1
|
Hu X, Cao X, Zhao Q, Zeng X, Wei Y, Yao Z, Zhao S. IAA-Mediated Haustorium Formation in Phelipanche aegyptiaca: Transcriptional Insights and Anti-Parasitic Strategies. PLANTS (BASEL, SWITZERLAND) 2025; 14:1591. [PMID: 40508266 PMCID: PMC12158121 DOI: 10.3390/plants14111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/15/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025]
Abstract
Phelipanche aegyptiaca is an obligate root-parasitic weed that parasitizes crop roots, threatening the safety of agricultural production. However, the molecular mechanisms underlying the formation of P. aegyptiaca haustorium remain largely unclear. Here, we employed transcriptomics to investigate the molecular events in P. aegyptiaca haustorium formation induced by indole-3-acetic acid. Our study revealed that during P. aegyptiaca haustorium formation, the cell proliferation activity at the tip of the radicle was highest during the young stage and then gradually declined. The differentially expressed genes upregulated during haustorium formation were mainly enriched in DNA replication and plant hormone signal transduction, while those that were downregulated were enriched in biosynthesis of secondary metabolites. Additionally, interfering with the auxin signal weakened the parasitic ability of P. aegyptiaca. These findings enhance our understanding of the mechanism of P. aegyptiaca haustorium formation and contribute to the targeted development of new pesticides for inhibiting P. aegyptiaca.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaoqun Yao
- Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Agriculture College, Shihezi University, Shihezi 832003, China; (X.H.); (X.C.); (Q.Z.); (X.Z.); (Y.W.)
| | - Sifeng Zhao
- Key Laboratory at the Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Agriculture College, Shihezi University, Shihezi 832003, China; (X.H.); (X.C.); (Q.Z.); (X.Z.); (Y.W.)
| |
Collapse
|
2
|
Iwanicki NSA, Gotti IA, Delalibera I, Licht HHDF. Host-specific patterns of virulence and gene expression profiles of the broad-host-range entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 2025; 209:108242. [PMID: 39631444 DOI: 10.1016/j.jip.2024.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Generalist pathogens with a broad host range encounter many different host environments. Such generalist pathogens are often highly versatile and adjust their expressed phenotype to the host being infected. Species in the fungal genus Metarhizium (Hypocreales: Clavicipitaceae) occupy various ecological niches, including plant rhizosphere symbionts, soil saprophytes, and insect pathogens with applications in biological control of pests. The species M. anisopliae is highly diverse combining the capability of association with plant roots and infection of a broad range of arachnid and insect hosts, from agricultural pests to vectors of human disease. It is among the most studied and applied biological control agents worldwide. Here, we investigate the phenotypic plasticity and differential gene expression of M. anisopliae blastospores during infection of different insect hosts. First, the virulence of M. anisopliae blastospores was evaluated against Tenebrio molitor (Coleoptera: Tenebrionidae), Spodoptera frugiperda (Lepidoptera: Noctuidae), Gryllus assimilis (Orthoptera: Gryllidae), and Apis mellifera (Hymenoptera: Apidae). Second, the percentage of appressorium formation on the membranous wings of the four hosts was determined, and third, the fungal transcriptome profile during penetration on the hosts was analyzed. Our findings reveal that M. anisopliae blastospores exhibit high virulence against Tenebrio molitor, with significantly higher appressorium formation on beetle wings compared to the other three tested insects. We also document distinct gene expression patterns in M. anisopliae blastospores during insect infection of T. molitor, S. frugiperda, and A. mellifera, with notable variations observed in G. assimilis. These differences are associated with the expression of enzymes involved in the degradation of specific compounds present in each insect wing, as well as hydrophobins, destruxins, and specialized metabolites related to virulence. The study emphasizes the differences in fungal gene expression during infection of the four insect orders and highlights the virulence-related genes specific to each infective process.
Collapse
Affiliation(s)
- Natasha Sant Anna Iwanicki
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11 - P.O. Box 9 - CEP: 13418-900, Piracicaba, São Paulo, Brazil.
| | - Isabella Alice Gotti
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11 - P.O. Box 9 - CEP: 13418-900, Piracicaba, São Paulo, Brazil
| | - Italo Delalibera
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11 - P.O. Box 9 - CEP: 13418-900, Piracicaba, São Paulo, Brazil
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Fruggiero C, Aufiero G, D’Angelo D, Pasolli E, D’Agostino N. Refining dual RNA-seq mapping: sequential and combined approaches in host-parasitic plant dynamics. FRONTIERS IN PLANT SCIENCE 2024; 15:1483717. [PMID: 39582625 PMCID: PMC11581871 DOI: 10.3389/fpls.2024.1483717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Transcriptional profiling in host plant-parasitic plant interactions is challenging due to the tight interface between host and parasitic plants and the percentage of homologous sequences shared. Dual RNA-seq offers a solution by enabling in silico separation of mixed transcripts from the interface region. However, it has to deal with issues related to multiple mapping and cross-mapping of reads in host and parasite genomes, particularly as evolutionary divergence decreases. In this paper, we evaluated the feasibility of this technique by simulating interactions between parasitic and host plants and refining the mapping process. More specifically, we merged host plant with parasitic plant transcriptomes and compared two alignment approaches: sequential mapping of reads to the two separate reference genomes and combined mapping of reads to a single concatenated genome. We considered Cuscuta campestris as parasitic plant and two host plants of interest such as Arabidopsis thaliana and Solanum lycopersicum. Both tested approaches achieved a mapping rate of ~90%, with only about 1% of cross-mapping reads. This suggests the effectiveness of the method in accurately separating mixed transcripts in silico. The combined approach proved slightly more accurate and less time consuming than the sequential approach. The evolutionary distance between parasitic and host plants did not significantly impact the accuracy of read assignment to their respective genomes since enough polymorphisms were present to ensure reliable differentiation. This study demonstrates the reliability of dual RNA-seq for studying host-parasite interactions within the same taxonomic kingdom, paving the way for further research into the key genes involved in plant parasitism.
Collapse
Affiliation(s)
- Carmine Fruggiero
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Gaetano Aufiero
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Davide D’Angelo
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
4
|
Grandjean C, Veronesi C, Rusterucci C, Gautier C, Maillot Y, Leschevin M, Fournet F, Drouaud J, Marcelo P, Zabijak L, Delavault P, Simier P, Bouton S, Pageau K. Pectin Remodeling and Involvement of AtPME3 in the Parasitic Plant-Plant Interaction, Phelipanche ramosa- Arabidospis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2168. [PMID: 39124288 PMCID: PMC11314565 DOI: 10.3390/plants13152168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Phelipanche ramosa is a root parasitic plant fully dependent on host plants for nutrition and development. Upon germination, the parasitic seedling develops inside the infected roots a specific organ, the haustorium, thanks to the cell wall-degrading enzymes of haustorial intrusive cells, and induces modifications in the host's cell walls. The model plant Arabidopsis thaliana is susceptible to P. ramosa; thus, mutants in cell wall metabolism, particularly those involved in pectin remodeling, like Atpme3-1, are of interest in studying the involvement of cell wall-degrading enzymes in the establishment of plant-plant interactions. Host-parasite co-cultures in mini-rhizotron systems revealed that parasite attachments are twice as numerous and tubercle growth is quicker on Atpme3-1 roots than on WT roots. Compared to WT, the increased susceptibility in AtPME3-1 is associated with reduced PME activity in the roots and a lower degree of pectin methylesterification at the host-parasite interface, as detected immunohistochemically in infected roots. In addition, both WT and Atpme3-1 roots responded to infestation by modulating the expression of PAE- and PME-encoding genes, as well as related global enzyme activities in the roots before and after parasite attachment. However, these modulations differed between WT and Atpme3-1, which may contribute to different pectin remodeling in the roots and contrasting susceptibility to P. ramosa. With this integrative study, we aim to define a model of cell wall response to this specific biotic stress and indicate, for the first time, the role of PME3 in this parasitic plant-plant interaction.
Collapse
Affiliation(s)
- Cyril Grandjean
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Christophe Veronesi
- CNRS, US2B, UMR 6286, Nantes Université, F-44000 Nantes, France; (C.V.); (P.D.); (P.S.)
| | - Christine Rusterucci
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Charlotte Gautier
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Yannis Maillot
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Maïté Leschevin
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Françoise Fournet
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Jan Drouaud
- Centre Régional de Ressources en Biologie Moléculaire UPJV, Bâtiment Serres-Transfert Rue Dallery—UFR des Sciences, Passage du Sourire d’Avril, F-80039 Amiens, France;
| | - Paulo Marcelo
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, Université de Picardie Jules Verne, F-80000 Amiens, France; (P.M.); (L.Z.)
| | - Luciane Zabijak
- Plateforme d’Ingénierie Cellulaire & Analyses des Protéines ICAP, Université de Picardie Jules Verne, F-80000 Amiens, France; (P.M.); (L.Z.)
| | - Philippe Delavault
- CNRS, US2B, UMR 6286, Nantes Université, F-44000 Nantes, France; (C.V.); (P.D.); (P.S.)
| | - Philippe Simier
- CNRS, US2B, UMR 6286, Nantes Université, F-44000 Nantes, France; (C.V.); (P.D.); (P.S.)
| | - Sophie Bouton
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| | - Karine Pageau
- UMR INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation, Université de Picardie Jules Verne, F-80000 Amiens, France; (C.G.); (C.R.); (C.G.); (Y.M.); (M.L.); (F.F.)
| |
Collapse
|
5
|
Edema H, Bawin T, Olsen S, Krause K, Karppinen K. Parasitic dodder expresses an arsenal of secreted cellulases with multi-substrate specificity during host invasion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108633. [PMID: 38663263 DOI: 10.1016/j.plaphy.2024.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
Cuscuta campestris is a common and problematic parasitic plant which relies on haustoria to connect to and siphon nutrients from host plants. Glycoside hydrolase family 9 (GH9) cellulases (EC 3.2.1.4) play critical roles in plant cell wall biosynthesis and disassembly, but their roles during Cuscuta host invasion remains underexplored. In this study, we identified 22 full-length GH9 cellulase genes in C. campestris genome, which encoded fifteen secreted and seven membrane-anchored cellulases that showed distinct phylogenetic relationships. Expression profiles suggested that some of the genes are involved in biosynthesis and remodeling of the parasite's cell wall during haustoriogenesis, while other genes encoding secreted B- and C-type cellulases are tentatively associated with degrading host cell walls during invasion. Transcriptomic data in a host-free system and in the presence of susceptible or partially resistant tomato hosts, showed for especially GH9B7, GH9B11 and GH9B12 a shift in expression profiles in the presence of hosts, being more highly expressed during host attachment, indicating that Cuscuta can tune cellulase expression in response to a host. Functional analyses of recombinant B- and C-type cellulases showed endoglucanase activities over wide pH and temperature conditions, and activities towards multiple cellulose and hemicellulose substrates. These findings improve our understanding of host cell wall disassembly by Cuscuta, and cellulase activity towards broad substrate range potentially explain its wide host range. This is the first study to provide a broad biochemical insight into Cuscuta GH9 cellulases, which based on our study may have potential applications in industrial bioprocessing.
