1
|
Ochoa-Alejo N, Gómez-Jiménez MC, Martínez O. Editorial: Transcriptomics of fruit growth, development and ripening. FRONTIERS IN PLANT SCIENCE 2024; 15:1399376. [PMID: 38645390 PMCID: PMC11026863 DOI: 10.3389/fpls.2024.1399376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Neftali Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico
| | | | - Octavio Martínez
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| |
Collapse
|
2
|
Song K, Zhang X, Liu J, Yao Q, Li Y, Hou X, Liu S, Qiu X, Yang Y, Chen L, Hong K, Lin L. Integration of Metabolomics and Transcriptomics to Explore Dynamic Alterations in Fruit Color and Quality in 'Comte de Paris' Pineapples during Ripening Processes. Int J Mol Sci 2023; 24:16384. [PMID: 38003574 PMCID: PMC10671212 DOI: 10.3390/ijms242216384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Pineapple color yellowing and quality promotion gradually manifest as pineapple fruit ripening progresses. To understand the molecular mechanism underlying yellowing in pineapples during ripening, coupled with alterations in fruit quality, comprehensive metabolome and transcriptome investigations were carried out. These investigations were conducted using pulp samples collected at three distinct stages of maturity: young fruit (YF), mature fruit (MF), and fully mature fruit (FMF). This study revealed a noteworthy increase in the levels of total phenols and flavones, coupled with a concurrent decline in lignin and total acid contents as the fruit transitioned from YF to FMF. Furthermore, the analysis yielded 167 differentially accumulated metabolites (DAMs) and 2194 differentially expressed genes (DEGs). Integration analysis based on DAMs and DEGs revealed that the biosynthesis of plant secondary metabolites, particularly the flavonol, flavonoid, and phenypropanoid pathways, plays a pivotal role in fruit yellowing. Additionally, RNA-seq analysis showed that structural genes, such as FLS, FNS, F3H, DFR, ANR, and GST, in the flavonoid biosynthetic pathway were upregulated, whereas the COMT, CCR, and CAD genes involved in lignin metabolism were downregulated as fruit ripening progressed. APX as well as PPO, and ACO genes related to the organic acid accumulations were upregulated and downregulated, respectively. Importantly, a comprehensive regulatory network encompassing genes that contribute to the metabolism of flavones, flavonols, lignin, and organic acids was proposed. This network sheds light on the intricate processes that underlie fruit yellowing and quality alterations. These findings enhance our understanding of the regulatory pathways governing pineapple ripening and offer valuable scientific insight into the molecular breeding of pineapples.
Collapse
Affiliation(s)
- Kanghua Song
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Xiumei Zhang
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Jiameng Liu
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (J.L.); (X.Q.)
| | - Quansheng Yao
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Yixing Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Xiaowan Hou
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Shenghui Liu
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Xunxia Qiu
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (J.L.); (X.Q.)
| | - Yue Yang
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Li Chen
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Keqian Hong
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Lijing Lin
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (J.L.); (X.Q.)
| |
Collapse
|
3
|
Ban S, Jung JH. Somatic Mutations in Fruit Trees: Causes, Detection Methods, and Molecular Mechanisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:1316. [PMID: 36987007 PMCID: PMC10056856 DOI: 10.3390/plants12061316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Somatic mutations are genetic changes that occur in non-reproductive cells. In fruit trees, such as apple, grape, orange, and peach, somatic mutations are typically observed as "bud sports" that remain stable during vegetative propagation. Bud sports exhibit various horticulturally important traits that differ from those of their parent plants. Somatic mutations are caused by internal factors, such as DNA replication error, DNA repair error, transposable elements, and deletion, and external factors, such as strong ultraviolet radiation, high temperature, and water availability. There are several methods for detecting somatic mutations, including cytogenetic analysis, and molecular techniques, such as PCR-based methods, DNA sequencing, and epigenomic profiling. Each method has its advantages and limitations, and the choice of method depends on the research question and the available resources. The purpose of this review is to provide a comprehensive understanding of the factors that cause somatic mutations, techniques used to identify them, and underlying molecular mechanisms. Furthermore, we present several case studies that demonstrate how somatic mutation research can be leveraged to discover novel genetic variations. Overall, considering the diverse academic and practical value of somatic mutations in fruit crops, especially those that require lengthy breeding efforts, related research is expected to become more active.
