1
|
Xiao Y, Wu L, Wang B, Zhang M, Pan Q, Xian L, Sheng J, Yan M, Jin J, Zhang R, Zhang J, Zeng Q, Li T, Li W. Development and application of Key Allele-Specific PCR (KASP) molecular markers for assessing apple fruit crispness. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:71. [PMID: 39399693 PMCID: PMC11467153 DOI: 10.1007/s11032-024-01509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Crispness stands as a pivotal criterion in assessing apple texture, widely cherished by consumers. Yet, owing to its multifaceted nature, crispness remains a formidable challenge in artificial enhancement efforts. To expedite the early and precise evaluation of apple crispness, this study centered on a hybrid population derived from 'Fuji' and 'Pink Lady' cultivars, showcasing segregating crispness traits. We conducted measurements of flesh water content, cellular anatomical morphology, and employed a texture analyzer to assess mechanical properties of the offspring flesh. Integrating these three dimensions, we conducted a comprehensive analysis of quantitative characteristics of apple crispness, juxtaposed with sensory evaluation. Utilizing BSA-seq technology, we scrutinized extreme phenotypic individuals, revealing QTL loci intricately linked to the aforementioned dimensions, and subsequently developed Key Allele-Specific PCR (KASP) markers. These markers underwent validation in hybrid populations of 'Hanfu' x 'Pink Lady' and 'Hanfu' x 'Honey Crisp'. Our findings underscored significant correlations between mechanical properties, water content, and cell size with crispness. Higher mechanical properties and water content, alongside smaller cell size, correlated with firmer flesh texture; moderate mechanical properties, and elevated water content and cell size, with crisper texture; whereas lower mechanical properties, water content, and cell size implied softer flesh.The study yielded KASP markers effectively reflecting flesh mechanical properties (SNP_24399345), water content (SNP_8667563), and cell size (SNP_15566229). Comprehensive analysis of these markers identified CC-CC-TT as an effective identifier of soft flesh individuals; while GG-TC-TT and GG-CC-TT combinations better represented individuals with harder flesh. The Crunchy subclass could be discerned by combinations of GG-TC-TC, GG-TC-CC, GG-TT-TC, and GG-TT-CC. These findings furnish effective molecular markers for the genetic enhancement of apple crispness, bearing significant implications for the cultivation of novel apple varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01509-1.
Collapse
Affiliation(s)
- Yao Xiao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Ling Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Baoan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Manyu Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Qi Pan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Linfeng Xian
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Jing Sheng
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Mengbo Yan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Jingxian Jin
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Rui Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Jing Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Qiulin Zeng
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
2
|
Li YM, Zhang HX, Tang XS, Wang Y, Cai ZH, Li B, Xie ZS. Abscisic Acid Induces DNA Methylation Alteration in Genes Related to Berry Ripening and Stress Response in Grape ( Vitis vinifera L). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15027-15039. [PMID: 38886897 DOI: 10.1021/acs.jafc.4c02303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Abscisic acid (ABA) is a major regulator of nonclimacteric fruit ripening, with its processes involving epigenetic mechanisms. It remains unclear whether DNA methylation is associated with ABA-regulated ripening. In this study, we investigated the patterns of DNA methylation and gene expression following ABA treatment in grape berries by using whole-genome bisulfite sequencing and RNA-sequencing. ABA application changed global DNA methylation in grapes. The hyper-/hypo-differently methylated regions were enriched in defense-related metabolism, degreening processes, or ripening-related metabolic pathways. Many differentially expressed genes showed an alteration in DNA methylation after ABA treatment. Specifically, ten downregulated genes with hypermethylation in promoters were involved in the ripening process, ABA homeostasis/signaling, and stress response. Nine upregulated genes exhibiting hypo-methylation in promoters were related to the ripening process and stress response. These findings demonstrated ABA-induced DNA alteration of ripening related and stress-responsive genes during grape ripening, which provides new insights of the epigenetic regulation of ABA on fruit ripening.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Hong-Xing Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Xuan-Si Tang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Yue Wang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Zhong-Hui Cai
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Bo Li
- Shandong Academy of Grape, Jinan 250000, China
| | - Zhao-Sen Xie
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Gunaseelan K, Schröder R, Rebstock R, Ninan AS, Deng C, Khanal BP, Favre L, Tomes S, Dragulescu MA, O'Donoghue EM, Hallett IC, Schaffer RJ, Knoche M, Brummell DA, Atkinson RG. Constitutive expression of apple endo-POLYGALACTURONASE1 in fruit induces early maturation, alters skin structure and accelerates softening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1413-1431. [PMID: 38038980 DOI: 10.1111/tpj.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
During fruit ripening, polygalacturonases (PGs) are key contributors to the softening process in many species. Apple is a crisp fruit that normally exhibits only minor changes to cell walls and limited fruit softening. Here, we explore the effects of PG overexpression during fruit development using transgenic apple lines overexpressing the ripening-related endo-POLYGALACTURONASE1 gene. MdPG1-overexpressing (PGox) fruit displayed early maturation/ripening with black seeds, conversion of starch to sugars and ethylene production occurring by 80 days after pollination (DAP). PGox fruit exhibited a striking, white-skinned phenotype that was evident from 60 DAP and most likely resulted from increased air spaces and separation of cells in the hypodermis due to degradation of the middle lamellae. Irregularities in the integrity of the epidermis and cuticle were also observed. By 120 DAP, PGox fruit cracked and showed lenticel-associated russeting. Increased cuticular permeability was associated with microcracks in the cuticle around lenticels and was correlated with reduced cortical firmness at all time points and extensive post-harvest water loss from the fruit, resulting in premature shrivelling. Transcriptomic analysis suggested that early maturation was associated with upregulation of genes involved in stress responses, and overexpression of MdPG1 also altered the expression of genes involved in cell wall metabolism (e.g. β-galactosidase, MD15G1221000) and ethylene biosynthesis (e.g. ACC synthase, MD14G1111500). The results show that upregulation of PG not only has dramatic effects on the structure of the fruit outer cell layers, indirectly affecting water status and turgor, but also has unexpected consequences for fruit development.
Collapse
Affiliation(s)
- Kularajathevan Gunaseelan
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Annu S Ninan
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Bishnu P Khanal
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Laurie Favre
- Plant and Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Monica A Dragulescu
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | - Erin M O'Donoghue
- Plant and Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| | | | - Moritz Knoche
- Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - David A Brummell
- Plant and Food Research, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Mount Albert Research Centre, Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
4
|
Wang M, Wu Y, Zhan W, Wang H, Chen M, Li T, Bai T, Jiao J, Song C, Song S, Feng J, Zheng X. The apple transcription factor MdZF-HD11 regulates fruit softening by promoting Mdβ-GAL18 expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:819-836. [PMID: 37936320 DOI: 10.1093/jxb/erad441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Fruit ripening and the associated softening are major determinants of fruit quality and post-harvest shelf life. Although the mechanisms underlying fruit softening have been intensively studied, there are limited reports on the regulation of fruit softening in apples (Malus domestica). Here, we identified a zinc finger homeodomain transcription factor MdZF-HD11that trans-activates the promoter of Mdβ-GAL18, which encodes a pectin-degradation enzyme associated with cell wall metabolism. Both MdZF-HD11 and Mdβ-GAL18 genes were up-regulated by exogenous ethylene treatment and repressed by 1-methylcyclopropene treatment. Further experiments revealed that MdZF-HD11 binds directly to the Mdβ-GAL18 promoter and up-regulates its transcription. Moreover, using transgenic apple fruit calli, we found that overexpression of Mdβ-GAL18 or MdZF-HD11 significantly enhanced β-galactosidase activity, and overexpression of MdZF-HD11 induced the expression of Mdβ-GAL18. We also discovered that transient overexpression of Mdβ-GAL18 or MdZF-HD11 in 'Golden Delicious' apple significantly increased the release of ethylene, reduced fruit firmness, promoted the transformation of skin color from green to yellow, and accelerated ripening and softening of the fruit. Finally, the overexpression of MdZF-HD11 in tomato also promoted fruit softening. Collectively, these results indicate that ethylene-induced MdZF-HD11 interacts with Mdβ-GAL18 to promote the post-harvest softening of apple.
Collapse
Affiliation(s)
- Miaomiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yao Wu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Wenduo Zhan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Hao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Ming Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Tongxin Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jian Jiao
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shangwei Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Nishio S, Moriya S, Kunihisa M, Takeuchi Y, Imai A, Takada N. Rapid and easy construction of a simplified amplicon sequencing (simplified AmpSeq) library for marker-assisted selection. Sci Rep 2023; 13:10575. [PMID: 37386134 PMCID: PMC10310812 DOI: 10.1038/s41598-023-37522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
Marker-assisted selection (MAS) is fundamental for plant breeding programs, as it can identify desirable seedlings at a young stage and reduce the cost, time and space needed for plant maintenance, especially for perennial crops. To facilitate the process of genotyping, which is time consuming and laborious, we developed a simplified amplicon sequencing (simplified AmpSeq) library construction method for next-generation sequencing that can be applied to MAS in breeding programs. The method is based on one-step PCR with a mixture of two primer sets: the first consisting of tailed target primers, the second of primers that contain flow-cell binding sites, indexes and tail sequences complementary to those in the first set. To demonstrate the process of MAS using s implified AmpSeq, we created databases of genotypes for important traits by using cultivar collections including triploid cultivars and segregating seedlings of Japanese pear (Pyrus pyrifolia Nakai), Japanese chestnut (Castanea crenata Sieb. et Zucc.) and apple (Malus domestica Borkh.). Simplified AmpSeq has the advantages of high repeatability, ability to estimate allele number in polyploid species and semi-automatic evaluation using target allele frequencies. Because this method provides high flexibility for designing primer sets and targeting any variant, it will be useful for plant breeding programs.