Collapse
Affiliation(s)
- Hilary Edema
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway; The Arctic Centre for Sustainable Energy, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| | - Thomas Bawin
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| | - Stian Olsen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway; The Arctic Centre for Sustainable Energy, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, Tromsø, 9037, Norway; The Arctic Centre for Sustainable Energy, UiT the Arctic University of Norway, Tromsø, 9037, Norway.
| |
Collapse
|
6
|
Bradley JM, Butlin RK, Scholes JD. Comparative secretome analysis of Striga and Cuscuta species identifies candidate virulence factors for two evolutionarily independent parasitic plant lineages. BMC PLANT BIOLOGY 2024; 24:251. [PMID: 38582844 PMCID: PMC10998327 DOI: 10.1186/s12870-024-04935-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Many parasitic plants of the genera Striga and Cuscuta inflict huge agricultural damage worldwide. To form and maintain a connection with a host plant, parasitic plants deploy virulence factors (VFs) that interact with host biology. They possess a secretome that represents the complement of proteins secreted from cells and like other plant parasites such as fungi, bacteria or nematodes, some secreted proteins represent VFs crucial to successful host colonisation. Understanding the genome-wide complement of putative secreted proteins from parasitic plants, and their expression during host invasion, will advance understanding of virulence mechanisms used by parasitic plants to suppress/evade host immune responses and to establish and maintain a parasite-host interaction. RESULTS We conducted a comparative analysis of the secretomes of root (Striga spp.) and shoot (Cuscuta spp.) parasitic plants, to enable prediction of candidate VFs. Using orthogroup clustering and protein domain analyses we identified gene families/functional annotations common to both Striga and Cuscuta species that were not present in their closest non-parasitic relatives (e.g. strictosidine synthase like enzymes), or specific to either the Striga or Cuscuta secretomes. For example, Striga secretomes were strongly associated with 'PAR1' protein domains. These were rare in the Cuscuta secretomes but an abundance of 'GMC oxidoreductase' domains were found, that were not present in the Striga secretomes. We then conducted transcriptional profiling of genes encoding putatively secreted proteins for the most agriculturally damaging root parasitic weed of cereals, S. hermonthica. A significant portion of the Striga-specific secretome set was differentially expressed during parasitism, which we probed further to identify genes following a 'wave-like' expression pattern peaking in the early penetration stage of infection. We identified 39 genes encoding putative VFs with functions such as cell wall modification, immune suppression, protease, kinase, or peroxidase activities, that are excellent candidates for future functional studies. CONCLUSIONS Our study represents a comprehensive secretome analysis among parasitic plants and revealed both similarities and differences in candidate VFs between Striga and Cuscuta species. This knowledge is crucial for the development of new management strategies and delaying the evolution of virulence in parasitic weeds.
Collapse
Affiliation(s)
- James M Bradley
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Present address: Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
| | - Roger K Butlin
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Department of Marine Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Julie D Scholes
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
7
|
Chen M, Zhang L, Yao Z, Cao X, Ma Q, Chen S, Zhang X, Zhao S. Integrated Transcriptome and Proteome Analysis Reveals That Cell Wall Activity Affects Phelipanche aegyptiaca Parasitism. PLANTS (BASEL, SWITZERLAND) 2024; 13:869. [PMID: 38592861 PMCID: PMC10974318 DOI: 10.3390/plants13060869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Phelipanche aegyptiaca can infect many crops, causing large agricultural production losses. It is important to study the parasitism mechanism of P. aegyptiaca to control its harm. In this experiment, the P. aegyptiaca HY13M and TE9M from Tacheng Prefecture and Hami City in Xinjiang, respectively, were used to analyze the parasitical mechanism of P. aegyptiaca by means of transcriptome and proteome analyses. The parasitic capacity of TE9M was significantly stronger than that of HY13M in Citrullus lanatus. The results showed that the DEGs and DEPs were prominently enriched in the cell wall metabolism pathways, including "cell wall organization or biogenesis", "cell wall organization", and "cell wall". Moreover, the functions of the pectinesterase enzyme gene (TR138070_c0_g), which is involved in the cell wall metabolism of P. aegyptiaca in its parasitism, were studied by means HIGS. The number and weight of P. aegyptiaca were significantly reduced when TR138070_c0_g1, which encodes a cell-wall-degrading protease, was silenced, indicating that it positively regulates P. aegyptiaca parasitism. Thus, these results suggest that the cell wall metabolism pathway is involved in P. aegyptiaca differentiation of the parasitic ability and that the TR138070_c0_g1 gene plays an important role in P. aegyptiaca's parasitism.
Collapse
Affiliation(s)
- Meixiu Chen
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China; (M.C.); (L.Z.)
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Lu Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China; (M.C.); (L.Z.)
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Zhaoqun Yao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Xiaolei Cao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Qianqian Ma
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Siyu Chen
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Xuekun Zhang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| | - Sifeng Zhao
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, China; (M.C.); (L.Z.)
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, China; (Z.Y.); (X.C.); (Q.M.); (S.C.)
| |
Collapse
|
8
|
Leso M, Kokla A, Feng M, Melnyk CW. Pectin modifications promote haustoria development in the parasitic plant Phtheirospermum japonicum. PLANT PHYSIOLOGY 2023; 194:229-242. [PMID: 37311199 PMCID: PMC10762509 DOI: 10.1093/plphys/kiad343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
Parasitic plants are globally prevalent pathogens with important ecological functions but also potentially devastating agricultural consequences. Common to all parasites is the formation of the haustorium which requires parasite organ development and tissue invasion into the host. Both processes involve cell wall modifications. Here, we investigated a role for pectins during haustorium development in the facultative parasitic plant Phtheirospermum japonicum. Using transcriptomics data from infected Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), we identified genes for multiple P. japonicum pectin methylesterases (PMEs) and their inhibitors (PMEIs) whose expression was upregulated by haustoria formation. Changes in PME and PMEI expression were associated with tissue-specific modifications in pectin methylesterification. While de-methylesterified pectins were present in outer haustorial cells, highly methylesterified pectins were present in inner vascular tissues, including the xylem bridge that connects parasite to host. Specifically blocking xylem bridge formation in the haustoria inhibited several PME and PMEI genes from activating. Similarly, inhibiting PME activity using chemicals or by overexpressing PMEI genes delayed haustoria development. Our results suggest a dynamic and tissue-specific regulation of pectin contributes to haustoria initiation and to the establishment of xylem connections between parasite and host.
Collapse
Affiliation(s)
- Martina Leso
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Anna Kokla
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Ming Feng
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| |
Collapse
|
9
|
Xiao L, Liu Q, Cao X, Chen M, Zhang L, Yao Z, Zhao S. Detection of Secreted Effector Proteins from Phelipanche aegyptiaca During Invasion of Melon Roots. PHYTOPATHOLOGY 2023; 113:1548-1559. [PMID: 37454086 DOI: 10.1094/phyto-11-22-0441-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Parasites can interact with their host plants through the induction and delivery of secreted effector proteins that facilitate plant colonization by decomposing plant cell walls and inhibiting plant immune response to weaken the defense ability of the host. Yet effectors mediating parasitic plant-host interactions are poorly understood. Phelipanche aegyptiaca is an obligate root parasite plant causing severe yield and economic losses in agricultural fields worldwide. Host resistance against P. aegyptiaca occurred during the attachment period of parasitism. Comparative transcriptomics was used to assess resistant and susceptible interactions simultaneously between P. aegyptiaca and two contrasting melon cultivars. In total, 2,740 secreted proteins from P. aegyptiaca were identified here. Combined with transcriptome profiling, 209 candidate secreted effector proteins (CSEPs) were predicted, with functional annotations such as cell wall degrading enzymes, protease inhibitors, transferases, kinases, and elicitor proteins. A heterogeneous expression system in Nicotiana benthamiana was used to investigate the functions of 20 putatively effector genes among the CSEPs. Cluster 15140.0 can suppress BAX-triggered programmed cell death in N. benthamiana. These findings showed that the prediction of P. aegyptiaca effector proteins based on transcriptomic analysis and multiple bioinformatics software is effective and more accurate, providing insights into understanding the essential molecular nature of effectors and laying the foundation of revealing the parasite mechanism of P. aegyptiaca, which is helpful in understanding parasite-host plant interaction.
Collapse
Affiliation(s)
- Lifeng Xiao
- Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Qianqian Liu
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaolei Cao
- Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Meixiu Chen
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lu Zhang
- Xinjiang Production and Construction Corps, Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhaoqun Yao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Sifeng Zhao
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
10
|
Genomic and Epigenomic Mechanisms of the Interaction between Parasitic and Host Plants. Int J Mol Sci 2023; 24:ijms24032647. [PMID: 36768970 PMCID: PMC9917227 DOI: 10.3390/ijms24032647] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
Parasitic plants extract nutrients from the other plants to finish their life cycle and reproduce. The control of parasitic weeds is notoriously difficult due to their tight physical association and their close biological relationship to their hosts. Parasitic plants differ in their susceptible host ranges, and the host species differ in their susceptibility to parasitic plants. Current data show that adaptations of parasitic plants to various hosts are largely genetically determined. However, multiple cases of rapid adaptation in genetically homogenous parasitic weed populations to new hosts strongly suggest the involvement of epigenetic mechanisms. Recent progress in genome-wide analyses of gene expression and epigenetic features revealed many new molecular details of the parasitic plants' interactions with their host plants. The experimental data obtained in the last several years show that multiple common features have independently evolved in different lines of the parasitic plants. In this review we discuss the most interesting new details in the interaction between parasitic and host plants.
Collapse
|
11
|
Westwood JH. Cracking open the witch's spell book: the witchweed genome provides clues to plant parasitism. THE NEW PHYTOLOGIST 2022; 236:316-318. [PMID: 36001688 DOI: 10.1111/nph.18398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
12
|
Qiu S, Bradley JM, Zhang P, Chaudhuri R, Blaxter M, Butlin RK, Scholes JD. Genome-enabled discovery of candidate virulence loci in Striga hermonthica, a devastating parasite of African cereal crops. THE NEW PHYTOLOGIST 2022; 236:622-638. [PMID: 35699626 PMCID: PMC9795911 DOI: 10.1111/nph.18305] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Parasites have evolved proteins, virulence factors (VFs), that facilitate plant colonisation, however VFs mediating parasitic plant-host interactions are poorly understood. Striga hermonthica is an obligate, root-parasitic plant of cereal hosts in sub-Saharan Africa, causing devastating yield losses. Understanding the molecular nature and allelic variation of VFs in S. hermonthica is essential for breeding resistance and delaying the evolution of parasite virulence. We assembled the S. hermonthica genome and identified secreted proteins using in silico prediction. Pooled sequencing of parasites growing on a susceptible and a strongly resistant rice host allowed us to scan for loci where selection imposed by the resistant host had elevated the frequency of alleles contributing to successful colonisation. Thirty-eight putatively secreted VFs had very different allele frequencies with functions including host cell wall modification, protease or protease inhibitor and kinase activities. These candidate loci had significantly higher Tajima's D than the genomic background, consistent with balancing selection. Our results reveal diverse strategies used by S. hermonthica to overcome different layers of host resistance. Understanding the maintenance of variation at virulence loci by balancing selection will be critical to managing the evolution of virulence as part of a sustainable control strategy.