Collapse
|
4
|
Léchaudel M, Darnaudery M, Joët T, Fournier P, Joas J. Genotypic and environmental effects on the level of ascorbic acid, phenolic compounds and related gene expression during pineapple fruit development and ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:127-138. [PMID: 29982169 DOI: 10.1016/j.plaphy.2018.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/04/2018] [Accepted: 06/28/2018] [Indexed: 05/02/2023]
Abstract
Pineapple (Ananas comosus (L.) Merr.) is a non-climacteric tropical fruit whose ripening could be accompanied by oxidative processes and the concurrent activation of enzymatic and non-enzymatic reactive oxygen species (ROS) scavenging systems. To better understand the variability of these processes among climatic environments or genotypes in pineapple, the temporal expression dynamics for genes encoding oxidative and antioxidative stress enzymes were analyzed by real-time RT-PCR during fruit development and ripening, among three cultivars: Queen Victoria, Flhoran 41 and MD-2 hybrid, and in two climatic areas. Pineapple development and ripening involved changes in the levels of transcripts encoding for polyphenol oxidase and transcripts involved in the first steps of the phenylpropanoid pathway and in the balance of ROS, especially those encoding for ascorbate peroxydase and metallothioneins, regardless of the cultivar. Our results confirm the same dynamic in gene expression from the two environmental crop areas, however climatic conditions influenced the level of the expression of the major transcripts studied that were linked to these oxidative and antioxidant metabolisms. MT3a and MT3b transcripts were not influenced by genetic factor. The genetic effect was not significant on the various transcripts linked to the first steps of the phenylpropanoid pathway and to phenol oxidation, except 4CL ones. In ripe pineapple, highly significant relationships were found between the contents in antioxidant metabolites, i.e., ascorbic acid and total phenolic compounds, and the transcript levels of genes involved in the enzymatic ROS-scavenging system and in the biosynthesis or regeneration of ROS-scavenging compounds, like phenylpropanoids, ascorbic acid, metallothioneins.
Collapse
Affiliation(s)
- Mathieu Léchaudel
- CIRAD, UMR QUALISUD, F-97130, Capesterre-Belle-Eau, Guadeloupe, France.
| | | | - Thierry Joët
- IRD, UMR DIADE, BP 64501, F-34394, Montpellier, France
| | | | - Jacques Joas
- CIRAD, UMR QUALISUD, F-34398, Montpellier, France
| |
Collapse
|
5
|
Redwan RM, Saidin A, Kumar SV. The draft genome of MD-2 pineapple using hybrid error correction of long reads. DNA Res 2016; 23:427-439. [PMID: 27374615 PMCID: PMC5066169 DOI: 10.1093/dnares/dsw026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/18/2016] [Indexed: 11/12/2022] Open
Abstract
The introduction of the elite pineapple variety, MD-2, has caused a significant market shift in the pineapple industry. Better productivity, overall increased in fruit quality and taste, resilience to chilled storage and resistance to internal browning are among the key advantages of the MD-2 as compared with its previous predecessor, the Smooth Cayenne. Here, we present the genome sequence of the MD-2 pineapple (Ananas comosus (L.) Merr.) by using the hybrid sequencing technology from two highly reputable platforms, i.e. the PacBio long sequencing reads and the accurate Illumina short reads. Our draft genome achieved 99.6% genome coverage with 27,017 predicted protein-coding genes while 45.21% of the genome was identified as repetitive elements. Furthermore, differential expression of ripening RNASeq library of pineapple fruits revealed ethylene-related transcripts, believed to be involved in regulating the process of non-climacteric pineapple fruit ripening. The MD-2 pineapple draft genome serves as an example of how a complex heterozygous genome is amenable to whole genome sequencing by using a hybrid technology that is both economical and accurate. The genome will make genomic applications more feasible as a medium to understand complex biological processes specific to pineapple.
