation of plants to microgravity, and suggests some questions for future plant research in order to make decisions on fundamental and applied problems of plant space biology.
Collapse
Affiliation(s)
- E L Kordyum
- Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
10
|
Toyota M, Furuichi T, Sokabe M, Tatsumi H. Analyses of a gravistimulation-specific Ca2+ signature in Arabidopsis using parabolic flights. PLANT PHYSIOLOGY 2013; 163:543-54. [PMID: 23835410 PMCID: PMC3793036 DOI: 10.1104/pp.113.223313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gravity is a critical environmental factor affecting the morphology and functions of organisms on the Earth. Plants sense changes in the gravity vector (gravistimulation) and regulate their growth direction accordingly. In Arabidopsis (Arabidopsis thaliana) seedlings, gravistimulation, achieved by rotating the specimens under the ambient 1g of the Earth, is known to induce a biphasic (transient and sustained) increase in cytoplasmic calcium concentration ([Ca(2+)]c). However, the [Ca(2+)]c increase genuinely caused by gravistimulation has not been identified because gravistimulation is generally accompanied by rotation of specimens on the ground (1g), adding an additional mechanical signal to the treatment. Here, we demonstrate a gravistimulation-specific Ca(2+) response in Arabidopsis seedlings by separating rotation from gravistimulation by using the microgravity (less than 10(-4)g) conditions provided by parabolic flights. Gravistimulation without rotating the specimen caused a sustained [Ca(2+)]c increase, which corresponds closely to the second sustained [Ca(2+)]c increase observed in ground experiments. The [Ca(2+)]c increases were analyzed under a variety of gravity intensities (e.g. 0.5g, 1.5g, or 2g) combined with rapid switching between hypergravity and microgravity, demonstrating that Arabidopsis seedlings possess a very rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes (0.5g-2g) into Ca(2+) signals on a subsecond time scale.
Collapse
|