Collapse
Affiliation(s)
- Suo Qiu
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - James M. Bradley
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Peijun Zhang
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Roy Chaudhuri
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Mark Blaxter
- Institute of Evolutionary Biology, School of Biological SciencesThe University of Edinburgh, Ashworth LaboratoriesCharlotte Auerbach RoadEdinburghEH9 3FLUK
- Wellcome Sanger InstituteWellcome Genome Campus, HinxtonCambridgeCB10 1SAUK
| | - Roger K. Butlin
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
- Department of Marine SciencesUniversity of GothenburgS‐405 30GothenburgSweden
| | - Julie D. Scholes
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| |
Collapse
|
13
|
Kuang J, Wang Y, Mao K, Milne R, Wang M, Miao N. Transcriptome Profiling of a Common Mistletoe Species Parasitizing Four Typical Host Species in Urban Southwest China. Genes (Basel) 2022; 13:genes13071173. [PMID: 35885955 PMCID: PMC9323523 DOI: 10.3390/genes13071173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023] Open
Abstract
Comparing gene expressions among parasitic plants infecting different host species can have significant implications for understanding host–parasite interactions. Taxillus nigrans is a common hemiparasitic species in Southwest China that parasitizes a variety of host species. However, a lack of nucleotide sequence data to date has hindered transcriptome-level research on T. nigrans. In this study, the transcriptomes of T. nigrans individuals parasitizing four typical host species (Broussonetia papyrifera (Bpap), a broad-leaved tree species; Cryptomeria fortunei (Cfor), a coniferous tree species; Cinnamomum septentrionale (Csep), an evergreen tree species; and Ginkgo biloba (Gbil), a deciduous-coniferous tree species) were sequenced, and the expression profiles and metabolic pathways were compared among hosts. A total of greater than 400 million reads were generated in nine cDNA libraries. These were de novo assembled into 293823 transcripts with an N50 value of 1790 bp. A large number of differentially expressed genes (DEGs) were identified when comparing T. nigrans individuals on different host species: Bpap vs. Cfor (1253 DEGs), Bpap vs. Csep (864), Bpap vs. Gbil (517), Cfor vs. Csep (259), Cfor vs. Gbil (95), and Csep vs. Gbil (40). Four hundred and fifteen unigenes were common to all six pairwise comparisons; these were primarily associated with Cytochrome P450 and environmental adaptation, as determined in a KEGG enrichment analysis. Unique unigenes were also identified, specific to Bpap vs. Cfor (808 unigenes), Bpap vs. Csep (329 unigenes), Bpap vs. Gbil (87 unigenes), Cfor vs. Csep (108 unigenes), Cfor vs. Gbil (32 unigenes), and Csep vs. Gbil comparisons (23 unigenes); partial unigenes were associated with the metabolism of terpenoids and polyketides regarding plant hormone signal transduction. Weighted gene co-expression network analysis (WGCNA) revealed four modules that were associated with the hosts. These results provide a foundation for further exploration of the detailed molecular mechanisms involved in plant parasitism.
Collapse
Affiliation(s)
- Jingge Kuang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (J.K.); (Y.W.); (K.M.)
| | - Yufei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (J.K.); (Y.W.); (K.M.)
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (J.K.); (Y.W.); (K.M.)
| | - Richard Milne
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh EH9 3JH, UK;
| | - Mingcheng Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610064, China;
| | - Ning Miao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (J.K.); (Y.W.); (K.M.)
- Correspondence:
| |
Collapse
|
14
|
Bernal-Galeano V, Beard K, Westwood JH. An artificial host system enables the obligate parasite Cuscuta campestris to grow and reproduce in vitro. PLANT PHYSIOLOGY 2022; 189:687-702. [PMID: 35294033 PMCID: PMC9157073 DOI: 10.1093/plphys/kiac106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/14/2022] [Indexed: 05/29/2023]
Abstract
Cuscuta campestris is an obligate parasitic plant that requires a host to complete its life cycle. Parasite-host connections occur via a haustorium, a unique organ that acts as a bridge for the uptake of water, nutrients, and macromolecules. Research on Cuscuta is often complicated by host influences, but comparable systems for growing the parasite in the absence of a host do not exist. We developed an axenic method to grow C. campestris on an artificial host system (AHS). We evaluated the effects of nutrients and phytohormones on parasite haustoria development and growth. Haustorium morphology and gene expression were also characterized. The AHS consists of an inert, fibrous stick that mimics a host stem, wicking water and nutrients to the parasite. It enables C. campestris to exhibit a parasitic habit and develop through all stages of its life cycle, including production of new shoots and viable seeds. The phytohormones 1-naphthaleneacetic acid and 6-benzylaminopurine affect haustoria morphology and increase parasite fresh weight and biomass. Unigene expression in AHS haustoria reflects processes similar to those in haustoria on living host plants. The AHS is a methodological improvement for studying Cuscuta biology by avoiding specific host effects on the parasite and giving researchers full control of the parasite environment.
Collapse
Affiliation(s)
- Vivian Bernal-Galeano
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Keely Beard
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
15
|
Bernal-Galeano V, Beard K, Westwood JH. An artificial host system enables the obligate parasite Cuscuta campestris to grow and reproduce in vitro. PLANT PHYSIOLOGY 2022; 189:687-702. [PMID: 35294033 DOI: 10.1101/2021.06.21.449293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/14/2022] [Indexed: 05/25/2023]
Abstract
Cuscuta campestris is an obligate parasitic plant that requires a host to complete its life cycle. Parasite-host connections occur via a haustorium, a unique organ that acts as a bridge for the uptake of water, nutrients, and macromolecules. Research on Cuscuta is often complicated by host influences, but comparable systems for growing the parasite in the absence of a host do not exist. We developed an axenic method to grow C. campestris on an artificial host system (AHS). We evaluated the effects of nutrients and phytohormones on parasite haustoria development and growth. Haustorium morphology and gene expression were also characterized. The AHS consists of an inert, fibrous stick that mimics a host stem, wicking water and nutrients to the parasite. It enables C. campestris to exhibit a parasitic habit and develop through all stages of its life cycle, including production of new shoots and viable seeds. The phytohormones 1-naphthaleneacetic acid and 6-benzylaminopurine affect haustoria morphology and increase parasite fresh weight and biomass. Unigene expression in AHS haustoria reflects processes similar to those in haustoria on living host plants. The AHS is a methodological improvement for studying Cuscuta biology by avoiding specific host effects on the parasite and giving researchers full control of the parasite environment.
Collapse
Affiliation(s)
- Vivian Bernal-Galeano
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Keely Beard
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
16
|
Balestrini R, Sillo F. Plant-Fungal Interactions: Laser Microdissection as a Tool to Study Cell Specificity. Methods Mol Biol 2022; 2536:369-380. [PMID: 35819614 DOI: 10.1007/978-1-0716-2517-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the past 20 years, laser microdissection (LMD) technology has been widely applied to plant tissues, allowing to obtain new information on the role of different cell-type populations during plant development and interactions, including plant-pathogen interactions. The application of a LMD approach allowed verifying the response of plant and pathogen during the progression of the infection in different cell types, focusing both on gene expression in host plants and pathogens. Here, a protocol to apply the LMD approach to study plant and fungal transcript profiles in different cell-type populations is described in detail, from the biological material preparation to RNA extraction and gene expression analyses.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy.
| | - Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| |
Collapse
|
17
|
Lyko P, Wicke S. Genomic reconfiguration in parasitic plants involves considerable gene losses alongside global genome size inflation and gene births. PLANT PHYSIOLOGY 2021; 186:1412-1423. [PMID: 33909907 PMCID: PMC8260112 DOI: 10.1093/plphys/kiab192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/13/2021] [Indexed: 05/02/2023]
Abstract
Parasitic plant genomes and transcriptomes reveal numerous genetic innovations, the functional-evolutionary relevance and roles of which open unprecedented research avenues.
Collapse
Affiliation(s)
- Peter Lyko
- Institute for Biology, Humboldt-University of Berlin, Germany
| | - Susann Wicke
- Institute for Biology, Humboldt-University of Berlin, Germany
- Author for communication:
| |
Collapse
|
18
|
Brun G, Spallek T, Simier P, Delavault P. Molecular actors of seed germination and haustoriogenesis in parasitic weeds. PLANT PHYSIOLOGY 2021; 185:1270-1281. [PMID: 33793893 PMCID: PMC8133557 DOI: 10.1093/plphys/kiaa041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 05/06/2023]
Abstract
One-sentence summary Recent advances provide insight into the molecular mechanisms underlying host-dependent seed germination and haustorium formation in parasitic plants.
Collapse
Affiliation(s)
- Guillaume Brun
- Department for Systematic Botany and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Philippstr. 13, D-10115 Berlin, Germany
| | - Thomas Spallek
- Department of Plant Physiology and Biochemistry, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Philippe Simier
- Laboratory of Plant Biology and Pathology, University of Nantes, F-44322 Nantes Cedex 3, France
| | - Philippe Delavault
- Laboratory of Plant Biology and Pathology, University of Nantes, F-44322 Nantes Cedex 3, France
- Author for communication:
| |
Collapse
|
19
|
Kösters LM, Wiechers S, Lyko P, Müller KF, Wicke S. WARPP-web application for the research of parasitic plants. PLANT PHYSIOLOGY 2021; 185:1374-1380. [PMID: 33793906 PMCID: PMC8133606 DOI: 10.1093/plphys/kiaa105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/23/2020] [Indexed: 05/18/2023]
Abstract
The lifestyle of parasitic plants is associated with peculiar morphological, genetic, and physiological adaptations that existing online plant-specific resources fail to adequately represent. Here, we introduce the Web Application for the Research of Parasitic Plants (WARPP) as an online resource dedicated to advancing research and development of parasitic plant biology. WARPP is a framework to facilitate international efforts by providing a central hub of curated evolutionary, ecological, and genetic data. The first version of WARPP provides a community hub for researchers to test this web application, for which curated data revolving around the economically important Broomrape family (Orobanchaceae) is readily accessible. The initial set of WARPP online tools includes a genome browser that centralizes genomic information for sequenced parasitic plant genomes, an orthogroup summary detailing the presence and absence of orthologous genes in parasites compared with nonparasitic plants, and an ancestral trait explorer showing the evolution of life-history preferences along phylogenies. WARPP represents a project under active development and relies on the scientific community to populate the web app's database and further the development of new analysis tools. The first version of WARPP can be securely accessed at https://parasiticplants.app. The source code is licensed under GNU GPLv2 and is available at https://github.com/wickeLab/WARPP.