Collapse
Affiliation(s)
- Raimi M. Redwan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Akzam Saidin
- Novocraft Technology Sdn. Bhd., C-23A-05, Jalan 19/1, Seksyen 19, 46300 Petaling Jaya, Selangor, Malaysia
| | - S. Vijay Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
6
|
Minas IS, Tanou G, Karagiannis E, Belghazi M, Molassiotis A. Coupling of Physiological and Proteomic Analysis to Understand the Ethylene- and Chilling-Induced Kiwifruit Ripening Syndrome. FRONTIERS IN PLANT SCIENCE 2016; 7:120. [PMID: 26913040 PMCID: PMC4753329 DOI: 10.3389/fpls.2016.00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 05/23/2023]
Abstract
Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson, cv. "Hayward"] is classified as climacteric fruit and the initiation of endogenous ethylene production following harvest is induced by exogenous ethylene or chilling exposure. To understand the biological basis of this "dilemma," kiwifruit ripening responses were characterized at 20°C following treatments with exogenous ethylene (100 μL L(-1), 20°C, 24 h) or/and chilling temperature (0°C, 10 days). All treatments elicited kiwifruit ripening and induced softening and endogenous ethylene biosynthesis, as determined by 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase (ACS) and ACC oxidase (ACO) enzyme activities after 10 days of ripening at 20°C. Comparative proteomic analysis using two-dimensional gel electrophoresis (2DE-PAGE) and nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) revealed 81 kiwifruit proteins associated with ripening. Thirty-one kiwifruit proteins were identified as commonly regulated by the three treatments accompanied by dynamic changes of 10 proteins specific to exogenous ethylene, 2 to chilling treatment, and 12 to their combination. Ethylene and/or chilling-responsive proteins were mainly involved in disease/defense, energy, protein destination/storage, and cell structure/cell wall. Interactions between the identified proteins were demonstrated by bioinformatics analysis, allowing a more complete insight into biological pathways and molecular functions affected by ripening. The present approach provides a quantitative basis for understanding the ethylene- and chilling-induced kiwifruit ripening and climacteric fruit ripening in general.
Collapse
Affiliation(s)
- Ioannis S. Minas
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
- Department of Horticulture and Landscape Architecture, Colorado State UniversityFort Collins, CO, USA
- Western Colorado Research Center at Orchard Mesa, Colorado State UniversityGrand Junction, CO, USA
| | - Georgia Tanou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Maya Belghazi
- UMR 7286 - CRN2M, Centre d' Analyses Protéomiques de Marseille, Centre National de la Recherche Scientifique, Aix-Marseille UniversitéMarseille, France
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| |
Collapse
|
7
|
Ogata T, Yamanaka S, Shoda M, Urasaki N, Yamamoto T. Current status of tropical fruit breeding and genetics for three tropical fruit species cultivated in Japan: pineapple, mango, and papaya. BREEDING SCIENCE 2016; 66:69-81. [PMID: 27069392 PMCID: PMC4780804 DOI: 10.1270/jsbbs.66.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/07/2015] [Indexed: 05/21/2023]
Abstract
Tropical fruit crops are predominantly produced in tropical and subtropical developing countries, but some are now grown in southern Japan. Pineapple (Ananas comosus), mango (Mangifera indica) and papaya (Carica papaya) are major tropical fruits cultivated in Japan. Modern, well-organized breeding systems have not yet been developed for most tropical fruit species. Most parts of Japan are in the temperate climate zone, but some southern areas such as the Ryukyu Islands, which stretch from Kyushu to Taiwan, are at the northern limits for tropical fruit production without artificial heating. In this review, we describe the current status of tropical fruit breeding, genetics, genomics, and biotechnology of three main tropical fruits (pineapple, mango, and papaya) that are cultivated and consumed in Japan. More than ten new elite cultivars of pineapple have been released with improved fruit quality and suitability for consumption as fresh fruit. New challenges and perspectives for obtaining high fruit quality are discussed in the context of breeding programs for pineapple.
Collapse
Affiliation(s)
- Tatsushi Ogata
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences,
1091-1, Maezato-Kawarabaru, Ishigaki, Okinawa 907-0002,
Japan
| | - Shinsuke Yamanaka
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences,
1091-1, Maezato-Kawarabaru, Ishigaki, Okinawa 907-0002,
Japan
| | - Moriyuki Shoda
- Okinawa Prefectural Agricultural Research Center,
820 Makabe, Itoman, Okinawa 901-0336,
Japan
| | - Naoya Urasaki
- Okinawa Prefectural Agricultural Research Center,
820 Makabe, Itoman, Okinawa 901-0336,
Japan
| | - Toshiya Yamamoto
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| |
Collapse
|
8
|
Zhou L, Matsumoto T, Tan HW, Meinhardt LW, Mischke S, Wang B, Zhang D. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm. HORTICULTURE RESEARCH 2015; 2:15056. [PMID: 26640697 PMCID: PMC4660223 DOI: 10.1038/hortres.2015.56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/24/2015] [Accepted: 10/25/2015] [Indexed: 05/28/2023]
Abstract
Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops.
