1
|
Cell Fate Determination of Lymphatic Endothelial Cells. Int J Mol Sci 2020; 21:ijms21134790. [PMID: 32640757 PMCID: PMC7370169 DOI: 10.3390/ijms21134790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/18/2022] Open
Abstract
The lymphatic vasculature, along with the blood vasculature, is a vascular system in our body that plays important functions in fluid homeostasis, dietary fat uptake, and immune responses. Defects in the lymphatic system are associated with various diseases such as lymphedema, atherosclerosis, fibrosis, obesity, and inflammation. The first step in lymphangiogenesis is determining the cell fate of lymphatic endothelial cells. Several genes involved in this commitment step have been identified using animal models, including genetically modified mice. This review provides an overview of these genes in the mammalian system and related human diseases.
Collapse
|
2
|
Norden PR, Kume T. The Role of Lymphatic Vascular Function in Metabolic Disorders. Front Physiol 2020; 11:404. [PMID: 32477160 PMCID: PMC7232548 DOI: 10.3389/fphys.2020.00404] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to its roles in the maintenance of interstitial fluid homeostasis and immunosurveillance, the lymphatic system has a critical role in regulating transport of dietary lipids to the blood circulation. Recent work within the past two decades has identified an important relationship between lymphatic dysfunction and patients with metabolic disorders, such as obesity and type 2 diabetes, in part characterized by abnormal lipid metabolism and transport. Utilization of several genetic mouse models, as well as non-genetic models of diet-induced obesity and metabolic syndrome, has demonstrated that abnormal lymphangiogenesis and poor collecting vessel function, characterized by impaired contractile ability and perturbed barrier integrity, underlie lymphatic dysfunction relating to obesity, diabetes, and metabolic syndrome. Despite the progress made by these models, the contribution of the lymphatic system to metabolic disorders remains understudied and new insights into molecular signaling mechanisms involved are continuously developing. Here, we review the current knowledge related to molecular mechanisms resulting in impaired lymphatic function within the context of obesity and diabetes. We discuss the role of inflammation, transcription factor signaling, vascular endothelial growth factor-mediated signaling, and nitric oxide signaling contributing to impaired lymphangiogenesis and perturbed lymphatic endothelial cell barrier integrity, valve function, and contractile ability in collecting vessels as well as their viability as therapeutic targets to correct lymphatic dysfunction and improve metabolic syndromes.
Collapse
Affiliation(s)
- Pieter R. Norden
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
3
|
Shibata D, Suchy-Dicey A, Carty CL, Madhyastha T, Ali T, Best L, Grabowski TJ, Longstreth WT, Buchwald D. Vascular Risk Factors and Findings on Brain MRI of Elderly Adult American Indians: The Strong Heart Study. Neuroepidemiology 2019; 52:173-180. [PMID: 30677776 PMCID: PMC6986809 DOI: 10.1159/000496343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Clinical stroke is prevalent in American Indians, but the risk factors for cerebrovascular pathology have not been well-studied in this population. The purpose of this study was to correlate abnormalities on brain magnetic resonance imaging (MRI) with clinical risk factors in a cohort of elderly American Indians. METHODS Brain MRI scans from 789 participants of the Strong Heart Study were analyzed for infarcts, hemorrhage, white matter disease, and measures of cerebral atrophy including ventricular and sulcal grade and total brain volume. Clinical risk factors included measures of hypertension, diabetes, and high levels of low-density lipoprotein (LDL) cholesterol. Regression models adjusted for potential confounders were used to estimate associations between risk factors and brain MRI outcomes. RESULTS -Hypertension was associated with the presence of infarcts (p = 0.001), ventricle enlargement (p = 0.01), and increased white matter hyperintensity volume (p = 0.01). Diabetes was associated with increased prevalence of cerebral atrophy (p < 0.001), ventricular enlargement (p = 0.001), and sulcal widening (p = 0.001). High LDL was not significantly associated with any of the measured cranial imaging outcomes. CONCLUSIONS This study found risk factors for cerebrovascular disease in American Indians similar to those seen in other populations and provides additional evidence for the important roles of hypertension and diabetes in promoting cerebral infarcts and brain atrophy, respectively.
