1
|
Sumaira S, Vijayarathna S, Hemagirri M, Adnan M, Hassan MI, Patel M, Gupta R, Shanmugapriya, Chen Y, Gopinath SC, Kanwar JR, Sasidharan S. Plant bioactive compounds driven microRNAs (miRNAs): A potential source and novel strategy targeting gene and cancer therapeutics. Noncoding RNA Res 2024; 9:1140-1158. [PMID: 39022680 PMCID: PMC11250886 DOI: 10.1016/j.ncrna.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Irrespective of medical technology improvements, cancer ranks among the leading causes of mortality worldwide. Although numerous cures and treatments exist, creating alternative cancer therapies with fewer adverse side effects is vital. Since ancient times, plant bioactive compounds have already been used as a remedy to heal cancer. These plant bioactive compounds and their anticancer activity can also deregulate the microRNAs (miRNAs) in the cancerous cells. Therefore, the deregulation of miRNAs in cancer cells by plant bioactive compounds and the usage of the related miRNA could be a promising approach for cancer cure, mainly to prevent cancer and overcome chemotherapeutic side effect problems. Hence, this review highlights the function of plant bioactive compounds as an anticancer agent through the underlying mechanism that alters the miRNA expression in cancer cells, ultimately leading to apoptosis. Moreover, this review provides insight into using plant bioactive compounds -driven miRNAs as an anticancer agent to develop miRNA-based cancer gene therapy. They can be the potential resource for gene therapy and novel strategies targeting cancer therapeutics.
Collapse
Affiliation(s)
- Sahreen Sumaira
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Soundararajan Vijayarathna
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2440, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mitesh Patel
- Research and Development Cell and Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, Department. Pharmaceutical Research, GLA University, Mathura, India
| | - Shanmugapriya
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Jagat R. Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), 174001, Bilaspur, Himachal Pradesh, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Moar K, Yadav S, Pant A, Deepika, Maurya PK. Anti-tumor Effects of Polyphenols via Targeting Cancer Driving Signaling Pathways: A Review. Indian J Clin Biochem 2024; 39:470-488. [PMID: 39346722 PMCID: PMC11436542 DOI: 10.1007/s12291-024-01222-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 10/01/2024]
Abstract
The use of drugs in chemotherapy poses numerous side effects. Hence the use of natural substances that can help in the prevention and cure of the disease is a dire necessity. Cancer is a deadly illness and combination of diseases, the menace of which is rising with every passing year. The research community and scientists from all over the world are working towards finding a cure of the disease. The use of polyphenols which are naturally derived from plants have a great potential to be used as anti-cancer drugs and also the use of fruits and vegetables which are rich in these polyphenols can also help in the prevention of diseases. The study aims to compile the available literature and research studies on the anti-cancer effects of polyphenols and the signaling pathways that are affected by them. To review the anti-cancer effects of polyphenols, Google Scholar, PubMed and ScienceDirect were used to study the literature available. The article that have been used for literature review were filtered using keywords including cancer, polyphenols and signaling pathways. Majorly articles from the last 10 years have been considered for the review but relevant articles from earlier than 10 years have also been considered. Almost 400 articles were studied for the review and 200 articles have been cited. The current review shows the potential of polyphenols as anti-cancer compounds and how the consumption of a diet rich in polyphenols can help in the prevention of cancer. Because of their capacity to affect a variety of oncogenic and oncosuppressive signaling pathways, phytochemicals derived from plants have been effectively introduced as an alternative anticarcinogenic medicines. Graphical Abstract
Collapse
Affiliation(s)
- Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Somu Yadav
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Deepika
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031 India
| |
Collapse
|
3
|
Wang R, Li X, Xu Y, Li Y, Zhang W, Guo R, Song J. Progress, pharmacokinetics and future perspectives of luteolin modulating signaling pathways to exert anticancer effects: A review. Medicine (Baltimore) 2024; 103:e39398. [PMID: 39183411 PMCID: PMC11346905 DOI: 10.1097/md.0000000000039398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Luteolin (3, 4, 5, 7-tetrahydroxyflavone) are natural flavonoids widely found in vegetables, fruits and herbs, with anti-tumor, anti-inflammatory and antioxidant effects, and also play an anti-cancer effect in various cancers such as lung, breast, prostate, and liver cancer, etc. Specifically, the anti-cancer mechanism includes regulation of various signaling pathways to induce apoptosis of tumor cells, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, regulation of immune function, synergistic anti-cancer drugs and regulation of reactive oxygen species levels of tumor cells. Specific anti-cancer mechanisms include regulation of various signaling pathways to induce apoptosis, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, reversal of epithelial-mesenchymal transition, regulation of immune function, synergism with anti-cancer drugs and regulation of reactive oxygen species levels in tumor cells. This paper integrates the latest cutting-edge research on luteolin and combines it with the prospect of future clinical applications, aiming to explore the mechanism of luteolin exerting different anticancer effects through the regulation of different signaling pathways, so as to provide a practical theoretical basis for the use of luteolin in clinical treatment and hopefully provide some reference for the future research direction of luteolin.
Collapse
Affiliation(s)
- Rui Wang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
- Medical School of Nantong University, Nantong, PR China
| | - Xia Li
- Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yanhan Xu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yangyang Li
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Weisong Zhang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Rongqi Guo
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Jianxiang Song
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| |
Collapse
|
4
|
Almatroodi SA, Almatroudi A, Alharbi HOA, Khan AA, Rahmani AH. Effects and Mechanisms of Luteolin, a Plant-Based Flavonoid, in the Prevention of Cancers via Modulation of Inflammation and Cell Signaling Molecules. Molecules 2024; 29:1093. [PMID: 38474604 DOI: 10.3390/molecules29051093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Luteolin, a flavonoid, is mainly found in various vegetables and fruits, including carrots, cabbages, onions, parsley, apples, broccoli, and peppers. Extensive research in vivo and in vitro has been performed to explore its role in disease prevention and treatment. Moreover, this compound possesses the ability to combat cancer by modulating cell-signaling pathways across various types of cancer. The studies have confirmed that luteolin can inhibit cancer-cell survival and proliferation, angiogenesis, invasion, metastasis, mTOR/PI3K/Akt, STAT3, Wnt/β-catenin, and cell-cycle arrest, and induce apoptosis. Further, scientific evidence describes that this compound plays a vital role in the up/down-regulation of microRNAs (miRNAs) in cancer therapy. This review aims to outline the anti-cancer mechanisms of this compound and its molecular targets. However, a knowledge gap remains regarding the studies on its safety and efficacy and clinical trials. Therefore, it is essential to conduct more research based on safety, efficacy, and clinical trials to explore the beneficial role of this compound in disease management, including cancer.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Upadhyay PK, Singh S, Vishwakarma VK. Natural Polyphenols in Cancer Management: Promising Role, Mechanisms, and Chemistry. Curr Pharm Biotechnol 2024; 25:694-712. [PMID: 37608669 DOI: 10.2174/1389201024666230822090318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Although cancers emerge rapidly and cancer cells divide aggressively, which affects our vital organ systems. Recently, cancer treatments are targeted immune systems mediating intrinsic cellular mechanisms. Natural efficacious polyphenols have been exhibited to help prevent most cancers and reverse the progression of cancers. METHODS Many resources have been used to know the promising role of polyphenols in preventing and treating cancers. The electronic databases include Science Direct, Google, Google Scholar, PubMed, and Scopus. The search was limited to the English language only. RESULTS Polyphenols have been reported as anti-metastatic agents that explore the promising role of these compounds in cancer prevention. Such agents act through many signaling pathways, including PI3K/Akt and TNF-induced signaling pathways. The chemical modifications of polyphenols and the structure-activity relationships (SARs) between polyphenols and anticancer activities have also been discussed. CONCLUSION Many research papers were reported to explain the anti-cancer potential of Polyphenols, The SARs between polyphenols and anti-cancer activities, which correlate structures of polyphenols with significant chemotherapeutic action. The mechanism of anti-cancer potential is to be added for searching for new anti-cancer natural products.