Collapse
Affiliation(s)
- Sogo Nishio
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan.
| | - Shigeki Moriya
- Institute of Fruit Tree and Tea Science, NARO, Morioka, Iwate, 020-0123, Japan
| | - Miyuki Kunihisa
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan
| | - Yukie Takeuchi
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan
| | - Atsushi Imai
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan
| | - Norio Takada
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan
| |
Collapse
|
6
|
Wu M, Luo Z, Cao S. Promoter Variation of the Key Apple Fruit Texture Related Gene MdPG1 and the Upstream Regulation Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1452. [PMID: 37050079 PMCID: PMC10096972 DOI: 10.3390/plants12071452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
MdPG1 encoding polygalacturonase in apple (Malus × domestica) is a key gene associated with fruit firmness and texture variations among apple cultivars. However, the causative variants of MdPG1 are still not known. In this study, we identified a SNPA/C variant within an ERF-binding element located in the promoter region of MdPG1. The promoter containing the ERF-binding element with SNPA, rather than the SNPC, could be strongly bound and activated by MdCBF2, a member of the AP2/ERF transcription factor family, as determined by yeast-one-hybrid and dual-luciferase reporter assays. We also demonstrated that the presence of a novel long non-coding RNA, lncRNAPG1, in the promoter of MdPG1 was a causative variant. lncRNAPG1 was specifically expressed in fruit tissues postharvest. lncRNAPG1 could reduce promoter activity when it was fused to the promoter of MdPG1 and a tobacco gene encoding Mg-chelatase H subunit (NtCHLH) in transgenic tobacco cells but could not reduce promoter activity when it was supplied in a separate gene construct, indicating a cis-regulatory effect. Our results provide new insights into genetic regulation of MdPG1 allele expression and are also useful for the development of elite apple cultivars.
Collapse
Affiliation(s)
- Mengmeng Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengrong Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Shangyin Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, China
| |
Collapse
|
7
|
Schaller A, Vanderzande S, Peace C. Deducing genotypes for loci of interest from SNP array data via haplotype sharing, demonstrated for apple and cherry. PLoS One 2023; 18:e0272888. [PMID: 36749762 PMCID: PMC9904487 DOI: 10.1371/journal.pone.0272888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Breeders, collection curators, and other germplasm users require genetic information, both genome-wide and locus-specific, to effectively manage their genetically diverse plant material. SNP arrays have become the preferred platform to provide genome-wide genetic profiles for elite germplasm and could also provide locus-specific genotypic information. However, genotypic information for loci of interest such as those within PCR-based DNA fingerprinting panels and trait-predictive DNA tests is not readily extracted from SNP array data, thus creating a disconnect between historic and new data sets. This study aimed to establish a method for deducing genotypes at loci of interest from their associated SNP haplotypes, demonstrated for two fruit crops and three locus types: quantitative trait loci Ma and Ma3 for acidity in apple, apple fingerprinting microsatellite marker GD12, and Mendelian trait locus Rf for sweet cherry fruit color. Using phased data from an apple 8K SNP array and sweet cherry 6K SNP array, unique haplotypes spanning each target locus were associated with alleles of important breeding parents. These haplotypes were compared via identity-by-descent (IBD) or identity-by-state (IBS) to haplotypes present in germplasm important to U.S. apple and cherry breeding programs to deduce target locus alleles in this germplasm. While IBD segments were confidently tracked through pedigrees, confidence in allele identity among IBS segments used a shared length threshold. At least one allele per locus was deduced for 64-93% of the 181 individuals. Successful validation compared deduced Rf and GD12 genotypes with reported and newly obtained genotypes. Our approach can efficiently merge and expand genotypic data sets, deducing missing data and identifying errors, and is appropriate for any crop with SNP array data and historic genotypic data sets, especially where linkage disequilibrium is high. Locus-specific genotypic information extracted from genome-wide SNP data is expected to enhance confidence in management of genetic resources.
Collapse
Affiliation(s)
- Alexander Schaller
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Yang X, Wu B, Liu J, Zhang Z, Wang X, Zhang H, Ren X, Zhang X, Wang Y, Wu T, Xu X, Han Z, Zhang X. A single QTL harboring multiple genetic variations leads to complicated phenotypic segregation in apple flesh firmness and crispness. PLANT CELL REPORTS 2022; 41:2379-2391. [PMID: 36208306 DOI: 10.1007/s00299-022-02929-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Within a QTL, the genetic recombination and interactions among five and two functional variations at MdbHLH25 and MdWDR5A caused much complicated phenotype segregation in apple FFR and FCR. The storability of climacteric fruit like apple is a quantitative trait. We previously identified 62 quantitative trait loci (QTLs) associating flesh firmness retainability (FFR) and flesh crispness retainability (FCR), but only a few functional genetic variations were identified and validated. The genetic variation network controlling fruit storability is far to be understood and diagnostic markers are needed for molecular breeding. We previously identified overlapped QTLs F16.1/H16.2 for FFR and FCR using an F1 population derived from 'Zisai Pearl' × 'Red Fuji'. In this study, five and two single-nucleotide polymorphisms (SNPs) were identified on the candidate genes MdbHLH25 and MdWDR5A within the QTL region. The SNP1 A allele at MdbHLH25 promoter reduced the expression and SNP2 T allele and/or SNP4/5 GT alleles at the exons attenuated the function of MdbHLH25 by downregulating the expression of the target genes MdACS1, which in turn led to a reduction in ethylene production and maintenance of higher flesh crispness. The SNPs did not alter the protein-protein interaction between MdbHLH25 and MdWDR5A. The joint effect of SNP genotype combinations by the SNPs on MdbHLH25 (SNP1, SNP2, and SNP4) and MdWDR5A (SNPi and SNPii) led to a much broad spectrum of phenotypic segregation in FFR and FCR. Together, the dissection of these genetic variations contributes to understanding the complicated effects of a QTL and provides good potential for marker development in molecular breeding.
Collapse
Affiliation(s)
- Xianglong Yang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bei Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Liu
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Zhongyan Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuan Wang
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Haie Zhang
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Xuejun Ren
- Testing and Analysis Center, Hebei Normal University of Science and Technology, Qinhuangdao, 066600, China
| | - Xi Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Suprun II, Tokmakov SV, Al-Nakib EA, Lobodina EV. Identification of apple genes <i>Md-Exp7</i> and <i>Md-PG1</i> alleles in advanced selections resistant to scab. Vavilovskii Zhurnal Genet Selektsii 2022; 26:645-651. [DOI: 10.18699/vjgb-22-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- I. I. Suprun
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, the Functional Scientific Center of “Breeding and Nursery”
| | - S. V. Tokmakov
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, the Functional Scientific Center of “Breeding and Nursery”
| | - E. A. Al-Nakib
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, the Functional Scientific Center of “Breeding and Nursery”
| | - E. V. Lobodina
- North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-Making, the Functional Scientific Center of “Breeding and Nursery”
| |
Collapse
|
10
|
Shen F, Hu C, Huang X, Wu R, Luo S, Xu C, Zhang H, Wang X, Zhao J. Characterization of the genetic and regulatory networks associated with sugar and acid metabolism in apples via an integrated strategy. FRONTIERS IN PLANT SCIENCE 2022; 13:1066592. [PMID: 36466245 PMCID: PMC9712955 DOI: 10.3389/fpls.2022.1066592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Although sugars and acids have a substantial influence on the taste of apple fruits, the genetic and regulatory networks underlying their metabolism in fruit remain insufficiently determined. To fully decipher the genetic basis of the accumulation of sugars and acids in apple fruits, we adopted an integrated strategy that included time-course RNA-seq, QTL mapping, and whole-genome sequencing to examine two typical cultivars ('HanFu' and 'Huahong') characterized by distinctive flavors. Whole-genome sequencing revealed substantial genetic variation between the two cultivars, thereby providing an indication of the genetic basis of the distinct phenotypes. Constructed co-expression networks yielded information regarding the intra-relationships among the accumulation of different types of metabolites, and also revealed key regulatory nodes associated with the accumulation of sugars and acids, including the genes MdEF2, MdPILS5, and MdGUN8. Additionally, on the basis of QTL mapping using a high-density genetic map, we identified a series of QTLs and functional genes underlying vital traits, including sugar and acid contents. Collectively, our methodology and observations will provide an important reference for further studies focusing on the flavor of apples.
