1
|
Lingemann M, Amaro-Carambot E, Lamirande EW, Pierson TC, Whitehead SS. Simultaneous quantitation of neutralizing antibodies against all four dengue virus serotypes using optimized reporter virus particles. J Virol 2024; 98:e0068124. [PMID: 38953379 PMCID: PMC11265411 DOI: 10.1128/jvi.00681-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Serum-neutralizing antibody titers are a critical measure of vaccine immunogenicity and are used to determine flavivirus seroprevalence in study populations. An effective dengue virus (DENV) vaccine must confer simultaneous protection against viruses grouped within four antigenic serotypes. Existing flavivirus neutralization assays, including the commonly used plaque/focus reduction neutralization titer (PRNT/FRNT) assay, require an individual assay for each virus, serotype, and strain and easily become a labor-intensive and time-consuming effort for large epidemiological studies or vaccine trials. Here, we describe a multiplex reporter virus particle neutralization titer (TetraPlex RVPNT) assay for DENV that allows simultaneous quantitative measures of antibody-mediated neutralization of infection against all four DENV serotypes in a single low-volume clinical sample and analyzed by flow cytometry. Comparative studies confirm that the neutralization titers of antibodies measured by the TetraPlex RVPNT assay are similar to FRNT/PRNT assay approaches performed separately for each viral strain. The use of this high-throughput approach enables the careful serological study in DENV endemic populations and vaccine recipients required to support the development of a safe and effective tetravalent DENV vaccine. IMPORTANCE As a mediator of protection against dengue disease and a serological indicator of prior infection, the detection and quantification of neutralizing antibodies against DENV is an important "gold standard" tool. However, execution of traditional neutralizing antibody assays is often cumbersome and requires repeated application for each virus or serotype. The optimized RVPNT assay described here is high-throughput, easily multiplexed across multiple serotypes, and targets reporter viral particles that can be robustly produced for all four DENV serotypes. The use of this transformative RVPNT assay will support the expansion of neutralizing antibody datasets to answer research and public health questions often limited by the more cumbersome neutralizing antibody assays and the need for greater quantities of test serum.
Collapse
Affiliation(s)
- Matthias Lingemann
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Translational Immunobiology Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emérito Amaro-Carambot
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine W. Lamirande
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Arbovirus Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen S. Whitehead
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Doets K, Pijlman GP. Subgenomic flavivirus RNA as key target for live-attenuated vaccine development. J Virol 2024; 98:e0010023. [PMID: 38808973 PMCID: PMC11265276 DOI: 10.1128/jvi.00100-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Live-attenuated flavivirus vaccines confer long-term protection against disease, but the design of attenuated flaviviruses does not follow a general approach. The non-coding, subgenomic flavivirus RNA (sfRNA) is produced by all flaviviruses and is an essential factor in viral pathogenesis and transmission. We argue that modulating sfRNA expression is a promising, universal strategy to finetune flavivirus attenuation for developing effective flavivirus vaccines of the future.
Collapse
Affiliation(s)
- Kristel Doets
- Wageningen University and Research, Laboratory of Virology, Wageningen, the Netherlands
| | - Gorben P. Pijlman
- Wageningen University and Research, Laboratory of Virology, Wageningen, the Netherlands
| |
Collapse
|
3
|
Pierce KK, Durbin AP, Walsh MCR, Carmolli M, Sabundayo BP, Dickson DM, Diehl SA, Whitehead SS, Kirkpatrick BD. TV005 dengue vaccine protects against dengue serotypes 2 and 3 in two controlled human infection studies. J Clin Invest 2024; 134:e173328. [PMID: 37971871 PMCID: PMC10836801 DOI: 10.1172/jci173328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUNDDisease due to dengue viruses is a growing global health threat, causing 100-400 million cases annually. An ideal dengue vaccine should demonstrate durable protection against all 4 serotypes in phase III efficacy trials, however the lack of circulating serotypes may lead to incomplete efficacy data. Controlled human infection models help downselect vaccine candidates and supply critical data to supplement efficacy trials. We evaluated the efficacy of a leading live-attenuated tetravalent dengue vaccine candidate, TV005, against infection with a newly established dengue serotype 3 or an established serotype 2 challenge virus.METHODSTwo randomized, controlled clinical trials were performed. In study 1, a total of 42 participants received TV005 or placebo (n = 21 each), and 6 months later, all were challenged with dengue 2 virus (rDEN2Δ30) at a dose of 103 PFU. In study 2, a total of 23 participants received TV005 and 20 received placebo, and 6 months later, all were challenged with 104 PFU dengue 3 virus (rDEN3Δ30). The study participants were closely monitored for safety, viremia, and immunologic responses. Infection, measured by post-challenge viremia, and the occurrence of rash and neutropenia were the primary endpoints. Secondary endpoints included safety, immunologic, and virologic profiles following vaccination with TV005 and subsequent challenge with the rDEN2Δ30 or rDEN3Δ30 strain.RESULTSTV005 was well tolerated and protected all vaccinated volunteers from viremia with DENV2 or DENV3 (none infected in either group). Placebo recipients had post-challenge viremia (100% in study 1, 85% in study 2), and all experienced rash following challenge with either serotype.CONCLUSIONSTV005 is a leading tetravalent dengue vaccine candidate that fully protected against infection with DENV2 and DENV3 in an established controlled human infection model.TRIAL REGISTRATIONClinicalTrials.gov NCT02317900 and NCT02873260.FUNDINGIntramural Research Program, NIH (contract HHSN272200900010C).
Collapse
Affiliation(s)
- Kristen K. Pierce
- Department of Medicine and
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, USA
| | - Anna P. Durbin
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mary-Claire R. Walsh
- Department of Medicine and
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, USA
| | - Marya Carmolli
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, USA
| | - Beulah P. Sabundayo
- The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dorothy M. Dickson
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, USA
| | - Sean A. Diehl
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, USA
| | - Stephen S. Whitehead
- National Institute of Allergy and Infectious Diseases (NIAID), Laboratory of Viral Diseases, Bethesda, Maryland, USA
| | - Beth D. Kirkpatrick
- Department of Medicine and
- Department of Microbiology and Molecular Genetics, The University of Vermont Larner College of Medicine, Vaccine Testing Center, Burlington, Vermont, USA
| |
Collapse
|
4
|
Chin WX, Kong HY, Zhu IXY, Teo ZY, Faruk R, Lee RCH, Ho SX, Aw ZQ, Yi B, Hou XJ, Tan AKY, Yogarajah T, Huber RG, Cai Y, Wan Y, Chu JJH. Flavivirus genome recoding by codon optimisation confers genetically stable in vivo attenuation in both mice and mosquitoes. PLoS Pathog 2023; 19:e1011753. [PMID: 37883598 PMCID: PMC10629665 DOI: 10.1371/journal.ppat.1011753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/07/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Virus genome recoding is an attenuation method that confers genetically stable attenuation by rewriting a virus genome with numerous silent mutations. Prior flavivirus genome recoding attempts utilised codon deoptimisation approaches. However, these codon deoptimisation approaches act in a species dependent manner and were unable to confer flavivirus attenuation in mosquito cells or in mosquito animal models. To overcome these limitations, we performed flavivirus genome recoding using the contrary approach of codon optimisation. The genomes of flaviviruses such as dengue virus type 2 (DENV2) and Zika virus (ZIKV) contain functional RNA elements that regulate viral replication. We hypothesised that flavivirus genome recoding by codon optimisation would introduce silent mutations that disrupt these RNA elements, leading to decreased replication efficiency and attenuation. We chose DENV2 and ZIKV as representative flaviviruses and recoded them by codon optimising their genomes for human expression. Our study confirms that this recoding approach of codon optimisation does translate into reduced replication efficiency in mammalian, human, and mosquito cells as well as in vivo attenuation in both mice and mosquitoes. In silico modelling and RNA SHAPE analysis confirmed that DENV2 recoding resulted in the extensive disruption of genomic structural elements. Serial passaging of recoded DENV2 resulted in the emergence of rescue or adaptation mutations, but no reversion mutations. These rescue mutations were unable to rescue the delayed replication kinetics and in vivo attenuation of recoded DENV2, demonstrating that recoding confers genetically stable attenuation. Therefore, our recoding approach is a reliable attenuation method with potential applications for developing flavivirus vaccines.