Collapse
Affiliation(s)
- Prabhat Kumar Upadhyay
- Department of Pharmaceutical Science, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | | |
Collapse
|
6
|
Zhang Y, Liu K, Yan C, Yin Y, He S, Qiu L, Li G. Natural Polyphenols for Treatment of Colorectal Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248810. [PMID: 36557939 PMCID: PMC9787795 DOI: 10.3390/molecules27248810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a prevalent and serious gastrointestinal malignancy with high mortality and morbidity. Chemoprevention refers to a newly emerged strategy that uses drugs with chemopreventive properties to promote antioxidation, regulate cancer cell cycle, suppress proliferation, and induce cellular apoptosis, so as to improve cancer treatment outcomes. Natural polyphenols are currently recognized as a class of chemopreventive agents that have shown remarkable anticarcinogenic properties. Numerous in vitro and in vivo studies have elucidated the anti-CRC mechanisms of natural polyphenols, such as regulation of various molecular and signaling pathways. Natural polyphenols are also reportedly capable of modulating the gut microbiota and cancer stem cells (CSCs) to suppress tumor formation and progression. Combined use of different natural polyphenols is recommended due to their low bioavailability and instability, and combination treatment can exert synergistical effects, reduce side effects, and avoid drug resistance in CRC treatment. In summary, the application of polyphenols in the chemoprevention and treatment of CRC is promising. Further clinical evaluation of their effectiveness is warranted and anticipated.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Kunjian Liu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chengqiu Yan
- Anorectal Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yu Yin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuangyan He
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Qiu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guofeng Li
- Anorectal Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
- Correspondence:
| |
Collapse
|
7
|
Prasher P, Sharma M, Singh SK, Gulati M, Chellappan DK, Zacconi F, De Rubis G, Gupta G, Sharifi-Rad J, Cho WC, Dua K. Luteolin: a flavonoid with a multifaceted anticancer potential. Cancer Cell Int 2022; 22:386. [PMID: 36482329 PMCID: PMC9730645 DOI: 10.1186/s12935-022-02808-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Therapeutic effect of phytochemicals has been emphasized in the traditional medicine owing to the presence of bioactive molecules, such as polyphenols. Luteolin is a flavone belonging to the flavonoid class of polyphenolic phytochemicals with healing effect on hypertension, inflammatory disorders, and cancer due to its action as pro-oxidants and antioxidants. The anticancer profile of luteolin is of interest due to the toxic effect of contemporary chemotherapy paradigm, leading to the pressing need for the development and identification of physiologically benevolent anticancer agents and molecules. Luteolin exerts anticancer activity by downregulation of key regulatory pathways associated with oncogenesis, in addition to the induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells. In this review, we discuss about the anticancer profile of luteolin.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007 India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007 India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, Phagwara, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Monica Gulati
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, Phagwara, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Flavia Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuna Mackenna 4860, Macul, 7820436 Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
8
|
Agaj A, Peršurić Ž, Pavelić SK. Mediterranean Food Industry By-Products as a Novel Source of Phytochemicals with a Promising Role in Cancer Prevention. Molecules 2022; 27:8655. [PMID: 36557789 PMCID: PMC9784942 DOI: 10.3390/molecules27248655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The Mediterranean diet is recognized as a sustainable dietary approach with beneficial health effects. This is highly relevant, although the production of typical Mediterranean food, i.e., olive oil or wine, processed tomatoes and pomegranate products, generates significant amounts of waste. Ideally, this waste should be disposed in an appropriate, eco-friendly way. A number of scientific papers were published recently showing that these by-products can be exploited as a valuable source of biologically active components with health benefits, including anticancer effects. In this review, accordingly, we elaborate on such phytochemicals recovered from the food waste generated during the processing of vegetables and fruits, typical of the Mediterranean diet, with a focus on substances with anticancer activity. The molecular mechanisms of these phytochemicals, which might be included in supporting treatment and prevention of various types of cancer, are presented. The use of bioactive components from food waste may improve the economic feasibility and sustainability of the food processing industry in the Mediterranean region and can provide a new strategy to approach prevention of cancer.
Collapse
Affiliation(s)
- Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Željka Peršurić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ul. Viktora cara Emina 5, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
The Insulin-like Growth Factor System and Colorectal Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081274. [PMID: 36013453 PMCID: PMC9410426 DOI: 10.3390/life12081274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factors (IGFs) are peptides which exert mitogenic, endocrine and cytokine activities. Together with their receptors, binding proteins and associated molecules, they participate in numerous pathophysiological processes, including cancer development. Colorectal cancer (CRC) is a disease with high incidence and mortality rates worldwide, whose etiology usually represents a combination of the environmental and genetic factors. IGFs are most often increased in CRC, enabling excessive autocrine/paracrine stimulation of the cell growth. Overexpression or increased activation/accessibility of IGF receptors is a coinciding step which transmits IGF-related signals. A number of molecules and biochemical mechanisms exert modulatory effects shaping the final outcome of the IGF-stimulated processes, frequently leading to neoplastic transformation in the case of irreparable disbalance. The IGF system and related molecules and pathways which participate in the development of CRC are the focus of this review.
Collapse
|
10
|
Chen LY, Cheng HL, Kuan YH, Liang TJ, Chao YY, Lin HC. Therapeutic Potential of Luteolin on Impaired Wound Healing in Streptozotocin-Induced Rats. Biomedicines 2021; 9:761. [PMID: 34209369 PMCID: PMC8301369 DOI: 10.3390/biomedicines9070761] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Long-term hyperglycemia may lead to diabetic microvascular and macrovascular complications that can affect the peripheral vascular system, particularly in wound healing capacity. Impaired angiogenesis and delayed wound healing are significant clinically. Luteolin (3', 4', 5, 7-tetrahydroxyflavone) is a naturally occurring flavonoid that is ubiquitously found in plants. Recent evidence has shown that luteolin is an anti-inflammatory and anti-oxidative agent. However, the effect of systemic luteolin administration on diabetic wound restoration remains unclear. Herein, we explored the effectiveness of luteolin for improving delayed and impaired healing of skin wound and further clarified the underlying mechanisms. The results indicated that luteolin significantly attenuates blood glucose concentration, improves impaired healing and accelerates re-epithelization of skin wound in streptozotocin (STZ)-induced diabetic rats. Histopathological staining and immunoblotting revealed an inhibitory effect of luteolin on inflammatory cell and cytokine production. We also observed remarkable decreases in protein expressions of inflammatory factors including matrix metalloproteinase (MMP)-9, tumor necrosis factor (TNF)-α, interleukin (IL-6), and IL1-β and downregulation of nuclear factor (NF)-κB, as well as increases in anti-oxidative enzymes such as superoxide dismutase 1 (SOD1) and glutathione peroxidase (GSH-Px) induced by nuclear factor erythroid 2-related factor (Nrf)-2 following luteolin supplementation. Furthermore, luteolin decreased the expression of vascular endothelial growth factor (VEGF) and increased the expression of ubiquitin carboxy-terminal hydrolase (UCH)-L1, as evidenced by angiogenesis and neuronal regeneration in completely healed wound. In conclusion, systemic administration of luteolin promotes wound restoration by ameliorating inflammation and oxidative stress through the inactivation of NF-κB and upregulation of Nrf2 in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Li-You Chen
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-Y.C.); (T.-J.L.); (Y.-Y.C.)