Collapse
Affiliation(s)
- Fei Shen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chenyang Hu
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| | - Xin Huang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Ruigang Wu
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Shuzhen Luo
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| | - Chengnan Xu
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| | - Hong Zhang
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| | - Xuan Wang
- Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China
| | - Jirong Zhao
- College of Life Science, Shanxi Key Lab of Chinese Jujube, Yan’an University, Yan’an, Shanxi, China
| |
Collapse
|
11
|
Liu W, Chen Z, Jiang S, Wang Y, Fang H, Zhang Z, Chen X, Wang N. Research Progress on Genetic Basis of Fruit Quality Traits in Apple ( Malus × domestica). FRONTIERS IN PLANT SCIENCE 2022; 13:918202. [PMID: 35909724 PMCID: PMC9330611 DOI: 10.3389/fpls.2022.918202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/23/2022] [Indexed: 06/01/2023]
Abstract
Identifying the genetic variation characteristics of phenotypic traits is important for fruit tree breeding. During the long-term evolution of fruit trees, gene recombination and natural mutation have resulted in a high degree of heterozygosity. Apple (Malus × domestica Borkh.) shows strong ecological adaptability and is widely cultivated, and is among the most economically important fruit crops worldwide. However, the high level of heterozygosity and large genome of apple, in combination with its perennial life history and long juvenile phase, complicate investigation of the genetic basis of fruit quality traits. With continuing augmentation in the apple genomic resources available, in recent years important progress has been achieved in research on the genetic variation of fruit quality traits. This review focuses on summarizing recent genetic studies on apple fruit quality traits, including appearance, flavor, nutritional, ripening, and storage qualities. In addition, we discuss the mapping of quantitative trait loci, screening of molecular markers, and mining of major genes associated with fruit quality traits. The overall aim of this review is to provide valuable insights into the mechanisms of genetic variation and molecular breeding of important fruit quality traits in apple.
Collapse
Affiliation(s)
- Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| | - Zijing Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| | - Shenghui Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yicheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai’an, China
| |
Collapse
|
12
|
Jung M, Keller B, Roth M, Aranzana MJ, Auwerkerken A, Guerra W, Al-Rifaï M, Lewandowski M, Sanin N, Rymenants M, Didelot F, Dujak C, Font i Forcada C, Knauf A, Laurens F, Studer B, Muranty H, Patocchi A. Genetic architecture and genomic predictive ability of apple quantitative traits across environments. HORTICULTURE RESEARCH 2022; 9:uhac028. [PMID: 35184165 PMCID: PMC8976694 DOI: 10.1093/hr/uhac028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype by environment interactions (G × E). So far, only two phenological traits were investigated using the apple REFPOP, although the population may be valuable when dissecting genetic architecture and reporting predictive abilities for additional key traits in apple breeding. Here we show contrasting genetic architecture and genomic predictive abilities for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic predictive abilities of 0.18-0.88 were estimated using main-effect univariate, main-effect multivariate, multi-environment univariate, and multi-environment multivariate models. The G × E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.
Collapse
Affiliation(s)
- Michaela Jung
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Beat Keller
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Morgane Roth
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
- GAFL, INRAE, 84140 Montfavet, France
| | - Maria José Aranzana
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140 Caldes de Montbui, Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | | | | | - Mehdi Al-Rifaï
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QuaSaV, F-49000 Angers, France
| | - Mariusz Lewandowski
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | | | - Marijn Rymenants
- Better3fruit N.V., 3202 Rillaar, Belgium
- Laboratory for Plant Genetics and Crop Improvement, KU Leuven, B-3001 Leuven, Belgium
| | | | - Christian Dujak
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Carolina Font i Forcada
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), 08140 Caldes de Montbui, Barcelona, Spain
| | - Andrea Knauf
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - François Laurens
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QuaSaV, F-49000 Angers, France
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Hélène Muranty
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QuaSaV, F-49000 Angers, France
| | - Andrea Patocchi
- Agroscope, Breeding Research Group, 8820 Wädenswil, Switzerland
| |
Collapse
|
13
|
Zhang H, Zhang Y, Wang P, Zhang J. Transcriptome profiling of genes associated with fruit firmness in the melon variety 'Baogua' ( Cucumis melo ssp. agrestis Jeffrey). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:301-313. [PMID: 35400878 PMCID: PMC8943068 DOI: 10.1007/s12298-022-01131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Fruit firmness is an important trait of melons due to its effect on fresh fruit consumption, storage, and transport. However, information on the expression of genes influencing the fruit firmness of 'Baogua' (BG) melon (Cucumis melo ssp. agrestis Jeffrey) remains rare. This study aimed to identify the key genes associated with the firmness of BG fruit sampled at 14 and 28 days after pollination (dap) via transcriptome sequencing. A total of 1113 up-regulated and 2224 down-regulated differentially expressed genes (DEGs) were identified. The main Gene Ontology terms assigned to the DEGs were phosphotransferase activity, alcohol group as acceptor, protein phosphorylation, and protein kinase activity. The enriched KEGG pathways involving the DEGs were starch and sucrose metabolism, diterpenoid biosynthesis, plant hormone signal transduction, and MAPK signaling pathway-plant. In addition, qRT-PCR verified that four GAL genes, namely, CmGAL1-4, were differentially expressed at 0, 7, 14, 21, and 28 dap. Our data revealed that CmGAL1 expression was highest at 21 dap. However, the expression levels of CmGAL2-4 were highest at 14 dap. The sequence of CmGAL1 was similar to the sequences of homologs from melon and cucumber. Subcellular localization analysis revealed CmGAL1 was located in the cell membrane and cytoplasm. Our findings implied that fruit development at 14 dap, which is a key time-point, varies considerably from fruit development at 28 dap. Our present study provides new information on the genes associated with BG fruit firmness and help improve the storage and transport of BG fruit prior to processing. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01131-5.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000 Anhui Province China
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Jianghuai Horticulture Seeds Co., Ltd, Huaibei, 235000 Anhui Province China
| | - Yan Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000 Anhui Province China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031 Anhui Province China
- Key Laboratory of Intelligent Seedling Breeding in Vegetable Factory, Ma-an-shan, 238200 Anhui Province China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031 Anhui Province China
| | - Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031 Anhui Province China
- Key Laboratory of Intelligent Seedling Breeding in Vegetable Factory, Ma-an-shan, 238200 Anhui Province China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031 Anhui Province China
| |
Collapse
|
14
|
Teh SL, Kostick S, Brutcher L, Schonberg B, Barritt B, Evans K. Trends in Fruit Quality Improvement From 15 Years of Selection in the Apple Breeding Program of Washington State University. FRONTIERS IN PLANT SCIENCE 2021; 12:714325. [PMID: 34733298 PMCID: PMC8558556 DOI: 10.3389/fpls.2021.714325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Washington State University's apple breeding program (WABP) was initiated in 1994 to select new apple cultivars with improved eating quality, appearance, and storability that are suitable for production in the main growing regions of the state. Fruit quality is phenotyped using various instrumental measures, such as penetrometers (texture), titrator (acidity), and refractometer (soluble solids concentration; SSC), as well as sensory assessment. The selection regime of WABP occurs in three sequential phases: phase one (P1)-single, unreplicated seedlings at one site, phase two (P2)-replicated selections at three geographically diverse sites, and phase three (P3)-highly replicated elite selections at one to two grower sites. Most of the data collection of WABP occurs in P2. Knowledge of trends/changes associated with advancing selections is essential for understanding the selection criteria and progress of WABP throughout the changing compositions of advancing and culling selections. For each post-harvest trait, P2 data from harvest years 2005 to 2019 were split across sites, and between selections and reference cultivars (e.g., Cripps Pink, Gala, and Honeycrisp). Means of instrumental crispness (Cn) and inner cortex firmness for the advancing selections increased gradually over this period and were significantly higher than those for cultivars. Means of outer cortex firmness measurements were stable for selections but significantly higher than those for cultivars. The average fruit acidity of selections increased marginally over this period and was higher than that of the cultivars. Meanwhile, the average fruit SSCs of selections and cultivars were statistically indistinguishable. These 15-year trends indicate that WABP has been selecting apples with improved eating quality and storability through increased crispness and inner cortex firmness, respectively.
Collapse
|
15
|
Cai H, Wang Q, Gao J, Li C, Du X, Ding B, Yang T. Construction of a high-density genetic linkage map and QTL analysis of morphological traits in an F1 Malusdomestica × Malus baccata hybrid. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1997-2007. [PMID: 34629774 PMCID: PMC8484404 DOI: 10.1007/s12298-021-01069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Apple is considered the most commonly grown fruit crop in temperate regions that brings great economic profits to fruit growers. Dwarfing rootstocks have been extensively used in apple breeding as well as commercial orchards, but the molecular and genetic basis of scion dwarfing and other morphological traits induced by them is still unclear. At present, we report a genetic map of Malusdomestica × Malus baccata with high density. The F1 population was sequenced by a specific length amplified fragment (SLAF). In the genetic map, 5064 SLAF markers spanning 17 linkage groups (LG) were included. Dwarf-related and other phenotypic traits of the scion were evaluated over a 3-year growth period. Based on quantitative trait loci (QTL) evaluation of plant height and trunk diameter, two QTL clusters were found on LG 11, which exhibited remarkable influences on dwarfing of the scion. In this analysis, QTL DW2, which was previously reported as a locus that controls dwarfing, was confirmed. Moreover, three novel QTLs for total flower number and branching flower number were detected on LG2 and LG4, exhibited the phenotypic variation that has been explained by QTL ranging from 8.80% to 34.80%. The findings of the present study are helpful to find scion dwarfing and other phenotypes induced by rootstock in the apple. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01069-0.