Collapse
Affiliation(s)
- Lin Zhou
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Tracie Matsumoto
- Daniel K. Inouye Pacific Basin Agricultural Research Center, USDA-ARS, Hilo, HI 96720, USA
| | - Hua-Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Lyndel W Meinhardt
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Sue Mischke
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Boyi Wang
- Yunnan Forestry Technological College, Kunming 650224, Yunnan, China
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| |
Collapse
|
9
|
Ma J, Kanakala S, He Y, Zhang J, Zhong X. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis. PLoS One 2015; 10:e0119153. [PMID: 25769053 PMCID: PMC4358926 DOI: 10.1371/journal.pone.0119153] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022] Open
Abstract
Background Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. Results The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. Conclusion The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.
Collapse
Affiliation(s)
- Jun Ma
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
- * E-mail:
| | - S. Kanakala
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, Bet Dagan, Israel
| | - Yehua He
- Horticultural Biotechnology College of South China Agricultural University, Guangzhou, Guangdong, China
| | - Junli Zhang
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaolan Zhong
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Hu Z, Parekh U, Maruta N, Trusov Y, Botella JR. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance. Front Chem 2015; 3:1. [PMID: 25654075 PMCID: PMC4299518 DOI: 10.3389/fchem.2015.00001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/01/2015] [Indexed: 01/17/2023] Open
Abstract
Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Delivered RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1, and OPR) in the hemi-biotrophic fungus F. oxysporum f. sp. conglutinans. Expression of double stranded RNA (dsRNA) molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75, 83, and 72% reduction for FOW2, FRP1, and OPR, respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and OPR between 45 and 70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.
Collapse
Affiliation(s)
- Zongli Hu
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
- Bioengineering College, Chongqing UniversityChongqing, China
| | - Urvi Parekh
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Natsumi Maruta
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| | - Jose R. Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
11
|
Moyle RL, Koia JH, Vrebalov J, Giovannoni J, Botella JR. The pineapple AcMADS1 promoter confers high level expression in tomato and Arabidopsis flowering and fruiting tissues, but AcMADS1 does not complement the tomato LeMADS-RIN (rin) mutant. PLANT MOLECULAR BIOLOGY 2014; 86:395-407. [PMID: 25139231 DOI: 10.1007/s11103-014-0236-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
A previous EST study identified a MADS box transcription factor coding sequence, AcMADS1, that is strongly induced during non-climacteric pineapple fruit ripening. Phylogenetic analyses place the AcMADS1 protein in the same superclade as LeMADS-RIN, a master regulator of fruit ripening upstream of ethylene in climacteric tomato. LeMADS-RIN has been proposed to be a global ripening regulator shared among climacteric and non-climacteric species, although few functional homologs of LeMADS-RIN have been identified in non-climacteric species. AcMADS1 shares 67 % protein sequence similarity and a similar expression pattern in ripening fruits as LeMADS-RIN. However, in this study AcMADS1 was not able to complement the tomato rin mutant phenotype, indicating AcMADS1 may not be a functionally conserved homolog of LeMADS-RIN or has sufficiently diverged to be unable to act in the context of the tomato network of interacting proteins. The AcMADS1 promoter directed strong expression of the GUS reporter gene to fruits and developing floral organs in tomato and Arabidopsis thaliana, suggesting AcMADS1 may play a role in flower development as well as fruitlet ripening. The AcMADS1 promoter provides a useful molecular tool for directing transgene expression, particularly where up-regulation in developing flowers and fruits is desirable.
