1
|
Guan PP, Cao LL, Yang Y, Wang P. Calcium Ions Aggravate Alzheimer's Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits. Front Mol Neurosci 2021; 14:757515. [PMID: 34924952 PMCID: PMC8674839 DOI: 10.3389/fnmol.2021.757515] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that is characterized by the production and deposition of β-amyloid protein (Aβ) and hyperphosphorylated tau, leading to the formation of β-amyloid plaques (APs) and neurofibrillary tangles (NFTs). Although calcium ions (Ca2+) promote the formation of APs and NFTs, no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD has been published. Therefore, the current review aimed to fill the gaps between elevated Ca2+ levels and the pathogenesis of AD. Specifically, we mainly focus on the molecular mechanisms by which Ca2+ affects the neuronal networks of neuroinflammation, neuronal injury, neurogenesis, neurotoxicity, neuroprotection, and autophagy. Furthermore, the roles of Ca2+ transporters located in the cell membrane, endoplasmic reticulum (ER), mitochondria and lysosome in mediating the effects of Ca2+ on activating neuronal networks that ultimately contribute to the development and progression of AD are discussed. Finally, the drug candidates derived from herbs used as food or seasoning in Chinese daily life are summarized to provide a theoretical basis for improving the clinical treatment of AD.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
2
|
Protective Effect of Mitochondrial ND2 C5178A Gene Mutation on Cell and Mitochondrial Functions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4728714. [PMID: 34336093 PMCID: PMC8315857 DOI: 10.1155/2021/4728714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
Background Mitochondrial NADH dehydrogenase subunit 2 (MT-ND2) m. 5178C>A gene mutation has protective effects against various diseases, but the molecular mechanism is still unclear. In previous study, we found a heteroplasmy level of MT-ND2 m. 5178C>A mutation in normotensive controls. Peripheral blood samples were obtained from essential hypertension individuals carrying the mutation and healthy controls without gene mutation to establish immortalized lymphocyte lines. To investigate the effect of the MT-ND2 m. 5178C>A gene mutation, comparative analyses of the two group cell lines were performed, including measurements of cell proliferation, viability, ATP synthesis, mitochondrial oxidative stress, and oxidative phosphorylation. Results The cell proliferation rate and viability of the MT-ND2 m. 5178C>A mutant lymphocyte line were higher than those of the control group. Mitochondrial functions of the MT-ND2 m. 5178C>A mutant lymphocyte were increased, including increased ATP synthesis, decreased ROS production, increased mitochondrial membrane potential and Bcl-2 gene transcription and protein translation, decreased Caspase 3/7 activity, and decreased early apoptosis and late apoptosis. The oxygen consumption rate (OCR) of the mutant lymphocyte line was higher than that of the control group, including basal OCR, ATP-linked OCR, maximal OCR, proton leak OCR, and reserve OCR, and there was no significant difference in nonmitochondrial OCR. The activity of Mitochondrial Complex I of the mutant group was increased than that of the control group. Conclusions The MT-ND2 m. 5178C>A mutation is a protective mutation that may be related to improvement of mitochondrial functions and decrease in apoptosis.
Collapse
|
3
|
Sun D, Wei Y, Zheng HX, Jin L, Wang J. Contribution of Mitochondrial DNA Variation to Chronic Disease in East Asian Populations. Front Mol Biosci 2019; 6:128. [PMID: 31803756 PMCID: PMC6873657 DOI: 10.3389/fmolb.2019.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the main producers of energy in eukaryotic cells. Mitochondrial dysfunction is associated with specific mitochondrial DNA (mtDNA) variations (haplogroups), and these variations can contribute to human disease. East Asian populations show enrichment of many mitochondrial haplogroups, including A, B, D, G, M7, M8, M9, N9, R9, and exhibit half of the known haplogroups of worldwide. In this review, we summarize the current research in the field of mtDNA variation and associated disease in East Asian populations and discuss the physiological and pathological relevance of mitochondrial biology. mtDNA haplogroups are associated with various metabolic disorders ascribed to altered oxidative phosphorylation. The same mitochondrial haplogroup can show either a negative or positive association with different diseases. Mitochondrial dynamics, mitophagy, and mitochondrial oxidative stress, ultimately influence susceptibility to various diseases. In addition, mitochondrial retrograde signaling pathways may have profound effects on nuclear-mitochondrial interactions, affecting cellular morphology, and function. Other complex networks including proteostasis, mitochondrial unfolded protein response and reactive oxygen species signaling may also play pivotal roles in metabolic performance.