Collapse
Affiliation(s)
- Huacheng Cai
- Pomology Institute, Shanxi Agricultural University, Taigu, 030801 Shanxi China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, 030031 Shanxi China
| | - Qian Wang
- Pomology Institute, Shanxi Agricultural University, Taigu, 030801 Shanxi China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, 030031 Shanxi China
| | - Jingdong Gao
- Pomology Institute, Shanxi Agricultural University, Taigu, 030801 Shanxi China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, 030031 Shanxi China
| | - Chunyan Li
- Pomology Institute, Shanxi Agricultural University, Taigu, 030801 Shanxi China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, 030031 Shanxi China
| | - Xuemei Du
- Pomology Institute, Shanxi Agricultural University, Taigu, 030801 Shanxi China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, 030031 Shanxi China
| | - Baopeng Ding
- Pomology Institute, Shanxi Agricultural University, Taigu, 030801 Shanxi China
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801 Shanxi China
- College of Forestry, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Tingzhen Yang
- Pomology Institute, Shanxi Agricultural University, Taigu, 030801 Shanxi China
- Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, 030031 Shanxi China
| |
Collapse
|
16
|
Qian M, Xu Z, Zhang Z, Li Q, Yan X, Liu H, Han M, Li F, Zheng J, Zhang D, Zhao C. The downregulation of PpPG21 and PpPG22 influences peach fruit texture and softening. PLANTA 2021; 254:22. [PMID: 34218358 DOI: 10.1007/s00425-021-03673-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The downregulation of PpPG21 and PpPG22 expression in melting-flesh peach delays fruit softening and hinders texture changes by influencing pectin solubilization and depolymerization. The polygalacturonase (PG)-catalyzed solubilization and depolymerization of pectin plays a central role in the softening and texture formation processes in peach fruit. In this study, the expression characteristics of 15 PpPG members in peach fruits belonging to the melting flesh (MF) and non-melting flesh (NMF) types were analyzed, and virus-induced gene silencing (VIGS) technology was used to identify the roles of PpPG21 (ppa006839m) and PpPG22 (ppa006857m) in peach fruit softening and texture changes. In both MF and NMF peaches, the expression of PpPG1, 10, 12, 23, and 25 was upregulated, whereas that of PpPG14, 24, 35, 38, and 39 was relatively stable or downregulated during shelf life. PpPG1 was highly expressed in NMF fruit, whereas PpPG21 and 22 were highly expressed in MF peaches. Suppressing the expression of PpPG21 and 22 by VIGS in MF peaches significantly reduced PG enzyme activity, maintained the firmness of the fruit during the late shelf life stage, and suppressed the occurrence of the "melting" stage compared with the control fruits. Moreover, the downregulation of PpPG21 and 22 expression also reduced the water-soluble pectin (WSP) content, increased the contents of ionic-soluble pectin (ISP) and covalent-soluble pectin (CSP) and affected the expression levels of ethylene synthesis- and pectin depolymerization-related genes in the late shelf life stage. These results indicate that PpPG21 and 22 play a major role in the development of the melting texture trait of peaches by depolymerizing cell wall pectin. Our results provide direct evidence showing that PG regulates peach fruit softening and texture changes.
Collapse
Affiliation(s)
- Ming Qian
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Ze Xu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Zehua Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Qin Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiangyan Yan
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Hangkong Liu
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Furui Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jicheng Zheng
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling, China.
| |
Collapse
|
17
|
Yi M, Kong J, Yu Z. Effect of heat treatment on the quality and energy metabolism in "Golden Delicious" apple fruit. J Food Biochem 2021; 45:e13759. [PMID: 34142387 DOI: 10.1111/jfbc.13759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
The effect of heat treatment on fruit firmness and related enzymes, acidity and related enzymes, and energy metabolism on postharvest apple fruit was investigated. Results showed that heat treatment prevented softening at the early stage and maintained acidity. Compared with the control, heat treatment markedly inhibited the transcript level of MdcyME1-3 but improved the transcript level of MdPG3 and MdGAL1, thus heat-treated fruit exhibited higher activity of polygalacturonase (PG) and β-galactosidase (β-Gal). Moreover, levels of energy charge in heat-treated fruit were significantly higher than that in the control fruit. These results suggested that β-Gal played an important role in apple fruit softening at the later storage, and heat treatment maintained acidity and energy metabolism while enhanced the activity of cell wall enzymes. PRACTICAL APPLICATIONS: To reveal the mechanism of energy metabolism affecting fruit softening and change in fruit acidity, the enzyme activity and gene expression of apple fruits after heat treatment were studied. By comparing the heat treatment group with the control group, this study successfully explained the genomic mechanism controlling apple fruit acidity and softening in the fruit mature period at high level of energy charge, found key cell wall enzymes and candidate genes, and supplied theoretical guidance for maintaining the fruit quality of "Golden Delicious" fruit.
Collapse
Affiliation(s)
- Meijun Yi
- Department of Health Management and General Education, Jiangsu Health Vocational College, Nanjing, Jiangsu, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Jing Kong
- School Logistics Management Section, Zibo Education Service Center, Zibo, Shandong, P.R. China
| | - Zhifang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
18
|
Wu B, Shen F, Wang X, Zheng WY, Xiao C, Deng Y, Wang T, Yu Huang Z, Zhou Q, Wang Y, Wu T, Feng Xu X, Hai Han Z, Zhong Zhang X. Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL-based genomics-assisted prediction. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1022-1037. [PMID: 33319456 PMCID: PMC8131039 DOI: 10.1111/pbi.13527] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/29/2020] [Accepted: 12/06/2020] [Indexed: 05/24/2023]
Abstract
Retention of flesh texture attributes during cold storage is critical for the long-term maintenance of fruit quality. The genetic variations determining flesh firmness and crispness retainability are not well understood. The objectives of this study are to identify gene markers based on quantitative trait loci (QTLs) and to develop genomics-assisted prediction (GAP) models for apple flesh firmness and crispness retainability. Phenotype data of 2664 hybrids derived from three Malus domestica cultivars and a M. asiatica cultivar were collected in 2016 and 2017. The phenotype segregated considerably with high broad-sense heritability of 83.85% and 83.64% for flesh firmness and crispness retainability, respectively. Fifty-six candidate genes were predicted from the 62 QTLs identified using bulked segregant analysis and RNA-seq. The genotype effects of the markers designed on each candidate gene were estimated. The genomics-predicted values were obtained using pyramiding marker genotype effects and overall mean phenotype values. Fivefold cross-validation revealed that the prediction accuracy was 0.5541 and 0.6018 for retainability of flesh firmness and crispness, respectively. An 8-bp deletion in the MdERF3 promoter disrupted MdDOF5.3 binding, reduced MdERF3 expression, relieved the inhibition on MdPGLR3, MdPME2, and MdACO4 expression, and ultimately decreased flesh firmness and crispness retainability. A 3-bp deletion in the MdERF118 promoter decreased its expression by disrupting the binding of MdRAVL1, which increased MdPGLR3 and MdACO4 expression and reduced flesh firmness and crispness retainability. These results provide insights regarding the genetic variation network regulating flesh firmness and crispness retainability, and the GAP models can assist in apple breeding.
Collapse
Affiliation(s)
- Bei Wu
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Fei Shen
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Xuan Wang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Wen Yan Zheng
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Chen Xiao
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yang Deng
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Ting Wang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Zhen Yu Huang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Qian Zhou
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Yi Wang
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Ting Wu
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Xue Feng Xu
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Zhen Hai Han
- College of HorticultureChina Agricultural UniversityBeijingChina
| | - Xin Zhong Zhang
- College of HorticultureChina Agricultural UniversityBeijingChina
| |
Collapse
|
19
|
Wu B, Shen F, Chen CJ, Liu L, Wang X, Zheng WY, Deng Y, Wang T, Huang ZY, Xiao C, Zhou Q, Wang Y, Wu T, Xu XF, Han ZH, Zhang XZ. Natural variations in a pectin acetylesterase gene, MdPAE10, contribute to prolonged apple fruit shelf life. THE PLANT GENOME 2021; 14:e20084. [PMID: 33605090 DOI: 10.1002/tpg2.20084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/13/2020] [Indexed: 05/18/2023]
Abstract
Room-temperature shelf life is a key factor in fresh market apple (Malus domestica Borkh.) quality and commercial value. To investigate the genetic and molecular mechanism underlying apple shelf life, quantitative trait loci (QTL) were identified using bulked segregant analysis via sequencing (BSA-seq). Ethylene emission, flesh firmness, or crispness of apple fruit from 1,273 F1 plants of M. asiatica Nakai 'Zisai Pearl' × M. domestica 'Golden Delicious' were phenotyped prior to and during 6 wk of room-temperature storage. Segregation of ethylene emission and the flesh firmness or crispness traits was detected in the population. Thirteen QTL, including three major ones, were identified on chromosome 03, 08, and 16. A candidate gene encoding pectin acetylesterase, MdPAE10, from the QTL Z16.1 negatively affected fruit shelf life. A 379-bp deletion in the coding sequence of MdPAE10 disrupted its function. A single nucleotide polymorphism (SNP) in the MdPAE10 promoter region reduced its transcription activity. These findings provided insight into the genetic control of fruit shelf life and can be potentially used in apple marker-assisted selection.