Collapse
Affiliation(s)
- Wei-Xin Chin
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology and Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Hao Yuin Kong
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Isabelle Xin Yu Zhu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology and Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Zi Yun Teo
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology and Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Regina Faruk
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology and Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology and Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Si Xian Ho
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology and Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Zhen Qin Aw
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bowen Yi
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xin Jun Hou
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antson Kiat Yee Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Thinesshwary Yogarajah
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology and Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Roland G. Huber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yue Wan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology and Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
5
|
Fang E, Li M, Liu X, Hu K, Liu L, Zhang Z, Li X, Peng Q, Li Y. NS1 Protein N-Linked Glycosylation Site Affects the Virulence and Pathogenesis of Dengue Virus. Vaccines (Basel) 2023; 11:vaccines11050959. [PMID: 37243063 DOI: 10.3390/vaccines11050959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Live attenuated vaccine is one of the most effective vaccines against flavivirus. Recently, site-directed mutation of the flavivirus genome using reverse genetics techniques has been used for the rapid development of attenuated vaccines. However, this technique relies on basic research of critical virulence loci of the virus. To screen the attenuated sites in dengue virus, a total of eleven dengue virus type four mutant strains with deletion of N-glycosylation sites in the NS1 protein were designed and constructed. Ten of them (except for the N207-del mutant strain) were successfully rescued. Out of the ten strains, one mutant strain (N130del+207-209QQA) was found to have significantly reduced virulence through neurovirulence assay in suckling mice, but was genetically unstable. Further purification using the plaque purification assay yielded a genetically stable attenuated strain #11-puri9 with mutations of K129T, N130K, N207Q, and T209A in the NS1 protein and E99D in the NS2A protein. Identifying the virulence loci by constructing revertant mutant and chimeric viruses revealed that five amino acid adaptive mutations in the dengue virus type four non-structural proteins NS1 and NS2A dramatically affected its neurovirulence and could be used in constructing attenuated dengue chimeric viruses. Our study is the first to obtain an attenuated dengue virus strain through the deletion of amino acid residues at the N-glycosylation site, providing a theoretical basis for understanding the pathogenesis of the dengue virus and developing its live attenuated vaccines.
Collapse
Affiliation(s)
- Enyue Fang
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Miao Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
- Vaccines R&D Department, Changchun Institute of Biological Products Co., Ltd., Changchun 130000, China
| | - Xiaohui Liu
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
- Vaccines R&D Department, Changchun Institute of Biological Products Co., Ltd., Changchun 130000, China
| | - Kongxin Hu
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Lijuan Liu
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Zelun Zhang
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Xingxing Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Qinhua Peng
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yuhua Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
6
|
Fang E, Liu X, Li M, Liu J, Zhang Z, Liu X, Li X, Li W, Peng Q, Yu Y, Li Y. Construction of a Dengue NanoLuc Reporter Virus for In Vivo Live Imaging in Mice. Viruses 2022; 14:v14061253. [PMID: 35746724 PMCID: PMC9230669 DOI: 10.3390/v14061253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Since the first isolation in 1943, the dengue virus (DENV) has spread throughout the world, but effective antiviral drugs or vaccines are still not available. To provide a more stable reporter DENV for vaccine development and antiviral drug screening, we constructed a reporter DENV containing the NanoLuc reporter gene, which was inserted into the 5′ untranslated region and capsid junction region, enabling rapid virus rescue by in vitro ligation. In addition, we established a live imaging mouse model and found that the reporter virus maintained the neurovirulence of prototype DENV before engineering. DENV-4 exhibited dramatically increased neurovirulence following a glycosylation site-defective mutation in the envelope protein. Significant mice mortality with neurological onset symptoms was observed after intracranial infection of wild-type (WT) mice, thus providing a visualization tool for DENV virulence assessment. Using this model, DENV was detected in the intestinal tissues of WT mice after infection, suggesting that intestinal lymphoid tissues play an essential role in DENV pathogenesis.
Collapse
Affiliation(s)
- Enyue Fang
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
- Wuhan Institute of Biological Products, Co., Ltd., Wuhan 430207, China
| | - Xiaohui Liu
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Miao Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Jingjing Liu
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Zelun Zhang
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Xinyu Liu
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Xingxing Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Wenjuan Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Qinhua Peng
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Yongxin Yu
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
- Correspondence: (Y.Y.); (Y.L.); Tel.: +86-010-5385-2137 (Y.Y.); +86-010-5385-2128 (Y.L.)
| | - Yuhua Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
- Correspondence: (Y.Y.); (Y.L.); Tel.: +86-010-5385-2137 (Y.Y.); +86-010-5385-2128 (Y.L.)
| |
Collapse
|
7
|
Hanley JP, Tu HA, Dragon JA, Dickson DM, Rio-Guerra RD, Tighe SW, Eckstrom KM, Selig N, Scarpino SV, Whitehead SS, Durbin AP, Pierce KK, Kirkpatrick BD, Rizzo DM, Frietze S, Diehl SA. Immunotranscriptomic profiling the acute and clearance phases of a human challenge dengue virus serotype 2 infection model. Nat Commun 2021; 12:3054. [PMID: 34031380 PMCID: PMC8144425 DOI: 10.1038/s41467-021-22930-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
About 20-25% of dengue virus (DENV) infections become symptomatic ranging from self-limiting fever to shock. Immune gene expression changes during progression to severe dengue have been documented in hospitalized patients; however, baseline or kinetic information is difficult to standardize in natural infection. Here we profile the host immunotranscriptome response in humans before, during, and after infection with a partially attenuated rDEN2Δ30 challenge virus (ClinicalTrials.gov NCT02021968). Inflammatory genes including type I interferon and viral restriction pathways are induced during DENV2 viremia and return to baseline after viral clearance, while others including myeloid, migratory, humoral, and growth factor immune regulation factors pathways are found at non-baseline levels post-viremia. Furthermore, pre-infection baseline gene expression is useful to predict rDEN2Δ30-induced immune responses and the development of rash. Our results suggest a distinct immunological profile for mild rDEN2Δ30 infection and offer new potential biomarkers for characterizing primary DENV infection.
Collapse
Affiliation(s)
- John P Hanley
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Huy A Tu
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Integrated Genomics Resource, University of Vermont, Burlington, VT, USA
| | - Dorothy M Dickson
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Roxana Del Rio-Guerra
- Flow Cytometry and Cell Sorting Facility, Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Scott W Tighe
- Vermont Integrated Genomics Resource, University of Vermont, Burlington, VT, USA
| | - Korin M Eckstrom
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Integrated Genomics Resource, University of Vermont, Burlington, VT, USA
| | - Nicholas Selig
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Anna P Durbin
- Center for Immunization Research, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen K Pierce
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Donna M Rizzo
- Department of Civil and Environmental Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Seth Frietze
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT, USA
- University of Vermont Cancer Center, Burlington, VT, USA
| | - Sean A Diehl
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA.
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
8
|
Durbin AP. Historical discourse on the development of the live attenuated tetravalent dengue vaccine candidate TV003/TV005. Curr Opin Virol 2020; 43:79-87. [PMID: 33164790 DOI: 10.1016/j.coviro.2020.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Dengue is the most important arboviral disease world-wide with an estimated 400 million annual infections. Dengvaxia™ is a live attenuated tetravalent vaccine recently licensed for dengue seropositive individuals aged 9-45 years. There is great need for a dengue vaccine that could be given to dengue-naïve individuals and very young children. To that end, the U.S. NIH developed a live attenuated tetravalent dengue vaccine using an iterative approach evaluating the safety, infectivity, and immunogenicity of different candidates. This approach identified poor candidates who were then discarded from further evaluation. Each of the components of the tetravalent vaccine formulation is able to replicate to very low titer, inducing a homotypic immune response to each. The immune response elicited by the tetravalent vaccine is balanced, without immunodominance of one component. The vaccine was licensed by several manufacturers for development, including the Instituto Butantan which initiated a Phase 3 efficacy trial.
Collapse
MESH Headings
- Dengue/history
- Dengue/immunology
- Dengue/prevention & control
- Dengue/virology
- Dengue Vaccines/administration & dosage
- Dengue Vaccines/genetics
- Dengue Vaccines/history
- Dengue Vaccines/immunology
- Dengue Virus/genetics
- Dengue Virus/immunology
- Drug Development/history
- History, 20th Century
- History, 21st Century
- Humans
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/genetics
- Vaccines, Combined/history
- Vaccines, Combined/immunology
Collapse
Affiliation(s)
- Anna P Durbin
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
| |
Collapse
|
9
|
Pinheiro-Michelsen JR, Souza RDSO, Santana IVR, da Silva PDS, Mendez EC, Luiz WB, Amorim JH. Anti-dengue Vaccines: From Development to Clinical Trials. Front Immunol 2020; 11:1252. [PMID: 32655561 PMCID: PMC7325986 DOI: 10.3389/fimmu.2020.01252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Dengue Virus (DENV) is an arbovirus (arthropod-borne virus). Four serotypes of DENV are responsible for the infectious disease called dengue that annually affects nearly 400 million people worldwide. Although there is only one vaccine formulation licensed for use in humans, there are other vaccine formulations under development that apply different strategies. In this review, we present information about anti-dengue vaccine formulations regarding development, pre-clinical tests, and clinical trials. The improvement in vaccine development against dengue is much needed, but it should be considered that the correlate of protection is still uncertain. Neutralizing antibodies have been proposed as a correlate of protection, but this ignores the key role of T-cell mediated immunity in controlling DENV infection. It is important to confirm the accurate correlate of protection against DENV infection, and also to have other anti-dengue vaccine formulations licensed for use.