Collapse
Affiliation(s)
- Dean Shibata
- Department of Radiology, University of Washington, Seattle, Washington, USA,
| | - Astrid Suchy-Dicey
- Partnerships for Native Health, Washington State University, Seattle, Washington, USA
| | - Cara L Carty
- Partnerships for Native Health, Washington State University, Seattle, Washington, USA.,Elson S Floyd College of Medicine, Washington State University, Seattle, Washington, USA
| | - Tara Madhyastha
- Department of Radiology, University of Washington, Seattle, Washington, USA.,Integrated Brain Imaging Center, University of Washington, Seattle, Washington, USA
| | - Tauqeer Ali
- Center for American Indian Health Research, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma, Oklahoma, USA
| | - Lyle Best
- Strong Heart Study-Dakota Center, Eagle Butte, South Dakota, USA
| | - Thomas J Grabowski
- Integrated Brain Imaging Center, University of Washington, Seattle, Washington, USA.,Department of Neurology, University of Washington, Seattle, Washington, USA
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Dedra Buchwald
- Partnerships for Native Health, Washington State University, Seattle, Washington, USA.,Elson S Floyd College of Medicine, Washington State University, Seattle, Washington, USA
| |
Collapse
|
4
|
Balakrishnan P, Vaidya D, Voruganti VS, Haack K, Kent JW, North KE, Laston S, Howard BV, Umans JG, Lee ET, Best LG, MacCluer JW, Cole SA, Navas-Acien A, Franceschini N. Genetic Variants Related to Cardiometabolic Traits Are Associated to B Cell Function, Insulin Resistance, and Diabetes Among AmeriCan Indians: The Strong Heart Family Study. Front Genet 2018; 9:466. [PMID: 30369944 PMCID: PMC6194194 DOI: 10.3389/fgene.2018.00466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/24/2018] [Indexed: 01/03/2023] Open
Abstract
Background: Genetic research may inform underlying mechanisms for disparities in the burden of type 2 diabetes mellitus among American Indians. Our objective was to assess the association of genetic variants in cardiometabolic candidate genes with B cell dysfunction via HOMA-B, insulin resistance via HOMA-IR, and type 2 diabetes mellitus in the Strong Heart Family Study (SHFS). Methods and Results: We examined the association of variants, previously associated with cardiometabolic traits (∼200,000 from Illumina Cardio MetaboChip), using mixed models of HOMA-B residuals corrected for HOMA-IR (cHOMA-B), log transformed HOMA-IR, and incident diabetes, adjusted for age, sex, population stratification, and familial relatedness. Center-specific estimates were combined using fixed effect meta-analyses. We used Bonferroni correction to account for multiple testing (P < 4.13 × 10−7). We also assessed the association between variants in candidate diabetes genes with these metabolic traits. We explored the top SNPs in an independent, replication sample from Southwestern Arizona. We identified significant associations with cHOMA-B for common variants at 26 loci of which 8 were novel (PRSS7, FCRL5, PEL1, LRP12, IGLL1, ARHGEF10, PARVA, FLJ16686). The most significant variant association with cHOMA-B was observed on chromosome 5 for an intergenic variant near PARP8 (rs2961831, P = 6.39 × 10−9). In the replication study, we found a signal at rs4607517 near GCK/YKT6 (P = 0.01). Variants near candidate diabetes genes (especially GCK and KCNQ1) were also nominally associated with HOMA-IR and cHOMA-B. Conclusion: We identified variants at novel loci and confirmed those at known candidate diabetes loci associations for cHOMA-B. This study also provided evidence for association of variants at KCNQ2, CTNAA2, and KCNQ1with cHOMA-B among American Indians. Further studies are needed to account for the high heritability of diabetes among the American Indian participants of the SHFS cohort.
Collapse
Affiliation(s)
- Poojitha Balakrishnan
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Dhananjay Vaidya
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States.,Clinical and Translational Research, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - V Saroja Voruganti
- Department of Nutrition, UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, United States
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sandra Laston
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, United States
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, United States
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, United States.,Georgetown and Howard Universities Center for Clinical and Translational Science, Washington, DC, United States
| | - Elisa T Lee
- Center for American Indian Health Research, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lyle G Best
- Missouri Breaks Industries Research, Inc., Eagle Butte, SD, United States
| | - Jean W MacCluer
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Souto JC, Pena G, Ziyatdinov A, Buil A, López S, Fontcuberta J, Soria JM. A genomewide study of body mass index and its genetic correlation with thromboembolic risk. Results from the GAIT project. Thromb Haemost 2014; 112:1036-43. [PMID: 25118907 DOI: 10.1160/th14-03-0275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/13/2014] [Indexed: 11/05/2022]
Abstract
Thrombosis and obesity are complex epidemiologically associated diseases. The mechanism of this association is not yet understood. It was the objective of this study to identify genetic components of body mass index (BMI) and their possible role in the risk of thromboembolic disease. With the self-reported BMI of 397 individuals from 21 extended families enrolled in the GAIT (Genetic Analysis of Idiopathic Thrombophilia) Project, we estimated the heritability of BMI and the genetic correlation with the risk of thrombosis. Subjects were genotyped for an autosomal genome-wide scan with 363 highly-informative DNA markers. Univariate and bivariate multipoint linkage analyses were performed. The heritability for BMI was 0.31 (p=2.9×10⁻⁵). Thromboembolic disease (including venous and arterial) and BMI had a significant genetic correlation (ρG=0.54, p=0.005). Two linkage signals for BMI were obtained, one at 13q34 (LOD=3.36, p=0.0004) and other at 2q34, highly suggestive of linkage (LOD=1.95). Bivariate linkage analysis with BMI and thrombosis risk also showed a significant signal at 13q34 (LOD=3), indicating that this locus influences at the same time normal variation in the BMI phenotype as well as susceptibility to thrombosis. In conclusion, BMI and thrombosis are genetically correlated. The locus 13q34, which showed pleiotropy with both phenotypes, contains two candidate genes, which may explain our linkage pleiotropic signal and deserve further investigation as possible risk factors for obesity and thrombosis.