Collapse
Affiliation(s)
- Lara M Kösters
- Plant Evolutionary Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Plant Systematics and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Wiechers
- Evolution and Biodiversity of Plants, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Peter Lyko
- Plant Evolutionary Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Plant Systematics and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kai F Müller
- Evolution and Biodiversity of Plants, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Susann Wicke
- Plant Evolutionary Biology, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Plant Systematics and Biodiversity, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Ogawa S, Wakatake T, Spallek T, Ishida JK, Sano R, Kurata T, Demura T, Yoshida S, Ichihashi Y, Schaller A, Shirasu K. Subtilase activity in intrusive cells mediates haustorium maturation in parasitic plants. PLANT PHYSIOLOGY 2021; 185:1381-1394. [PMID: 33793894 PMCID: PMC8133603 DOI: 10.1093/plphys/kiaa001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/28/2020] [Indexed: 05/11/2023]
Abstract
Parasitic plants that infect crops are devastating to agriculture throughout the world. These parasites develop a unique inducible organ called the haustorium that connects the vascular systems of the parasite and host to establish a flow of water and nutrients. Upon contact with the host, the haustorial epidermal cells at the interface with the host differentiate into specific cells called intrusive cells that grow endophytically toward the host vasculature. Following this, some of the intrusive cells re-differentiate to form a xylem bridge (XB) that connects the vasculatures of the parasite and host. Despite the prominent role of intrusive cells in host infection, the molecular mechanisms mediating parasitism in the intrusive cells remain poorly understood. In this study, we investigated differential gene expression in the intrusive cells of the facultative parasite Phtheirospermum japonicum in the family Orobanchaceae by RNA-sequencing of laser-microdissected haustoria. We then used promoter analyses to identify genes that are specifically induced in intrusive cells, and promoter fusions with genes encoding fluorescent proteins to develop intrusive cell-specific markers. Four of the identified intrusive cell-specific genes encode subtilisin-like serine proteases (SBTs), whose biological functions in parasitic plants are unknown. Expression of SBT inhibitors in intrusive cells inhibited both intrusive cell and XB development and reduced auxin response levels adjacent to the area of XB development. Therefore, we propose that subtilase activity plays an important role in haustorium development in P. japonicum.
Collapse
Affiliation(s)
- Satoshi Ogawa
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Takanori Wakatake
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Present address: Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg 97082, Germany
| | - Thomas Spallek
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart 70599, Germany
| | - Juliane K Ishida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryosuke Sano
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tetsuya Kurata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart 70599, Germany
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Author for communication: , Present address: Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Mutuku JM, Cui S, Yoshida S, Shirasu K. Orobanchaceae parasite-host interactions. THE NEW PHYTOLOGIST 2021; 230:46-59. [PMID: 33202061 DOI: 10.1111/nph.17083] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Parasitic plants in the family Orobanchaceae, such as Striga, Orobanche and Phelipanche, often cause significant damage to agricultural crops. The Orobanchaceae family comprises more than 2000 species in about 100 genera, providing an excellent system for studying the molecular basis of parasitism and its evolution. Notably, the establishment of model Orobanchaceae parasites, such as Triphysaria versicolor and Phtheirospermum japonicum, that can infect the model host Arabidopsis, has greatly facilitated transgenic analyses of genes important for parasitism. In addition, recent genomic and transcriptomic analyses of several Orobanchaceae parasites have revealed fascinating molecular insights into the evolution of parasitism and strategies for adaptation in this family. This review highlights recent progress in understanding how Orobanchaceae parasites attack their hosts and how the hosts mount a defense against the threats.
Collapse
Affiliation(s)
- J Musembi Mutuku
- The Central and West African Virus Epidemiology (WAVE). Pôle Scientifique et d'Innovation de Bingerville, Université Félix Houphouët-Boigny, BP V34, Abidjan, 01, Côte d'Ivoire
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Songkui Cui
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoko Yoshida
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
22
|
Chen L, Guo Q, Zhu Z, Wan H, Qin Y, Zhang H. Integrated analyses of the transcriptome and small RNA of the hemiparasitic plant Monochasma savatieri before and after establishment of parasite-host association. BMC PLANT BIOLOGY 2021; 21:90. [PMID: 33568062 PMCID: PMC7877053 DOI: 10.1186/s12870-021-02861-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Monochasma savatieri is a medicinal root hemiparasitic herb that extracts water and nutrients from the host plant via a haustorium. M. savatieri exhibits an enhanced growth after the establishment of parasite-host associations, but little is known about the molecular mechanism responsible. In this study, endogenous hormones, RNA sequencing and small RNA sequencing analysis were performed on M. savatieri before and after establishment of parasite-host associations. RESULTS When grown with the host, decreased contents of jasmonic acid (JA) and indole-3-acetic acid (IAA) and increased abscisic acid (ABA) content were observed in M. savatieri with the established parasitic relationship. When grown with the host, 46,424 differentially expressed genes (DEGs) and 162 differentially expressed miRNAs (DEmiRs) were identified in the comparison between M. savatieri with the established parasitic relationship and without the established parasitic relationship. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these DEGs and targets of DEmiRs mostly participated in plant hormone signal transduction, starch and sucrose metabolism, carbohydrate metabolism, cell growth and death, and transport and catabolism. Furthermore, correlation analysis of mRNA and miRNA revealed that 10 miRNA-target pairs from novel_mir65, novel_mir40, novel_mir80, miR397-5p_1, novel_mir36, novel_mir25 and novel_mir17 may have important roles in regulating the parasitic development of M. savatieri. CONCLUSIONS Our study not only expands the understanding of enhanced growth in M. savatieri after the establishment of parasite-host associations, but also first provides abundant resources for future molecular and genetic studies in M. savatieri.
Collapse
Affiliation(s)
- Lanlan Chen
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zaibiao Zhu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hefang Wan
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhao Qin
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Zhang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Krasylenko Y, Těšitel J, Ceccantini G, Oliveira-da-Silva M, Dvořák V, Steele D, Sosnovsky Y, Piwowarczyk R, Watson DM, Teixeira-Costa L. Parasites on parasites: hyper-, epi-, and autoparasitism among flowering plants. AMERICAN JOURNAL OF BOTANY 2021; 108:8-21. [PMID: 33403666 DOI: 10.1002/ajb2.1590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/08/2020] [Indexed: 06/12/2023]
Abstract
All organisms engage in parasitic relations, as either parasites or hosts. Some species may even play both roles simultaneously. Among flowering plants, the most widespread form of parasitism is characterized by the development of an intrusive organ called the haustorium, which absorbs water and nutrients from the host. Despite this functionally unifying feature of parasitic plants, haustoria are not homologous structures; they have evolved 12 times independently. These plants represent ca. 1% of all extant flowering species and show a wide diversity of life histories. A great variety of plants may also serve as hosts, including other parasitic plants. This phenomenon of parasitic exploitation of another parasite, broadly known as hyper- or epiparasitism, is well described among bacteria, fungi, and animals, but remains poorly understood among plants. Here, we review empirical evidence of plant hyperparasitism, including variations of self-parasitism, discuss the diversity and ecological importance of these interactions, and suggest possible evolutionary mechanisms. Hyperparasitism may provide benefits in terms of improved nutrition and enhanced host-parasite compatibility if partners are related. Different forms of self-parasitism may facilitate nutrient sharing among and within parasitic plant individuals, while also offering potential for the evolution of hyperparasitism. Cases of hyperparasitic interactions between parasitic plants may affect the ecology of individual species and modulate their ecosystem impacts. Parasitic plant phenology and disperser feeding behavior are considered to play a major role in the occurrence of hyperparasitism, especially among mistletoes. There is also potential for hyperparasites to act as biological control agents of invasive primary parasitic host species.
Collapse
Affiliation(s)
- Yuliya Krasylenko
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů, 27, 78371, Olomouc, Czech Republic
| | - Jakub Těšitel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Gregorio Ceccantini
- Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | - Mariana Oliveira-da-Silva
- Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | - Václav Dvořák
- Botanical Garden, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc, Czech Republic
| | - Daniel Steele
- Department of Plant Sciences, UC Davis, One Shields Avenue, Davis, CA, 95616
| | - Yevhen Sosnovsky
- Botanical Garden, Ivan Franko National University of Lviv, 44 Cheremshyna Str., 79014, Lviv, Ukraine
| | - Renata Piwowarczyk
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - David M Watson
- Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, 2640, Australia
| | - Luiza Teixeira-Costa
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Cambridge, MA, 02138, USA
| |
Collapse
|
24
|
Fernández-Aparicio M, Delavault P, Timko MP. Management of Infection by Parasitic Weeds: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1184. [PMID: 32932904 PMCID: PMC7570238 DOI: 10.3390/plants9091184] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/30/2022]
Abstract
Parasitic plants rely on neighboring host plants to complete their life cycle, forming vascular connections through which they withdraw needed nutritive resources. In natural ecosystems, parasitic plants form one component of the plant community and parasitism contributes to overall community balance. In contrast, when parasitic plants become established in low biodiversified agroecosystems, their persistence causes tremendous yield losses rendering agricultural lands uncultivable. The control of parasitic weeds is challenging because there are few sources of crop resistance and it is difficult to apply controlling methods selective enough to kill the weeds without damaging the crop to which they are physically and biochemically attached. The management of parasitic weeds is also hindered by their high fecundity, dispersal efficiency, persistent seedbank, and rapid responses to changes in agricultural practices, which allow them to adapt to new hosts and manifest increased aggressiveness against new resistant cultivars. New understanding of the physiological and molecular mechanisms behind the processes of germination and haustorium development, and behind the crop resistant response, in addition to the discovery of new targets for herbicides and bioherbicides will guide researchers on the design of modern agricultural strategies for more effective, durable, and health compatible parasitic weed control.
Collapse
Affiliation(s)
- Mónica Fernández-Aparicio
- Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas (CSIC), 14004 Córdoba, Spain
| | - Philippe Delavault
- Laboratory of Plant Biology and Pathology, University of Nantes, 44035 Nantes, France;
| | - Michael P. Timko
- Department of Biology University of Virginia, Charlottesville, VA 22904-4328, USA;
| |
Collapse
|
25
|
Kurotani KI, Wakatake T, Ichihashi Y, Okayasu K, Sawai Y, Ogawa S, Cui S, Suzuki T, Shirasu K, Notaguchi M. Host-parasite tissue adhesion by a secreted type of β-1,4-glucanase in the parasitic plant Phtheirospermum japonicum. Commun Biol 2020; 3:407. [PMID: 32733024 PMCID: PMC7393376 DOI: 10.1038/s42003-020-01143-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
Tissue adhesion between plant species occurs both naturally and artificially. Parasitic plants establish intimate relationship with host plants by adhering tissues at roots or stems. Plant grafting, on the other hand, is a widely used technique in agriculture to adhere tissues of two stems. Here we found that the model Orobanchaceae parasitic plant Phtheirospermum japonicum can be grafted on to interfamily species. To understand molecular basis of tissue adhesion between distant plant species, we conducted comparative transcriptome analyses on both infection and grafting by P. japonicum on Arabidopsis. Despite different organs, we identified the shared gene expression profile, where cell proliferation- and cell wall modification-related genes are up-regulated. Among genes commonly induced in tissue adhesion between distant species, we showed a gene encoding a secreted type of β-1,4-glucanase plays an important role for plant parasitism. Our data provide insights into the molecular commonality between parasitism and grafting in plants.