Collapse
Affiliation(s)
- Josilene Ramos Pinheiro-Michelsen
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Rayane da Silva Oliveira Souza
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | - Itana Vivian Rocha Santana
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | - Patrícia de Souza da Silva
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Erick Carvalho Mendez
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Wilson Barros Luiz
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| | - Jaime Henrique Amorim
- Laboratório de Agentes Infecciosos e Vetores, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Barreiras, Brazil
| |
Collapse
|
10
|
Animal Models for Dengue and Zika Vaccine Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:215-239. [PMID: 29845536 DOI: 10.1007/978-981-10-8727-1_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current status of animal models in the study of dengue and Zika are covered in this review. Mouse models deficient in IFN signaling are used to overcome the natural resistance of mice to non-encephalitic flaviviruses. Conditional IFNAR mice and non-human primates (NHP) are useful immuno-competent models. Sterile immunity after dengue vaccination is not observed in NHPs. Placental and fetal development in NHPs is similar to humans, facilitating studies on infection-mediated fetal impairment.
Collapse
|
11
|
The 5' and 3' Untranslated Regions of the Flaviviral Genome. Viruses 2017; 9:v9060137. [PMID: 28587300 PMCID: PMC5490814 DOI: 10.3390/v9060137] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 01/30/2023] Open
Abstract
Flaviviruses are enveloped arthropod-borne viruses with a single-stranded, positive-sense RNA genome that can cause serious illness in humans and animals. The 11 kb 5′ capped RNA genome consists of a single open reading frame (ORF), and is flanked by 5′ and 3′ untranslated regions (UTR). The ORF is a polyprotein that is processed into three structural and seven non-structural proteins. The UTRs have been shown to be important for viral replication and immune modulation. Both of these regions consist of elements that are essential for genome cyclization, resulting in initiation of RNA synthesis. Genome mutation studies have been employed to investigate each component of the essential elements to show the necessity of each component and its role in viral RNA replication and growth. Furthermore, the highly structured 3′UTR is responsible for the generation of subgenomic flavivirus RNA (sfRNA) that helps the virus evade host immune response, thereby affecting viral pathogenesis. In addition, changes within the 3′UTR have been shown to affect transmissibility between vector and host, which can influence the development of vaccines.
Collapse
|
12
|
The Role of Heterotypic DENV-specific CD8 +T Lymphocytes in an Immunocompetent Mouse Model of Secondary Dengue Virus Infection. EBioMedicine 2017; 20:202-216. [PMID: 28483582 PMCID: PMC5478214 DOI: 10.1016/j.ebiom.2017.04.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 11/24/2022] Open
Abstract
Dengue is the most prevalent arthropod-borne viral disease worldwide and is caused by the four dengue virus serotypes (DENV-1-4). Sequential heterologous DENV infections can be associated with severe disease manifestations. Here, we present an immunocompetent mouse model of secondary DENV infection using non mouse-adapted DENV strains to investigate the pathogenesis of severe dengue disease. C57BL/6 mice infected sequentially with DENV-1 (strain Puerto Rico/94) and DENV-2 (strain Tonga/74) developed low platelet counts, internal hemorrhages, and increase of liver enzymes. Cross-reactive CD8+ T lymphocytes were found to be necessary and sufficient for signs of severe disease by adoptively transferring of DENV-1-immune CD8+T lymphocytes before DENV-2 challenge. Disease signs were associated with production of tumor necrosis factor (TNF)-α and elevated cytotoxicity displayed by heterotypic anti-DENV-1 CD8+ T lymphocytes. These findings highlight the critical role of heterotypic anti-DENV CD8+ T lymphocytes in manifestations of severe dengue disease.
Collapse
|
13
|
Patterns of Cellular Immunity Associated with Experimental Infection with rDEN2Δ30 (Tonga/74) Support Its Suitability as a Human Dengue Virus Challenge Strain. J Virol 2017; 91:JVI.02133-16. [PMID: 28148797 DOI: 10.1128/jvi.02133-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/28/2017] [Indexed: 11/20/2022] Open
Abstract
A deletion variant of the dengue virus (DENV) serotype 2 (DENV2) Tonga/74 strain lacking 30 nucleotides from its 3' untranslated region (rDEN2Δ30) has previously been established for use in a controlled human DENV challenge model. To evaluate if this model is appropriate for the derivation of correlates of protection for DENV vaccines on the basis of cellular immunity, we wanted to compare the cellular immune response to this challenge strain to the response induced by natural infection. To achieve this, we predicted HLA class I- and class II-restricted peptides from rDEN2Δ30 and used them in a gamma interferon enzyme-linked immunosorbent spot assay to interrogate CD8+ and CD4+ T cell responses in healthy volunteers infected with rDEN2Δ30. At the level of CD8 responses, vigorous ex vivo responses were detected in approximately 80% of donors. These responses were similar in terms of the magnitude and the numbers of epitopes recognized to the responses previously observed in peripheral blood mononuclear cells from donors from regions where DENV is hyperendemic. The similarity extended to the immunodominance hierarchy of the DENV nonstructural proteins, with NS3, NS5, and NS1 being dominant in both donor cohorts. At the CD4 level, the responses to rDEN2Δ30 vaccination were less vigorous than those to natural DENV infection and were more focused on nonstructural proteins. The epitopes recognized following rDEN2Δ30 infection and natural infection were largely overlapping for both the CD8 (100%) and CD4 (85%) responses. Finally, rDEN2Δ30 induced stronger CD8 responses than other, more attenuated DENV isolates.IMPORTANCE The lack of a known correlate of protection and the failure of a neutralizing antibody to correlate with protection against dengue virus have highlighted the need for a human DENV challenge model to better evaluate the candidate live attenuated dengue vaccines. In this study, we sought to characterize the immune profiles of rDEN2Δ30-infected subjects and to compare the profiles with those for subjects from areas where DENV is hyperendemic. Our data demonstrate that T cell responses to rDENV2Δ30 are largely similar to those to natural infection in terms of specificity, highlighting that the response to this virus in humans is appropriate as a model for the T cell response to primary DENV2 infection.
Collapse
|
14
|
IRAV ( FLJ11286), an Interferon-Stimulated Gene with Antiviral Activity against Dengue Virus, Interacts with MOV10. J Virol 2017; 91:JVI.01606-16. [PMID: 27974568 PMCID: PMC5309953 DOI: 10.1128/jvi.01606-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022] Open
Abstract
Dengue virus (DENV) is a member of the genus Flavivirus and can cause severe febrile illness. Here, we show that FLJ11286, which we refer to as IRAV, is induced by DENV in an interferon-dependent manner, displays antiviral activity against DENV, and localizes to the DENV replication complex. IRAV is an RNA binding protein and localizes to cytoplasmic processing bodies (P bodies) in uninfected cells, where it interacts with the MOV10 RISC complex RNA helicase, suggesting a role for IRAV in the processing of viral RNA. After DENV infection, IRAV, along with MOV10 and Xrn1, localizes to the DENV replication complex and associates with DENV proteins. Depletion of IRAV or MOV10 results in an increase in viral RNA. These data serve to characterize an interferon-stimulated gene with antiviral activity against DENV, as well as to propose a mechanism of activity involving the processing of viral RNA.
IMPORTANCE Dengue virus, a member of the family Flaviviridae, can result in a life-threatening illness and has a significant impact on global health. Dengue virus has been shown to be particularly sensitive to the effects of type I interferon; however, little is known about the mechanisms by which interferon-stimulated genes function to inhibit viral replication. A better understanding of the interferon-mediated antiviral response to dengue virus may aid in the development of novel therapeutics. Here, we examine the influence of the interferon-stimulated gene IRAV (FLJ11286) on dengue virus replication. We show that IRAV associates with P bodies in uninfected cells and with the dengue virus replication complex after infection. IRAV also interacts with MOV10, depletion of which is associated with increased viral replication. Our results provide insight into a newly identified antiviral gene, as well as broadening our understanding of the innate immune response to dengue virus infection.
Collapse
|
15
|
Kirkpatrick BD, Whitehead SS, Pierce KK, Tibery CM, Grier PL, Hynes NA, Larsson CJ, Sabundayo BP, Talaat KR, Janiak A, Carmolli MP, Luke CJ, Diehl SA, Durbin AP. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model. Sci Transl Med 2016; 8:330ra36. [PMID: 27089205 DOI: 10.1126/scitranslmed.aaf1517] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/05/2016] [Indexed: 11/02/2022]
Abstract
A dengue human challenge model can be an important tool to identify candidate dengue vaccines that should be further evaluated in large efficacy trials in endemic areas. Dengue is responsible for about 390 million infections annually. Protective efficacy results for the most advanced dengue vaccine candidate (CYD) were disappointing despite its ability to induce neutralizing antibodies against all four dengue virus (DENV) serotypes. TV003 is a live attenuated tetravalent DENV vaccine currently in phase 2 evaluation. To better assess the protective efficacy of TV003, a randomized double-blind, placebo-controlled trial in which recipients of TV003 or placebo were challenged 6 months later with a DENV-2 strain, rDEN2Δ30, was conducted. The primary endpoint of the trial was protection against dengue infection, defined as rDEN2Δ30 viremia. Secondary endpoints were protection against rash and neutropenia. All 21 recipients of TV003 who were challenged with rDEN2Δ30 were protected from infection with rDEN2Δ30. None developed viremia, rash, or neutropenia after challenge. In contrast, 100% of the 20 placebo recipients who were challenged with rDEN2Δ30 developed viremia, 80% developed rash, and 20% developed neutropenia. TV003 induced complete protection against challenge with rDEN2Δ30 administered 6 months after vaccination. TV003 will be further evaluated in dengue-endemic areas. The controlled dengue human challenge model can accelerate vaccine development by evaluating the protection afforded by the vaccine, thereby eliminating poor candidates from further consideration before the initiation of large efficacy trials.