Collapse
Affiliation(s)
- Bei Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chi Jie Chen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Li Liu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuan Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Wen Yan Zheng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yang Deng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Ting Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhen Yu Huang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chen Xiao
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qian Zhou
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xue Feng Xu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhen Hai Han
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xin Zhong Zhang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| |
Collapse
|
20
|
Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nat Genet 2020; 52:1423-1432. [PMID: 33139952 PMCID: PMC7728601 DOI: 10.1038/s41588-020-00723-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
Abstract
Domestication of the apple was mainly driven by interspecific hybridization. In the present study, we report the haplotype-resolved genomes of the cultivated apple (Malus domestica cv. Gala) and its two major wild progenitors, M. sieversii and M. sylvestris. Substantial variations are identified between the two haplotypes of each genome. Inference of genome ancestry identifies ~23% of the Gala genome as of hybrid origin. Deep sequencing of 91 accessions identifies selective sweeps in cultivated apples that originated from either of the two progenitors and are associated with important domestication traits. Construction and analyses of apple pan-genomes uncover thousands of new genes, with hundreds of them being selected from one of the progenitors and largely fixed in cultivated apples, revealing that introgression of new genes/alleles is a hallmark of apple domestication through hybridization. Finally, transcriptome profiles of Gala fruits at 13 developmental stages unravel ~19% of genes displaying allele-specific expression, including many associated with fruit quality. Phased diploid genomes of the cultivated apple Malus domestica cv. Gala and its two major wild progenitors M. sieversii and M. sylvestris, as well as pan-genome analyses, provide insights into the genetic history of apple domestication.
Collapse
|
21
|
Tegtmeier R, Pompili V, Singh J, Micheletti D, Silva KJP, Malnoy M, Khan A. Candidate gene mapping identifies genomic variations in the fire blight susceptibility genes HIPM and DIPM across the Malus germplasm. Sci Rep 2020; 10:16317. [PMID: 33004843 PMCID: PMC7529791 DOI: 10.1038/s41598-020-73284-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Development of apple (Malus domestica) cultivars resistant to fire blight, a devastating bacterial disease caused by Erwinia amylovora, is a priority for apple breeding programs. Towards this goal, the inactivation of members of the HIPM and DIPM gene families with a role in fire blight susceptibility (S genes) can help achieve sustainable tolerance. We have investigated the genomic diversity of HIPM and DIPM genes in Malus germplasm collections and used a candidate gene-based association mapping approach to identify SNPs (single nucleotide polymorphisms) with significant associations to fire blight susceptibility. A total of 87 unique SNP variants were identified in HIPM and DIPM genes across 93 Malus accessions. Thirty SNPs showed significant associations (p < 0.05) with fire blight susceptibility traits, while two of these SNPs showed highly significant (p < 0.001) associations across two different years. This research has provided knowledge about genetic diversity in fire blight S genes in diverse apple accessions and identified candidate HIPM and DIPM alleles that could be used to develop apple cultivars with decreased fire blight susceptibility via marker-assisted breeding or biotechnological approaches.
Collapse
Affiliation(s)
- Richard Tegtmeier
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Valerio Pompili
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Jugpreet Singh
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Diego Micheletti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
22
|
Roth M, Muranty H, Di Guardo M, Guerra W, Patocchi A, Costa F. Genomic prediction of fruit texture and training population optimization towards the application of genomic selection in apple. HORTICULTURE RESEARCH 2020; 7:148. [PMID: 32922820 PMCID: PMC7459338 DOI: 10.1038/s41438-020-00370-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 05/11/2023]
Abstract
Texture is a complex trait and a major component of fruit quality in apple. While the major effect of MdPG1, a gene controlling firmness, has already been exploited in elite cultivars, the genetic basis of crispness remains poorly understood. To further improve fruit texture, harnessing loci with minor effects via genomic selection is therefore necessary. In this study, we measured acoustic and mechanical features in 537 genotypes to dissect the firmness and crispness components of fruit texture. Predictions of across-year phenotypic values for these components were calculated using a model calibrated with 8,294 SNP markers. The best prediction accuracies following cross-validations within the training set of 259 genotypes were obtained for the acoustic linear distance (0.64). Predictions for biparental families using the entire training set varied from low to high accuracy, depending on the family considered. While adding siblings or half-siblings into the training set did not clearly improve predictions, we performed an optimization of the training set size and composition for each validation set. This allowed us to increase prediction accuracies by 0.17 on average, with a maximal accuracy of 0.81 when predicting firmness in the 'Gala' × 'Pink Lady' family. Our results therefore identified key genetic parameters to consider when deploying genomic selection for texture in apple. In particular, we advise to rely on a large training population, with high phenotypic variability from which a 'tailored training population' can be extracted using a priori information on genetic relatedness, in order to predict a specific target population.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Breeding Research Division, Agroscope, Wädenswil, Zurich, Switzerland
- Present Address: GAFL, INRAE, 84140 Montfavet, France
| | - Hélène Muranty
- IRHS, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Mario Di Guardo
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| | - Walter Guerra
- Research Centre Laimburg, Laimburg 6, 39040 Auer, Italy
| | - Andrea Patocchi
- Plant Breeding Research Division, Agroscope, Wädenswil, Zurich, Switzerland
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010 San Michele all’Adige, Italy
- Center Agriculture Food Environment, University of Trento, Via Mach 1, 38010 San Michele all’Adige, Italy
| |
Collapse
|
23
|
Song M, Zhang M, Cheng F, Wei Q, Wang J, Davoudi M, Chen J, Lou Q. An irregularly striped rind mutant reveals new insight into the function of PG1β in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:371-382. [PMID: 31734868 DOI: 10.1007/s00122-019-03468-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Via bulked segregant analysis sequencing combined with linkage mapping, the ist gene responsible for the irregularly striped rind mutation was delimited to a 144-kb region in cucumber. Sequencing and expression analysis identified Csa1G005490 as the candidate gene. The rind appearance of cucumber is one of the most important commercial quality traits. Usually, an immature cucumber fruit has a uniform rind that varies from green to yellow to white among different cultivated varieties. In the present paper, we isolated a novel fruit appearance cucumber mutant, ist, that has an irregularly striped rind pattern. The mutant displayed green irregular stripes on a yellow-green background at the immature fruit stage. Genetic analysis revealed that a single recessive gene, ist, is responsible for this mutation. A BSA (bulked segregant analysis) sequencing approach combined with genetic mapping delimited the ist locus to an interval with a length of 144 kb, and 21 predicted genes were annotated in the region. Based on mutation site screening and expression analysis, two single-nucleotide polymorphisms within the candidate gene, Csa1G005490, were identified as constituting the mutation. Csa1G005490 encodes a polygalacturonase-1 noncatalytic subunit beta protein (PG1β) known to be involved in fruit softening. The expression of Csa1G005490 was significantly lower in the ist mutant than in the wild type. Transcriptome analysis identified 1796 differentially expressed genes (DEGs) between the ist mutant and wild type. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these DEGs were enriched mostly in photosynthesis and chlorophyll metabolism pathways. Decreased expression patterns of several chlorophyll synthesis genes in the mutant suggest that ist plays a key role in chlorophyll biosynthesis. These results will provide new insight into the molecular mechanism underlying rind appearance polymorphisms in cucumber.
Collapse
Affiliation(s)
- Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Qingzhen Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Jing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Marzieh Davoudi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China.
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No. 1, Nanjing, 210095, China.
| |
Collapse
|
24
|
Di Guardo M, Bink MCAM, Guerra W, Letschka T, Lozano L, Busatto N, Poles L, Tadiello A, Bianco L, Visser RGF, van de Weg E, Costa F. Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1451-1466. [PMID: 28338805 PMCID: PMC5441909 DOI: 10.1093/jxb/erx017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit texture is a complex feature composed of mechanical and acoustic properties relying on the modifications occurring in the cell wall throughout fruit development and ripening. Apple is characterized by a large variation in fruit texture behavior that directly impacts both the consumer's appreciation and post-harvest performance. To decipher the genetic control of fruit texture comprehensively, two complementing quantitative trait locus (QTL) mapping approaches were employed. The first was represented by a pedigree-based analysis (PBA) carried out on six full-sib pedigreed families, while the second was a genome-wide association study (GWAS) performed on a collection of 233 apple accessions. Both plant materials were genotyped with a 20K single nucleotide polymorphism (SNP) array and phenotyped with a sophisticated high-resolution texture analyzer. The overall QTL results indicated the fundamental role of chromosome 10 in controlling the mechanical properties, while chromosomes 2 and 14 were more associated with the acoustic response. The latter QTL, moreover, showed a consistent relationship between the QTL-estimated genotypes and the acoustic performance assessed among seedlings. The in silico annotation of these intervals revealed interesting candidate genes potentially involved in fruit texture regulation, as suggested by the gene expression profile. The joint integration of these approaches sheds light on the specific control of fruit texture, enabling important genetic information to assist in the selection of valuable fruit quality apple varieties.
