1
|
Lee IK, Kim YM, Lim HH. Relationship between urinary sodium excretion and bone mineral density in pediatrics: population-based study from KNHANES V 2010-2011. J Pediatr Endocrinol Metab 2024; 37:553-558. [PMID: 38754024 DOI: 10.1515/jpem-2023-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/13/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES Osteoporosis poses a growing public health challenge worldwide. While calcium and vitamin D may influence bone mineral density (BMD), the effect of sodium (Na) intake, particularly in pediatrics, remains unexplored. This study aimed to evaluate the relationship between urinary Na excretion and BMD in a Korean pediatric population. METHODS A total of 2,018 participants (1,084 males and 934 females) aged 10-18 years were included from the data obtained from Korea National Health and Nutrition Examination Survey V (2010-2011). RESULTS Daily Na intake was about 4,560 mg and 3,600 mg in boys and girls, respectively. The mean intake of Na per day was positively correlated with the increment of urine Na/Cr ratio quartile (p<0.001). The BMD z-score [lumbar spine (LS), femur neck (FN), and whole body except head (WB)] in the group with high Na/Cr ratio (4th quartile, 4Q) was significantly less than in those with low Na/Cr ratio (1st quartile, 1Q) (p<0.001). Moreover, the LS (p=0.028), FN (p=0.002) and WB (p=0.056) in the 4Q group showed 2.0 times, 2.8 times, and 1.9 times greater risk of low BMD z-scores than in the 1Q group, even after adjusting for other confounding factors, such as age, sex, BMI, vitamin D, moderate activity, and household incomes. CONCLUSIONS Our findings suggest a strong negative association between urine Na excretion and BMD among Korean children and adolescents. The results underscore the importance of public health interventions targeting Na intake. Further longitudinal studies are recommended to clarify the long-term effects of Na on bone health in younger populations.
Collapse
Affiliation(s)
- In Kyung Lee
- Department of Pediatrics, Seoul St. Mary's Hospital, Seoul, South Korea
- Department of Pediatrics, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Yoo Mi Kim
- Department of Pediatrics, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong, South Korea
| | - Han Hyuk Lim
- Department of Pediatrics, Chungnam National University College of Medicine, Daejeon, South Korea
- Department of Pediatrics, 65409 Chungnam National University Hospital , Daejeon, South Korea
| |
Collapse
|
2
|
Unravelling the Complex Relationship between Diet and Nephrolithiasis: The Role of Nutrigenomics and Nutrigenetics. Nutrients 2022; 14:nu14234961. [PMID: 36500991 PMCID: PMC9739708 DOI: 10.3390/nu14234961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Nephrolithiasis is an increasingly prevalent condition, especially in high income countries, and is associated with high morbidity. Extraordinary progress in genetics made the identification of genetic forms of nephrolithiasis possible. These genetic diseases are usually rare and do not account for the most common forms of nephrolithiasis that are the result of several factors such as environment, dietary habits, and predisposing genes. This knowledge has shaped what we classify as nephrolithiasis, a condition that is now recognized as systemic. How and to what extent all these factors interact with one another and end in kidney stone formation, growth, and recurrence is not completely understood. Two new research fields have recently been trying to give some answers: nutrigenomics and nutrigenetics. These fields have the aim of understanding the intricate diet/genome interface that influences gene expression regulation mainly through epigenetic mechanisms and results in specific medical conditions such as cancer, metabolic syndrome, and cardiovascular diseases. Epigenetics seems to play a crucial role and could represent the link between environmental factors, that we are constantly exposed to, and risk factors for nephrolithiasis. In this systematic review, we summarize all the available evidence of proven or hypothesized epigenetic mechanisms related to nephrolithiasis.
Collapse
|
3
|
The importance of kidney calcium handling in the homeostasis of extracellular fluid calcium. Pflugers Arch 2022; 474:885-900. [PMID: 35842482 DOI: 10.1007/s00424-022-02725-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Extracellular fluid calcium concentration must be maintained within a narrow range in order to sustain many biological functions, encompassing muscle contraction, blood coagulation, and bone and tooth mineralization. Blood calcium value is critically dependent on the ability of the renal tubule to reabsorb the adequate amount of filtered calcium. Tubular calcium reabsorption is carried out by various and complex mechanisms in 3 distinct segments: the proximal tubule, the cortical thick ascending limb of the loop of Henle, and the late distal convoluted/connecting tubule. In addition, calcium reabsorption is tightly controlled by many endocrine, paracrine, and autocrine factors, as well as by non-hormonal factors, in order to adapt the tubular handling of calcium to the metabolic requirements. The present review summarizes the current knowledge of the mechanisms and factors involved in calcium handling by the kidney and, ultimately, in extracellular calcium homeostasis. The review also highlights some of our gaps in understanding that need to be addressed in the future.