Collapse
Affiliation(s)
- Beth D Kirkpatrick
- Vaccine Testing Center, Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Stephen S Whitehead
- National Institutes of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Kristen K Pierce
- Vaccine Testing Center, Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Cecilia M Tibery
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Palmtama L Grier
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Noreen A Hynes
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Catherine J Larsson
- Vaccine Testing Center, Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Beulah P Sabundayo
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kawsar R Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Anna Janiak
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marya P Carmolli
- Vaccine Testing Center, Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Catherine J Luke
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sean A Diehl
- Vaccine Testing Center, Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Anna P Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Larsen CP, Whitehead SS, Durbin AP. WITHDRAWN: Dengue Human Infection Models to Advance Dengue Vaccine Development. Vaccine 2015:S0264-410X(15)01424-3. [PMID: 26501186 DOI: 10.1016/j.vaccine.2015.09.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/03/2015] [Accepted: 09/28/2015] [Indexed: 11/24/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.vaccine.2015.09.052. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Christian P Larsen
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, MD 21205, USA
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Anna P Durbin
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, MD 21205, USA; Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Precioso AR, Palacios R, Thomé B, Mondini G, Braga P, Kalil J. Clinical evaluation strategies for a live attenuated tetravalent dengue vaccine. Vaccine 2015; 33:7121-5. [PMID: 26458796 DOI: 10.1016/j.vaccine.2015.09.105] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 11/29/2022]
Abstract
Butantan Institute is a public Brazilian biomedical research-manufacturer center affiliated to the São Paulo State Secretary of Health. Currently, Butantan is one of the main public producers of vaccines, antivenoms, and antitoxins in Latin America. The partnership between Butantan and the National Institutes of Health (NIH) of the United Sates has been one of the longest and most successful partnerships in the development and manufacturing of new vaccines. Recently, Butantan Institute has developed and manufactured a lyophilized tetravalent live attenuated dengue vaccine with the four dengue viruses attenuated and licensed from the Laboratory of Infectious Diseases at The National Institutes of Allergy and Infectious Diseases (LID/NIAID/NIH). The objective of this paper is to describe the clinical evaluation strategies of a live attenuated tetravalent dengue vaccine (Butantan-DV) developed and manufactured by Butantan Institute. These clinical strategies will be used to evaluate the Butantan-DV Phase III trial to support the Butantan-DV licensure for protection against any symptomatic dengue caused by any serotype in people aged 2 to 59 years.
Collapse
Affiliation(s)
- Alexander Roberto Precioso
- Division of the Clinical Trials and Pharmacovigilance, Butantan Institute, São Paulo, Brazil; Pediatrics Department of the School of Medicine of University of Sao Paulo, São Paulo, Brazil.
| | - Ricardo Palacios
- Division of the Clinical Trials and Pharmacovigilance, Butantan Institute, São Paulo, Brazil
| | - Beatriz Thomé
- Division of the Clinical Trials and Pharmacovigilance, Butantan Institute, São Paulo, Brazil
| | - Gabriella Mondini
- Division of the Clinical Trials and Pharmacovigilance, Butantan Institute, São Paulo, Brazil
| | - Patrícia Braga
- Division of the Clinical Trials and Pharmacovigilance, Butantan Institute, São Paulo, Brazil
| | - Jorge Kalil
- Butantan Institute, São Paulo, Brazil; Clinical Immunology and Allergy Division, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Islam R, Salahuddin M, Ayubi MS, Hossain T, Majumder A, Taylor-Robinson AW, Mahmud-Al-Rafat A. Dengue epidemiology and pathogenesis: images of the future viewed through a mirror of the past. Virol Sin 2015; 30:326-43. [PMID: 26494479 PMCID: PMC8200867 DOI: 10.1007/s12250-015-3624-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/07/2015] [Indexed: 12/18/2022] Open
Abstract
Every year, millions of individuals throughout the world are seriously affected by dengue virus. The unavailability of a vaccine and of anti-viral drugs has made this mosquito-borne disease a serious health concern. Not only does dengue cause fatalities but it also has a profoundly negative economic impact. In recent decades, extensive research has been performed on epidemiology, vector biology, life cycle, pathogenesis, vaccine development and prevention. Although dengue research is still not at a stage to suggest definite hopes of a cure, encouraging significant advances have provided remarkable progress in the fight against infection. Recent developments indicate that both anti-viral drug and vaccine research should be pursued, in parallel with vector control programs.
Collapse
Affiliation(s)
- Rashedul Islam
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Mohammed Salahuddin
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Salahuddin Ayubi
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Tahmina Hossain
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Apurba Majumder
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9100, Bangladesh
| | - Andrew W Taylor-Robinson
- School of Medical & Applied Sciences, Central Queensland University, Rockhampton, 4701, Australia
| | - Abdullah Mahmud-Al-Rafat
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9100, Bangladesh.
- Research and Development (R&D) Department, Incepta Vaccine Limited, Zirabo, Savar, Dhaka, 1341, Bangladesh.
| |
Collapse
|
19
|
Larsen CP, Whitehead SS, Durbin AP. Dengue human infection models to advance dengue vaccine development. Vaccine 2015; 33:7075-82. [PMID: 26424605 DOI: 10.1016/j.vaccine.2015.09.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Dengue viruses (DENV) currently infect approximately 400 million people each year causing millions to seek care and overwhelming the health care infrastructure in endemic areas. Vaccines to prevent dengue and therapeutics to treat dengue are not currently available. The efficacy of the most advanced candidate vaccine against symptomatic dengue in general and DENV-2 in particular was much lower than expected, despite the ability of the vaccine to induce neutralizing antibody against all four DENV serotypes. Because seroconversion to the DENV serotypes following vaccination was thought to be indicative of induced protection, these results have made it more difficult to assess which candidate vaccines should or should not be evaluated in large studies in endemic areas. A dengue human infection model (DHIM) could be extremely valuable to down-select candidate vaccines or therapeutics prior to engaging in efficacy trials in endemic areas. Two DHIM have been developed to assess the efficacy of live attenuated tetravalent (LATV) dengue vaccines. The first model, developed by the Laboratory of Infectious Diseases at the U. S. National Institutes of Health, utilizes a modified DENV-2 strain DEN2Δ30. This virus was derived from the DENV-2 Tonga/74 that caused only very mild clinical infection during the outbreak from which it was recovered. DEN2Δ30 induced viremia in 100%, rash in 80%, and neutropenia in 27% of the 30 subjects to whom it was given. The Walter Reed Army Institute of Research (WRAIR) is developing a DHIM the goal of which is to identify DENV that cause symptomatic dengue fever. WRAIR has evaluated seven viruses and has identified two that meet dengue fever criteria. Both of these models may be very useful in the evaluation and down-selection of candidate dengue vaccines and therapeutics.
Collapse
Affiliation(s)
- Christian P Larsen
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, MD 21205, United States
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Anna P Durbin
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, MD 21205, United States; Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
| |
Collapse
|
20
|
Santos JJDS, Magalhães T, Silva Junior JVJ, Silva ANMRD, Cordeiro MT, Gil LHVG. Full-length infectious clone of a low passage dengue virus serotype 2 from Brazil. Mem Inst Oswaldo Cruz 2015. [PMID: 26200712 PMCID: PMC4569833 DOI: 10.1590/0074-02760150053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Full-length dengue virus (DENV) cDNA clones are an invaluable tool for many studies,
including those on the development of attenuated or chimeric vaccines and on
host-virus interactions. Furthermore, the importance of low passage DENV infectious
clones should be highlighted, as these may harbour critical and unique
strain-specific viral components from field-circulating isolates. The successful
construction of a functional Brazilian low passage DENV serotype 2 full-length clone
through homologous recombination reported here supports the use of a strategy that
has been shown to be highly useful by our group for the development of flavivirus
infectious clones and replicons.