Collapse
Affiliation(s)
- Mario Di Guardo
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento, Italy
- Graduate School Experimental Plant Sciences, Wageningen University, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Marco C A M Bink
- Biometris, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Walter Guerra
- Laimburg Research Centre for Agriculture and Forestry, via Laimburg 6, 39040 Ora (BZ),Italy
| | - Thomas Letschka
- Laimburg Research Centre for Agriculture and Forestry, via Laimburg 6, 39040 Ora (BZ),Italy
| | - Lidia Lozano
- Laimburg Research Centre for Agriculture and Forestry, via Laimburg 6, 39040 Ora (BZ),Italy
| | - Nicola Busatto
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Lara Poles
- Innovation Fruit Consortium (CIF), via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Alice Tadiello
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Luca Bianco
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Eric van de Weg
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Fabrizio Costa
- Fondazione Edmund Mach, via Mach 1, 38010 San Michele all'Adige, Trento,Italy
| |
Collapse
|
25
|
Peace CP. DNA-informed breeding of rosaceous crops: promises, progress and prospects. HORTICULTURE RESEARCH 2017; 4:17006. [PMID: 28326185 PMCID: PMC5350264 DOI: 10.1038/hortres.2017.6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 05/18/2023]
Abstract
Crops of the Rosaceae family provide valuable contributions to rural economies and human health and enjoyment. Sustained solutions to production challenges and market demands can be met with genetically improved new cultivars. Traditional rosaceous crop breeding is expensive and time-consuming and would benefit from improvements in efficiency and accuracy. Use of DNA information is becoming conventional in rosaceous crop breeding, contributing to many decisions and operations, but only after past decades of solved challenges and generation of sufficient resources. Successes in deployment of DNA-based knowledge and tools have arisen when the 'chasm' between genomics discoveries and practical application is bridged systematically. Key steps are establishing breeder desire for use of DNA information, adapting tools to local breeding utility, identifying efficient application schemes, accessing effective services in DNA-based diagnostics and gaining experience in integrating DNA information into breeding operations and decisions. DNA-informed germplasm characterization for revealing identity and relatedness has benefitted many programs and provides a compelling entry point to reaping benefits of genomics research. DNA-informed germplasm evaluation for predicting trait performance has enabled effective reallocation of breeding resources when applied in pioneering programs. DNA-based diagnostics is now expanding from specific loci to genome-wide considerations. Realizing the full potential of this expansion will require improved accuracy of predictions, multi-trait DNA profiling capabilities, streamlined breeding information management systems, strategies that overcome plant-based features that limit breeding progress and widespread training of current and future breeding personnel and allied scientists.
Collapse
Affiliation(s)
- Cameron P Peace
- Department of Horticulture, Washington State University, PO Box 646414, Pullman, WA 99164-6414, USA
- ()
| |
Collapse
|
26
|
Tadiello A, Longhi S, Moretto M, Ferrarini A, Tononi P, Farneti B, Busatto N, Vrhovsek U, Molin AD, Avanzato C, Biasioli F, Cappellin L, Scholz M, Velasco R, Trainotti L, Delledonne M, Costa F. Interference with ethylene perception at receptor level sheds light on auxin and transcriptional circuits associated with the climacteric ripening of apple fruit (Malus x domestica Borkh.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:963-975. [PMID: 27531564 DOI: 10.1111/tpj.13306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 05/08/2023]
Abstract
Apple (Malus x domestica Borkh.) is a model species for studying the metabolic changes that occur at the onset of ripening in fruit crops, and the physiological mechanisms that are governed by the hormone ethylene. In this study, to dissect the climacteric interplay in apple, a multidisciplinary approach was employed. To this end, a comprehensive analysis of gene expression together with the investigation of several physiological entities (texture, volatilome and content of polyphenolic compounds) was performed throughout fruit development and ripening. The transcriptomic profiling was conducted with two microarray platforms: a dedicated custom array (iRIPE) and a whole genome array specifically enriched with ripening-related genes for apple (WGAA). The transcriptomic and phenotypic changes following the application of 1-methylcyclopropene (1-MCP), an ethylene inhibitor leading to important modifications in overall fruit physiology, were also highlighted. The integrative comparative network analysis showed both negative and positive correlations between ripening-related transcripts and the accumulation of specific metabolites or texture components. The ripening distortion caused by the inhibition of ethylene perception, in addition to affecting the ethylene pathway, stimulated the de-repression of auxin-related genes, transcription factors and photosynthetic genes. Overall, the comprehensive repertoire of results obtained here advances the elucidation of the multi-layered climacteric mechanism of fruit ripening, thus suggesting a possible transcriptional circuit governed by hormones and transcription factors.
Collapse
Affiliation(s)
- Alice Tadiello
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Sara Longhi
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Alberto Ferrarini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Paola Tononi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Brian Farneti
- Department of Agricultural Sciences, Bologna University, Via Fanin 46, Bologna, 40127, Italy
| | - Nicola Busatto
- Department of Agricultural Sciences, Bologna University, Via Fanin 46, Bologna, 40127, Italy
| | - Urska Vrhovsek
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Alessandra Dal Molin
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Carla Avanzato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Franco Biasioli
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Luca Cappellin
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Matthias Scholz
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| | - Livio Trainotti
- Biology Department, Padova University, Viale Giuseppe Colombo 3, Padova, 35121, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Fabrizio Costa
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| |
Collapse
|
27
|
Slow softening of Kanzi apples (Malus×domestica L.) is associated with preservation of pectin integrity in middle lamella. Food Chem 2016; 211:883-91. [DOI: 10.1016/j.foodchem.2016.05.138] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/22/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022]
|
28
|
Xu J, Zhao Y, Zhang X, Zhang L, Hou Y, Dong W. Transcriptome Analysis and Ultrastructure Observation Reveal that Hawthorn Fruit Softening Is due to Cellulose/Hemicellulose Degradation. FRONTIERS IN PLANT SCIENCE 2016; 7:1524. [PMID: 27790234 PMCID: PMC5063854 DOI: 10.3389/fpls.2016.01524] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/27/2016] [Indexed: 05/18/2023]
Abstract
Softening, a common phenomenon in many fruits, is a well coordinated and genetically determined process. However, the process of flesh softening during ripening has rarely been described in hawthorn. In this study, we found that 'Ruanrou Shanlihong 3 Hao' fruits became softer during ripening, whereas 'Qiu JinXing' fruits remained hard. At late developmental stages, the firmness of 'Ruanrou Shanlihong 3 Hao' fruits rapidly declined, and that of 'Qiu JinXing' fruits remained essentially unchanged. According to transmission electron microscopy, the middle lamella of 'Qiu JinXing' and 'Ruanrou Shanlihong 3 Hao' fruit flesh was largely degraded as the fruits matured. Microfilaments in 'Qiu JinXing' flesh were arranged close together and were deep in color, whereas those in 'Ruanrou Shanlihong 3 Hao' fruit flesh were arranged loosely, partially degraded and light in color. RNA-Seq analysis yielded approximately 46.72 Gb of clean data and 72,837 unigenes. Galactose metabolism and pentose and glucuronate interconversions are involved in cell wall metabolism, play an important role in hawthorn texture. We identified 85 unigenes related to the cell wall between hard- and soft-fleshed hawthorn fruits. Based on data analysis and real-time PCR, we suggest that β-GAL and PE4 have important functions in early fruit softening. The genes Ffase, Gns,α-GAL, PE63, XTH, and CWP, which are involved in cell wall degradation, are responsible for the different textures of hawthorn fruits. Thus, we hypothesize that the different textures of 'Qiu JinXing' and 'Ruanrou Shanlihong 3 Hao' fruits at maturity mainly result from cellulose/hemicelluloses degradation rather than from lamella degradation. Overall, we propose that different types of hydrolytic enzymes in cells interact to degrade the cell wall, resulting in ultramicroscopic Structure changes in the cell wall and, consequently, fruit softening. These results provide fundamental insight regarding the mechanisms by which hawthorn fruits acquire different textures and also lay a solid foundation for further research.
Collapse
Affiliation(s)
- Jiayu Xu
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Xiao Zhang
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Lijie Zhang
- College of Forestry, Shenyang Agricultural UniversityShenyang, China
| | - Yali Hou
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
| | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural UniversityShenyang, China
| |
Collapse
|
29
|
Li M, Li D, Feng F, Zhang S, Ma F, Cheng L. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5145-57. [PMID: 27535992 PMCID: PMC7299428 DOI: 10.1093/jxb/erw277] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Understanding the fruit developmental process is critical for fruit quality improvement. Here, we report a comprehensive proteomic analysis of apple fruit development over five growth stages, from young fruit to maturity, coupled with metabolomic profiling. A tandem mass tag (TMT)-based comparative proteomics approach led to the identification and quantification of 7098 and 6247 proteins, respectively. This large-scale proteomic dataset presents a global view of the critical pathways involved in fruit development and metabolism. When linked with metabolomics data, these results provide new insights into the modulation of fruit development, the metabolism and storage of sugars and organic acids (mainly malate), and events within the energy-related pathways for respiration and glycolysis. We suggest that the key steps identified here (e.g. those involving the FK2, TST, EDR6, SPS, mtME and mtMDH switches), can be further targeted to confirm their roles in accumulation and balance of fructose, sucrose and malate. Moreover, our findings imply that the primary reason for decreases in amino acid concentrations during fruit development is related to a reduction in substrate flux via glycolysis, which is mainly regulated by fructose-bisphosphate aldolase and bisphosphoglycerate mutase.
Collapse
Affiliation(s)
- Mingjun Li
- State Key of Crop Stress Biology in Arid Areas/College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Dongxia Li
- State Key of Crop Stress Biology in Arid Areas/College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengjuan Feng
- State Key of Crop Stress Biology in Arid Areas/College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Fengwang Ma
- State Key of Crop Stress Biology in Arid Areas/College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
|
31
|
Igarashi M, Hatsuyama Y, Harada T, Fukasawa-Akada T. Biotechnology and apple breeding in Japan. BREEDING SCIENCE 2016; 66:18-33. [PMID: 27069388 PMCID: PMC4780799 DOI: 10.1270/jsbbs.66.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/23/2015] [Indexed: 05/11/2023]
Abstract
Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding.