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hsin-Lin Cheng
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Tang-Jun Liang
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-Y.C.); (T.-J.L.); (Y.-Y.C.)
| | - Yun-Yi Chao
- Department of Anatomy, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (L.-Y.C.); (T.-J.L.); (Y.-Y.C.)
| | - Hsing-Chun Lin
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
11
|
Naiki-Ito A, Naiki T, Kato H, Iida K, Etani T, Nagayasu Y, Suzuki S, Yamashita Y, Inaguma S, Onishi M, Tanaka Y, Yasui T, Takahashi S. Recruitment of miR-8080 by luteolin inhibits androgen receptor splice variant 7 expression in castration-resistant prostate cancer. Carcinogenesis 2021; 41:1145-1157. [PMID: 31805186 PMCID: PMC7422625 DOI: 10.1093/carcin/bgz193] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 10/28/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
A need exists for seeking effective treatments for castration-resistant prostate cancer (CRPC) in response to its emergence following androgen deprivation therapy as a major clinical problem. In the present study, we investigated the chemopreventive and chemotherapeutic potential of luteolin, a flavonoid with antioxidative properties, on prostate cancer, including CRPC. Luteolin inhibited the progression of rat prostate carcinogenesis by induction of apoptosis in a transgenic rat for adenocarcinoma of prostate (TRAP) model. Luteolin decreased cell proliferation in a dose-dependent manner and induced apoptosis with the activation of caspases 3 and 7 in both rat (PCai1, established from a TRAP prostate tumor) and human (22Rv1) CRPC cells. Dietary luteolin also suppressed tumor growth via an increase in apoptosis and inhibition of angiogenesis in PCai1 and 22Rv1 xenografts implanted in castrated nude mice. We also focused on androgen receptor splice variant 7 (AR-V7), which contributes to cell proliferation and therapeutic resistance in CRPC. Luteolin dramatically suppressed AR-V7 protein expression in 22Rv1 cells in vitro and ex vivo. Microarray analysis identified MiR-8080, which contains a possible target sequence for AR-V7 3′-UTR, as a gene upregulated by luteolin. MiR-8080 transfection decreased the AR-V7 expression level and the induction of apoptosis in 22Rv1 cells. Furthermore, miR-8080 knockdown canceled luteolin decreasing AR-V7 and the cell growth of 22Rv1. MiR-8080 induced by luteolin intake enhanced the therapeutic effect of enzalutamide on 22Rv1 xenografts under castration conditions. These results indicate luteolin inhibits CRPC by AR-V7 suppression through miR-8080, highlighting luteolin and miR-8080 as promising therapeutic agents for this disease.
Collapse
Affiliation(s)
- Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Pathology Division, Nagoya City East Medical Center, Nagoya, Japan
| | - Taku Naiki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keitaro Iida
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshiki Etani
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuko Nagayasu
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoriko Yamashita
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shingo Inaguma
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Pathology Division, Nagoya City East Medical Center, Nagoya, Japan
| | - Masaya Onishi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
12
|
Yoo HS, Won SB, Kwon YH. Luteolin Induces Apoptosis and Autophagy in HCT116 Colon Cancer Cells via p53-Dependent Pathway. Nutr Cancer 2021; 74:677-686. [PMID: 33757400 DOI: 10.1080/01635581.2021.1903947] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although a dietary phytochemical luteolin has been shown to regulate various anticancer mechanisms, a role of luteolin in autophagy regulation is mostly unidentified. Here, we investigated whether luteolin exhibits its anticancer effects by induction of apoptosis and autophagy in a p53-dependent manner in colon cancer cells. Cell viability was determined using trypan blue exclusion test. The expressions of proteins and mRNAs were measured by immunoblotting and reverse transcription polymerase chain reaction, respectively. Luteolin at 10 - 20 μM induced cytotoxicity in p53 wild-type HCT116 colon cancer cells but not in p53 mutant HT-29 cells and normal colon cells. Luteolin exhibited its anticancer effect by increasing p53 phosphorylation and p53 target gene expression, leading to apoptosis and cell cycle arrest in HCT116 cells. We identified that luteolin can induce autophagy in p53 wild-type cells but not in p53 mutant cells, suggesting that luteolin-induced autophagy is p53-dependent; however, chloroquine-mediated inhibition of autophagy did not alter cytotoxicity and apoptosis of cells treated with luteolin. In conclusion, the present data showed that luteolin inhibits the growth of HCT116 colon cancer cells through p53-dependent regulation of apoptosis and cell cycle arrest regardless of the induction of autophagy.
Collapse
Affiliation(s)
- Ho Soo Yoo
- Department of Food and Nutrition, Seoul National University, Seoul, Korea
| | - Sae Bom Won
- Department of Human Nutrition and Food Science, Chungwoon University, Hongseong, Chungnam, Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
13
|
Ibrahim RS, El-Banna AA. Network pharmacology-based analysis for unraveling potential cancer-related molecular targets of Egyptian propolis phytoconstituents accompanied with molecular docking and in vitro studies. RSC Adv 2021; 11:11610-11626. [PMID: 35423607 PMCID: PMC8695995 DOI: 10.1039/d1ra01390d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the predominant causes of death worldwide. The new trend nowadays is to exploit natural products with the hope of developing new anticancer agents with fewer side effects. Propolis is one of these natural products which showed effectiveness in cancer treatment. The aim of this study is to understand the multi-level mechanism of action of propolis constituents in cancer treatment using an integrated approach of network pharmacology-based analysis, molecular docking and in vitro cytotoxicity testing. An inhouse database of chemical constituents from Egyptian propolis was compiled and assessed for its ADME properties using the QikProp module in the Schrodinger software. STITCH, UniProt, STRING, KEGG and DAVID databases were used for construction of constituent-target gene, gene-pathway, and constituent-target gene-pathway networks with the aid of Cytoscape 3.8.2. The network pharmacology-based analysis showed that the hit propolis constituents related to cancer targets were genistein, luteolin, benzoic acid, quercetin and vanillic acid, whereas the main cancer-associated targets were CYP1A1, CYP19A1, ESR1, NOS3, CASP3 and AKT1. Twenty-four cancer-related pathways were recognized where the most enriched ones were pathways in cancer and estrogen signaling pathway. The most enriched biological processes involved in the mechanism of action of propolis constituents in cancer treatment were negative regulation of the apoptotic process and the metabolic process and negative regulation of cellular glucuronidation. Molecular docking analysis of the top hit compounds against the most enriched target proteins in the constructed networks was carried out using the Maestro interface of the Schrodinger software. Among hit compounds, quercetin and genistein exhibited the most stabilized interaction. Finally, confirmation of the potential anticancer activity of propolis was assured by in vitro cytotoxicity testing of propolis extract on human prostate cancer (DU-145), breast adenocarcinoma (MCF-7) and colorectal adenocarcinoma (Caco-2) cell lines. This study presents deeper insights about propolis molecular mechanisms of action in cancer for the first time using an integrated approach of network pharmacology, molecular docking and in vitro testing.