Collapse
Affiliation(s)
- Dayan Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Yang Wei
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong-Xiang Zheng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Liu Y, Li Y, Zhu C, Tian L, Guan M, Chen Y. Mitochondrial biogenesis dysfunction and metabolic dysfunction from a novel mitochondrial tRNA Met 4467 C>A mutation in a Han Chinese family with maternally inherited hypertension. Sci Rep 2017; 7:3034. [PMID: 28596595 PMCID: PMC5465199 DOI: 10.1038/s41598-017-03303-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/13/2017] [Indexed: 11/21/2022] Open
Abstract
To investigate the relationship between mitochondrial DNA (mtDNA) and hypertension as well as the mechanism involved in mitochondrial metabolic dysfunction. We identified a novel tRNAMet C4467A mutation in a Han Chinese family with hypertension. The maternal members presented with increased glucose, total cholesterol, low-density lipoprotein, and serum sodium as well as decreased potassium compared with non-maternal members (P < 0.05). Segregation analysis showed this mutation was maternally inherited. We analyzed lymphocyte cell lines derived from three maternal and three non-maternal family members. Reactive oxygen species production in the mutant cell lines was 114.5% higher compared with that in controls (P < 0.05) while ATP was 26.4% lower. The mitochondrial membrane potential of the mutated cell lines was 26.2% lower than that in controls (P < 0.05). Oxygen consumption rates were decreased in the mutant cell lines (P < 0.05). The activation of caspase-3/7 was 104.1% higher in the mutant cell lines compared with controls (P < 0.05). The expression of voltage-dependent anion channel (VDAC), Bax and apoptosis-inducing factor (AIF) in the mutant cell lines was higher compared with that in controls, with the increased colocalization of VDAC and Bax. Therefore, this mutation contributes to oxidative stress and mitochondrial biogenesis dysfunction, which may be involved in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Yuqi Liu
- Cardiac department of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Li
- Cardiac department of Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Geriatric Cardiology of Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Zhu
- Cardiac department of Chinese PLA General Hospital, Beijing, 100853, China
| | - Liuyang Tian
- Cardiac department of People's Hospital of Tianjing, Tianjing, 300121, China
| | - Minxin Guan
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Yundai Chen
- Cardiac department of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Chao Z, Liuyang T, Nan L, Qi C, Zhongqi C, Yang L, Yuqi L. Mitochondrial tRNA mutation with high-salt stimulation on cardiac damage: underlying mechanism associated with change of Bax and VDAC. Am J Physiol Heart Circ Physiol 2016; 311:H1248-H1257. [PMID: 27638882 DOI: 10.1152/ajpheart.00874.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 07/21/2016] [Indexed: 12/31/2022]
Abstract
Mitochondrial transfer RNA (tRNA) mutation with high-salt stimulation can cause high blood pressure. However, the underlying mechanisms remain unclear. In the present study, we examined the potential molecular mechanisms of cardiac damage caused by mitochondrial tRNA mutation with high-salt stimulation in spontaneously hypertensive rats (SHR). Unanesthetized, 44-wk-old, male, SHR were divided into four groups: SHR, SHR with high-salt stimulation for 8 wk (SHR + NaCl), SHR carrying tRNA mutations (SHR + M), and SHR + M with high-salt stimulation for 8 wk (SHR + M + NaCl). Healthy Wistar-Kyoto (WKY) rats were used as controls. Left ventricular mass and interventricular septum were highest in the SHR + M + NaCl group ( P < 0.05), while ejection fraction was lowest in the SHR + M + NaCl group ( P < 0.05). Hematoxylin and eosin staining showed myocardial cell hypertrophy with interstitial fibrosis and localized inflammatory cell infiltration, in the hypertensive groups, particularly in the SHR + M + NaCl group. Electron microscopy showed different degrees of mitochondrial cavitation in heart tissue of the hypertensive groups, which was highest in the SHR + M + NaCl group. In hypertensive animals, levels of reactive oxygen species were highest in the SHR + M + NaCl group ( P < 0.05). Expression of the voltage-dependent anion channel (VDAC) and the apoptosis regulator Bax were highest in the SHR + M + NaCl group ( P < 0.05), which also showed evidence of VDAC and Bax colocalization ( P < 0.05). Overall, these data suggest that mitochondrial tRNA mutation with high-salt stimulation can aggravate cardiac damage, potentially because of increased expression and interaction between Bax and VDAC and increased reactive oxygen species formation and initiation of apoptosis.