Collapse
Affiliation(s)
- Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takanori Wakatake
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Biocenter, Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, 97082, Würzburg, Germany
| | - Yasunori Ichihashi
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Koji Okayasu
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yu Sawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Satoshi Ogawa
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Songkui Cui
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai, 487-8501, Japan
| | - Ken Shirasu
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
26
|
Bellis ES, Kelly EA, Lorts CM, Gao H, DeLeo VL, Rouhan G, Budden A, Bhaskara GB, Hu Z, Muscarella R, Timko MP, Nebie B, Runo SM, Chilcoat ND, Juenger TE, Morris GP, dePamphilis CW, Lasky JR. Genomics of sorghum local adaptation to a parasitic plant. Proc Natl Acad Sci U S A 2020; 117:4243-4251. [PMID: 32047036 PMCID: PMC7049153 DOI: 10.1073/pnas.1908707117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Host-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.
Collapse
Affiliation(s)
- Emily S Bellis
- Department of Biology, The Pennsylvania State University, University Park, PA 16802;
- Arkansas Biosciences Institute, Arkansas State University, State University, AR 72467
- Department of Computer Science, Arkansas State University, State University, AR 72467
| | - Elizabeth A Kelly
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
| | - Claire M Lorts
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Huirong Gao
- Applied Science and Technology, Corteva Agriscience, Johnston, IA 50131
| | - Victoria L DeLeo
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
| | - Germinal Rouhan
- Institut Systématique Evolution Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, École Pratique des Hautes Études, CP39, 75005 Paris, France
| | - Andrew Budden
- Identification & Naming, Royal Botanic Gardens, Kew, TW9 3AB Richmond, United Kingdom
| | - Govinal B Bhaskara
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Robert Muscarella
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, SE-75236 Uppsala, Sweden
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Baloua Nebie
- West and Central Africa Regional Program, International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali
| | - Steven M Runo
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - N Doane Chilcoat
- Applied Science and Technology, Corteva Agriscience, Johnston, IA 50131
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Geoffrey P Morris
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Jesse R Lasky
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
27
|
Laser Microdissection as a Useful Tool to Study Gene Expression in Plant and Fungal Partners in AM Symbiosis. Methods Mol Biol 2020; 2146:171-184. [PMID: 32415603 DOI: 10.1007/978-1-0716-0603-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Laser microdissection (LMD) technology has been widely applied to plant tissues, offering novel information on the role of different cell-type populations during plant-microbe interactions. In this chapter, protocols to apply the LMD approach to study plant and fungal transcript profiles in different cell-type populations from arbuscular mycorrhizal (AM) roots are described in detail, starting from the biological material preparation to gene expression analyses by RT-PCR and RT-qPCR.
Collapse
|
28
|
Brun G, Thoiron S, Braem L, Pouvreau JB, Montiel G, Lechat MM, Simier P, Gevaert K, Goormachtig S, Delavault P. CYP707As are effectors of karrikin and strigolactone signalling pathways in Arabidopsis thaliana and parasitic plants. PLANT, CELL & ENVIRONMENT 2019; 42:2612-2626. [PMID: 31134630 DOI: 10.1111/pce.13594] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 05/10/2023]
Abstract
Karrikins stimulate Arabidopsis thaliana germination, whereas parasitic weeds of the Orobanchaceae family have evolved to respond to host-exuded compounds such as strigolactones, dehydrocostus lactone, and 2-phenylethyl isothiocyanate. In Phelipanche ramosa, strigolactone-induced germination was shown to require one of the CYP707A proteins involved in abscisic acid catabolism. Here, germination and gene expression were analysed to investigate the role of CYP707As in germination of both parasitic plants and Arabidopsis upon perception of germination stimulants, after using pharmacological inhibitors and Arabidopsis mutants disrupting germination signals. CYP707A genes were up-regulated upon treatment with effective germination stimulants in both parasitic plants and Arabidopsis. Obligate parasitic plants exhibited both intensified up-regulation of CYP707A genes and increased sensitivity to the CYP707A inhibitor abscinazole-E2B, whereas Arabidopsis cyp707a mutants still positively responded to germination stimulation. In Arabidopsis, CYP707A regulation required the canonical karrikin signalling pathway KAI2/MAX2/SMAX1 and the transcription factor WRKY33. Finally, CYP707As and WRKY33 also modulated Arabidopsis root architecture in response to the synthetic strigolactone rac-GR24, and wrky33-1 exhibited a shoot hyperbranched phenotype. This study suggests that the lack of host-independent germination in obligate parasites is associated with an exacerbated CYP707A induction and that CYP707As and WRKY33 are new players involved in a variety of strigolactone/karrikin responses.
Collapse
Affiliation(s)
- Guillaume Brun
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| | - Séverine Thoiron
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| | - Lukas Braem
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, 71, 9052, Zwijnaarde, Belgium
- VIB Center for Medical Biotechnology, Albert Baertsoenkaai, 3, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Jean-Bernard Pouvreau
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| | - Grégory Montiel
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| | - Marc-Marie Lechat
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| | - Philippe Simier
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Albert Baertsoenkaai, 3, 9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, 9000, Ghent, Belgium
| | - Sofie Goormachtig
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Zwijnaarde, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, 71, 9052, Zwijnaarde, Belgium
| | - Philippe Delavault
- Université de Nantes, Laboratoire de Biologie et Pathologie Végétales LBPV, EA1157 F-44000, Nantes, France
| |
Collapse
|
29
|
Clarke CR, Timko MP, Yoder JI, Axtell MJ, Westwood JH. Molecular Dialog Between Parasitic Plants and Their Hosts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:279-299. [PMID: 31226021 DOI: 10.1146/annurev-phyto-082718-100043] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Parasitic plants steal sugars, water, and other nutrients from host plants through a haustorial connection. Several species of parasitic plants such as witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) are major biotic constraints to agricultural production. Parasitic plants are understudied compared with other major classes of plant pathogens, but the recent availability of genomic and transcriptomic data has accelerated the rate of discovery of the molecular mechanisms underpinning plant parasitism. Here, we review the current body of knowledge of how parasitic plants sense host plants, germinate, form parasitic haustorial connections, and suppress host plant immune responses. Additionally, we assess whether parasitic plants fit within the current paradigms used to understand the molecular mechanisms of microbial plant-pathogen interactions. Finally, we discuss challenges facing parasitic plant research and propose the most urgent questions that need to be answered to advance our understanding of plant parasitism.
Collapse
Affiliation(s)
- Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Michael J Axtell
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA;
| |
Collapse
|
30
|
Olsen S, Krause K. A rapid preparation procedure for laser microdissection-mediated harvest of plant tissues for gene expression analysis. PLANT METHODS 2019; 15:88. [PMID: 31388345 PMCID: PMC6676614 DOI: 10.1186/s13007-019-0471-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/26/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Gene expression changes that govern essential biological processes can occur at the cell-specific level. To gain insight into such events, laser microdissection is applied to cut out specific cells or tissues from which RNA for gene expression analysis is isolated. However, the preparation of plant tissue sections for laser microdissection and subsequent RNA isolation usually involves fixation and embedding, processes that are often time-consuming and can lower the yield and quality of isolated RNA. RESULTS Infection sites of the parasitic plant Cuscuta reflexa growing on its compatible host plant Pelargonium zonale were sectioned using a vibratome and dried on glass slides at 4 °C before laser microdissection. High quality RNA (RQI > 7) was isolated from 1 mm2, 3 mm2 and 6 mm2 total surface areas of laser microdissection-harvested C. reflexa tissue, with the yield of RNA correlating to the amount of collected material (on average 7 ng total RNA/mm2). The expression levels of two parasite genes previously found to be highly expressed during host plant infection were shown to differ individually between specific regions of the infection site. By drying plant sections under low pressure to reduce the dehydration time, the induced expression of two wound-related genes during preparation was avoided. CONCLUSIONS Plants can be prepared quickly and easily for laser microdissection by direct sectioning of fresh tissue followed by dehydration on glass slides. We show that RNA isolated from material treated in this manner maintains high quality and enables the investigation of differential gene expression at a high morphological resolution.
Collapse
Affiliation(s)
- Stian Olsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
| |
Collapse
|
31
|
Honaas LA, Jones S, Farrell N, Kamerow W, Zhang H, Vescio K, Altman NS, Yoder JI, dePamphilis CW. Risk versus reward: host dependent parasite mortality rates and phenotypes in the facultative generalist Triphysaria versicolor. BMC PLANT BIOLOGY 2019; 19:334. [PMID: 31370799 PMCID: PMC6669981 DOI: 10.1186/s12870-019-1856-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/30/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Parasitic plants engage in a complex molecular dialog with potential host plants to identify a host and overcome host defenses to initiate development of the parasitic feeding organ, the haustorium, invade host tissues, and withdraw water and nutrients. While one of two critical signaling events in the parasitic plant life cycle (germination via stimulant chemicals) has been relatively well-studied, the signaling event that triggers haustorium formation remains elusive. Elucidation of this poorly understood molecular dialogue will shed light on plant-plant communication, parasitic plant physiology, and the evolution of parasitism in plants. RESULTS Here we present an experimental framework that develops easily quantifiable contrasts for the facultative generalist parasitic plant, Triphysaria, as it feeds across a broad range of diverse flowering plants. The contrasts, including variable parasite growth form and mortality when grown with different hosts, suggest a dynamic and host-dependent molecular dialogue between the parasite and host. Finally, by comparing transcriptome datasets from attached versus unattached parasites we gain insight into some of the physiological processes that are altered during parasitic behavior including shifts in photosynthesis-related and stress response genes. CONCLUSIONS This work sheds light on Triphysaria's parasitic life habit and is an important step towards understanding the mechanisms of haustorium initiation factor perception, a unique form of plant-plant communication.