Collapse
Affiliation(s)
- Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +201223821098
| | - Alaa A El-Banna
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +201223821098
| |
Collapse
|
14
|
Karthika C, Sureshkumar R. Incorporation of natural assumption to deal with cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4902-4917. [PMID: 33230796 DOI: 10.1007/s11356-020-11479-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
The current state of the art for the use of natural ingredients for cancer therapy is by reviewing the publications and findings associated with cancer research with the employment of flavonoids. Cancer is the most furious disease making fear in the eyes of mankind. Though various treatment methods are prevalent, the patient's choices are shifting from synthetic treatment strategy to the natural ones. The plant-based metabolites are used very often in our life as a food additive and also as a medicine for primary health care. The safety profile and its efficacy add on advantage for the incorporation of the natural products separately or in combination as a remedy for cancer. Flavonoids, the plant-based metabolites are proven for their anti-inflammatory, anti-oxidant, and anti-cancer properties. Their chemotherapeutic and chemosensitizing power had made it interesting for the researchers to dig more on the health benefits of the flavonoids and incorporating it in a holistic approach, with its natural benefits to relieve the pain and the symptoms of the patient suffering from various medical conditions. The predominant approach for the management of cancer is by following safe and effective treatment modality. In this review, we mentioned the benefits of the flavonoids for the management of various cancers and its potency as a chemotherapeutic agent and as the chemosensitizer. Our mother nature had given remedies to cure various diseases in both human beings and animals by it; we just need to find out the sources and access to them.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Raman Sureshkumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
15
|
Yang H, Liu BF, Xie FJ, Yang WL, Cao N. Luteolin induces mitochondrial apoptosis in HT29 cells by inhibiting the Nrf2/ARE signaling pathway. Exp Ther Med 2020; 19:2179-2187. [PMID: 32104282 PMCID: PMC7027334 DOI: 10.3892/etm.2020.8464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
The aim of the current study was to investigate luteolin-induced apoptosis and the molecular mechanisms underlying it in HT29 cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to assess the cytotoxicity of luteolin on HT29 cells, and a dichloro-dihydro-fluorescein diacetate assay was used to measure cellular levels of reactive oxygen species (ROS). The effects of luteolin on the mitochondrial membrane potential were also evaluated. Bax and Bcl-2 mRNA expression were determined using reverse transcription-quantitative PCR. Additionally, western blot analysis was performed to assess changes in cytochrome c and caspase-3 protein expression. Localization of nuclear factor erythroid 2-related factor 2 (Nrf2) in the nucleus was also assessed using immunofluorescence. Luteolin exhibited cytotoxicity on HT29 cells in a time- and concentration-dependent manner. Additionally, ROS production was indicated to be increased and ROS scavenging was decreased, which resulted in a significant increase in the levels of ROS in the cells. The mitochondrial membrane potential was indicated to decrease following luteolin treatment. At the molecular level, luteolin significantly increased the mRNA expression of Bax and the protein expression of cytochrome c, caspase-3, p47phox and p22phox. The results revealed that luteolin decreased Bcl-2 protein expression and inhibited the nuclear localization of Nrf2. In conclusion, the current study indicated that luteolin inhibited HT29 cell proliferation and induced apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Huan Yang
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bing-Fang Liu
- Department of Nuclear Magnetic Resonance, The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fu-Jia Xie
- Department of General Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R China
| | - Wei-Lin Yang
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Nong Cao
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
16
|
Hazafa A, Rehman KU, Jahan N, Jabeen Z. The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells. Nutr Cancer 2020; 72:386-397. [PMID: 31287738 DOI: 10.1080/01635581.2019.1637006] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer remains a second leading cause of deaths and major public health problem. It occurs due to extensive DNA damage caused by ultraviolet radiations, ionizing radiations, environmental agents, therapeutic agents, etc. Among all cancers, the most frequently diagnosed cancers are lung (12.7%), breast (10.9%), colorectal (9.7%), and gastric cancer (7.81%). Natural compounds are most favorable against cancer on the count of their anti-cancerous ability, easy to avail and efficient. Among natural compounds, polyphenols (flavonoids, catechin, hesperetin, flavones, quercetin, phenolic acids, ellagic acid, lignans, stilbenes, etc.) represent a large and diverse group used in the prevention and treatment of cancer. Natural flavonoids are derived from different plant sources and from various medicinal plants including Petroselinum crispum, Apium graveolens, Flemingia vestita, Phyllanthus emblica, etc. Natural flavonoids possess antioxidant, anti-inflammation, as well as anti-cancerous activities through multiple pathways, they induce apoptosis in breast, colorectal, and prostate cancers, lower the nucleoside diphosphate kinase-B activity in lung, bladder and colon cancers, inhibit cell-proliferation and cell cycle arrest by suppressing the NF-kB pathway in various cancers, etc. The current review summarized the anticancer activities of natural polyphenols and their mechanisms of action.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Khalil-Ur- Rehman
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Nazish Jahan
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zara Jabeen
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
17
|
Ambasta RK, Gupta R, Kumar D, Bhattacharya S, Sarkar A, Kumar P. Can luteolin be a therapeutic molecule for both colon cancer and diabetes? Brief Funct Genomics 2019; 18:230-239. [PMID: 30462152 DOI: 10.1093/bfgp/ely036] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes and colon cancer are the leading cause of mortality worldwide. According to World Health Organization, the number of patients with diabetes and cancer is going to be elevated by 50% in 2020. However, several flavonoids have been known to be useful in reducing the chance of cancer/diabetes but the hunt of a single biomolecule that can act as therapeutic and preventive molecules for future epidemic continues. In this review, we aim to perform an illustration of all researches done that target molecular signaling using luteolin in cancer/diabetes and predicted target protein using PharmMapper. The search confirms that luteolin can be a remedial molecule for both cancer and diabetes via acting on variety of signaling pathway. Furthermore, we also intend to illustrate/compare the predicted and verified molecular modes of action of luteolin. Fluorescence in situ hybridization analysis confirms the expression of CCND1 in colon cancer while immunofluorescence analysis confirms the CDK4 in diabetes. Finally, an effort has been made to map docking of marker protein-luteolin at a particular site using docking software. This review gives a holistic overview about luteolin as a therapeutic molecule for cancer/diabetes via acting on multiple signaling cascade such as p53, Wnt, eNOS, iNOS, SOD and MMP9, with especial emphasis on the cyclin-CDK pathway. Altogether, the review concludes that luteolin can be a molecule for the therapy of both cancer and diabetes by acting on broad signaling pathway.
Collapse
Affiliation(s)
- Rashmi K Ambasta
- Department of Biotechnology, Delhi Technological University (Former Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Department of Biotechnology, Delhi Technological University (Former Delhi College of Engineering), Delhi, India
| | - Dhiraj Kumar
- Department of Biotechnology, Delhi Technological University (Former Delhi College of Engineering), Delhi, India
| | - Saurabh Bhattacharya
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, India
| | - Aditi Sarkar
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, India
| | - Pravir Kumar
- Department of Biotechnology, Delhi Technological University (Former Delhi College of Engineering), Delhi, India
| |
Collapse
|
18
|
Behrens CE, Smith KE, Iancu CV, Choe JY, Dean JV. Transport of Anthocyanins and other Flavonoids by the Arabidopsis ATP-Binding Cassette Transporter AtABCC2. Sci Rep 2019; 9:437. [PMID: 30679715 PMCID: PMC6345954 DOI: 10.1038/s41598-018-37504-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/29/2018] [Indexed: 01/16/2023] Open
Abstract
Flavonoids have important developmental, physiological, and ecological roles in plants and are primarily stored in the large central vacuole. Here we show that both an ATP-binding cassette (ABC) transporter(s) and an H+-antiporter(s) are involved in the uptake of cyanidin 3-O-glucoside (C3G) by Arabidopsis vacuolar membrane-enriched vesicles. We also demonstrate that vesicles isolated from yeast expressing the ABC protein AtABCC2 are capable of MgATP-dependent uptake of C3G and other anthocyanins. The uptake of C3G by AtABCC2 depended on the co-transport of glutathione (GSH). C3G was not altered during transport and a GSH conjugate was not formed. Vesicles from yeast expressing AtABCC2 also transported flavone and flavonol glucosides. We performed ligand docking studies to a homology model of AtABCC2 and probed the putative binding sites of C3G and GSH through site-directed mutagenesis and functional studies. These studies identified residues important for substrate recognition and transport activity in AtABCC2, and suggest that C3G and GSH bind closely, mutually enhancing each other’s binding. In conclusion, we suggest that AtABCC2 along with possibly other ABCC proteins are involved in the vacuolar transport of anthocyanins and other flavonoids in the vegetative tissue of Arabidopsis.
Collapse
Affiliation(s)
- Claire E Behrens
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Ave., Chicago, 60614, IL, USA
| | - Kaila E Smith
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Ave., Chicago, 60614, IL, USA
| | - Cristina V Iancu
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, 60064, IL, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, 60064, IL, USA. .,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, 27834, USA.
| | - John V Dean
- Department of Biological Sciences, DePaul University, 2325 N. Clifton Ave., Chicago, 60614, IL, USA.
| |
Collapse
|
19
|
Caban M, Owczarek K, Chojnacka K, Lewandowska U. Overview of polyphenols and polyphenol-rich extracts as modulators of IGF-1, IGF-1R, and IGFBP expression in cancer diseases. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
20
|
Luteolin attenuates Wnt signaling via upregulation of FZD6 to suppress prostate cancer stemness revealed by comparative proteomics. Sci Rep 2018; 8:8537. [PMID: 29867083 PMCID: PMC5986741 DOI: 10.1038/s41598-018-26761-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/15/2018] [Indexed: 12/28/2022] Open
Abstract
The mechanisms underlying luteolin-induced inhibition of prostate cancer (PCa) stemness have remained elusive. Here, we report that luteolin suppresses PCa stemness through Wnt signaling by upregulation of FZD6 (frizzled class receptor 6). Luteolin inhibits PCa cell proliferation, migration, self-renewal as well as the expression of prostate cancer stem cell markers in vitro. Through iTRAQ-based quantitative proteomics study, we identified 208 differentially expressed proteins in luteolin-treated PC-3 cells. Subsequent mechanistic analysis revealed that luteolin inhibits Wnt signaling by transcriptional upregulation of FZD6, and thereby suppressing the stemness of PCa cells. Furthermore, we identified FZD6 as a tumor suppressor that can abolish PCa stemness. In summary, our findings demonstrate that suppression of Wnt signaling by upregulation of FZD6 is a mechanism underlying luteolin-induced inhibition of PCa stemness. Our work suggests a new therapeutic strategy against human prostate cancer caused by aberrant activation of Wnt signaling.