Collapse
Affiliation(s)
- Richard L Moyle
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, 4072, Australia,
| | | | | | | | | |
Collapse
|
12
|
Ng'oma E, Groth M, Ripa R, Platzer M, Cellerino A. Transcriptome profiling of natural dichromatism in the annual fishes Nothobranchius furzeri and Nothobranchius kadleci. BMC Genomics 2014; 15:754. [PMID: 25183398 PMCID: PMC4168119 DOI: 10.1186/1471-2164-15-754] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Background The annual fish Nothobranchius furzeri is characterized by a natural dichromatism with yellow-tailed and red-tailed male individuals. These differences are due to different distributions of xanthophores and erythrophores in the two morphs. Previous crossing studies have showed that dichromatism in N. furzeri is inherited as a simple Mendelian trait with the yellow morph dominant over the red morph. The causative genetic variation was mapped by linkage analysis in a chromosome region containing the Mc1r locus. However, subsequent mapping showed that Mc1r is most likely not responsible for the color difference in N. furzeri. To gain further insight into the molecular basis of this phenotype, we performed RNA-seq on F2 progeny of a cross between N. furzeri male and N. kadleci female. Results We identified 210 differentially-expressed genes between yellow and red fin samples. Functional annotation analysis revealed that genes with higher transcript levels in the yellow morph are enriched for the melanin synthesis pathway indicating that xanthophores are more similar to melanophores than are the erythrophores. Genes with higher expression levels in red-tails included xanthine dehydrogenase (Xdh), coding for a biosynthetic enzyme in the pteridine synthesis pathway, and genes related to muscle contraction. Comparison of DEGs obtained in this study with genes associated with pigmentation in the Midas cichlid (A. citrinellus) reveal similarities like involvement of the melanin biosynthesis pathway, the genes Ptgir, Rasef (RAS and EF-hand domain containing), as well as genes primarily expressed in muscle such as Ttn and Ttnb (titin, titin b). Conclusions Regulation of genes in the melanin synthetic pathway is an expected finding and shows that N. furzeri is a genetically-tractable species for studying the genetic basis of natural phenotypic variations. The current list of differentially-expressed genes can be compared with the results of fine-mapping, to reveal the genetic architecture of this natural phenotype. However, an evolutionarily-conserved role of muscle-related genes in tail fin pigmentation is novel finding and interesting perspective for the future. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-754) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Alessandro Cellerino
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstraße 11, 07745 Jena, Germany.
| |
Collapse
|
13
|
Microarray expression analysis of the main inflorescence in Brassica napus. PLoS One 2014; 9:e102024. [PMID: 25007212 PMCID: PMC4090195 DOI: 10.1371/journal.pone.0102024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/13/2014] [Indexed: 01/13/2023] Open
Abstract
The effect of the number of pods on the main inflorescence (NPMI) on seed yield in Brassica napus plants grown at high density is a topic of great economic and scientific interest. Here, we sought to identify patterns of gene expression that determine the NPMI during inflorescence differentiation. We monitored gene expression profiles in the main inflorescence of two B. napus F6 RIL pools, each composed of nine lines with a low or high NPMI, and their parental lines, Zhongshuang 11 (ZS11) and 73290, using a Brassica 90K elements oligonucleotide array. We identified 4,805 genes that were differentially expressed (≥1.5 fold-change) between the low- and high-NPMI samples. Of these, 82.8% had been annotated and 17.2% shared no significant homology with any known genes. About 31 enriched GO clusters were identified amongst the differentially expressed genes (DEGs), including those involved in hormone responses, development regulation, carbohydrate metabolism, signal transduction, and transcription regulation. Furthermore, 92.8% of the DEGs mapped to chromosomes that originated from B. rapa and B. oleracea, and 1.6% of the DEGs co-localized with two QTL intervals (PMI10 and PMI11) known to be associated with the NPMI. Overexpression of BnTPI, which co-localized with PMI10, in Arabidopsis suggested that this gene increases the NPMI. This study provides insight into the molecular factors underlying inflorescence architecture, NPMI determination and, consequently, seed yield in B. napus.
Collapse
|
14
|
Zhang J, Liu J, Ming R. Genomic analyses of the CAM plant pineapple. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3395-404. [PMID: 24692645 DOI: 10.1093/jxb/eru101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The innovation of crassulacean acid metabolism (CAM) photosynthesis in arid and/or low CO2 conditions is a remarkable case of adaptation in flowering plants. As the most important crop that utilizes CAM photosynthesis, the genetic and genomic resources of pineapple have been developed over many years. Genetic diversity studies using various types of DNA markers led to the reclassification of the two genera Ananas and Pseudananas and nine species into one genus Ananas and two species, A. comosus and A. macrodontes with five botanical varieties in A. comosus. Five genetic maps have been constructed using F1 or F2 populations, and high-density genetic maps generated by genotype sequencing are essential resources for sequencing and assembling the pineapple genome and for marker-assisted selection. There are abundant expression sequence tag resources but limited genomic sequences in pineapple. Genes involved in the CAM pathway has been analysed in several CAM plants but only a few of them are from pineapple. A reference genome of pineapple is being generated and will accelerate genetic and genomic research in this major CAM crop. This reference genome of pineapple provides the foundation for studying the origin and regulatory mechanism of CAM photosynthesis, and the opportunity to evaluate the classification of Ananas species and botanical cultivars.