Collapse
Affiliation(s)
- Juan Carlos Souto
- Juan Carlos Souto, MD, PhD, Unitat d'Hemostàsia i Trombosi, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025, Barcelona, Spain, Tel.: +34 93 5537151, Fax: +34 93 5537153, E-mail:
| | | | | | | | | | | | | |
Collapse
|
6
|
Kim HJ, Yoo YJ, Ju YS, Lee S, Cho SI, Sung J, Kim JI, Seo JS. Combined linkage and association analyses identify a novel locus for obesity near PROX1 in Asians. Obesity (Silver Spring) 2013; 21:2405-12. [PMID: 23818313 DOI: 10.1002/oby.20153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 10/24/2012] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Although genome-wide association studies (GWAS) have substantially contributed to understanding the genetic architecture, unidentified variants for complex traits remain an issue. One of the efficient approaches is the improvement of the power of GWAS scan by weighting P values with prior linkage signals. Our objective was to identify the novel candidates for obesity in Asian populations by using genemapping strategies that combine linkage and association analyses. DESIGN AND METHODS To obtain linkage information for body mass index (BMI) and waist circumference (WC), we performed a multipoint genome-wide linkage study in an isolated Mongolian sample of 1,049 individuals from 74 families. Next, a family-based GWAS, which integrates within- and between-family components, was performed using the genotype data of 756 individuals of the Mongolian sample, and P values for association were weighted using linkage information obtained previously. RESULTS For both BMI (LOD = 3.3) and WC (LOD = 2.6), the highest linkage peak was discovered at chromosome 10q11.22. In family-based GWAS combined with linkage information, six single-nucleotide polymorphisms (SNPs) for BMI and five SNPs for WC reached a significant level of association (linkage weighted P < 1 × 10(-5) ). Of these, only one of the SNPs associated with WC (rs1704198) was replicated in 327 Korean families comprising 1,301 individuals. This SNP was located in the proximity of the prosperorelated homeobox 1 (PROX1) gene, the function of which was validated previously in a mouse model. CONCLUSION Our powerful strategic analysis enabled the discovery of a novel candidate gene, PROX1, associated with WC in an Asian population.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bella JN, Cole SA, Laston S, Almasy L, Comuzzie A, Lee ET, Best LG, Fabsitz RR, Howard BV, Maccluer JW, Roman MJ, Devereux RB, Göring HHH. Genome-wide linkage analysis of carotid artery lumen diameter: the strong heart family study. Int J Cardiol 2013; 168:3902-8. [PMID: 23871337 DOI: 10.1016/j.ijcard.2013.06.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/03/2013] [Accepted: 06/28/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND A significant proportion of the variability in carotid artery lumen diameter is attributable to genetic factors. METHODS Carotid ultrasonography and genotyping were performed in the 3300 American Indian participants in the Strong Heart Family Study (SHFS) to identify chromosomal regions harboring novel genes associated with inter-individual variation in carotid artery lumen diameter. Genome-wide linkage analysis was conducted using standard variance component linkage methods, implemented in SOLAR, based on multipoint identity-by-descent matrices. RESULTS Genome-wide linkage analysis revealed a significant evidence for linkage for a locus for left carotid artery diastolic and systolic lumen diameters in Arizona SHFS participants on chromosome 7 at 120 cM (lod = 4.85 and 3.77, respectively, after sex and age adjustment, and lod = 3.12 and 2.72, respectively, after adjustment for sex, age, height, weight, systolic and diastolic blood pressure, diabetes mellitus and current smoking). Other regions with suggestive evidence of linkage for left carotid artery diastolic and systolic lumen diameter were found on chromosome 12 at 153 cM (lod = 2.20 and 2.60, respectively, after sex and age adjustment, and lod = 2.44 and 2.16, respectively, after full covariate adjustment) in Oklahoma SHFS participants; suggestive linkage for right carotid artery diastolic and systolic lumen diameter was found on chromosome 9 at 154 cM (lod = 2.72 and 3.19, respectively after sex and age adjustment, and lod = 2.36 and 2.21, respectively, after full covariate adjustment) in Oklahoma SHFS participants. CONCLUSION We found significant evidence for loci influencing carotid artery lumen diameter on chromosome 7q and suggestive linkage on chromosomes 12q and 9q.