Collapse
Affiliation(s)
- Loren A. Honaas
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
- Present address: Physiology and Pathology of Tree Fruits Research, USDA - Agricultural Research Service, Wenatchee, WA 98801 USA
| | - Sam Jones
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - Nina Farrell
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - William Kamerow
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - Huiting Zhang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - Kathryn Vescio
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - Naomi S. Altman
- Department of Statistics and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - John I. Yoder
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Claude W. dePamphilis
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA
- Department of Biology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
32
|
Clermont K, Wang Y, Liu S, Yang Z, dePamphilis CW, Yoder JI, Collakova E, Westwood JH. Comparative Metabolomics of Early Development of the Parasitic Plants Phelipanche aegyptiaca and Triphysaria versicolor. Metabolites 2019; 9:E114. [PMID: 31200467 PMCID: PMC6630630 DOI: 10.3390/metabo9060114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 11/24/2022] Open
Abstract
Parasitic weeds of the family Orobanchaceae attach to the roots of host plants via haustoria capable of drawing nutrients from host vascular tissue. The connection of the haustorium to the host marks a shift in parasite metabolism from autotrophy to at least partial heterotrophy, depending on the level of parasite dependence. Species within the family Orobanchaceae span the spectrum of host nutrient dependency, yet the diversity of parasitic plant metabolism remains poorly understood, particularly during the key metabolic shift surrounding haustorial attachment. Comparative profiling of major metabolites in the obligate holoparasite Phelipanche aegyptiaca and the facultative hemiparasite Triphysaria versicolor before and after attachment to the hosts revealed several metabolic shifts implicating remodeling of energy and amino acid metabolism. After attachment, both parasites showed metabolite profiles that were different from their respective hosts. In P. aegyptiaca, prominent changes in metabolite profiles were also associated with transitioning between different tissue types before and after attachment, with aspartate levels increasing significantly after the attachment. Based on the results from 15N labeling experiments, asparagine and/or aspartate-rich proteins were enriched in host-derived nitrogen in T. versicolor. These results point to the importance of aspartate and/or asparagine in the early stages of attachment in these plant parasites and provide a rationale for targeting aspartate-family amino acid biosynthesis for disrupting the growth of parasitic weeds.
Collapse
Affiliation(s)
- Kristen Clermont
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Yaxin Wang
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Siming Liu
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Zhenzhen Yang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Claude W dePamphilis
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Eva Collakova
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
33
|
Misra VA, Wafula EK, Wang Y, dePamphilis CW, Timko MP. Genome-wide identification of MST, SUT and SWEET family sugar transporters in root parasitic angiosperms and analysis of their expression during host parasitism. BMC PLANT BIOLOGY 2019; 19:196. [PMID: 31088371 PMCID: PMC6515653 DOI: 10.1186/s12870-019-1786-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/17/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Root parasitic weeds are a major constraint to crop production worldwide causing significant yearly losses in yield and economic value. These parasites cause their destruction by attaching to their hosts with a unique organ, the haustorium, that allows them to obtain the nutrients (sugars, amino acids, etc.) needed to complete their lifecycle. Parasitic weeds differ in their nutritional requirements and degree of host dependency and the differential expression of sugar transporters is likely to be a critical component in the parasite's post-attachment survival. RESULTS We identified gene families encoding monosaccharide transporters (MSTs), sucrose transporters (SUTs), and SWEETs (Sugars Will Eventually be Exported Transporters) in three root-parasitic weeds differing in host dependency: Triphysaria versicolor (facultative hemiparasite), Phelipanche aegyptiaca (holoparasite), and Striga hermonthica (obligate hemiparasite). The phylogenetic relationship and differential expression profiles of these genes throughout parasite development were examined to uncover differences existing among parasites with different levels of host dependence. Differences in estimated gene numbers are found among the three parasites, and orthologs within the different sugar transporter gene families are found to be either conserved among the parasites in their expression profiles throughout development, or to display parasite-specific differences in developmentally-timed expression. For example, MST genes in the pGLT clade express most highly before host connection in Striga and Triphysaria but not Phelipanche, whereas genes in the MST ERD6-like clade are highly expressed in the post-connection growth stages of Phelipanche but highest in the germination and reproduction stages in Striga. Whether such differences reflect changes resulting from differential host dependence levels is not known. CONCLUSIONS While it is tempting to speculate that differences in estimated gene numbers and expression profiles among members of MST, SUT and SWEET gene families in Phelipanche, Striga and Triphysaria reflect the parasites' levels of host dependence, additional evidence that altered transporter gene expression is causative versus consequential is needed. Our findings identify potential targets for directed manipulation that will allow for a better understanding of the nutrient transport process and perhaps a means for controlling the devastating effects of these parasites on crop productivity.
Collapse
Affiliation(s)
- Vikram A. Misra
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| | - Eric K. Wafula
- Department of Biology, Penn State University, University Park, PA 16802 USA
| | - Yu Wang
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
- Present Address: Center for Quantitative Sciences, Vanderbilt University, 2220 Pierce Avenue, 571 Preston Research Building, Nashville, TN 37232-6848 USA
| | | | - Michael P. Timko
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| |
Collapse
|
34
|
Xiang L, Li Y, Sui X, Li A. Fast and abundant in vitro spontaneous haustorium formation in root hemiparasitic plant Pedicularis kansuensis Maxim. (Orobanchaceae). PLANT DIVERSITY 2018; 40:226-231. [PMID: 30740568 PMCID: PMC6224658 DOI: 10.1016/j.pld.2018.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 05/29/2023]
Abstract
Haustorium formation is the characteristic feature of all parasitic plants and a vital process for successful parasitism. Previous investigations on haustorium initiation and development are constricted to induced processes by host-derived signals or synthetic analogs. Spontaneous haustorium formation in the absence of host signals, a process representing an early stage in the evolution of parasitic plants, remains largely unexplored. Lack of fast and frequent formation of spontaneous haustoria greatly hinders full understanding of haustorium formation in root hemiparasites. In this study, seedlings of Pedicularis kansuensis Maxim., a facultative root hemiparasitic species in Orobanchaceae observed to produce many spontaneous haustoria, were grown in autoclaved water agar in the absence of any known haustorium-inducing stimulants. We aimed to test the temporal and developmental pattern of spontaneous haustorium formation. Also, effects of sucrose supply and root contact on spontaneous haustorium formation were tested. Spontaneous haustoria were observed starting from six days after germination, much earlier than previously reported root hemiparasites. A majority of the spontaneous haustoria formed on lateral roots. Percentage of seedlings with spontaneous haustoria was 28.8% when grown on water agar plates, with a mean of four haustoria per seedling two weeks after germination. Haustorium formation by seedlings grown in water agar amended with 2% sucrose was more than twice of those without sucrose amendment. Singly grown seedlings were able to develop spontaneous haustoria at similar levels as those grown with another conspecific seedling. In view of the fast and abundant formation of spontaneous haustoria, P. kansuensis may be developed as an excellent experimental system in future investigations for unraveling endogenous regulation of haustorium initiation and development in root hemiparasitic plants.
Collapse
Affiliation(s)
- Lei Xiang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yanmei Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaolin Sui
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Airong Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
35
|
Kokla A, Melnyk CW. Developing a thief: Haustoria formation in parasitic plants. Dev Biol 2018; 442:53-59. [DOI: 10.1016/j.ydbio.2018.06.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
|
36
|
Vogel A, Schwacke R, Denton AK, Usadel B, Hollmann J, Fischer K, Bolger A, Schmidt MHW, Bolger ME, Gundlach H, Mayer KFX, Weiss-Schneeweiss H, Temsch EM, Krause K. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat Commun 2018; 9:2515. [PMID: 29955043 PMCID: PMC6023873 DOI: 10.1038/s41467-018-04344-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 04/23/2018] [Indexed: 11/09/2022] Open
Abstract
A parasitic lifestyle, where plants procure some or all of their nutrients from other living plants, has evolved independently in many dicotyledonous plant families and is a major threat for agriculture globally. Nevertheless, no genome sequence of a parasitic plant has been reported to date. Here we describe the genome sequence of the parasitic field dodder, Cuscuta campestris. The genome contains signatures of a fairly recent whole-genome duplication and lacks genes for pathways superfluous to a parasitic lifestyle. Specifically, genes needed for high photosynthetic activity are lost, explaining the low photosynthesis rates displayed by the parasite. Moreover, several genes involved in nutrient uptake processes from the soil are lost. On the other hand, evidence for horizontal gene transfer by way of genomic DNA integration from the parasite's hosts is found. We conclude that the parasitic lifestyle has left characteristic footprints in the C. campestris genome.
Collapse
Affiliation(s)
- Alexander Vogel
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg 3, RWTH Aachen University, Aachen, 52074, Germany
| | - Rainer Schwacke
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, 52428, Germany
| | - Alisandra K Denton
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg 3, RWTH Aachen University, Aachen, 52074, Germany.,Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Björn Usadel
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg 3, RWTH Aachen University, Aachen, 52074, Germany.,Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, 52428, Germany
| | - Julien Hollmann
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Biologibygget, Framstredet 39, Tromsø, 9037, Norway
| | - Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Biologibygget, Framstredet 39, Tromsø, 9037, Norway
| | - Anthony Bolger
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg 3, RWTH Aachen University, Aachen, 52074, Germany
| | - Maximilian H-W Schmidt
- Institute for Botany and Molecular Genetics, BioEconomy Science Center, Worringer Weg 3, RWTH Aachen University, Aachen, 52074, Germany
| | - Marie E Bolger
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, 52428, Germany
| | - Heidrun Gundlach
- Helmholtz Zentrum München (HMGU), Plant Genome and Systems Biology (PGSB), Ingolstädter Landstraße 1, Neuherberg, 85764, Germany
| | - Klaus F X Mayer
- Helmholtz Zentrum München (HMGU), Plant Genome and Systems Biology (PGSB), Ingolstädter Landstraße 1, Neuherberg, 85764, Germany.,Technical University Munich, School of Life Sciences Weihenstephan, Alte Akademie 8, Freising, 85354, Germany
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, Faculty Center Biodiversity, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Eva M Temsch
- Department of Botany and Biodiversity Research, Faculty Center Biodiversity, University of Vienna, Rennweg 14, Vienna, 1030, Austria
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Biologibygget, Framstredet 39, Tromsø, 9037, Norway.
| |
Collapse
|
37
|
Marden JH, Mangan SA, Peterson MP, Wafula E, Fescemyer HW, Der JP, dePamphilis CW, Comita LS. Ecological genomics of tropical trees: how local population size and allelic diversity of resistance genes relate to immune responses, cosusceptibility to pathogens, and negative density dependence. Mol Ecol 2017; 26:2498-2513. [PMID: 28042895 DOI: 10.1111/mec.13999] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/22/2016] [Indexed: 01/04/2023]
Abstract
In tropical forests, rarer species show increased sensitivity to species-specific soil pathogens and more negative effects of conspecific density on seedling survival (NDD). These patterns suggest a connection between ecology and immunity, perhaps because small population size disproportionately reduces genetic diversity of hyperdiverse loci such as immunity genes. In an experiment examining seedling roots from six species in one tropical tree community, we found that smaller populations have reduced amino acid diversity in pathogen resistance (R) genes but not the transcriptome in general. Normalized R gene amino acid diversity varied with local abundance and prior measures of differences in sensitivity to conspecific soil and NDD. After exposure to live soil, species with lower R gene diversity had reduced defence gene induction, more cosusceptibility of maternal cohorts to colonization by potentially pathogenic fungi, reduced root growth arrest (an R gene-mediated response) and their root-associated fungi showed lower induction of self-defence (antioxidants). Local abundance was not related to the ability to induce immune responses when pathogen recognition was bypassed by application of salicylic acid, a phytohormone that activates defence responses downstream of R gene signalling. These initial results support the hypothesis that smaller local tree populations have reduced R gene diversity and recognition-dependent immune responses, along with greater cosusceptibility to species-specific pathogens that may facilitate disease transmission and NDD. Locally rare species may be less able to increase their equilibrium abundance without genetic boosts to defence via immigration of novel R gene alleles from a larger and more diverse regional population.