Collapse
|
21
|
Polyphenols in Colorectal Cancer: Current State of Knowledge including Clinical Trials and Molecular Mechanism of Action. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4154185. [PMID: 29568751 PMCID: PMC5820674 DOI: 10.1155/2018/4154185] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 12/17/2017] [Indexed: 02/08/2023]
Abstract
Polyphenols have been reported to have wide spectrum of biological activities including major impact on initiation, promotion, and progression of cancer by modulating different signalling pathways. Colorectal cancer is the second most major cause of mortality and morbidity among females and the third among males. The objective of this review is to describe the activity of a variety of polyphenols in colorectal cancer in clinical trials, preclinical studies, and primary research. The molecular mechanisms of major polyphenols related to their beneficial effects on colorectal cancer are also addressed. Synthetic modifications and other future directions towards exploiting of natural polyphenols against colorectal cancer are discussed in the last section.
Collapse
|
22
|
Jaksevicius A, Carew M, Mistry C, Modjtahedi H, Opara EI. Inhibitory Effects of Culinary Herbs and Spices on the Growth of HCA-7 Colorectal Cancer Cells and Their COX-2 Expression. Nutrients 2017; 9:nu9101051. [PMID: 28934138 PMCID: PMC5691668 DOI: 10.3390/nu9101051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023] Open
Abstract
It is unclear if the anti-inflammatory properties of culinary herbs and spices (CHS) are linked to their ability to inhibit Colorectal cancer cell (CRC) growth. Furthermore, their therapeutic potential with regards to CRC is unknown. The aim of this study was to establish if the inhibition of HCA-7 CRC cell growth by a selection of culinary herbs and spices (CHS) is linked to the inhibition of the cells’ cyclooxygenase-2 (COX-2 )expression, and to investigate their therapeutic potential. CHS inhibited the growth of Human colon adenocarcinoma-7 (HCA-7) cells; the order of potency was turmeric, bay leaf, ginger, sage, and rosemary; their combinations had a synergistic or additive effect on cell growth inhibition. CHS also inhibited COX-2 expression and activity; this action was comparable to that of the specific COX-2 inhibitor Celecoxib. Coincident with COX-2 inhibition was the accumulation of cells in the sub G1 phase of the HCA-7’s cell cycle and, using bay leaf and turmeric, the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP). This latter effect showed that the effect of these CHS on growth arrest was irreversible, and was comparable to that of the caspase activator Etoposide. This study provides evidence of a link between the inhibition of HCA-7 growth, and its COX-2 expression, by CHS, and their therapeutic potential.
Collapse
Affiliation(s)
- Andrius Jaksevicius
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| | - Mark Carew
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| | - Calli Mistry
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| | - Helmout Modjtahedi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| | - Elizabeth I Opara
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| |
Collapse
|
23
|
Maalej A, Bouallagui Z, Hadrich F, Isoda H, Sayadi S. Assessment of Olea europaea L. fruit extracts: Phytochemical characterization and anticancer pathway investigation. Biomed Pharmacother 2017; 90:179-186. [DOI: 10.1016/j.biopha.2017.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/05/2017] [Accepted: 03/14/2017] [Indexed: 01/23/2023] Open
|
24
|
Abstract
Many food-derived phytochemical compounds and their derivatives represent a cornucopia of new anticancer compounds. Despite extensive study of luteolin, the literature has no information on the exact mechanisms or molecular targets through which it deters cancer progression. This review discusses existing data on luteolin's anticancer activities and then offers possible explanations for and molecular targets of its cancer-preventive action. Luteolin prevents tumor development largely by inactivating several signals and transcription pathways essential for cancer cells. This review also offers insights into the molecular mechanisms and targets through which luteolin either prevents cancer or mediates cancer cell death.
Collapse
|
25
|
Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016; 8:nu8080515. [PMID: 27556486 PMCID: PMC4997428 DOI: 10.3390/nu8080515] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 02/06/2023] Open
Abstract
There is much epidemiological evidence that a diet rich in fruits and vegetables could lower the risk of certain cancers. The effect has been attributed, in part, to natural polyphenols. Besides, numerous studies have demonstrated that natural polyphenols could be used for the prevention and treatment of cancer. Potential mechanisms included antioxidant, anti-inflammation as well as the modulation of multiple molecular events involved in carcinogenesis. The current review summarized the anticancer efficacy of major polyphenol classes (flavonoids, phenolic acids, lignans and stilbenes) and discussed the potential mechanisms of action, which were based on epidemiological, in vitro, in vivo and clinical studies within the past five years.
Collapse
|
26
|
Liu X, Yao Z. Chronic over-nutrition and dysregulation of GSK3 in diseases. Nutr Metab (Lond) 2016; 13:49. [PMID: 27493677 PMCID: PMC4972972 DOI: 10.1186/s12986-016-0108-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022] Open
Abstract
Loss of cellular response to hormonal regulation in maintaining metabolic homeostasis is common in the process of aging. Chronic over-nutrition may render cells insensitive to such a hormonal regulation owing to overstimulation of certain signaling pathways, thus accelerating aging and causing diseases. The glycogen synthase kinase 3 (GSK3) plays a pivotal role in relaying various extracellular and intracellular regulatory signals critical to cell growth, survival, regeneration, or death. The main signaling pathway regulating GSK3 activity through serine-phosphorylation is the phosphoinositide 3-kinase (PI3K)/phosphoinositide-dependent kinase-1 (PDK1)/Akt relay that catalyzes serine-phosphorylation and thus inactivation of GSK3. In addition, perilipin 2 (PLIN2) has recently been shown to regulate GSK3 activation through direct association with GSK3. This review summarizes current understanding on environmental and nutritional factors contributing to GSK3 regulation (or dysregulation) through the PI3K/PDK1/Akt/GSK3 axis, and highlights the newly discovered role that PLIN2 plays in regulating GSK3 activity and GSK3 downstream pathways.
Collapse
Affiliation(s)
- Xunxian Liu
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| |
Collapse
|
27
|
Lim DY, Shin SH, Lee MH, Malakhova M, Kurinov I, Wu Q, Xu J, Jiang Y, Dong Z, Liu K, Lee KY, Bae KB, Choi BY, Deng Y, Bode A, Dong Z. A natural small molecule, catechol, induces c-Myc degradation by directly targeting ERK2 in lung cancer. Oncotarget 2016; 7:35001-14. [PMID: 27167001 PMCID: PMC5085205 DOI: 10.18632/oncotarget.9223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/10/2016] [Indexed: 12/19/2022] Open
Abstract
Various carcinogens induce EGFR/RAS/MAPK signaling, which is critical in the development of lung cancer. In particular, constitutive activation of extracellular signal-regulated kinase 2 (ERK2) is observed in many lung cancer patients, and therefore developing compounds capable of targeting ERK2 in lung carcinogenesis could be beneficial. We examined the therapeutic effect of catechol in lung cancer treatment. Catechol suppressed anchorage-independent growth of murine KP2 and human H460 lung cancer cell lines in a dose-dependent manner. Catechol inhibited ERK2 kinase activity in vitro, and its direct binding to the ERK2 active site was confirmed by X-ray crystallography. Phosphorylation of c-Myc, a substrate of ERK2, was decreased in catechol-treated lung cancer cells and resulted in reduced protein stability and subsequent down-regulation of total c-Myc. Treatment with catechol induced G1 phase arrest in lung cancer cells and decreased protein expression related to G1-S progression. In addition, we showed that catechol inhibited the growth of both allograft and xenograft lung cancer tumors in vivo. In summary, catechol exerted inhibitory effects on the ERK2/c-Myc signaling axis to reduce lung cancer tumor growth in vitro and in vivo, including a preclinical patient-derived xenograft (PDX) model. These findings suggest that catechol, a natural small molecule, possesses potential as a novel therapeutic agent against lung carcinogenesis in future clinical approaches.