Collapse
Affiliation(s)
- Zhu Chao
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Tian Liuyang
- Medical College of Nan Kai University, Tianjing, China; and
| | - Li Nan
- Medical College of Nan Kai University, Tianjing, China; and
| | - Chen Qi
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Cai Zhongqi
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Li Yang
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Institute of Geriatric Cardiology, and Chinese PLA General Hospital, Beijing, China
| | - Liu Yuqi
- Department of Cardiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
6
|
Guo L, Yuan Y, Bi R. Mitochondrial DNA mutation m.5512A > G in the acceptor-stem of mitochondrial tRNATrp causing maternally inherited essential hypertension. Biochem Biophys Res Commun 2016; 479:800-807. [DOI: 10.1016/j.bbrc.2016.09.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 09/25/2016] [Indexed: 02/06/2023]
|
7
|
Chen X, Zhang Y, Xu B, Cai Z, Wang L, Tian J, Liu Y, Li Y. The mitochondrial calcium uniporter is involved in mitochondrial calcium cycle dysfunction: Underlying mechanism of hypertension associated with mitochondrial tRNA(Ile) A4263G mutation. Int J Biochem Cell Biol 2016; 78:307-314. [PMID: 27471128 DOI: 10.1016/j.biocel.2016.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 01/11/2023]
Abstract
Recent studies have shown that the mitochondrial DNA mutations are involved in the pathogenesis of hypertension. Our previous study identified mitochondrial tRNA(Ile) A4263G mutation in a large Chinese Han family with maternally-inherited hypertension. This mutation may contribute to mitochondrial Ca(2+) cycling dysfuntion, but the mechanism is unclear. Lymphoblastoid cell lines were derived from hypertensive and normotensive individuals, either with or without tRNA(Ile) A4263G mutation. The mitochondrial calcium ([Ca(2+)]m) in cells from hypertensive subjects with the tRNA(Ile) A4263G mutation, was lower than in cells from normotension or hypertension without mutation, or normotension with mutation (P<0.05). Meanwhile, cytosolic calcium ([Ca(2+)]c) in hypertensive with mutation cells was higher than another three groups. After exposure to caffeine, which could increase the [Ca(2+)]c by activating ryanodine receptor on endoplasmic reticulum, [Ca(2+)]c/[Ca(2+)]m increased higher than in hypertensive with mutation cells from another three groups. Moreover, MCU expression was decreased in hypertensive with mutation cells compared with in another three groups (P<0.05). [Ca(2+)]c increased and [Ca(2+)]m decreased after treatment with Ru360 (an inhibitor of MCU) or an siRNA against MCU. In this study we found decreased MCU expression in hypertensive with mutation cells contributed to dysregulated Ca(2+) uptake into the mitochondria, and cytoplasmic Ca(2+) overload. This abnormality might be involved in the underlying mechanisms of maternally inherited hypertension in subjects carrying the mitochondrial tRNA(Ile) A4263G mutation.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Xu
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhongqi Cai
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Lin Wang
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinwen Tian
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuqi Liu
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yang Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
8
|
Abstract
Mitochondrial dynamics, fission and fusion, were first identified in yeast with investigation in heart cells beginning only in the last 5 to 7 years. In the ensuing time, it has become evident that these processes are not only required for healthy mitochondria, but also, that derangement of these processes contributes to disease. The fission and fusion proteins have a number of functions beyond the mitochondrial dynamics. Many of these functions are related to their membrane activities, such as apoptosis. However, other functions involve other areas of the mitochondria, such as OPA1's role in maintaining cristae structure and preventing cytochrome c leak, and its essential (at least a 10 kDa fragment of OPA1) role in mtDNA replication. In heart disease, changes in expression of these important proteins can have detrimental effects on mitochondrial and cellular function.