Collapse
Affiliation(s)
- J H Marden
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - S A Mangan
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Smithsonian Tropical Research Institute, República de Panamá, 0843-03092, Panama, Panama
| | - M P Peterson
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - E Wafula
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - H W Fescemyer
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - J P Der
- Department of Biological Science, California State University, Fullerton, CA, 92834, USA
| | - C W dePamphilis
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - L S Comita
- Smithsonian Tropical Research Institute, República de Panamá, 0843-03092, Panama, Panama.,School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
38
|
Yang Z, Zhang Y, Wafula EK, Honaas LA, Ralph PE, Jones S, Clarke CR, Liu S, Su C, Zhang H, Altman NS, Schuster SC, Timko MP, Yoder JI, Westwood JH, dePamphilis CW. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proc Natl Acad Sci U S A 2016; 113:E7010-E7019. [PMID: 27791104 PMCID: PMC5111717 DOI: 10.1073/pnas.1608765113] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Horizontal gene transfer (HGT) is the transfer of genetic material across species boundaries and has been a driving force in prokaryotic evolution. HGT involving eukaryotes appears to be much less frequent, and the functional implications of HGT in eukaryotes are poorly understood. We test the hypothesis that parasitic plants, because of their intimate feeding contacts with host plant tissues, are especially prone to horizontal gene acquisition. We sought evidence of HGTs in transcriptomes of three parasitic members of Orobanchaceae, a plant family containing species spanning the full spectrum of parasitic capabilities, plus the free-living Lindenbergia Following initial phylogenetic detection and an extensive validation procedure, 52 high-confidence horizontal transfer events were detected, often from lineages of known host plants and with an increasing number of HGT events in species with the greatest parasitic dependence. Analyses of intron sequences in putative donor and recipient lineages provide evidence for integration of genomic fragments far more often than retro-processed RNA sequences. Purifying selection predominates in functionally transferred sequences, with a small fraction of adaptively evolving sites. HGT-acquired genes are preferentially expressed in the haustorium-the organ of parasitic plants-and are strongly biased in predicted gene functions, suggesting that expression products of horizontally acquired genes are contributing to the unique adaptive feeding structure of parasitic plants.
Collapse
Affiliation(s)
- Zhenzhen Yang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Yeting Zhang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Loren A Honaas
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Sam Jones
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Christopher R Clarke
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Siming Liu
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Chun Su
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Huiting Zhang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Naomi S Altman
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Stephan C Schuster
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Claude W dePamphilis
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802;
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Institute of Molecular Evolutionary Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Genetics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
39
|
Laser microdissection of tomato fruit cell and tissue types for transcriptome profiling. Nat Protoc 2016; 11:2376-2388. [PMID: 27809311 DOI: 10.1038/nprot.2016.146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This protocol enables transcriptome profiling of specific cell or tissue types that are isolated from tomato using laser microdissection (LM). To prepare tissue for LM, fruit samples are first fixed in optimal cutting temperature (OCT) medium and frozen in molds. The tissue is then sectioned using a cryostat before being dissected using an LM instrument. The RNAs contained in the harvested cells are purified and subjected to two rounds of amplification to yield sufficient quantities of RNA to generate cDNA libraries. Unlike several other techniques that are used to isolate specific cell types, LM has the advantage of being readily applied to any plant species without having to generate transgenic plants. Using the protocols described here, LM-mediated cell-type transcriptomic analysis of two samples requires ∼8 d from tissue harvest to RNA sequencing (RNA-seq), whereas each additional sample, up to a total of 12 samples, requires ∼1 additional day for the LM step. RNA obtained using this method has been successfully used for deep-coverage transcriptome profiling, which is a particularly effective strategy for identifying genes that are differentially expressed between cell or tissue types.
Collapse
|
40
|
Wang Y, Li X, Zhou W, Li T, Tian C. De novo assembly and transcriptome characterization of spruce dwarf mistletoe Arceuthobium sichuanense uncovers gene expression profiling associated with plant development. BMC Genomics 2016; 17:771. [PMID: 27716052 PMCID: PMC5045590 DOI: 10.1186/s12864-016-3127-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/26/2016] [Indexed: 12/02/2022] Open
Abstract
Background The parasitic flowering plant dwarf mistletoe (Arceuthobium spp., Viscaceae) is one of the most destructive forest pests, posing a major threat to numerous conifer species worldwide. Arceuthobium sichuanense (spruce dwarf mistletoe, SDM) infects Qinghai spruce (Picea crassifolia) and causes severe damage to spruce forests in Northwest China. SDM is a Chinese native parasitic plant and acquires carbohydrates and mineral nutrition from its hosts. However, underlying molecular basis of the physiological development is largely unknown. Investigations of these physiological traits have been hampered by the lack of genomic resources for this species. Results In this study, to investigate the transcriptomic processes underlying physiological traits and development in SDM, we used RNA from four major tissues (i.e., shoots, flowers, fruits, and seeds) for de novo assembly and to annotate the transcriptome of this species. We uncovered the annotated transcriptome and performed whole genome expression profiling to uncover transcriptional dynamics during physiological development, and we identified key gene categories involved in the process of sexual development. The assembled SDM transcriptome reported in this work contains 331,347 assembled transcripts; 226,687 unigenes were functionally annotated by Gene Ontology analysis. RNA-Seq analysis using this reference transcriptome identified 22,641 differentially expressed genes from shoots, flowers, fruits, and seeds. These genes are enriched in processes including organic substance metabolism, cellular metabolism, biosynthesis, and cellular component. In addition, genes related to transport, transcription, hormone biosynthesis and signaling, carbohydrate metabolism, and photosynthesis were differentially expressed between tissues. Conclusion This work reveals tissue-specific gene expression patterns and pathways of SDM and implied to a difference between photosynthetic and non-photosynthetic tissues in plants. The data can potentially be used for future investigations on endophytic parasitism and SDM-spruce interaction, and it dramatically increases the available genomic resources for Arceuthobium and dwarf mistletoe communities. This preliminary study of the Arceuthobium transcriptome provides excellent opportunities for characterizing plant parasitic genes with unknown functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3127-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yonglin Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.
| | - Xuewu Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.,Academy of Forest Inventory and Planning, State Forestry Administration, Beijing, China
| | - Weifen Zhou
- Forest Pest Control and Quarantine Station of Qinghai Province, Xining, China
| | - Tao Li
- Xianmi Forest Park of Qinghai Province, Menyuan, Qinghai, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
41
|
Ishida JK, Wakatake T, Yoshida S, Takebayashi Y, Kasahara H, Wafula E, dePamphilis CW, Namba S, Shirasu K. Local Auxin Biosynthesis Mediated by a YUCCA Flavin Monooxygenase Regulates Haustorium Development in the Parasitic Plant Phtheirospermum japonicum. THE PLANT CELL 2016; 28:1795-814. [PMID: 27385817 PMCID: PMC5006708 DOI: 10.1105/tpc.16.00310] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Accepted: 07/05/2016] [Indexed: 05/18/2023]
Abstract
Parasitic plants in the Orobanchaceae cause serious agricultural problems worldwide. Parasitic plants develop a multicellular infectious organ called a haustorium after recognition of host-released signals. To understand the molecular events associated with host signal perception and haustorium development, we identified differentially regulated genes expressed during early haustorium development in the facultative parasite Phtheirospermum japonicum using a de novo assembled transcriptome and a customized microarray. Among the genes that were upregulated during early haustorium development, we identified YUC3, which encodes a functional YUCCA (YUC) flavin monooxygenase involved in auxin biosynthesis. YUC3 was specifically expressed in the epidermal cells around the host contact site at an early time point in haustorium formation. The spatio-temporal expression patterns of YUC3 coincided with those of the auxin response marker DR5, suggesting generation of auxin response maxima at the haustorium apex. Roots transformed with YUC3 knockdown constructs formed haustoria less frequently than nontransgenic roots. Moreover, ectopic expression of YUC3 at the root epidermal cells induced the formation of haustorium-like structures in transgenic P. japonicum roots. Our results suggest that expression of the auxin biosynthesis gene YUC3 at the epidermal cells near the contact site plays a pivotal role in haustorium formation in the root parasitic plant P. japonicum.
Collapse
Affiliation(s)
- Juliane K Ishida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Takanori Wakatake
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | - Hiroyuki Kasahara
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Eric Wafula
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Claude W dePamphilis
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Shigetou Namba
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
42
|
Global Transcriptomic Analysis Reveals the Mechanism of Phelipanche aegyptiaca Seed Germination. Int J Mol Sci 2016; 17:ijms17071139. [PMID: 27428962 PMCID: PMC4964512 DOI: 10.3390/ijms17071139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/24/2022] Open
Abstract
Phelipanche aegyptiaca is one of the most destructive root parasitic plants of Orobanchaceae. This plant has significant impacts on crop yields worldwide. Conditioned and host root stimulants, in particular, strigolactones, are needed for unique seed germination. However, no extensive study on this phenomenon has been conducted because of insufficient genomic information. Deep RNA sequencing, including de novo assembly and functional annotation was performed on P. aegyptiaca germinating seeds. The assembled transcriptome was used to analyze transcriptional dynamics during seed germination. Key gene categories involved were identified. A total of 274,964 transcripts were determined, and 53,921 unigenes were annotated according to the NR, GO, COG, KOG, and KEGG databases. Overall, 5324 differentially expressed genes among dormant, conditioned, and GR24-treated seeds were identified. GO and KEGG enrichment analyses demonstrated numerous DEGs related to DNA, RNA, and protein repair and biosynthesis, as well as carbohydrate and energy metabolism. Moreover, ABA and ethylene were found to play important roles in this process. GR24 application resulted in dramatic changes in ABA and ethylene-associated genes. Fluridone, a carotenoid biosynthesis inhibitor, alone could induce P. aegyptiaca seed germination. In addition, conditioning was probably not the indispensable stage for P. aegyptiaca, because the transcript level variation of MAX2 and KAI2 genes (relate to strigolactone signaling) was not up-regulated by conditioning treatment.