Collapse
Affiliation(s)
- Do Young Lim
- The Hormel Institute, University of Minnesota, MN, USA
| | - Seung Ho Shin
- The Hormel Institute, University of Minnesota, MN, USA
- Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA
| | - Mee-Hyun Lee
- The Hormel Institute, University of Minnesota, MN, USA
- The China-US (Henan) Cancer Institute, Zhengzhou, Henan, China
| | | | | | - Qiong Wu
- The China-US (Henan) Cancer Institute, Zhengzhou, Henan, China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
| | - Jinglong Xu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Yanan Jiang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Ziming Dong
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Kangdong Liu
- The China-US (Henan) Cancer Institute, Zhengzhou, Henan, China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Kun Yeong Lee
- The Hormel Institute, University of Minnesota, MN, USA
| | - Ki Beom Bae
- The Hormel Institute, University of Minnesota, MN, USA
| | - Bu Young Choi
- Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Cheongju, Chungbuk, South Korea
| | - Yibin Deng
- The Hormel Institute, University of Minnesota, MN, USA
| | - Ann Bode
- The Hormel Institute, University of Minnesota, MN, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, MN, USA
- The China-US (Henan) Cancer Institute, Zhengzhou, Henan, China
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Hunan, China
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
28
|
Koosha S, Alshawsh MA, Looi CY, Seyedan A, Mohamed Z. An Association Map on the Effect of Flavonoids on the Signaling Pathways in Colorectal Cancer. Int J Med Sci 2016; 13:374-85. [PMID: 27226778 PMCID: PMC4879672 DOI: 10.7150/ijms.14485] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer in the world, causing thousands of deaths annually. Although chemotherapy is known to be an effective treatment to combat colon cancer, it produces severe side effects. Natural products, on the other hand, appear to generate fewer side effects than do chemotherapeutic drugs. Flavonoids are polyphenolic compounds found in various fruits and vegetables known to possess antioxidant activities, and the literature shows that several of these flavonoids have anti-CRC propertiesFlavonoids are classified into five main subclasses: flavonols, flavanones, flavones, flavan-3-ols, and flavanonols. Of these subclasses, the flavanonols have a minimum effect against CRC, whereas the flavones play an important role. The main targets for the inhibitory effect of flavonoids on CRC signaling pathways are caspase; nuclear factor kappa B; mitogen-activated protein kinase/p38; matrix metalloproteinase (MMP)-2, MMP-7, and MMP-9; p53; β-catenin; cyclin-dependent kinase (CDK)2 and CDK4; and cyclins A, B, D, and E. In this review article, we summarize the in vitro and in vivo studies that have been performed since 2000 on the anti-CRC properties of flavonoids. We also describe the signaling pathways affected by flavonoids that have been found to be involved in CRC. Some flavonoids have the potential to be an effective alternative to chemotherapeutic drugs in the treatment of colon cancer; well-controlled clinical studies should, however, be conducted to support this proposal.
Collapse
Affiliation(s)
| | - Mohammed A. Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Xavier CP, Pereira-Wilson C. Medicinal plants of the genuses Salvia and Hypericum are sources of anticolon cancer compounds: Effects on PI3K/Akt and MAP kinases pathways. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2015.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation. Sci Rep 2016; 6:19245. [PMID: 26754912 PMCID: PMC4709722 DOI: 10.1038/srep19245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/09/2015] [Indexed: 01/09/2023] Open
Abstract
Flavones are important secondary metabolites found in many plants. In Lonicera species, flavones contribute both physiological and pharmaceutical properties. However, flavone synthase (FNS), the key enzyme responsible for flavone biosynthesis, has not yet been characterized in Lonicera species. In this study, FNSII genes were identified from Lonicera japonica Thunb. and L. macranthoides Hand.-Mazz. In the presence of NADPH, the recombinant cytochrome P450 proteins encoded by LjFNSII-1.1, LjFNSII-2.1, and LmFNSII-1.1 converted eriodictyol, naringenin, and liquiritigenin to the corresponding flavones directly. The different catalytic properties between LjFNSII-2.1 and LjFNSII-1.1 were caused by a single amino acid substitution at position 242 (glutamic acid to lysine). A methionine at position 206 and a leucine at position 381 contributed considerably to the high catalytic activity of LjFNSII-1.1. In addition, LjFNSII-1.1&2.1 and LmFNSII-1.1 also biosynthesize flavones that were further modified by O-glycosylation in transgenic tobacco. The expression levels of the FNSII genes were consistent with flavone accumulation patterns in flower buds. Our findings suggested that the weak catalytic activity of LmFNSII-1.1 and the relatively low expression of LmFNSII-1.1 in flowers might be responsible for the low levels of flavone accumulation in flower buds of L. macranthoides.
Collapse
|
31
|
Dash R, Uddin MMN, Hosen SZ, Rahim ZB, Dinar AM, Kabir MSH, Sultan RA, Islam A, Hossain MK. Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer. Bioinformation 2015; 11:543-9. [PMID: 26770028 PMCID: PMC4702032 DOI: 10.6026/97320630011543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) catalyzed synthesis of prostaglandin E2 and it associates with tumor growth, infiltration, and metastasis in preclinical experiments. Known inhibitors against COX-2 exhibit toxicity. Therefore, it is of interest to screen natural compounds like flavanoids against COX-2. Molecular docking using 12 known flavanoids against COX-2 by FlexX and of ArgusLab were performed. All compounds showed a favourable binding energy of >-10 KJ/mol in FlexX and > -8 kcal/mol in ArgusLab. However, this data requires in vitro and in vivo verification for further consideration.
Collapse
Affiliation(s)
- Raju Dash
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong-4000, Bangladesh
| | | | - S.M. Zahid Hosen
- Molecular Modeling & Drug Design Laboratory (MMDDL), Pharmacology Research
Division, Bangladesh Council of Scientific & Industrial Research (BCSIR), Chittagong-4220, Bangladesh
| | - Zahed Bin Rahim
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong-4000, Bangladesh
| | - Abu Mansur Dinar
- Quality Control Operations, Square Pharmaceutical Ltd, Bangladesh
| | | | - Ramiz Ahmed Sultan
- Department of Pharmacy, University of Chittagong, Chittagong-4331, Bangladesh
| | - Ashekul Islam
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong-4331, Bangladesh
| | - Md Kamrul Hossain
- Department of Pharmacy, University of Chittagong, Chittagong-4331, Bangladesh
| |
Collapse
|
32
|
Nabavi SF, Braidy N, Gortzi O, Sobarzo-Sanchez E, Daglia M, Skalicka-Woźniak K, Nabavi SM. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res Bull 2015; 119:1-11. [PMID: 26361743 DOI: 10.1016/j.brainresbull.2015.09.002] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
Abstract
According to the World Health Organization, two billion people will be aged 60 years or older by 2050. Aging is a major risk factor for a number of neurodegenerative disorders. These age-related disorders currently represent one of the most important and challenging health problems worldwide. Therefore, much attention has been directed towards the design and development of neuroprotective agents derived from natural sources. These phytochemicals have demonstrated high efficacy and low adverse effects in multiple in vitro and in vivo studies. Among these phytochemicals, dietary flavonoids are an important and common chemical class of bioactive products, found in several fruits and vegetables. Luteolin is an important flavone, which is found in several plant products, including broccoli, pepper, thyme, and celery. Numerous studies have shown that luteolin possesses beneficial neuroprotective effects both in vitro and in vivo. Despite this, an overview of the neuroprotective effects of luteolin has not yet been accomplished. Therefore, the aim of this paper is to provide a review of the available literature regarding the neuroprotective effects of luteolin and its molecular mechanisms of action. Herein, we also review the available literature regarding the chemistry of luteolin, its herbal sources, and bioavailability as a pharmacological agent for the treatment and management of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Olga Gortzi
- Department of Food Technology, Technological Educational Institution of Thessaly, Terma N. Temponera Str., Greece
| | - Eduardo Sobarzo-Sanchez
- Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostel, 15782 Santiago de Compostela, Spain
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Pandurangan AK, Esa NM. Luteolin, a bioflavonoid inhibits colorectal cancer through modulation of multiple signaling pathways: a review. Asian Pac J Cancer Prev 2015; 15:5501-8. [PMID: 25081655 DOI: 10.7314/apjcp.2014.15.14.5501] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Luteolin, 3', 4', 5,7-tetrahydroxyflavone, belongs to a group of naturally occurring compounds called flavonoids that are found widely in the plant kingdom. It possesses many beneficial properties including antioxidant, anti- inflammatory, anti-bacterial, anti-diabetic and anti-proliferative actions. Colorectal cancer (CRC) is a leading cause of cancer related deaths worldwide. Many signaling pathways are deregulated during the progression of colon cancer. In this review we aimed to analyze the protection offered by luteolin on colon cancer. During colon cancer genesis, luteolin known to reduce oxidative stress thereby protects the cell to undergo damage in vivo. Wnt/β-catenin signaling, deregulated during neoplastic development, is modified by luteolin. Hence, luteolin can be considered as a potential drug to treat CRC.