Collapse
Affiliation(s)
- Jefferson José da Silva Santos
- Laboratório de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, BR
| | - Tereza Magalhães
- Laboratório de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, BR
| | | | | | - Marli Tenório Cordeiro
- Laboratório de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, BR
| | - Laura Helena Vega Gonzales Gil
- Laboratório de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, PE, BR
| |
Collapse
|
21
|
Tsetsarkin KA, Liu G, Kenney H, Bustos-Arriaga J, Hanson CT, Whitehead SS, Pletnev AG. Dual miRNA targeting restricts host range and attenuates neurovirulence of flaviviruses. PLoS Pathog 2015; 11:e1004852. [PMID: 25906260 PMCID: PMC4408003 DOI: 10.1371/journal.ppat.1004852] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/03/2015] [Indexed: 12/31/2022] Open
Abstract
Mosquito-borne flaviviruses are among the most significant arboviral pathogens worldwide. Vaccinations and mosquito population control programs remain the most reliable means for flavivirus disease prevention, and live attenuated viruses remain one of the most attractive flavivirus vaccine platforms. Some live attenuated viruses are capable of infecting principle mosquito vectors, as demonstrated in the laboratory, which in combination with their intrinsic genetic instability could potentially lead to a vaccine virus reversion back to wild-type in nature, followed by introduction and dissemination of potentially dangerous viral strains into new geographic locations. To mitigate this risk we developed a microRNA-targeting approach that selectively restricts replication of flavivirus in the mosquito host. Introduction of sequences complementary to a mosquito-specific mir-184 and mir-275 miRNAs individually or in combination into the 3’NCR and/or ORF region resulted in selective restriction of dengue type 4 virus (DEN4) replication in mosquito cell lines and adult Aedes mosquitos. Moreover a combined targeting of DEN4 genome with mosquito-specific and vertebrate CNS-specific mir-124 miRNA can silence viral replication in two evolutionally distant biological systems: mosquitoes and mouse brains. Thus, this approach can reinforce the safety of newly developed or existing vaccines for use in humans and could provide an additional level of biosafety for laboratories using viruses with altered pathogenic or transmissibility characteristics. Despite advances in developing flavivirus live attenuated vaccine (LAV) candidates, a concern exists that they might not be safe in the environment due to their intrinsic genetic instability leading to potential reversion back to wild-type that could be associated with possible dissemination of these mutated viruses by mosquitoes. Here, we describe a miRNA targeting approach that can be adapted to support the design of environmentally-safe LAV restricted in their ability to infect and be transmitted by competent vectors, thereby limiting the possibility of subsequent viral evolution and unpredictable consequences. A combined co-targeting of flavivirus genome with mosquito- and vertebrate brain- specific miRNAs resulted in simultaneous restriction of dengue virus infection and replication in mosquitoes and in brains of newborn mice indicating that the miRNA-mediated approach for virus attenuation represents an alternative to non-specific strategies for the control of viral tissue tropism and pathogenesis in the vertebrate host and replicative efficacy in permissive vectors.
Collapse
Affiliation(s)
- Konstantin A. Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Guangping Liu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Heather Kenney
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jose Bustos-Arriaga
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher T. Hanson
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander G. Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Brinton MA, Basu M. Functions of the 3' and 5' genome RNA regions of members of the genus Flavivirus. Virus Res 2015; 206:108-19. [PMID: 25683510 DOI: 10.1016/j.virusres.2015.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/04/2015] [Indexed: 11/26/2022]
Abstract
The positive sense genomes of members of the genus Flavivirus in the family Flaviviridae are ∼ 11 kb in length and have a 5' type I cap but no 3' poly-A. The 3' and 5' terminal regions contain short conserved sequences that are proposed to be repeated remnants of an ancient sequence. However, the functions of most of these conserved sequences have not yet been determined. The terminal regions of the genome also contain multiple conserved RNA structures. Functional data for many of these structures have been obtained. Three sets of complementary 3' and 5' terminal region sequences, some of which are located in conserved RNA structures, interact to form a panhandle structure that is required for initiation of minus strand RNA synthesis with the 5' terminal structure functioning as the promoter. How the switch from the terminal RNA structure base pairing to the long distance RNA-RNA interaction is triggered and regulated is not well understood but evidence suggests involvement of a cell protein binding to three sites on the 3' terminal RNA structures and a cis-acting metastable 3' RNA element in the 3' terminal RNA structure. Cell proteins may also be involved in facilitating exponential replication of nascent genomic RNA within replication vesicles at later times of the infection cycle. Other conserved RNA structures and/or sequences in the 3' and 5' terminal regions have been proposed to regulate genome translation. Additional functions of the 3' and 5' terminal sequences have also been reported.
Collapse
Affiliation(s)
- Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| | - Mausumi Basu
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
23
|
Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antiviral Res 2014; 114:67-85. [PMID: 25512228 PMCID: PMC7173292 DOI: 10.1016/j.antiviral.2014.12.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The study of flaviviruses, which cause some of the most important emerging tropical and sub-tropical human arbovirus diseases, has greatly benefited from the use of reverse genetic systems since its first development for yellow fever virus in 1989. Reverse genetics technology has completely revolutionized the study of these viruses, making it possible to manipulate their genomes and evaluate the direct effects of these changes on their biology and pathogenesis. The most commonly used reverse genetics system is the infectious clone technology. Whilst flavivirus infectious clones provide a powerful tool, their construction as full-length cDNA molecules in bacterial vectors can be problematic, laborious and time consuming, because they are often unstable, contain unwanted induced substitutions and may be toxic for bacteria due to viral protein expression. The incredible technological advances that have been made during the past 30years, such as the use of PCR or new sequencing methods, have allowed the development of new approaches to improve preexisting systems or elaborate new strategies that overcome these problems. This review summarizes the evolution and major technical breakthroughs in the development of flavivirus reverse genetics technologies and their application to the further understanding and control of these viruses and their diseases.
Collapse
|
24
|
Wei J, Chen H, An J. Recent progress in dengue vaccine development. Virol Sin 2014; 29:353-63. [PMID: 25547681 PMCID: PMC8206420 DOI: 10.1007/s12250-014-3542-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022] Open
Abstract
Dengue virus (DENV) has four distinct serotypes. DENV infection can result in classic dengue fever and life-threatening dengue hemorrhagic fever/dengue shock syndrome. In recent decades, DENV infection has become an important public health concern in epidemic-prone areas. Vaccination is the most effective measure to prevent and control viral infections. However, several challenges impede the development of effective DENV vaccines, such as the lack of suitable animal models and the antibody-dependent enhancement phenomenon. Although no licensed DENV vaccine is available, significant progress has been made. This review summarizes candidate DENV vaccines from recent investigations.
Collapse
Affiliation(s)
- Jianchun Wei
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Hui Chen
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
25
|
Abstract
Dengue virus (DENV) is a significant cause of morbidity and mortality in tropical and subtropical regions, causing hundreds of millions of infections each year. Infections range from asymptomatic to a self-limited febrile illness, dengue fever (DF), to the life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). The expanding of the habitat of DENV-transmitting mosquitoes has resulted in dramatic increases in the number of cases over the past 50 years, and recent outbreaks have occurred in the United States. Developing a dengue vaccine is a global health priority. DENV vaccine development is challenging due to the existence of four serotypes of the virus (DENV1-4), which a vaccine must protect against. Additionally, the adaptive immune response to DENV may be both protective and pathogenic upon subsequent infection, and the precise features of protective versus pathogenic immune responses to DENV are unknown, complicating vaccine development. Numerous vaccine candidates, including live attenuated, inactivated, recombinant subunit, DNA, and viral vectored vaccines, are in various stages of clinical development, from preclinical to phase 3. This review will discuss the adaptive immune response to DENV, dengue vaccine challenges, animal models used to test dengue vaccine candidates, and historical and current dengue vaccine approaches.
Collapse
Affiliation(s)
- Lauren E Yauch
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Sujan Shresta
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
| |
Collapse
|
26
|
RNA virus reverse genetics and vaccine design. Viruses 2014; 6:2531-50. [PMID: 24967693 PMCID: PMC4113782 DOI: 10.3390/v6072531] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022] Open
Abstract
RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines.
Collapse
|
27
|
Balinsky CA, Schmeisser H, Ganesan S, Singh K, Pierson TC, Zoon KC. Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. J Virol 2013; 87:13094-106. [PMID: 24027323 PMCID: PMC3838225 DOI: 10.1128/jvi.00704-13] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 09/03/2013] [Indexed: 01/24/2023] Open
Abstract
Dengue virus (DENV) is a mosquito-transmitted flavivirus that can cause severe disease in humans and is considered a reemerging pathogen of significant importance to public health. The DENV capsid (C) protein functions as a structural component of the infectious virion; however, it may have additional functions in the virus replicative cycle. Here, we show that the DENV C protein interacts and colocalizes with the multifunctional host protein nucleolin (NCL). Furthermore, we demonstrate that this interaction can be disrupted by the addition of an NCL binding aptamer (AS1411). Knockdown of NCL with small interfering RNA (siRNA) or treatment of cells with AS1411 results in a significant reduction of viral titers after DENV infection. Western blotting and quantitative RT-PCR (qRT-PCR) analysis revealed no differences in viral RNA or protein levels at early time points postinfection, suggesting a role for NCL in viral morphogenesis. We support this hypothesis by showing that treatment with AS1411 alters the migration characteristics of the viral capsid, as visualized by native electrophoresis. Here, we identify a critical interaction between DENV C protein and NCL that represents a potential new target for the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Corey A. Balinsky
- Cytokine Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hana Schmeisser
- Cytokine Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kavita Singh
- Structural Biology Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kathryn C. Zoon
- Cytokine Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
28
|
McArthur MA, Sztein MB, Edelman R. Dengue vaccines: recent developments, ongoing challenges and current candidates. Expert Rev Vaccines 2013; 12:933-53. [PMID: 23984962 PMCID: PMC3773977 DOI: 10.1586/14760584.2013.815412] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dengue is among the most prevalent and important arbovirus diseases of humans. To effectively control this rapidly spreading disease, control of the vector mosquito and a safe and efficacious vaccine are critical. Despite considerable efforts, the development of a successful vaccine has remained elusive. Multiple factors have complicated the creation of a successful vaccine, not the least of which are the complex, immune-mediated responses against four antigenically distinct serotypes necessitating a tetravalent vaccine providing long-lasting protective immunity. Despite the multiple impediments, there are currently many promising vaccine candidates in preclinical and clinical development. Here, the recent advances in dengue virus vaccine development are reviewed and the challenges associated with the use of these vaccines as a public health tool are briefly discussed.