Collapse
|
43
|
Yoshida S, Cui S, Ichihashi Y, Shirasu K. The Haustorium, a Specialized Invasive Organ in Parasitic Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:643-67. [PMID: 27128469 DOI: 10.1146/annurev-arplant-043015-111702] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Parasitic plants thrive by infecting other plants. Flowering plants evolved parasitism independently at least 12 times, in all cases developing a unique multicellular organ called the haustorium that forms upon detection of haustorium-inducing factors derived from the host plant. This organ penetrates into the host stem or root and connects to its vasculature, allowing exchange of materials such as water, nutrients, proteins, nucleotides, pathogens, and retrotransposons between the host and the parasite. In this review, we focus on the formation and function of the haustorium in parasitic plants, with a specific emphasis on recent advances in molecular studies of root parasites in the Orobanchaceae and stem parasites in the Convolvulaceae.
Collapse
Affiliation(s)
- Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; , , ,
| | - Songkui Cui
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; , , ,
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; , , ,
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; , , ,
| |
Collapse
|
44
|
Honaas LA, Wafula EK, Wickett NJ, Der JP, Zhang Y, Edger PP, Altman NS, Pires JC, Leebens-Mack JH, dePamphilis CW. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome. PLoS One 2016; 11:e0146062. [PMID: 26731733 PMCID: PMC4701411 DOI: 10.1371/journal.pone.0146062] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/11/2015] [Indexed: 12/29/2022] Open
Abstract
Whereas de novo assemblies of RNA-Seq data are being published for a growing number of species across the tree of life, there are currently no broadly accepted methods for evaluating such assemblies. Here we present a detailed comparison of 99 transcriptome assemblies, generated with 6 de novo assemblers including CLC, Trinity, SOAP, Oases, ABySS and NextGENe. Controlled analyses of de novo assemblies for Arabidopsis thaliana and Oryza sativa transcriptomes provide new insights into the strengths and limitations of transcriptome assembly strategies. We find that the leading assemblers generate reassuringly accurate assemblies for the majority of transcripts. At the same time, we find a propensity for assemblers to fail to fully assemble highly expressed genes. Surprisingly, the instance of true chimeric assemblies is very low for all assemblers. Normalized libraries are reduced in highly abundant transcripts, but they also lack 1000s of low abundance transcripts. We conclude that the quality of de novo transcriptome assemblies is best assessed through consideration of a combination of metrics: 1) proportion of reads mapping to an assembly 2) recovery of conserved, widely expressed genes, 3) N50 length statistics, and 4) the total number of unigenes. We provide benchmark Illumina transcriptome data and introduce SCERNA, a broadly applicable modular protocol for de novo assembly improvement. Finally, our de novo assembly of the Arabidopsis leaf transcriptome revealed ~20 putative Arabidopsis genes lacking in the current annotation.
Collapse
Affiliation(s)
- Loren A Honaas
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Eric K Wafula
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Norman J Wickett
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Joshua P Der
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Yeting Zhang
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - Patrick P Edger
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - Naomi S Altman
- Department of Statistics, Penn State, University Park, Pennsylvania, 16802, United States of America
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, United States of America
| | - James H Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, United States of America
| | - Claude W dePamphilis
- Biology Department, Penn State, University Park, Pennsylvania, 16802, United States of America
| |
Collapse
|
45
|
|
46
|
Zhang X, Berkowitz O, Teixeira da Silva JA, Zhang M, Ma G, Whelan J, Duan J. RNA-Seq analysis identifies key genes associated with haustorial development in the root hemiparasite Santalum album. FRONTIERS IN PLANT SCIENCE 2015; 6:661. [PMID: 26388878 PMCID: PMC4555033 DOI: 10.3389/fpls.2015.00661] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/11/2015] [Indexed: 05/20/2023]
Abstract
Santalum album (sandalwood) is one of the economically important plant species in the Santalaceae for its production of highly valued perfume oils. Sandalwood is also a hemiparasitic tree that obtains some of its water and simple nutrients by tapping into other plants through haustoria which are highly specialized organs in parasitic angiosperms. However, an understanding of the molecular mechanisms involved in haustorium development is limited. In this study, RNA sequencing (RNA-seq) analyses were performed to identify changes in gene expression and metabolic pathways associated with the development of the S. album haustorium. A total of 56,011 non-redundant contigs with a mean contig size of 618 bp were obtained by de novo assembly of the transcriptome of haustoria and non-haustorial seedling roots. A substantial number of the identified differentially expressed genes were involved in cell wall metabolism and protein metabolism, as well as mitochondrial electron transport functions. Phytohormone-mediated regulation might play an important role during haustorial development. Especially, auxin signaling is likely to be essential for haustorial initiation, and genes related to cytokinin and gibberellin biosynthesis and metabolism are involved in haustorial development. Our results suggest that genes encoding nodulin-like proteins may be important for haustorial morphogenesis in S. album. The obtained sequence data will become a rich resource for future research in this interesting species. This information improves our understanding of haustorium development in root hemiparasitic species and will allow further exploration of the detailed molecular mechanisms underlying plant parasitism.
Collapse
Affiliation(s)
- Xinhua Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western AustraliaCrawley, WA, Australia
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe UniversityBundoora, VIC, Australia
| | | | - Muhan Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Guohua Ma
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - James Whelan
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe UniversityBundoora, VIC, Australia
| | - Jun Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
47
|
Kim G, Westwood JH. Macromolecule exchange in Cuscuta-host plant interactions. CURRENT OPINION IN PLANT BIOLOGY 2015; 26:20-5. [PMID: 26051214 DOI: 10.1016/j.pbi.2015.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/01/2015] [Accepted: 05/13/2015] [Indexed: 05/06/2023]
Abstract
Cuscuta species (dodders) are parasitic plants that are able to grow on many different host plants and can be destructive to crops. The connections between Cuscuta and its hosts allow movement of not only water and small nutrients, but also macromolecules including mRNA, proteins and viruses. Recent studies show that RNAs move bidirectionally between hosts and parasites and involve a large number of different genes. Although the function of mobile mRNAs has not been demonstrated in this system, small RNAs are also transmitted and a silencing construct expressed in hosts is able to affect expression of the target gene in the parasite. High throughput sequencing of host-parasite associations has the potential to greatly accelerate understanding of this remarkable interaction.
Collapse
Affiliation(s)
- Gunjune Kim
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Latham Hall (0390), Blacksburg, VA 24061, USA
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Latham Hall (0390), Blacksburg, VA 24061, USA.
| |
Collapse
|
48
|
Ichihashi Y, Mutuku JM, Yoshida S, Shirasu K. Transcriptomics exposes the uniqueness of parasitic plants. Brief Funct Genomics 2015; 14:275-82. [PMID: 25700082 DOI: 10.1093/bfgp/elv001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Parasitic plants have the ability to obtain nutrients directly from other plants, and several species are serious biological threats to agriculture by parasitizing crops of high economic importance. The uniqueness of parasitic plants is characterized by the presence of a multicellular organ called a haustorium, which facilitates plant-plant interactions, and shutting down or reducing their own photosynthesis. Current technical advances in next-generation sequencing and bioinformatics have allowed us to dissect the molecular mechanisms behind the uniqueness of parasitic plants at the genome-wide level. In this review, we summarize recent key findings mainly in transcriptomics that will give us insights into the future direction of parasitic plant research.
Collapse
|
49
|
Mitsumasu K, Seto Y, Yoshida S. Apoplastic interactions between plants and plant root intruders. FRONTIERS IN PLANT SCIENCE 2015; 6:617. [PMID: 26322059 PMCID: PMC4536382 DOI: 10.3389/fpls.2015.00617] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/27/2015] [Indexed: 05/06/2023]
Abstract
Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.
Collapse
Affiliation(s)
- Kanako Mitsumasu
- Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Japan
| | - Yoshiya Seto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Japan
| | - Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Satoko Yoshida, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan,
| |
Collapse
|
50
|
Ikeue D, Schudoma C, Zhang W, Ogata Y, Sakamoto T, Kurata T, Furuhashi T, Kragler F, Aoki K. A bioinformatics approach to distinguish plant parasite and host transcriptomes in interface tissue by classifying RNA-Seq reads. PLANT METHODS 2015; 11:34. [PMID: 26052341 PMCID: PMC4458054 DOI: 10.1186/s13007-015-0066-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/12/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND The genus Cuscuta is a group of parasitic plants that are distributed world-wide. The process of parasitization starts with a Cuscuta plant coiling around the host stem. The parasite's haustorial organs then establish a vascular connection allowing for access to the phloem content. The host and the parasite form new cellular connections, suggesting coordination of developmental and biochemical processes. Simultaneous monitoring of gene expression in the parasite's and host's tissues may shed light on the complex events occurring between the parasitic and host cells and may help to overcome experimental limitations (i.e. how to separate host tissue from Cuscuta tissue at the haustorial connection). A novel approach is to use bioinformatic analysis to classify sequencing reads as either belonging to the host or to the parasite and to characterize the expression patterns. Owing to the lack of a comprehensive genomic dataset from Cuscuta spp., such a classification has not been performed previously. RESULTS We first classified RNA-Seq reads from an interface region between the non-model parasitic plant Cuscuta japonica and the non-model host plant Impatiens balsamina. Without established reference sequences, we classified reads as originating from either of the plants by stepwise similarity search against de novo assembled transcript sets of C. japonica and I. balsamina, unigene sets of the same genus, and cDNA sequences of the same family. We then assembled de novo transcriptomes from the classified read sets. We assessed the quality of the classification by mapping reads to contigs of both plants, achieving a misclassification rate low enough (0.22-0.39%) to be used reliably for differential gene expression analysis. Finally, we applied our read classification method to RNA-Seq data from the interface between the non-model parasitic plant C. japonica and the model host plant Glycine max. Analysis of gene expression profiles at 5 parasitizing stages revealed differentially expressed genes from both C. japonica and G. max, and uncovered the coordination of cellular processes between the two plants. CONCLUSIONS We demonstrated that reliable identification of differentially expressed transcripts in undissected interface region of the parasite-host association is feasible and informative with respect to differential-expression patterns.
Collapse
Affiliation(s)
- Daisuke Ikeue
- />Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1–1 Gakuen–Cho, Naka–Ku, Sakai, Osaka, 599–8531 Japan
| | - Christian Schudoma
- />Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, Potsdam, 14476 Germany
- />Present Address: Bioinformatics Group, The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH UK
| | - Wenna Zhang
- />Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, Potsdam, 14476 Germany
| | - Yoshiyuki Ogata
- />Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1–1 Gakuen–Cho, Naka–Ku, Sakai, Osaka, 599–8531 Japan
| | - Tomoaki Sakamoto
- />Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916–5 Takayama, Ikoma, 630–0192 Japan
| | - Tetsuya Kurata
- />Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916–5 Takayama, Ikoma, 630–0192 Japan
| | - Takeshi Furuhashi
- />Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science (CSRC), 1–7–22 Suehiro, Tsurumi, Yokohama, 230–0045 Japan
- />Present Address: Department of Molecular Systems Biology (Ecogenomics and Systems Biology), Vienna University, Althanstraße 14, Vienna, A–1090 Austria
| | - Friedrich Kragler
- />Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, Potsdam, 14476 Germany
| | - Koh Aoki
- />Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1–1 Gakuen–Cho, Naka–Ku, Sakai, Osaka, 599–8531 Japan
| |
Collapse
|