Collapse
Affiliation(s)
- Megumi Igarashi
- Hirosaki Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center,
Ogimachi 1-1-8, Hirosaki, Aomori 036-8104,
Japan
| | - Yoshimichi Hatsuyama
- Apple Research Institute, Aomori Prefectural Industrial Technology Research Center,
Fukutami 24, Botandaira, Kuroishi, Aomori 036-0332,
Japan
| | - Takeo Harada
- Department of Agriculture and Life Science, Hirosaki University,
Bunkyouchou 3, Hirosaki, Aomori 036-8563,
Japan
| | - Tomoko Fukasawa-Akada
- Hirosaki Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center,
Ogimachi 1-1-8, Hirosaki, Aomori 036-8104,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
32
|
Sun R, Chang Y, Yang F, Wang Y, Li H, Zhao Y, Chen D, Wu T, Zhang X, Han Z. A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genomics 2015; 16:747. [PMID: 26437648 PMCID: PMC4595315 DOI: 10.1186/s12864-015-1946-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/22/2015] [Indexed: 02/05/2023] Open
Abstract
Background Genetic map based quantitative trait locus (QTL) analysis is an important method for studying important horticultural traits in apple. To facilitate molecular breeding studies of fruit quality traits in apple, we aim to construct a high density map which was efficient for QTL mapping and possible to search for candidate genes directly in mapped QTLs regions. Methods A total of 1733 F1 seedlings derived from ‘Jonathan’ × ‘Golden Delicious’ was used for the map constructionand QTL analysis. The SNP markers were developed by restriction site-associated DNA sequencing (RADseq). Phenotyping data of fruit quality traits were calculated in 2008-2011. Once QTLs were mapped, candidate genes were searched for in the corresponding regions of the apple genome sequence underlying the QTLs. Then some of the candidate genes were validated using real-time PCR. Results A high-density genetic map with 3441 SNP markers from 297 individuals was generated. Of the 3441 markers, 2017 were mapped to ‘Jonathan’ with a length of 1343.4 cM and the average distance between markers was 0.67 cM, 1932 were mapped to ‘Golden Delicious’ with a length of 1516.0 cM and the average distance between markers was 0.78 cM. Twelve significant QTLs linked to the control of fruit weight, fruit firmness, sugar content and fruit acidity were mapped to seven linkage groups. Based on gene annotation, 80, 64 and 17 genes related to fruit weight, fruit firmness and fruit acidity, respectively, were analyzed.Among the 17 candidate genes associated with control of fruit acidity, changes in the expression of MDP0000582174 (MdMYB4) were in agreement with the pattern of changes in malic acid content in apple during ripening, and the relative expression of MDP0000239624 (MdME) was significantly correlated withfruit acidity. Conclusions We demonstrated the construction of a dense SNP genetic map in apple using next generation sequencing and that the increased resolution enabled the detection of narrow interval QTLs linked to the three fruit quality traits assessed. The candidate genes MDP0000582174 and MDP0000239624 were found to be related to fruit acidity regulation. We conclude that application of RADseq for genetic map construction improved the precision of QTL detection and should be utilized in future studies on the regulatory mechanisms of important fruit traits in apple. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1946-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Sun
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Yuansheng Chang
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Fengqiu Yang
- Changli Institute for Pomology, Hebei Academy of Agricultural and Forestry Science, Changli, Heibei 066600, China.
| | - Yi Wang
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Hui Li
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Yongbo Zhao
- Changli Institute for Pomology, Hebei Academy of Agricultural and Forestry Science, Changli, Heibei 066600, China.
| | - Dongmei Chen
- Changli Institute for Pomology, Hebei Academy of Agricultural and Forestry Science, Changli, Heibei 066600, China.
| | - Ting Wu
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Xinzhong Zhang
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Zhenhai Han
- Institute for Horticultural Plants, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
33
|
Ng JKT, Schröder R, Brummell DA, Sutherland PW, Hallett IC, Smith BG, Melton LD, Johnston JW. Lower cell wall pectin solubilisation and galactose loss during early fruit development in apple (Malus x domestica) cultivar 'Scifresh' are associated with slower softening rate. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:129-37. [PMID: 25602611 DOI: 10.1016/j.jplph.2014.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 05/03/2023]
Abstract
Substantial differences in softening behaviour can exist between fruit even within the same species. Apple cultivars 'Royal Gala' and 'Scifresh' soften at different rates despite having a similar genetic background and producing similar amounts of ethylene during ripening. An examination of cell wall metabolism from the fruitlet to the ripe stages showed that in both cultivars pectin solubilisation increased during cell expansion, declined at the mature stage and then increased again during ripening. This process was much less pronounced in the slower softening 'Scifresh' than in 'Royal Gala' at every developmental stage examined, consistent with less cell separation and softening in this cultivar. Both cultivars also exhibited a progressive loss of pectic galactan and arabinan side chains during development. The cell wall content of arabinose residues was similar in both cultivars, but the galactose residue content in 'Scifresh' remained higher than that of 'Royal Gala' at every developmental stage. The higher content of cell wall galactose residue in 'Scifresh' cell walls correlated with a lower β-galactosidase activity and more intense immunolabelling of RG-I galactan side chains in both microscopy sections and glycan microarrays. A high cell wall galactan content has been associated with reduced cell wall porosity, which may restrict access of cell wall-modifying enzymes and thus maintain better structural integrity later in development. The data suggest that the composition and structure of the cell wall at very early development stages may influence subsequent cell wall loosening, and may even predispose the wall's ensuing properties.
Collapse
Affiliation(s)
- Jovyn K T Ng
- Food Science, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand; The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand.
| | - Roswitha Schröder
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand.
| | - David A Brummell
- The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand.
| | - Paul W Sutherland
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand.
| | - Ian C Hallett
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand.
| | - Bronwen G Smith
- Food Science, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Laurence D Melton
- Food Science, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Jason W Johnston
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 1401, Havelock North 4157, New Zealand.
| |
Collapse
|
34
|
Saeed M, Brewer L, Johnston J, McGhie TK, Gardiner SE, Heyes JA, Chagné D. Genetic, metabolite and developmental determinism of fruit friction discolouration in pear. BMC PLANT BIOLOGY 2014; 14:241. [PMID: 25224302 PMCID: PMC4177423 DOI: 10.1186/s12870-014-0241-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/05/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND The unattractive appearance of the surface of pear fruit caused by the postharvest disorder friction discolouration (FD) is responsible for significant consumer dissatisfaction in markets, leading to lower returns to growers. Developing an understanding of the genetic control of FD is essential to enable the full application of genomics-informed breeding for the development of new pear cultivars. Biochemical constituents [phenolic compounds and ascorbic acid (AsA)], polyphenol oxidase (PPO) activity, as well as skin anatomy, have been proposed to play important roles in FD susceptibility in studies on a limited number of cultivars. However, to date there has been no investigation on the biochemical and genetic control of FD, employing segregating populations. In this study, we used 250 seedlings from two segregating populations (POP369 and POP356) derived from interspecific crosses between Asian (Pyrus pyrifolia Nakai and P. bretschneideri Rehd.) and European (P. communis) pears to identify genetic factors associated with susceptibility to FD. RESULTS Single nucleotide polymorphism (SNP)-based linkage maps suitable for QTL analysis were developed for the parents of both populations. The maps for population POP369 comprised 174 and 265 SNP markers for the male and female parent, respectively, while POP356 maps comprised 353 and 398 SNP markers for the male and female parent, respectively. Phenotypic data for 22 variables were measured over two successive years (2011 and 2012) for POP369 and one year (2011) only for POP356. A total of 221 QTLs were identified that were linked to 22 phenotyped variables, including QTLs associated with FD for both populations that were stable over the successive years. In addition, clear evidence of the influence of developmental factors (fruit maturity) on FD and other variables was also recorded. CONCLUSIONS The QTLs associated with fruit firmness, PPO activity, AsA concentration and concentration of polyphenol compounds as well as FD are the first reported for pear. We conclude that the postharvest disorder FD is controlled by multiple small effect QTLs and that it will be very challenging to apply marker-assisted selection based on these QTLs. However, genomic selection could be employed to select elite genotypes with lower or no susceptibility to FD early in the breeding cycle.