Collapse
Affiliation(s)
- Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China College of Life Sciences, Fujian Normal University, Fuzhou, 350108, China
| | - Juan Liu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Chou TC, Moyle RL. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. BMC PLANT BIOLOGY 2014; 14:92. [PMID: 24708613 PMCID: PMC4021088 DOI: 10.1186/1471-2229-14-92] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/31/2014] [Indexed: 05/10/2023]
Abstract
BACKGROUND Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene.Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane. RESULTS The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences.Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures.Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes.In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues. CONCLUSIONS We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred by existing and newly isolated promoters in sugarcane tissues. The strategies used to design the synthetic luciferase transgenes could be applied to other transgenes that are aggressively silenced in sugarcane.
Collapse
MESH Headings
- Gene Expression Regulation, Plant
- Gene Silencing
- Genes, Plant
- Genes, Reporter
- Luciferases, Firefly/genetics
- Luciferases, Renilla/genetics
- Luminescent Measurements
- Open Reading Frames/genetics
- Plant Cells/metabolism
- Plant Stems/metabolism
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Saccharum/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Suspensions
- Synthetic Biology
- Transformation, Genetic
- Transgenes/genetics
Collapse
Affiliation(s)
- Ting-Chun Chou
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| | - Richard L Moyle
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
16
|
Abstract
The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants.
Collapse
Affiliation(s)
- Manoj K Rai
- a Department of Botany , Biotechnology Centre, Jai Narain Vyas University , Jodhpur , Rajasthan , India
| | - N S Shekhawat
- a Department of Botany , Biotechnology Centre, Jai Narain Vyas University , Jodhpur , Rajasthan , India
| |
Collapse
|
17
|
Wang W, Zhang L, Guo N, Zhang X, Zhang C, Sun G, Xie J. Functional properties of a cysteine proteinase from pineapple fruit with improved resistance to fungal pathogens in Arabidopsis thaliana. Molecules 2014; 19:2374-89. [PMID: 24566309 PMCID: PMC6271751 DOI: 10.3390/molecules19022374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/19/2014] [Accepted: 02/13/2014] [Indexed: 01/02/2023] Open
Abstract
In plant cells, many cysteine proteinases (CPs) are synthesized as precursors in the endoplasmic reticulum, and then are subject to post-translational modifications to form the active mature proteinases. They participate in various cellular and physiological functions. Here, AcCP2, a CP from pineapple fruit (Ananas comosus L.) belonging to the C1A subfamily is analyzed based on the molecular modeling and homology alignment. Transcripts of AcCP2 can be detected in the different parts of fruits (particularly outer sarcocarps), and gradually increased during fruit development until maturity. To analyze the substrate specificity of AcCP2, the recombinant protein was overexpressed and purified from Pichia pastoris. The precursor of purified AcCP2 can be processed to a 25 kDa active form after acid treatment (pH 4.3). Its optimum proteolytic activity to Bz-Phe-Val-Arg-NH-Mec is at neutral pH. In addition, the overexpression of AcCP2 gene in Arabidopsis thaliana can improve the resistance to fungal pathogen of Botrytis cinerea. These data indicate that AcCP2 is a multifunctional proteinase, and its expression could cause fruit developmental characteristics of pineapple and resistance responses in transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Wei Wang
- Anhui Key Laboratory of Plant Genetic & Breeding, School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| | - Lu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, 510006 Guangzhou, China.
| | - Ning Guo
- Anhui Key Laboratory of Plant Genetic & Breeding, School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| | - Xiumei Zhang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Institute of China Southern Subtropical Crop Research, Chinese Academy of Tropical Agricultural Sciences (CATAS), Zhanjiang 524091, Guangzhou, China.
| | - Chen Zhang
- Anhui Key Laboratory of Plant Genetic & Breeding, School of Life Science, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| | - Guangming Sun
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Institute of China Southern Subtropical Crop Research, Chinese Academy of Tropical Agricultural Sciences (CATAS), Zhanjiang 524091, Guangzhou, China.
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Institute of China Southern Subtropical Crop Research, Chinese Academy of Tropical Agricultural Sciences (CATAS), Zhanjiang 524091, Guangzhou, China.
| |
Collapse
|