Collapse
Affiliation(s)
- A A Knowlton
- Molecular & Cellular Cardiology, Division of Cardiovascular Medicine and Pharmacology Department, University of California, Davis, and The Department of Veteran's Affairs, Northern California VA, Sacramento, California, USA
| | - T T Liu
- Molecular & Cellular Cardiology, Division of Cardiovascular Medicine and Pharmacology Department, University of California, Davis, and The Department of Veteran's Affairs, Northern California VA, Sacramento, California, USA
| |
Collapse
|
9
|
Chou SM, Lai WJ, Hong T, Tsai SH, Chen YH, Kao CH, Chu R, Shen TL, Li TK. Involvement of p38 MAPK in the Anticancer Activity of Cultivated Cordyceps militaris. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015. [PMID: 26205966 DOI: 10.1142/s0192415x15500603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cordyceps militaris is a traditional Chinese medicine frequently used for tonic and therapeutic purposes. Reports from our laboratory and others have demonstrated that extracts of the cultivated fruiting bodies of C. militaris (CM) exhibit a potent cytotoxic effect against many cancer cell lines, especially human leukemia cells. Here, we further investigated the underlying mechanism through which CM is cytotoxic to cancer cells. The CM-mediated induction of PARP cleavage and its related DNA damage signal (γH2AX) was diminished by caspase inhibitor I. In contrast, a ROS scavenger failed to prevent CM-mediated leukemia cell death. Moreover, two signaling molecules, AKT and p38 MAPK, were activated during the course of apoptosis induction. Employing MTT analysis, we found that a p38 MAPK inhibitor but not an AKT inhibitor could rescue cells from CM-mediated cell death, as well as inhibit the cleavage of PARP, formation of apoptotic bodies and up-regulation of the γH2AX signal. These results suggest that CM-mediated leukemia cell death occurs through the activation of the p38 MAPK pathway, indicating its potential therapeutic effects against human leukemia.
Collapse
Affiliation(s)
- Shang-Min Chou
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | - Tzuwen Hong
- Mucho Biotechnology Inc., Taipei 10684, Taiwan.,Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | | - Richard Chu
- Mucho Biotechnology Inc., Taipei 10684, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
10
|
Stauch KL, Purnell PR, Villeneuve LM, Fox HS. Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism. Proteomics 2015; 15:1574-86. [PMID: 25546256 DOI: 10.1002/pmic.201400277] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/05/2014] [Accepted: 12/18/2014] [Indexed: 12/18/2022]
Abstract
Mitochondria are the main cellular source of reactive oxygen species and are recognized as key players in several age-associated disorders and neurodegeneration. Their dysfunction has also been linked to cellular aging. Additionally, mechanisms leading to the preservation of mitochondrial function promote longevity. In this study we investigated the proteomic and functional alterations in brain mitochondria isolated from mature (5 months old), old (12 months old), and aged (24 months old) mice as determinants of normal "healthy" aging. Here the global changes concomitant with aging in the mitochondrial proteome of mouse brain analyzed by quantitative mass-spectrometry based super-SILAC identified differentially expressed proteins involved in several metabolic pathways including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation. Despite these changes, the bioenergetic function of these mitochondria was preserved. Overall, this data indicates that proteomic changes during aging may compensate for functional defects aiding in preservation of mitochondrial function. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001370 (http://proteomecentral.proteomexchange.org/dataset/PXD001370).