Collapse
Affiliation(s)
- Jonathan N Bella
- Bronx-Lebanon Hospital Center, Bronx, NY, United States; Albert Einstein College of Medicine, Bronx, NY, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Malhotra A, Kobes S, Knowler WC, Baier LJ, Bogardus C, Hanson RL. A genome-wide association study of BMI in American Indians. Obesity (Silver Spring) 2011; 19:2102-6. [PMID: 21701565 PMCID: PMC7229868 DOI: 10.1038/oby.2011.178] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Numerous studies have been done to understand genetic contributors to BMI, but only a limited number of studies have been done in nonwhite groups such as American Indians. A genome-wide association study (GWAS) for BMI was therefore performed in Pima Indians. BMI measurements from a longitudinal study of 1,120 Pima Indians and 454,194 single-nucleotide polymorphisms (SNPs) from the 1 million Affymetrix SNP panel were used (35% of SNPs were excluded due to minor allele frequency <0.05). Data included BMI measured at multiple examinations collected from 1965 to 2004, as well as the maximum BMI at one of these visits. General and within-family tests were performed using a maximum-likelihood based mixed model procedure. No SNP reached a genome-wide significance level (estimated at P < 4.94 × 10(-7)). For repeated measures analyses, the strongest associations for general and within-family tests mapped to two different regions on chromosome 6 (rs9342220 (P = 1.39 × 10(-6)) and rs7758764 (P = 2.51 × 10(-6)), respectively). For maximum BMI, the strongest association for the general tests mapped to chromosome 4 (rs17612333; P = 1.98 × 10(-6)) and to chromosome 3 (rs11127958; P = 1.53 × 10(-6)) for the within-family tests. Further analysis is important because only a few of these regions have been previously implicated in a GWAS and genetic susceptibility may differ by ethnicity.
Collapse
Affiliation(s)
- Alka Malhotra
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Link CL, McKinlay JB. Disparities in the prevalence of diabetes: is it race/ethnicity or socioeconomic status? Results from the Boston Area Community Health (BACH) survey. Ethn Dis 2009; 19:288-292. [PMID: 19769011 PMCID: PMC3706078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
OBJECTIVES Many researchers and clinicians continue to believe that non-modifiable race/ ethnicity is a major contributor to diabetes, prompting a well-intentioned search for genetic and bio-physiological explanations. We seek to reinforce earlier findings showing that socioeconomic status is more strongly associated with diabetes prevalence than race/ ethnicity and suggests a very different and potentially modifiable etiologic pathway. METHODS A community-based epidemiologic survey of 5503 Boston residents aged 30-79 years (1767 Black, 1877 Hispanic, 1859 White; 2301 men and 3202 women). RESULTS After adjusting for age and sex, Blacks and Hispanics have statistically significantly increased odds of having diabetes: Black (OR, 2.0; 95% CI, 1.4-2.9) and Hispanic (2.4; CI 1.6-3.4) compared to Whites. If socioeconomic status, a combination of education and income, is added to the model, these odds are reduced for both Blacks (OR 1.6; CI, 1.1-2.2) and Hispanics (OR 1.6; CI, 1.1-2.3). In a multivariate logistic regression adjusting for age, sex, socioeconomic status, obesity, hypertension, gestational diabetes, physical activity, trouble paying for basics, health insurance status, and family history of diabetes, these odds are reduced further: Black (OR 1.0; CI, 0.7-1.5) and Hispanic (OR 1.3; CI, 0.9-2.1) and are no longer statistically significant. CONCLUSIONS Consistent with other reports, we find socioeconomic status has a much stronger association with diabetes prevalence than race/ethnicity. Continuing to focus on race/ethnicity as a primary determinant of diabetes prevalence overemphasizes the importance of biomedical factors and diverts effort from socio-medical interventions such as improving social circumstances, access to effective care, and upstream redistributive social policies.
Collapse
Affiliation(s)
- Carol L Link
- New England Research Institutes, Watertown, MA 02472, USA.
| | | |
Collapse
|