Collapse
|
4
|
Hunter RW, Dhaun N, Bailey MA. The impact of excessive salt intake on human health. Nat Rev Nephrol 2022; 18:321-335. [DOI: 10.1038/s41581-021-00533-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/19/2022]
|
5
|
Perera T, Ranasinghe S, Alles N, Waduge R. Experimental rat model for acute tubular injury induced by high water hardness and high water fluoride: efficacy of primary preventive intervention by distilled water administration. BMC Nephrol 2020; 21:103. [PMID: 32204690 PMCID: PMC7092545 DOI: 10.1186/s12882-020-01763-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/12/2020] [Indexed: 12/27/2022] Open
Abstract
Background High water hardness associated with high water fluoride and the geographical distribution of Chronic Kidney Disease of unknown etiology (CKDu) in Sri Lanka are well correlated. We undertook this study to observe the effects of high water hardness with high fluoride on kidney and liver in rats and efficacy of distilled water in reducing the effects. Methods Test water sample with high water hardness and high fluoride was collected from Mihinthale region and normal water samples were collected from Kandy region. Twenty-four rats were randomly divided into 8 groups and water samples were introduced as follows as daily water supply. Four groups received normal water for 60 (N1) and 90 (N2) days and test water for 60 (T1) and 90 (T2) days. Other four groups received normal (N3) and test (T3) water for 60 days and followed by distilled water for additional 60 days and normal (N4) and test (T4) water for 90 days followed by distilled water for another 90 days. The rats were sacrificed following treatment. Serum samples were subjected to biochemical tests; serum creatinine, urea, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and elemental analysis. Histopathological examinations were carried out using kidney and liver samples. Results Test water treated groups were associated with acute tubular injury with loss of brush border and test water followed with distilled water treated groups maintained a better morphology with minimal loss of brush border. Serum creatinine levels in T1 and T2 groups and urea level in T2 group were significantly (p < 0.05) increased compared to control groups. After administration of distilled water, both parameters were significantly reduced in T4 group (p < 0.05) compared to T2. Serum AST activity was increased in T4 group (p < 0.05) compared to control group with no histopathological changes in liver tissues. The serum sodium levels were found to be much higher compared to the other electrolytes in test groups. Conclusion Hard water with high fluoride content resulted in acute tubular injury with a significant increase in serum levels of creatinine, urea and AST activity. These alterations were minimized by administering distilled water.
Collapse
Affiliation(s)
- Thanusha Perera
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Shirani Ranasinghe
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka. .,Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Neil Alles
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Roshitha Waduge
- Department of Pathology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
6
|
Mun EG, Park JE, Cha YS. Effects of Doenjang, a Traditional Korean Soybean Paste, with High-Salt Diet on Blood Pressure in Sprague-Dawley Rats. Nutrients 2019; 11:nu11112745. [PMID: 31726743 PMCID: PMC6893577 DOI: 10.3390/nu11112745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Fermented foods in Korea contain a lot of salt. Although salt is reported to exacerbate health trouble, fermented foods have beneficial effects. We hypothesized that doenjang could reduce blood pressure in Sprague-Dawley (SD) rats fed a high-salt diet. Eighteen SD rats were divided into three groups: normal-salt (NS) group, high-salt (HS) group, and high-salt with doenjang (HSD) group. The salinity of doenjang and saltwater was adjusted to 8% using Mohr's method. Blood pressure was significantly reduced in the HSD group compared with the HS group. Water intake and urine excretion volume has significantly increased in the HS group compared with the HSD group. The excreted concentrations of urine sodium, urine potassium, and feces potassium significantly increased in the HSD group compared with the HS and NS groups. Renin level was significantly decreased in the HSD group compared to the other groups. These results indicate that eating traditional salty fermented food is not a direct cause of hypertension, and the intake of doenjang in normal healthy animals improved blood pressure.