Collapse
Affiliation(s)
- Kelly L Stauch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | |
Collapse
|
11
|
Lin W, Zhang Z, Xu Z, Wang B, Li X, Cao H, Wang Y, Zheng SJ. The association of receptor of activated protein kinase C 1(RACK1) with infectious bursal disease virus viral protein VP5 and voltage-dependent anion channel 2 (VDAC2) inhibits apoptosis and enhances viral replication. J Biol Chem 2015; 290:8500-10. [PMID: 25583988 DOI: 10.1074/jbc.m114.585687] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Our previous report indicates that IBDV VP5 induces apoptosis via interaction with voltage-dependent anion channel 2 (VDAC2). However, the underlying molecular mechanism is still unclear. We report here that receptor of activated protein kinase C 1 (RACK1) interacts with both VDAC2 and VP5 and that they could form a complex. We found that overexpression of RACK1 inhibited IBDV-induced apoptosis in DF-1 cells and that knockdown of RACK1 by small interfering RNA induced apoptosis associated with activation of caspases 9 and 3 and suppressed IBDV growth. These results indicate that RACK1 plays an antiapoptotic role during IBDV infection via interaction with VDAC2 and VP5, suggesting that VP5 sequesters RACK1 and VDAC2 in the apoptosis-inducing process.
Collapse
Affiliation(s)
- Wencheng Lin
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhang
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhichao Xu
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bin Wang
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Stauch KL, Purnell PR, Fox HS. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function. Aging (Albany NY) 2014; 6:320-34. [PMID: 24827396 PMCID: PMC4032798 DOI: 10.18632/aging.100657] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function.
Collapse
Affiliation(s)
- Kelly L Stauch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | |
Collapse
|
13
|
Stauch KL, Purnell PR, Fox HS. Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability. J Proteome Res 2014; 13:2620-36. [PMID: 24708184 PMCID: PMC4015687 DOI: 10.1021/pr500295n] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage.
Collapse
Affiliation(s)
- Kelly L Stauch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | | | | |
Collapse
|
14
|
Tsukahara T, Haniu H, Matsuda Y. PTB-associated splicing factor (PSF) is a PPARγ-binding protein and growth regulator of colon cancer cells. PLoS One 2013; 8:e58749. [PMID: 23516550 PMCID: PMC3596311 DOI: 10.1371/journal.pone.0058749] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that plays an essential role in cell proliferation, apoptosis, and inflammation. It is over-expressed in many types of cancer, including colon, stomach, breast, and lung cancer, suggesting that regulation of PPARγ might affect cancer pathogenesis. Here, using a proteomic approach, we identify PTB-associated splicing factor (PSF) as a novel PPARγ-interacting protein and demonstrate that PSF is involved in several important regulatory steps of colon cancer cell proliferation. To investigate the relationship between PSF and PPARγ in colon cancer, we evaluated the effects of PSF expression in DLD-1 and HT-29 colon cancer cell lines, which express low and high levels of PPARγ, respectively PSF affected the ability of PPARγ to bind, and expression of PSF siRNA significantly suppressed the proliferation of colon cancer cells. Furthermore, PSF knockdown induced apoptosis via activation of caspase-3. Interestingly, DLD-1 cells were more susceptible to PSF knockdown-induced cell death than HT-29 cells. Our data suggest that PSF is an important regulator of cell death that plays critical roles in the survival and growth of colon cancer cells. The PSF-PPARγ axis may play a role in the control of colorectal carcinogenesis. Taken together, this study is the first to describe the effects of PSF on cell proliferation, tumor growth, and cell signaling associated with PPARγ.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, Asahi, Matsumoto, Nagano, Japan.