Collapse
Affiliation(s)
- Munazza Saeed
- />Centre for Postharvest & Refrigeration Research, Massey University, Private Bag 11 222, Palmerston North, 4442 New Zealand
- />The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Private Bag 11600, Palmerston North, 4442 New Zealand
| | - Lester Brewer
- />Plant & Food Research, Motueka Research Centre, Old Mill Road, Motueka, 7198 New Zealand
| | - Jason Johnston
- />Plant & Food Research, Hawkes Bay Research Centre, Private Bag 1401, Havelock North, New Zealand
| | - Tony K McGhie
- />The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Private Bag 11600, Palmerston North, 4442 New Zealand
| | - Susan E Gardiner
- />The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Private Bag 11600, Palmerston North, 4442 New Zealand
| | - Julian A Heyes
- />Centre for Postharvest & Refrigeration Research, Massey University, Private Bag 11 222, Palmerston North, 4442 New Zealand
| | - David Chagné
- />The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Private Bag 11600, Palmerston North, 4442 New Zealand
| |
Collapse
|
35
|
Chagné D, Dayatilake D, Diack R, Oliver M, Ireland H, Watson A, Gardiner SE, Johnston JW, Schaffer RJ, Tustin S. Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus × domestica Borkh.). HORTICULTURE RESEARCH 2014; 1:14046. [PMID: 26504549 PMCID: PMC4596328 DOI: 10.1038/hortres.2014.46] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 05/19/2023]
Abstract
For any given genotype, the environment in which an apple is grown can influence the properties of the fruit considerably. While there has been extensive research on the mechanism of the genetic control of fruit quality traits, less effort has been made to investigate the way that these genetic mechanisms interact with the environment. To address this issue, we employed a large 'Royal Gala' × 'Braeburn' population of 572 seedlings replicated over sites in three climatically diverse apple-growing regions in New Zealand. Phenotyping for traits including fruit maturation timing, firmness and dry matter content was performed at each of these three sites for a single growing season (2011), and at two sites (Motueka and Hawke's Bay) for two seasons (2009 and 2010). The phenotype data collected over 2 years at two sites enabled the detection of 190 quantitative trait loci (QTL) that controlled these traits regardless of year or growing location, as well as some chromosomal loci that influenced the traits in a single given environment or year. For those loci that were environmentally stable over three sites, there was an interdependency of fruit maturation date, dry matter content and storage potential within this population, with two regions on Linkage Groups (LGs) 10 and 16 strongly contributing. If these loci were used in a marker-assisted selection programme to select for progeny bearing firmer fruit, this would have the unintentional consequence of selecting, high dry matter content, later maturing apples. In addition, a further 113 new QTLs with a smaller effect were identified, some of which were exhibited only in a single growing environment, demonstrating the underlying complexity of control of traits determining fruit quality, in addition to the need for being aware of environmental effects when developing new apple varieties.
Collapse
Affiliation(s)
- David Chagné
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
| | - Daya Dayatilake
- Plant & Food Research, Hawke's Bay Research Centre, Havelock North, New Zealand
| | - Robert Diack
- Plant & Food Research, Motueka Research Centre, Motueka, New Zealand
| | - Murray Oliver
- Plant & Food Research, Hawke's Bay Research Centre, Havelock North, New Zealand
| | - Hilary Ireland
- Plant & Food Research, Mount Albert Research Centre, Auckland, New Zealand
| | - Amy Watson
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
| | - Susan E Gardiner
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Palmerston North Research Centre, Palmerston North, New Zealand
| | - Jason W Johnston
- Plant & Food Research, Hawke's Bay Research Centre, Havelock North, New Zealand
| | - Robert J Schaffer
- Plant & Food Research, Mount Albert Research Centre, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Stuart Tustin
- Plant & Food Research, Hawke's Bay Research Centre, Havelock North, New Zealand
| |
Collapse
|
36
|
Ng JKT, Schröder R, Sutherland PW, Hallett IC, Hall MI, Prakash R, Smith BG, Melton LD, Johnston JW. Cell wall structures leading to cultivar differences in softening rates develop early during apple (Malus x domestica) fruit growth. BMC PLANT BIOLOGY 2013; 13:183. [PMID: 24252512 PMCID: PMC4225529 DOI: 10.1186/1471-2229-13-183] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/12/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND There is a paucity of information regarding development of fruit tissue microstructure and changes in the cell walls during fruit growth, and how these developmental processes differ between cultivars with contrasting softening behaviour. In this study we compare two apple cultivars that show different softening rates during fruit development and ripening. We investigate whether these different softening behaviours manifest themselves late during ethylene-induced softening in the ripening phase, or early during fruit expansion and maturation. RESULTS 'Scifresh' (slow softening) and 'Royal Gala' (rapid softening) apples show differences in cortical microstructure and cell adhesion as early as the cell expansion phase. 'Scifresh' apples showed reduced loss of firmness and greater dry matter accumulation compared with 'Royal Gala' during early fruit development, suggesting differences in resource allocation that influence tissue structural properties. Tricellular junctions in 'Scifresh' were rich in highly-esterified pectin, contributing to stronger cell adhesion and an increased resistance to the development of large airspaces during cell expansion. Consequently, mature fruit of 'Scifresh' showed larger, more angular shaped cells than 'Royal Gala', with less airspaces and denser tissue. Stronger cell adhesion in ripe 'Scifresh' resulted in tissue fracture by cell rupture rather than by cell-to-cell-separation as seen in 'Royal Gala'. CDTA-soluble pectin differed in both cultivars during development, implicating its involvement in cell adhesion. Low pectin methylesterase activity during early stages of fruit development coupled with the lack of immuno-detectable PG was associated with increased cell adhesion in 'Scifresh'. CONCLUSIONS Our results indicate that cell wall structures leading to differences in softening rates of apple fruit develop early during fruit growth and well before the induction of the ripening process.
Collapse
Affiliation(s)
- Jovyn KT Ng
- Food Science, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
- Current address: The New Zealand Institute for Plant & Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Paul W Sutherland
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Miriam I Hall
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Roneel Prakash
- The New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Bronwen G Smith
- Food Science, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Laurence D Melton
- Food Science, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jason W Johnston
- The New Zealand Institute for Plant & Food Research Limited, Hawkes Bay Research Centre, Havelock North 4130, New Zealand
| |
Collapse
|
37
|
Evans K, Jung S, Lee T, Brutcher L, Cho I, Peace C, Main D. Addition of a breeding database in the Genome Database for Rosaceae. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat078. [PMID: 24247530 PMCID: PMC3831303 DOI: 10.1093/database/bat078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Breeding programs produce large datasets that require efficient management systems to keep track of performance, pedigree, geographical and image-based data. With the development of DNA-based screening technologies, more breeding programs perform genotyping in addition to phenotyping for performance evaluation. The integration of breeding data with other genomic and genetic data is instrumental for the refinement of marker-assisted breeding tools, enhances genetic understanding of important crop traits and maximizes access and utility by crop breeders and allied scientists. Development of new infrastructure in the Genome Database for Rosaceae (GDR) was designed and implemented to enable secure and efficient storage, management and analysis of large datasets from the Washington State University apple breeding program and subsequently expanded to fit datasets from other Rosaceae breeders. The infrastructure was built using the software Chado and Drupal, making use of the Natural Diversity module to accommodate large-scale phenotypic and genotypic data. Breeders can search accessions within the GDR to identify individuals with specific trait combinations. Results from Search by Parentage lists individuals with parents in common and results from Individual Variety pages link to all data available on each chosen individual including pedigree, phenotypic and genotypic information. Genotypic data are searchable by markers and alleles; results are linked to other pages in the GDR to enable the user to access tools such as GBrowse and CMap. This breeding database provides users with the opportunity to search datasets in a fully targeted manner and retrieve and compare performance data from multiple selections, years and sites, and to output the data needed for variety release publications and patent applications. The breeding database facilitates efficient program management. Storing publicly available breeding data in a database together with genomic and genetic data will further accelerate the cross-utilization of diverse data types by researchers from various disciplines. Database URL: http://www.rosaceae.org/breeders_toolbox.
Collapse
Affiliation(s)
- Kate Evans
- Washington State University Tree Fruit Research and Extension Center, 1100 N. Western Ave, Wenatchee, WA 98801; Department of Horticulture, Washington State University, Johnson Hall, Pullman WA 99164 and Department of Computer Science, Saginaw Valley State University, University Center, MI 48710, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Di Guardo M, Tadiello A, Farneti B, Lorenz G, Masuero D, Vrhovsek U, Costa G, Velasco R, Costa F. A multidisciplinary approach providing new insight into fruit flesh browning physiology in apple (Malus x domestica Borkh.). PLoS One 2013; 8:e78004. [PMID: 24205065 PMCID: PMC3799748 DOI: 10.1371/journal.pone.0078004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
In terms of the quality of minimally processed fruit, flesh browning is fundamentally important in the development of an aesthetically unpleasant appearance, with consequent off-flavours. The development of browning depends on the enzymatic action of the polyphenol oxidase (PPO). In the 'Golden Delicious' apple genome ten PPO genes were initially identified and located on three main chromosomes (2, 5 and 10). Of these genes, one element in particular, here called Md-PPO, located on chromosome 10, was further investigated and genetically mapped in two apple progenies ('Fuji x Pink Lady' and 'Golden Delicious x Braeburn'). Both linkage maps, made up of 481 and 608 markers respectively, were then employed to find QTL regions associated with fruit flesh browning, allowing the detection of 25 QTLs related to several browning parameters. These were distributed over six linkage groups with LOD values spanning from 3.08 to 4.99 and showed a rate of phenotypic variance from 26.1 to 38.6%. Anchoring of these intervals to the apple genome led to the identification of several genes involved in polyphenol synthesis and cell wall metabolism. Finally, the expression profile of two specific candidate genes, up and downstream of the polyphenolic pathway, namely phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO), provided insight into flesh browning physiology. Md-PPO was further analyzed and two haplotypes were characterised and associated with fruit flesh browning in apple.
Collapse
Affiliation(s)
- Mario Di Guardo
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
| | - Alice Tadiello
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
| | - Brian Farneti
- Department of Fruit Trees & Woody Plant Science, University of Bologna, Bologna, Italy
| | - Giorgia Lorenz
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
| | - Domenico Masuero
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
| | - Urska Vrhovsek
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
| | - Guglielmo Costa
- Department of Fruit Trees & Woody Plant Science, University of Bologna, Bologna, Italy
| | - Riccardo Velasco
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
| | - Fabrizio Costa
- Genomics and Crop Biology Department Research and Innovation Centre, Fondazione Edmund, Mach, San Michele all’Adige (Trento), Italy
- * E-mail:
| |
Collapse
|