Collapse
|
7
|
Guha M, Banerjee H, Mitra P, Das M. The Demographic Diversity of Food Intake and Prevalence of Kidney Stone Diseases in the Indian Continent. Foods 2019; 8:E37. [PMID: 30669549 PMCID: PMC6352122 DOI: 10.3390/foods8010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 01/14/2023] Open
Abstract
Food intake plays a pivotal role in human growth, constituting 45% of the global economy and wellbeing in general. The consumption of a balanced diet is essential for overall good health, and a lack of equilibrium can lead to malnutrition, prenatal death, obesity, osteoporosis and bone fractures, coronary heart diseases (CHD), idiopathic hypercalciuria, diabetes, and many other conditions. CHD, osteoporosis, malnutrition, and obesity are extensively discussed in the literature, although there are fragmented findings in the realm of kidney stone diseases (KSD) and their correlation with food intake. KSD associated with hematuria and renal failure poses an increasing threat to healthcare infrastructures and the global economy, and its emergence in the Indian population is being linked to multi-factorial urological disorder resulting from several factors. In this realm, epidemiological, biochemical, and macroeconomic situations have been the focus of research, even though food intake is also of paramount importance. Hence, in this article, we review the corollary associations with the consumption of diverse foods and the role that these play in KSD in an Indian context.
Collapse
Affiliation(s)
- Manalee Guha
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| | - Hritwick Banerjee
- Department of Biomedical Engineering, Faculty of Engineering, 4 Engineering Drive 3, National University of Singapore, Singapore 117583, Singapore.
| | - Pubali Mitra
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
8
|
Bie P. Mechanisms of sodium balance: total body sodium, surrogate variables, and renal sodium excretion. Am J Physiol Regul Integr Comp Physiol 2018; 315:R945-R962. [DOI: 10.1152/ajpregu.00363.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The classical concepts of human sodium balance include 1) a total pool of Na+ of ≈4,200 mmol (total body sodium, TBS) distributed primarily in the extracellular fluid (ECV) and bone, 2) intake variations of 0.03 to ≈6 mmol·kg body mass−1·day−1, 3) asymptotic transitions between steady states with a halftime (T½) of 21 h, 4) changes in TBS driven by sodium intake measuring ≈1.3 day [ΔTBS/Δ(Na+ intake/day)], 5) adjustment of Na+ excretion to match any diet thus providing metabolic steady state, and 6) regulation of TBS via controlled excretion (90–95% renal) mediated by surrogate variables. The present focus areas include 1) uneven, nonosmotic distribution of increments in TBS primarily in “skin,” 2) long-term instability of TBS during constant Na+ intake, and 3) physiological regulation of renal Na+ excretion primarily by neurohumoral mechanisms dependent on ECV rather than arterial pressure. Under physiological conditions 1) the nonosmotic distribution of Na+ seems conceptually important, but quantitatively ill defined; 2) long-term variations in TBS represent significant deviations from steady state, but the importance is undetermined; and 3) the neurohumoral mechanisms of sodium homeostasis competing with pressure natriuresis are essential for systematic analysis of short-term and long-term regulation of TBS. Sodium homeostasis and blood pressure regulation are intimately related. Real progress is slow and will accelerate only through recognition of the present level of ignorance. Nonosmotic distribution of sodium, pressure natriuresis, and volume-mediated regulation of renal sodium excretion are essential intertwined concepts in need of clear definitions, conscious models, and future attention.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Loss-of-function mutations of SCN10A encoding Na V1.8 α subunit of voltage-gated sodium channel in patients with human kidney stone disease. Sci Rep 2018; 8:10453. [PMID: 29992996 PMCID: PMC6041274 DOI: 10.1038/s41598-018-28623-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/26/2018] [Indexed: 01/18/2023] Open
Abstract
Human kidney stone disease (KSD) causes significant morbidity and public health burden worldwide. The etiology of KSD is heterogeneous, ranging from monogenic defects to complex interaction between genetic and environmental factors. However, the genetic defects causing KSD in the majority of affected families are still unknown. Here, we report the discovery of mutations of SCN10A, encoding NaV1.8 α subunit of voltage-gated sodium channel, in families with KSD. The region on chromosome 3 where SCN10A locates was initially identified in a large family with KSD by genome-wide linkage analysis and exome sequencing. Two mutations (p.N909K and p.K1809R) in the same allele of SCN10A co-segregated with KSD in the affected family. Additional mutation (p.V1149M) of SCN10A was identified in another affected family, strongly supporting the causal role of SCN10A for KSD. The amino acids at these three positions, N909, K1809, and V1149, are highly conserved in vertebrate evolution, indicating their structural and functional significances. NaV1.8 α subunit mRNA and protein were found to express in human kidney tissues. The mutant proteins expressed in cultured cells were unstable and causing reduced current density as analyzed by whole-cell patch-clamp technique. Thus, loss-of-function mutations of SCN10A were associated with KSD in the families studied.