| | | | | |
Collapse
|
15
|
Iommarini L, Calvaruso MA, Kurelac I, Gasparre G, Porcelli AM. Complex I impairment in mitochondrial diseases and cancer: Parallel roads leading to different outcomes. Int J Biochem Cell Biol 2013; 45:47-63. [DOI: 10.1016/j.biocel.2012.05.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/03/2012] [Accepted: 05/24/2012] [Indexed: 02/06/2023]
|
16
|
Su TR, Lin JJ, Chiu CC, Chen JYF, Su JH, Cheng ZJ, Hwang WI, Huang HH, Wu YJ. Proteomic investigation of anti-tumor activities exerted by sinularin against A2058 melanoma cells. Electrophoresis 2012; 33:1139-52. [PMID: 22539317 DOI: 10.1002/elps.201100462] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The extracts from soft corals have been increasingly investigated for biomedical and therapeutic purposes. The aim of this study is to examine and analyze the anti-tumor effects of the genus Sinularia extract sinularin on A2058 melanoma cells using MTT assay, cell migration assay, wound healing assay, flow cytometric analysis, and proteomic analysis. Sinularin dose-dependently (1-5 μg/mL) inhibited melanoma cell proliferation while the treatment at identical concentrations suppressed cell migration. Sinularin dose-dependently enhanced apoptotic melanoma cells and caused tumor cell accumulation at G2/M phase, indicating that sinularin exerts apoptosis-induced and cell cycle-delayed activities in A2058 melanoma cells. Comparative proteomic analysis was conducted to investigate the effects of sinularin at the molecular level by comparison between the protein profiling of melanoma cells treated with sinularin and without the treatment. Thirty-five differential proteins (13 upregulated and 22 downregulated) concerning the treatment were identified by liquid chromatography-tandem mass spectrometry. Proteomic data and Western blot displayed the levels of several tumor inhibitory or apoptosis-associated proteins including annexin A1, voltage-dependent anion-selective channel protein 1 and prohibitin (upregulated), heat shock protein 60, heat shock protein beta-1, and peroxiredoxin-2 (downregulated) in A2058 melanoma cells exposed to sinularin. Increased expression of p53, cleaved-caspase-3, cleaved-caspase-8, cleaved-caspase-9, p21, and Bax and decreased expression of Bcl-2 in sinularin-treated melanoma cells suggest that the anti-tumor activities of sinularin against melanoma cells are particularly correlated with these pro-apoptotic factors. These data provide important information for the mechanisms of anti-tumor effects of sinularin on melanoma cells and may be helpful for drug development and progression monitoring of human melanoma.
Collapse
Affiliation(s)
- Tzu-Rong Su
- Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Critical role for voltage-dependent anion channel 2 in infectious bursal disease virus-induced apoptosis in host cells via interaction with VP5. J Virol 2011; 86:1328-38. [PMID: 22114330 DOI: 10.1128/jvi.06104-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Although IBDV-induced host cell apoptosis has been established, the underlying molecular mechanism is still unclear. We report here that IBDV viral protein 5 (VP5) is a major apoptosis inducer in DF-1 cells by interacting with the voltage-dependent anion channel 2 (VDAC2) in the mitochondrion. We found that in DF-1 cells, VP5-induced apoptosis can be completely abolished by 4,4'-diisothiocyanatostibene-2,2'-disulfonic acid (DIDS), an inhibitor of VDAC. Furthermore, knockdown of VDAC2 by small interfering RNA markedly inhibits IBDV-induced apoptosis associated with decreased caspase-9 and -3 activation and cytochrome c release, leading to increased IBDV growth in host cells. Thus, VP5-induced apoptosis during IBDV infection is mediated by interacting with VDAC2, a protein that appears to restrict viral replication via induction of cell death.
Collapse
|
18
|
Chorna SV, Dosenko VI, Strutyns'ka NA, Vavilova HL, Sahach VF. Increased expression of voltage-dependent anion channel and adenine nucleotide translocase and the sensitivity of calcium-induced mitochondrial permeability transition opening pore in the old rat. ACTA ACUST UNITED AC 2010. [DOI: 10.15407/fz56.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|