Collapse
Affiliation(s)
- Monica A. McArthur
- Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
| | - Marcelo B. Sztein
- Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
| | - Robert Edelman
- Department of Medicine, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
| |
Collapse
|
29
|
Wan SW, Lin CF, Wang S, Chen YH, Yeh TM, Liu HS, Anderson R, Lin YS. Current progress in dengue vaccines. J Biomed Sci 2013; 20:37. [PMID: 23758699 PMCID: PMC3686670 DOI: 10.1186/1423-0127-20-37] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/13/2013] [Indexed: 01/23/2023] Open
Abstract
Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Novel benzoxazole inhibitor of dengue virus replication that targets the NS3 helicase. Antimicrob Agents Chemother 2013; 57:1902-12. [PMID: 23403421 DOI: 10.1128/aac.02251-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) is the predominant mosquito-borne viral pathogen that infects humans with an estimated 50 to 100 million infections per year worldwide. Over the past 50 years, the incidence of dengue disease has increased dramatically and the virus is now endemic in more than 100 countries. Moreover, multiple serotypes of DENV are now found in the same geographic region, increasing the likelihood of more severe forms of disease. Despite extensive research, there are still no approved vaccines or therapeutics commercially available to treat DENV infection. Here we report the results of a high-throughput screen of a chemical compound library using a whole-virus assay that identified a novel small-molecule inhibitor of DENV, ST-610, that potently and selectively inhibits all four serotypes of DENV replication in vitro. Sequence analysis of drug-resistant virus isolates has identified a single point mutation, A263T, in the NS3 helicase domain that confers resistance to this compound. ST-610 inhibits DENV NS3 helicase RNA unwinding activity in a molecular-beacon-based helicase assay but does not inhibit nucleoside triphosphatase activity based on a malachite green ATPase assay. ST-610 is nonmutagenic, is well tolerated (nontoxic) in mice, and has shown efficacy in a sublethal murine model of DENV infection with the ability to significantly reduce viremia and viral load compared to vehicle controls.
Collapse
|
31
|
A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob Agents Chemother 2012; 57:15-25. [PMID: 23070172 DOI: 10.1128/aac.01429-12] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dengue viruses (DENV) infect 50 to 100 million people worldwide per year, of which 500,000 develop severe life-threatening disease. This mosquito-borne illness is endemic in most tropical and subtropical countries and has spread significantly over the last decade. While there are several promising vaccine candidates in clinical trials, there are currently no approved vaccines or therapeutics available for treatment of dengue infection. Here, we describe a novel small-molecule compound, ST-148, that is a potent inhibitor of all four serotypes of DENV in vitro. ST-148 significantly reduced viremia and viral load in vital organs and tended to lower cytokine levels in the plasma in a nonlethal model of DENV infection in AG129 mice. Compound resistance mapped to the DENV capsid (C) gene, and a direct interaction of ST-148 with C protein is suggested by alterations of the intrinsic fluorescence of the protein in the presence of compound. Thus, ST-148 appears to interact with the DENV C protein and inhibits a distinct step(s) of the viral replication cycle.
Collapse
|
32
|
Messer WB, Yount B, Hacker KE, Donaldson EF, Huynh JP, de Silva AM, Baric RS. Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization. PLoS Negl Trop Dis 2012; 6:e1486. [PMID: 22389731 PMCID: PMC3289595 DOI: 10.1371/journal.pntd.0001486] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/07/2011] [Indexed: 12/15/2022] Open
Abstract
Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I), Thailand 1995 (genotype II), Sri Lanka 1989 and Cuba 2002 (genotype III) and Puerto Rico 1977 (genotype IV). We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools described here are valuable for testing hypotheses on genetic determinants of DENV-3 immunopathogenesis.
Collapse
Affiliation(s)
- William B. Messer
- Division of Infectious Diseases, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Boyd Yount
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kari E. Hacker
- Department of Microbiology and Immunology, and Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Eric F. Donaldson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeremy P. Huynh
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Aravinda M. de Silva
- Department of Microbiology and Immunology, and Southeast Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
33
|
Rossi SL, Nasar F, Cardosa J, Mayer SV, Tesh RB, Hanley KA, Weaver SC, Vasilakis N. Genetic and phenotypic characterization of sylvatic dengue virus type 4 strains. Virology 2011; 423:58-67. [PMID: 22178263 DOI: 10.1016/j.virol.2011.11.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 11/27/2022]
Abstract
Four serotypes of dengue virus (DENV 1-4) currently circulate between humans and domestic/peridomestic Aedes mosquitoes, resulting in 100 million infections per year. All four serotypes emerged, independently, from sylvatic progenitors transmitted among non-human primates by arboreal Aedes mosquitoes. This study investigated the genetic and phenotypic changes associated with emergence of human DENV-4 from its sylvatic ancestors. Analysis of complete genomes of 3 sylvatic and 4 human strains revealed high conservation of both the 5'- and 3'-untranslated regions but considerable divergence within the open reading frame. Additionally, the two ecotypes did not differ significantly in replication dynamics in cultured human liver (Huh-7), monkey kidney (Vero) or mosquito (C6/36) cells, although significant inter-strain variation within ecotypes was detected. These findings are in partial agreement with previous studies of DENV-2, where human strains produced a larger number of progeny than sylvatic strains in human liver cells but not in monkey or mosquito cells.
Collapse
Affiliation(s)
- S L Rossi
- Center for Biodefense and Emerging Infectious Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Dengue fever (DF) and dengue hemorrhagic fever (DHF) are mosquito-transmitted diseases of global importance. Despite significant research efforts, no approved vaccines or antiviral drugs against these diseases are currently available. This brief article reviews the status of dengue vaccine development, with particular emphasis on the vaccine strategies in more advanced stages of evaluation; these include traditional attenuation, chimerization and engineered attenuation. Several aspects of these vaccine design strategies, including concerns about vaccine candidates inducing infection-enhancing antibodies, are also presented.
Collapse
Affiliation(s)
- Eiji Konishi
- Division of Infectious Diseases, Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0412, Japan
| |
Collapse
|
35
|
Durbin AP, Kirkpatrick BD, Pierce KK, Schmidt AC, Whitehead SS. Development and clinical evaluation of multiple investigational monovalent DENV vaccines to identify components for inclusion in a live attenuated tetravalent DENV vaccine. Vaccine 2011; 29:7242-50. [PMID: 21781997 DOI: 10.1016/j.vaccine.2011.07.023] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 11/26/2022]
Abstract
The Laboratory of Infectious Diseases at the National Institute of Allergy and Infectious Diseases, National Institutes of Health has been engaged in an effort to develop a safe, efficacious, and affordable live attenuated tetravalent dengue vaccine (LATV) for more than ten years. Numerous recombinant monovalent DENV vaccine candidates have been evaluated in the SCID-HuH-7 mouse and in rhesus macaques to identify those candidates with a suitable attenuation phenotype. In addition, the ability of these candidates to infect and disseminate in Aedes mosquitoes had also been determined. Those candidates that were suitably attenuated in SCID-HuH-7 mice, rhesus macaques, and mosquitoes were selected for further evaluation in humans. This review will describe the generation of multiple candidate vaccines directed against each DENV serotype, the preclinical and clinical evaluation of these candidates, and the process of selecting suitable candidates for inclusion in a LATV dengue vaccine.
Collapse
Affiliation(s)
- Anna P Durbin
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Dengue virus (DENV) is a mosquito-borne member of the Flavivirus genus and includes four serotypes (DENV-1, DENV-2, DENV-3, and DENV-4), each of which is capable of causing dengue fever and dengue hemorrhagic fever/dengue shock syndrome. Serious disease can be seen during primary infection but is more frequent following second infection with a serotype different from that of a previous infection. Infection with wild-type DENV induces high-titered neutralizing antibody that can provide long-term immunity to the homotypic virus and can provide short-term immunity (only several months duration) to a heterotypic DENV. The high level of virus replication seen during both secondary infection with a heterotypic virus and during primary DENV infection in late infancy is a direct consequence of antibody-dependent enhancement of replication. This enhanced virus replication is mediated primarily by preexisting, nonneutralizing, or subneutralizing antibodies to the virion surface antigens that enhance access of the virion-antibody complex to FcγR-bearing cells. Vaccines will need to provide long-term protection against each of the four DENV serotypes by inducing neutralizing antibodies, and live, attenuated and various nonliving virus vaccines are in development.