Collapse
|
10
|
Tang L, Zheng S, Ren H, He D, Zeng C, Wang WE. Activation of angiotensin II type 1 receptors increases D 4 dopamine receptor expression in rat renal proximal tubule cells. Hypertens Res 2017; 40:652-657. [PMID: 28230199 DOI: 10.1038/hr.2017.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022]
Abstract
Both the dopaminergic and renin-angiotensin systems play important roles in the regulation of blood pressure. Our previous study showed that the stimulation of dopaminergic D4 receptors reduced angiotensin II type 1 (AT1) receptor expression in renal proximal tubule (RPT) cells. In this study, we tested whether AT1 receptors, in return, would regulate D4 receptor expression and function in RPT cells. Expression of the D4 receptor from Wistar-Kyoto (WKY) or spontaneously hypertensive rats (SHRs) RPT cells and renal cortex tissues were determined by western blot, and Na+-K+ ATPase activity was determined using an enzyme assay. Urine volume and urine sodium of WKY rats and SHRs treated with or without D4 receptor stimulation were measured. Thus, activation of AT1 receptors with angiotensin II (Ang II) increased D4 receptor protein expression in RPT cells, and this increase was blocked by nicardipine, a calcium influx blocker. The D4 receptor agonist PD168077 inhibited Na+-K+ ATPase activity in WKY RPT cells but not in SHR RPT cells. Ang II pre-treatment promoted D4 receptor-mediated inhibition of Na+-K+ ATPase in RPT cells in WKY rats but not in SHRs. Meanwhile, Ang II pre-treatment augmented the natriuretic effect of PD168077 in WKY rats but not in SHRs. In conclusion, AT1 stimulation can regulate the expression and natriuretic function of dopaminergic D4 receptors in RPT cells and might be involved in the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- Luxun Tang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Duofen He
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, PR China.,Chongqing Cardiovascular Clinical Research Center, Daping Hospital, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
11
|
The Relationship between Metabolic Syndrome and Osteoporosis: A Review. Nutrients 2016; 8:nu8060347. [PMID: 27338453 PMCID: PMC4924188 DOI: 10.3390/nu8060347] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022] Open
Abstract
Metabolic syndrome (MetS) and osteoporosis are two major healthcare problems worldwide. Metabolic syndrome is a constellation of medical conditions consisting of central obesity, hyperglycemia, hypertension, and dyslipidemia, in which each acts on bone tissue in different ways. The growing prevalence of MetS and osteoporosis in the population along with the controversial findings on the relationship between both conditions suggest the importance for further investigation and discussion on this topic. This review aims to assess the available evidence on the effects of each component of MetS on bone metabolism from the conventional to the contemporary. Previous studies suggested that the two conditions shared some common underlying pathways, which include regulation of calcium homeostasis, receptor activator of NF-κB ligand (RANKL)/receptor activator of the NF-κB (RANK)/osteoprotegerin (OPG) and Wnt-β-catenin signaling pathways. In conclusion, we suggest that MetS may have a potential role in developing osteoporosis and more studies are necessary to further prove this hypothesis.