Collapse
Affiliation(s)
- Ashok Kumar Pandurangan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia E-mail :
| | | |
Collapse
|
34
|
Kaur J, Kaur G. An insight into the role of citrus bioactives in modulation of colon cancer. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
35
|
Sato Y, Sasaki N, Saito M, Endo N, Kugawa F, Ueno A. Luteolin Attenuates Doxorubicin-Induced Cytotoxicity to MCF-7 Human Breast Cancer Cells. Biol Pharm Bull 2015; 38:703-9. [DOI: 10.1248/bpb.b14-00780] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasunori Sato
- Department of Health Chemistry, School of Pharmaceutical Sciences, Ohu University
| | - Naoto Sasaki
- Department of Health Chemistry, School of Pharmaceutical Sciences, Ohu University
| | - Megu Saito
- Department of Health Chemistry, School of Pharmaceutical Sciences, Ohu University
| | - Nao Endo
- Department of Health Chemistry, School of Pharmaceutical Sciences, Ohu University
| | - Fumihiko Kugawa
- Department of Biopharmaceutics, School of Pharmaceutical Sciences, Hyogo University of Health Sciences
| | - Akemichi Ueno
- Department of Health Chemistry, School of Pharmaceutical Sciences, Ohu University
| |
Collapse
|
36
|
Lee HS, Cho HJ, Kwon GT, Park JHY. Kaempferol Downregulates Insulin-like Growth Factor-I Receptor and ErbB3 Signaling in HT-29 Human Colon Cancer Cells. J Cancer Prev 2014; 19:161-9. [PMID: 25337585 DOI: 10.15430/jcp.2014.19.2.161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Novel dietary agents for colon cancer prevention and therapy are desired. Kaempferol, a flavonol, has been reported to possess anticancer activity. However, little is known about the molecular mechanisms of the anticancer effects of kaempferol. The aim of this study was to determine the inhibitory effect of kaempferol on growth factor-induced proliferation and to elucidate its underlying mechanisms in the HT-29 human colon cancer cell line. METHODS To assess the effects of kaempferol and/or growth factors [insulin-like growth factor (IGF)-I and heregulin (HRG)-β], cells were cultured with or without 60 μmol/L kaempferol and/or 10 nmol/L IGF-I or 20 μg/L HRG-β. Cell proliferation, DNA synthesis, and apoptosis were determined by a cell viability assay, a [(3)H]thymidine incorporation assay, and Annexin-V staining, respectively. Western blotting, immunoprecipitation, and an in vitro kinase assay were conducted to evaluate expression and activation of various signaling molecules involved in the IGF-I receptor (IGF-IR) and ErbB3 signaling pathways. RESULTS IGF-I and HRG-β stimulated HT-29 cell growth but did not abrogate kaempferol-induced growth inhibition and apoptosis. Kaempferol reduced IGF-II secretion, HRG expression and phosphorylation of Akt and extracellular signal-regulated kinase (ERK)-1/2. Kaempferol reduced IGF-I- and HRG-β-induced phosphorylation of the IGF-IR and ErbB3, their association with p85, and phosphatidylinositol 3-kinase (PI3K) activity. Additionally, kaempferol inhibited IGF-I- and HRG-β-induced phosphorylation of Akt and ERK-1/2. CONCLUSIONS The results demonstrate that kaempferol downregulates activation of PI3K/Akt and ERK-1/2 pathways by inhibiting IGF-IR and ErbB3 signaling in HT-29 cells. We suggest that kaempferol could be a useful chemopreventive agent against colon cancer.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science and Nutrition, Dongseo University, Busan, Korea
| | - Han Jin Cho
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea ; WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Korea
| | - Gyoo Taik Kwon
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Jung Han Yoon Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea ; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Korea
| |
Collapse
|
37
|
Lee HS, Cho HJ, Kwon GT, Park JHY. Kaempferol Downregulates Insulin-like Growth Factor-I Receptor and ErbB3 Signaling in HT-29 Human Colon Cancer Cells. J Cancer Prev 2014. [PMID: 25337585 PMCID: PMC4189510 DOI: 10.15430/jcp.2014.19.3.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Novel dietary agents for colon cancer prevention and therapy are desired. Kaempferol, a flavonol, has been reported to possess anticancer activity. However, little is known about the molecular mechanisms of the anticancer effects of kaempferol. The aim of this study was to determine the inhibitory effect of kaempferol on growth factor-induced proliferation and to elucidate its underlying mechanisms in the HT-29 human colon cancer cell line. Methods: To assess the effects of kaempferol and/or growth factors [insulin-like growth factor (IGF)-I and heregulin (HRG)-β], cells were cultured with or without 60 μmol/L kaempferol and/or 10 nmol/L IGF-I or 20 μg/L HRG-β. Cell proliferation, DNA synthesis, and apoptosis were determined by a cell viability assay, a [3H]thymidine incorporation assay, and Annexin-V staining, respectively. Western blotting, immunoprecipitation, and an in vitro kinase assay were conducted to evaluate expression and activation of various signaling molecules involved in the IGF-I receptor (IGF-IR) and ErbB3 signaling pathways. Results: IGF-I and HRG-β stimulated HT-29 cell growth but did not abrogate kaempferol-induced growth inhibition and apoptosis. Kaempferol reduced IGF-II secretion, HRG expression and phosphorylation of Akt and extracellular signal-regulated kinase (ERK)-1/2. Kaempferol reduced IGF-I- and HRG-β-induced phosphorylation of the IGF-IR and ErbB3, their association with p85, and phosphatidylinositol 3-kinase (PI3K) activity. Additionally, kaempferol inhibited IGF-I- and HRG-β-induced phosphorylation of Akt and ERK-1/2. Conclusions: The results demonstrate that kaempferol downregulates activation of PI3K/Akt and ERK-1/2 pathways by inhibiting IGF-IR and ErbB3 signaling in HT-29 cells. We suggest that kaempferol could be a useful chemopreventive agent against colon cancer.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science and Nutrition, Dongseo University, Busan, Korea
| | - Han Jin Cho
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea ; WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Korea
| | - Gyoo Taik Kwon
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
| | - Jung Han Yoon Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea ; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Korea
| |
Collapse
|
38
|
Analysis of the erythroid differentiation effect of flavonoid apigenin on K562 human chronic leukemia cells. Chem Biol Interact 2014; 220:269-77. [DOI: 10.1016/j.cbi.2014.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/05/2014] [Accepted: 07/15/2014] [Indexed: 01/12/2023]
|
39
|
Li XX, Huang LY, Peng JJ, Liang L, Shi DB, Zheng HT, Cai SJ. Klotho suppresses growth and invasion of colon cancer cells through inhibition of IGF1R-mediated PI3K/AKT pathway. Int J Oncol 2014; 45:611-8. [PMID: 24818842 DOI: 10.3892/ijo.2014.2430] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/11/2014] [Indexed: 11/05/2022] Open
Abstract