Collapse
Affiliation(s)
- Brian R Murphy
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
37
|
Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. J Virol 2011; 85:2927-41. [PMID: 21228244 DOI: 10.1128/jvi.01986-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse genetics is a powerful tool to study single-stranded RNA viruses. Despite tremendous efforts having been made to improve the methodology for constructing flavivirus cDNAs, the cause of toxicity of flavivirus cDNAs in bacteria remains unknown. Here we performed mutational analysis studies to identify Escherichia coli promoter (ECP) sequences within nucleotides (nt) 1 to 3000 of the dengue virus type 2 (DENV2) and Japanese encephalitis virus (JEV) genomes. Eight and four active ECPs were demonstrated within nt 1 to 3000 of the DENV2 and JEV genomes, respectively, using fusion constructs containing DENV2 or JEV segments and empty vector reporter gene Renilla luciferase. Full-length DENV2 and JEV cDNAs were obtained by inserting mutations reducing their ECP activity in bacteria without altering amino acid sequences. A severe cytopathic effect occurred when BHK21 cells were transfected with in vitro-transcribed RNAs from either a DENV2 cDNA clone with multiple silent mutations within the prM-E-NS1 region of dengue genome or a JEV cDNA clone with an A-to-C mutation at nt 90 of the JEV genome. The virions derived from the DENV2 or JEV cDNA clone exhibited infectivities similar to those of their parental viruses in C6/36 and BHK21 cells. A cis-acting element essential for virus replication was revealed by introducing silent mutations into the central portion (nt 160 to 243) of the core gene of DENV2 infectious cDNA or a subgenomic DENV2 replicon clone. This novel strategy of constructing DENV2 and JEV infectious clones could be applied to other flaviviruses or pathogenic RNA viruses to facilitate research in virology, viral pathogenesis, and vaccine development.
Collapse
|
38
|
Steel A, Gubler DJ, Bennett SN. Natural attenuation of dengue virus type-2 after a series of island outbreaks: a retrospective phylogenetic study of events in the South Pacific three decades ago. Virology 2010; 405:505-12. [PMID: 20663532 PMCID: PMC3150181 DOI: 10.1016/j.virol.2010.05.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/12/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Dengue is an expanding arboviral disease of variable severity characterized by the emergence of virus strains with greater fitness, epidemic potential and possibly virulence. To investigate the role of dengue virus (DENV) strain variation on epidemic activity we studied DENV-2 viruses from a series of South Pacific islands experiencing outbreaks of varying intensity and clinical severity. Initially appearing in 1971 in Tahiti and Fiji, the virus was responsible for subsequent epidemics in American Samoa, New Caledonia and Niue Island in 1972, reaching Tonga in 1973 where there was near-silent transmission for over a year. Based on whole-genome sequencing and phylogenetic analysis on 20 virus isolates, Tonga viruses were genetically unique, clustering in a single clade. Substitutions in the pre-membrane (prM) and nonstructural genes NS2A and NS4A correlated with the attenuation of the Tongan viruses and suggest that genetic change may play a significant role in dengue epidemic severity.
Collapse
Affiliation(s)
- Argon Steel
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Asia-Pacific Institute of Tropical Medicine and Infectious Diseases, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Duane J. Gubler
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Asia-Pacific Institute of Tropical Medicine and Infectious Diseases, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Program on Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857
| | - Shannon N. Bennett
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Asia-Pacific Institute of Tropical Medicine and Infectious Diseases, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
39
|
Bioinformatics in new generation flavivirus vaccines. J Biomed Biotechnol 2010; 2010:864029. [PMID: 20467477 PMCID: PMC2867002 DOI: 10.1155/2010/864029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/21/2009] [Accepted: 03/02/2010] [Indexed: 12/22/2022] Open
Abstract
Flavivirus infections are the most prevalent arthropod-borne infections world wide, often causing severe disease especially among children, the elderly, and the immunocompromised. In the absence of effective antiviral treatment, prevention through vaccination would greatly reduce morbidity and mortality associated with flavivirus infections. Despite the success of the empirically developed vaccines against yellow fever virus, Japanese encephalitis virus and tick-borne encephalitis virus, there is an increasing need for a more rational design and development of safe and effective vaccines. Several bioinformatic tools are available to support such rational vaccine design. In doing so, several parameters have to be taken into account, such as safety for the target population, overall immunogenicity of the candidate vaccine, and efficacy and longevity of the immune responses triggered. Examples of how bio-informatics is applied to assist in the rational design and improvements of vaccines, particularly flavivirus vaccines, are presented and discussed.
Collapse
|
40
|
|
41
|
Blaney JE, Durbin AP, Murphy BR, Whitehead SS. Targeted mutagenesis as a rational approach to dengue virus vaccine development. Curr Top Microbiol Immunol 2010; 338:145-58. [PMID: 19802584 PMCID: PMC3405492 DOI: 10.1007/978-3-642-02215-9_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The recombinant dengue virus type 4 (rDEN4) vaccine candidate, rDEN4Delta30, was found to be highly infectious, immunogenic and safe in human volunteers. At the highest dose (10(5) PFU) evaluated in volunteers, 25% of the vaccinees had mild elevations in liver enzymes that were rarely seen at lower doses. Here, we describe the generation and selection of additional mutations that were introduced into rDEN4Delta30 to further attenuate the virus in animal models and ultimately human vaccinees. Based on the elevated liver enzymes associated with the 10(5) PFU dose of rDEN4Delta30 and the known involvement of liver infection in dengue virus pathogenesis, a large panel of mutant viruses was screened for level of replication in the HuH-7 human hepatoma cell line, a surrogate for human liver cells and selected viruses were further analyzed for level of viremia in SCID-HuH-7 mice. It was hypothesized that rDEN4Delta30 derivatives with restricted replication in vitro and in vivo in HuH-7 human liver cells would be restricted in replication in the liver of vaccinees. Two mutations identified by this screen, NS3 4995 and NS5 200,201, were separately introduced into rDEN4Delta30 and found to further attenuate the vaccine candidate for SCID-HuH-7 mice and rhesus monkeys while retaining sufficient immunogenicity in rhesus monkeys to confer protection. In humans, the rDEN4Delta30-200,201 vaccine candidate administered at 10(5) PFU exhibited greatly reduced viremia, high infectivity and lacked liver toxicity while inducing serum neutralizing antibody at a level comparable to that observed in volunteers immunized with rDEN4Delta30. Clinical studies of rDEN4Delta30-4995 are ongoing.
Collapse
Affiliation(s)
- Joseph E Blaney
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Room 3W10A, Bethesda, MD 20892-3203, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Each of the DENV serotypes can cause the full spectrum of dengue illness. Epidemiological studies have implicated preexisting heterotypic DENV antibody as a risk factor for more severe disease upon secondary DENV infection. For these reasons, a successful DENV vaccine must protect against all four DENV serotypes. Live attenuated DENV vaccine candidates are the furthest along in development and clinical evaluation. Two live attenuated tetravalent vaccine candidates are in Phase 2 clinical trials in DENV endemic regions. Numerous other vaccine candidates including inactivated whole virus, recombinant subunit protein, DNA and virus-vectored vaccines are also under development. Those DENV vaccine candidates that have been evaluated in preclinical animal models or in clinical trials will be discussed.
Collapse
Affiliation(s)
- Anna P Durbin
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA.
| | | |
Collapse
|
43
|
Jin X, Block OT, Rose R, Schlesinger J. Dengue vaccine development and dengue viral neutralization and enhancement assays. Antivir Ther 2009; 14:739-49. [PMID: 19812436 DOI: 10.3851/imp1288] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dengue fever is a major tropical infectious disease that affects 50-100 million people each year. Its complications, namely dengue haemorrhagic fever and dengue shock syndrome, disproportionately afflict children and young adults. The primary goal of several vaccines now in development is to elicit protective neutralizing antibody responses; however, the exact definition of such responses remain unclear. Here, we review briefly the historical aspects of dengue vaccine development and current candidate dengue vaccines, and discuss various laboratory assays for gauging the neutralizing antibody responses to infection or vaccination, or both. We conclude that modification of current neutralization assays is required to improve the correlation between neutralization end point determinations and protection against secondary heterotypic dengue infections.
Collapse
Affiliation(s)
- Xia Jin
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | | | | | | |
Collapse
|
44
|
Widman DG, Frolov I, Mason PW. Third-generation flavivirus vaccines based on single-cycle, encapsidation-defective viruses. Adv Virus Res 2009; 72:77-126. [PMID: 19081489 DOI: 10.1016/s0065-3527(08)00402-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Flaviviruses are arthropod-borne pathogens that cause significant disease on all continents of the world except Antarctica. Flavivirus diseases are particularly important in tropical regions where arthropod vectors are abundant. Live-attenuated virus vaccines (LAVs) and inactivated virus vaccines (INVs) exist for some of these diseases. LAVs are economical to produce and potent, but are not suitable for use in the immunocompromised. INVs are safer, but are more expensive to produce and less potent. Despite the success of both classes of these first-generation flavivirus vaccines, problems associated with their use indicate a need for improved products. Furthermore, there are no suitable vaccines available for important emerging flavivirus diseases, notably dengue and West Nile encephalitis (WNE). To address these needs, new products, including LAVs, INVs, viral-vectored, genetically engineered LAVs, naked DNA, and subunit vaccines are in various stages of development. Here we describe the current state of these first- and second-generation vaccine candidates, and compare these products to our recently described single-cycle, encapsidation defective flavivirus vaccine: RepliVAX. RepliVAX can be propagated in C-expressing cells (or as a unique two-component virus) using methods similar to those used to produce today's economical and potent LAVs. However, due to deletion of most of the gene for the C protein, RepliVAX cannot spread between normal cells, and is unable to cause disease in vaccinated animals. Nevertheless, RepliVAX is potent and efficacious in animal models for WNE and Japanese encephalitis, demonstrating its utility as a third-generation flavivirus vaccine that should be potent, economical to produce, and safe in the immunocompromised.
Collapse
Affiliation(s)
- Douglas G Widman
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|
45
|
Ansarah-Sobrinho C, Nelson S, Jost CA, Whitehead SS, Pierson TC. Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation. Virology 2008; 381:67-74. [PMID: 18801552 PMCID: PMC3428711 DOI: 10.1016/j.virol.2008.08.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/17/2008] [Accepted: 08/07/2008] [Indexed: 01/11/2023]
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus responsible for 50 to 100 million human infections each year, highlighting the need for a safe and effective vaccine. In this study, we describe the production of pseudoinfectious DENV reporter virus particles (RVPs) using two different genetic complementation approaches, including the creation of cell lines that release reporter viruses in an inducible fashion. In contrast to studies with West Nile virus (WNV), production of infectious DENV RVPs was temperature-dependent; the yield of infectious DENV RVPs at 37 degrees C is significantly reduced in comparison to experiments conducted at lower temperatures or with WNV. This reflects both a significant reduction in the rate of infectious DENV RVP release over time, and the more rapid decay of infectious DENV RVPs at 37 degrees C. Optimized production approaches allow the production of DENV RVPs with titers suitable for the study of DENV entry, assembly, and the analysis of the humoral immune response of infected and vaccinated individuals.
Collapse
Affiliation(s)
- Camilo Ansarah-Sobrinho
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steevenson Nelson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christiane A. Jost
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen S. Whitehead
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
46
|
A tetravalent dengue vaccine based on a complex adenovirus vector provides significant protection in rhesus monkeys against all four serotypes of dengue virus. J Virol 2008; 82:6927-34. [PMID: 18480438 DOI: 10.1128/jvi.02724-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly a third of the human population is at risk of infection with the four serotypes of dengue viruses, and it is estimated that more than 100 million infections occur each year. A licensed vaccine for dengue viruses has become a global health priority. A major challenge to developing a dengue vaccine is the necessity to produce fairly uniform protective immune responses to all four dengue virus serotypes. We have developed two bivalent dengue virus vaccines, using a complex adenovirus vector, by incorporating the genes expressing premembrane (prM) and envelope (E) proteins of dengue virus types 1 and 2 (dengue-1 and -2, respectively) (CAdVax-Den12) or dengue-3 and -4 (CAdVax-Den34). Rhesus macaques were vaccinated by intramuscular inoculation of a tetravalent dengue vaccine formulated by combining the two bivalent vaccine constructs. Vaccinated animals produced high-titer antibodies that neutralized all four serotypes of dengue viruses in vitro. The ability of the vaccine to induce rapid, as well as sustained, protective immune responses was examined with two separate live-virus challenges administered at 4 and 24 weeks after the final vaccination. For both of these virus challenge studies, significant protection from viremia was demonstrated for all four dengue virus serotypes in vaccinated animals. Viremia from dengue-1 and dengue-3 challenges was completely blocked, whereas viremia from dengue-2 and dengue-4 was significantly reduced, as well as delayed, compared to that of control-vaccinated animals. These results demonstrate that the tetravalent dengue vaccine formulation provides significant protection in rhesus macaques against challenge with all four dengue virus serotypes.
Collapse
|
47
|
Abstract
Dengue virus infection causes the most important arthropod-borne disease of humans. Currently, there are no dengue vaccines or antiviral therapies in clinical use, although their development is a global health priority. Using a technique known as ‘reverse genetics’, the dengue virus RNA genome can be manipulated, either by the introduction of specific mutations or the deletion and/or substitution of entire genes. This has led to the production of novel recombinant viruses that have potential as vaccines and the production of noninfectious viral subgenomes (termed replicons) useful for drug screening. Reverse genetics is also an invaluable tool for studying the role of dengue virus RNA elements and proteins in replication and pathogenesis. This review describes the contribution of reverse genetics to dengue virus research to date, highlighting the potential use of this technology in the development of effective control measures against dengue in the future.
Collapse
Affiliation(s)
- Rebecca Ward
- University of Bristol, Department of Cellular & Molecular Medicine, School of Medical & Veterinary Sciences, BS8 1TD, UK
| | - Andrew D Davidson
- University of Bristol, Department of Cellular & Molecular Medicine, School of Medical & Veterinary Sciences, BS8 1TD, UK
| |
Collapse
|
48
|
Blaney JE, Sathe NS, Goddard L, Hanson CT, Romero TA, Hanley KA, Murphy BR, Whitehead SS. Dengue virus type 3 vaccine candidates generated by introduction of deletions in the 3' untranslated region (3'-UTR) or by exchange of the DENV-3 3'-UTR with that of DENV-4. Vaccine 2007; 26:817-28. [PMID: 18191005 DOI: 10.1016/j.vaccine.2007.11.082] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/16/2007] [Accepted: 11/29/2007] [Indexed: 11/28/2022]
Abstract
The dengue virus type 3 (DENV-3) vaccine candidate, rDEN3Delta30, was previously found to be under-attenuated in both SCID-HuH-7 mice and rhesus monkeys. Herein, two strategies have been employed to generate attenuated rDEN3 vaccine candidates which retain the full complement of structural and nonstructural proteins of DENV-3 and thus are able to induce humoral or cellular immunity to each of the DENV-3 proteins. First, using the predicted secondary structure of the 3' untranslated region (3'-UTR) of DENV-3 to design novel deletions, nine deletion mutant viruses were engineered and found to be viable. Four of nine deletion mutants replicated efficiently in Vero cells and were genetically stable. Second, chimeric rDENV-3 viruses were generated by replacement of the 3'-UTR of the rDENV-3 cDNA clone with that of rDENV-4 or rDEN4Delta30 yielding the rDEN3-3'D4 and rDEN3-3'D4Delta30 viruses, respectively. Immunization of rhesus monkeys with either of two deletion mutant viruses, rDEN3Delta30/31 and rDEN3Delta86, or with rDEN3-3'D4Delta30 resulted in infection without detectable viremia, with each virus inducing a strong neutralizing antibody response capable of conferring protection from DENV-3 challenge. The rDEN3Delta30/31 virus showed a strong host range restriction phenotype with complete loss of replication in C6/36 mosquito cells despite robust replication in Vero cells. In addition, rDEN3Delta30/31 had reduced replication in Toxorynchites mosquitoes following intrathoracic inoculation. The results are discussed in the context of vaccine development and the physical structure of the DENV 3'-UTR.
Collapse
Affiliation(s)
- Joseph E Blaney
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Primary and secondary infections of Macaca fascicularis monkeys with Asian and American genotypes of dengue virus 2. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:439-46. [PMID: 18094112 DOI: 10.1128/cvi.00208-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The goal of this study was to compare the immune response and the protection capacity induced by the dengue virus 2 (DENV-2) American and Asian genotypes in Macaca fascicularis monkeys. Animals were infected with American or Asian DENV-2 strains and challenged 1 year later with a DENV-2 Asian genotype strain. The viremia and monkey antibody levels were similar for the different strains after primary and secondary infection; however, the functionality of the antibody response was different. A limited viral replication was demonstrated after the secondary infection in all the monkeys. No virus was isolated in tissue culture, while reverse transcription-PCR showed a late positive reaction in four of five challenged monkeys. The immunoglobulin M response pattern and the detection of antibodies to specific proteins by Western blotting supported the protection data. Despite the demonstration of the protective effect after homologous challenge, a strong anamnestic antibody response was observed.
Collapse
|
50
|
Lai CY, Hu HP, King CC, Wang WK. Incorporation of dengue virus replicon into virus-like particles by a cell line stably expressing precursor membrane and envelope proteins of dengue virus type 2. J Biomed Sci 2007; 15:15-27. [PMID: 17768670 DOI: 10.1007/s11373-007-9204-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 08/08/2007] [Indexed: 11/26/2022] Open
Abstract
While virus-like particles (VLPs) containing subgenomic replicons, which can transduce replicons into target cells efficiently for studying viral replication and vectors of gene therapy and vaccine, have been established for several flaviviruses, none has been reported for the four serotypes of dengue virus, the causal agent of the most important arboviral diseases in this century. In this study, we successfully established a cell line stably expressing the precursor membrane/envelope (PrM/E) proteins of dengue virus type 2 (DENV2), which can package a DENV2 replicon with deletion of PrM/E genes and produce single-round infectious VLPs. Moreover, it can package a similar replicon of different serotype, dengue virus type 4, and produce infectious chimeric VLPs. To our knowledge, this study reports for the first time replicon-containing VLPs of dengue virus. Moreover, this convenient system has potential as a valuable tool to study encapsidation of dengue virus and to develop novel chimeric VLPs containing dengue virus replicon as vaccine in the future.
Collapse
Affiliation(s)
- Chih-Yun Lai
- Institute of Microbiology, College of Medicine, National Taiwan University, No.1 Sec.1 Jen-Ai Rd, Taipei, Taiwan
| | | | | | | |
Collapse
|