Klotho (KL) was originally characterized as an aging suppressor gene, and has been identified as a tumor suppressor gene in a variety of cancers including colon cancer. However, the potential role and molecular events for KL in colon cancer remain unclear. The present study aimed to investigate the expression of KL in human colon cancer by immunohistochemistry, and to analyze the correlation between KL expression and clinicopathological characteristics of patients with colon cancer. Functional analysis after lentivirus-mediated gain of KL expression was used to assess the tumor growth and invasion in colon cancer cells in vitro and in vivo. The rate of KL expression was significantly decreased in cancer tissues compared with that in adjacent non-cancer tissues (ANCT) (60.3 vs.77.9%, P=0.022), and KL expression was negatively associated with Dukes staging (P=0.034) and depth of tumor invasion (P=0.008). Overexpression of KL in vitro inhibited cell proliferative activities and invasive potential in colon cancer cells, companied with decreased expression of p-IGF1R, p-PI3K, p-AKT, PCNA and MMP-2. In addition, the tumor volumes in the HT-29 subcutaneous tumor model treated with lentivirus‑mediated KL vector (Lv-KL) was significantly smaller than those of the negative control (NC) group (P<0.01). Taken together, our findings indicate that the expression of KL is downregulated in human colon caner and correlates with tumor invasion and Dukes staging, while overexpression of KL suppresses growth and invasion through inhibition of IGF1R-mediated PI3K/AKT pathway in colon cancer cells, suggesting that KL may serve as a potential therapeutic target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Xin-Xiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Li-Yong Huang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jun-Jie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Lei Liang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - De-Bing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hong-Tu Zheng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - San-Jun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
40
|
Dietary flavonoids as therapeutics for preterm birth: luteolin and kaempferol suppress inflammation in human gestational tissues in vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:485201. [PMID: 23840918 PMCID: PMC3687483 DOI: 10.1155/2013/485201] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/20/2013] [Indexed: 11/26/2022]
Abstract
Infection/inflammation is commonly associated with preterm birth (PTB), initiating uterine contractions and rupture of fetal membranes. Proinflammatory cytokines induce matrix metalloproteinases (MMPs) that degrade the extracellular matrix (ECM) and prostaglandins which initiate uterine contractions. Nuclear factor-κB (NF-κB) and activator-protein- (AP-)1 have key roles in the formation of these prolabour mediators. In nongestational tissues, dietary flavonoids such as luteolin and kaempferol inhibit NF-κB, AP-1, and their downstream targets. The aim of this study was to determine if luteolin and kaempferol reduce infection-induced prolabour mediators in human gestational tissues. Fetal membranes were incubated with LPS, and primary amnion cells and myometrial cells were incubated with IL-1β in the absence or presence of luteolin or kaempferol. Luteolin and kaempferol significantly reduced LPS-induced secretion of proinflammatory cytokines (IL-6 and IL-8) and prostaglandins (PGE2 and PGF2α) in fetal membranes, IL-1β-induced COX-2 gene expression and prostaglandin production in myometrium, and IL-1β-induced MMP-9 activity in amnion and myometrial cells. Luteolin and kaempferol decreased IL-1β-induced NF-κB p65 DNA binding activity and nuclear c-Jun expression. In conclusion, luteolin and kaempferol inhibit prolabour mediators in human gestational tissues. Given the central role of inflammation in provoking preterm labour, phytophenols may be a therapeutic approach to reduce the incidence of PTB.
Collapse
|
41
|
Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via the inhibition of cyclin E2 expression. Food Chem 2013; 141:1553-61. [PMID: 23790951 DOI: 10.1016/j.foodchem.2013.04.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/27/2013] [Accepted: 04/23/2013] [Indexed: 12/31/2022]
Abstract
Luteolin is a flavonoid that has been identified in many plant tissues and exhibits chemopreventive or chemosensitising properties against human breast cancer. However, the oncogenic molecules in human breast cancer cells that are inhibited by luteolin treatment have not been identified. This study found that the level of cyclin E2 (CCNE2) mRNA was higher in tumour cells (4.89-fold, (∗)P=0.005) than in normal paired tissue samples as assessed using real-time reverse-transcriptase polymerase chain reaction (RT-PCR) analysis (n=257). Further, relatively high levels of CCNE2 protein expression were detected in tamoxifen-resistant (TAM-R) MCF-7 cells. These results showed that the level of CCNE2 protein expression was specifically inhibited in luteolin-treated (5μM) TAM-R cells, either in the presence or absence of 4-OH-TAM (100nM). Combined treatment with 4-OH-TAM and luteolin synergistically sensitised the TAM-R cells to 4-OH-TAM. The results of this study suggest that luteolin can be used as a chemosensitiser to target the expression level of CCNE2 and that it could be a novel strategy to overcome TAM resistance in breast cancer patients.
Collapse
|
42
|
Kapoor S. Luteolin and its inhibitory effect on tumor growth in systemic malignancies. Exp Cell Res 2013; 319:777-8. [PMID: 23333558 DOI: 10.1016/j.yexcr.2013.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/19/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
Lamy et al have provided interesting data in their recent article in your esteemed journal. Luteolin augments apoptosis in a number of systemic malignancies. Luteolin reduces tumor growth in breast carcinomas. Luteolin mediates this effect by up-regulating the expression of Bax and down-regulating the expression of Bcl-xL. EGFR-induced MAPK activation is also attenuated. As a result there is increased G2/ M phase arrest. These effects have been seen both in vivo as well as in vitro. It also reduces ERα expression and causes inhibition of IGF-1 mediated PI3K-Akt pathway. Luteolin also activates p38 resulting in nuclear translocation of the apoptosis-inducing factor. Simultaneously it also activates ERK. As a result there is increased intra-tumoral apoptosis which is caspase dependent as well as caspase independent.
Collapse
|
43
|
Yuan Y, Wang Z, Jiang C, Wang X, Huang L. Exploiting genes and functional diversity of chlorogenic acid and luteolin biosyntheses in Lonicera japonica and their substitutes. Gene 2012; 534:408-16. [PMID: 23085319 PMCID: PMC7138419 DOI: 10.1016/j.gene.2012.09.051] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/03/2012] [Accepted: 09/20/2012] [Indexed: 12/16/2022]
Abstract
Chlorogenic acids (CGAs) and luteolin are active compounds in Lonicera japonica, a plant of high medicinal value in traditional Chinese medicine. This study provides a comprehensive overview of gene families involved in chlorogenic acid and luteolin biosynthesis in L. japonica, as well as its substitutes Lonicera hypoglauca and Lonicera macranthoides. The gene sequence feature and gene expression patterns in various tissues and buds of the species were characterized. Bioinformatics analysis revealed that 14 chlorogenic acid and luteolin biosynthesis-related genes were identified from the L. japonica transcriptome assembly. Phylogenetic analyses suggested that the function of individual gene could be differentiation and induce active compound diversity. Their orthologous genes were also recognized in L. hypoglauca and L. macranthoides genomic datasets, except for LHCHS1 and LMC4H2. The expression patterns of these genes are different in the tissues of L. japonica, L. hypoglauca and L. macranthoides. Results also showed that CGAs were controlled in the first step of biosynthesis, whereas both steps controlled luteolin in the bud of L. japonica. The expression of LJFNS2 exhibited positive correlation with luteolin levels in L. japonica. This study provides significant information for understanding the functional diversity of gene families involved in chlorogenic acid and the luteolin biosynthesis, active compound diversity of L. japonica and its substitutes, and the different usages of the three species.
Collapse
Affiliation(s)
- Yuan Yuan
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhouyong Wang
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chao Jiang
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing, 100029, China
| | - Luqi Huang
- Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|