Collapse
|
12
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
13
|
Lee CT, Ng HY, Lee YT, Lai LW, Lien YHH. The role of calbindin-D28k on renal calcium and magnesium handling during treatment with loop and thiazide diuretics. Am J Physiol Renal Physiol 2015; 310:F230-6. [PMID: 26582761 DOI: 10.1152/ajprenal.00057.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022] Open
Abstract
Calbindin-D28k (CBD-28k) is a calcium binding protein located in the distal convoluted tubule (DCT) and plays an important role in active calcium transport in the kidney. Loop and thiazide diuretics affect renal Ca and Mg handling: both cause Mg wasting, but have opposite effects on Ca excretion as loop diuretics increase, but thiazides decrease, Ca excretion. To understand the role of CBD-28k in renal Ca and Mg handling in response to diuretics treatment, we investigated renal Ca and Mg excretion and gene expression of DCT Ca and Mg transport molecules in wild-type (WT) and CBD-28k knockout (KO) mice. Mice were treated with chlorothiazide (CTZ; 50 mg · kg(-1) · day(-1)) or furosemide (FSM; 30 mg · kg(-1) · day(-1)) for 3 days. To avoid volume depletion, salt was supplemented in the drinking water. Urine Ca excretion was reduced in WT, but not in KO mice, by CTZ. FSM induced similar hypercalciuria in both groups. DCT Ca transport molecules, including transient receptor potential vanilloid 5 (TRPV5), TRPV6, and CBD-9k, were upregulated by CTZ and FSM in WT, but not in KO mice. Urine Mg excretion was increased and transient receptor potential subfamily M, member 6 (TRPM6) was upregulated by both CTZ and FSM in WT and KO mice. In conclusion, CBD-28k plays an important role in gene expression of DCT Ca, but not Mg, transport molecules, which may be related to its being a Ca, but not a Mg, intracellular sensor. The lack of upregulation of DCT Ca transport molecules by thiazides in the KO mice indicates that the DCT Ca transport system is critical for Ca conservation by thiazides.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, and Chang-Gung University, College of Medicine, Taoyuan, Taiwan; Kidney Research Center, Chang Gung Memorial Hospital, Chang-Gung University, College of Medicine, Taoyuan, Taiwan
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, and Chang-Gung University, College of Medicine, Taoyuan, Taiwan
| | - Yueh-Ting Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan, and Chang-Gung University, College of Medicine, Taoyuan, Taiwan
| | - Li-Wen Lai
- Departments of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Yeong-Hau H Lien
- Arizona Kidney Disease and Heart Center, Tucson, Arizona; and Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
14
|
Huang HS, Ma MC. High Sodium-Induced Oxidative Stress and Poor Anticrystallization Defense Aggravate Calcium Oxalate Crystal Formation in Rat Hyperoxaluric Kidneys. PLoS One 2015; 10:e0134764. [PMID: 26241473 PMCID: PMC4524621 DOI: 10.1371/journal.pone.0134764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/13/2015] [Indexed: 11/26/2022] Open
Abstract
Enhanced sodium excretion is associated with intrarenal oxidative stress. The present study evaluated whether oxidative stress caused by high sodium (HS) may be involved in calcium oxalate crystal formation. Male rats were fed a sodium-depleted diet. Normal-sodium and HS diets were achieved by providing drinking water containing 0.3% and 3% NaCl, respectively. Rats were fed a sodium-depleted diet with 5% hydroxyl-L-proline (HP) for 7 and 42 days to induce hyperoxaluria and/or calcium oxalate deposition. Compared to normal sodium, HS slightly increased calcium excretion despite diuresis; however, the result did not reach statistical significance. HS did not affect the hyperoxaluria, hypocalciuria or supersaturation caused by HP; however, it increased calcium oxalate crystal deposition soon after 7 days of co-treatment. Massive calcium oxalate formation and calcium crystal excretion in HS+HP rats were seen after 42 days of treatment. HP-mediated hypocitraturia was further exacerbated by HS. Moreover, HS aggravated HP-induced renal injury and tubular damage via increased apoptosis and oxidative stress. Increased urinary malondialdehyde excretion, in situ superoxide production, NAD(P)H oxidase and xanthine oxidase expression and activity, and decreased antioxidant enzyme expression or activity in the HS+HP kidney indicated exaggerated oxidative stress. Interestingly, this redox imbalance was associated with reduced renal osteopontin and Tamm-Horsfall protein expression (via increased excretion) and sodium-dependent dicarboxylate cotransporter NaDC-1 upregulation. Collectively, our results demonstrate that a HS diet induces massive crystal formation in the hyperoxaluric kidney; this is not due to increased urinary calcium excretion but is related to oxidative injury and loss of anticrystallization defense.
Collapse
Affiliation(s)
- Ho-Shiang Huang
- Department of Urology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ming-Chieh Ma
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Effects of renal Na+/Ca2+ exchanger 1 inhibitor (SEA0400) treatment on electrolytes, renal function and hemodynamics in rats. Clin Exp Nephrol 2014; 19:585-90. [PMID: 25410661 DOI: 10.1007/s10157-014-1053-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 11/01/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Na(+)/Ca(2+) exchanger 1 (NCX1) controls intracellular Ca(2+) concentration in various cell types. In the kidney, NCX1 is expressed mainly in the distal tubular basolateral membrane as well as in vascular smooth muscle. Tubular NCX1 is involved in Ca(2+) reabsorption, and NCX1 in renal arterioles may control intraglomerular pressure. However, the functions of renal NCX1 have not been studied in vivo. Therefore, this study examined the effects of renal NCX1 blockade on water and solute metabolism, renal function and blood pressure in rats. METHODS Wistar-Kyoto rats were uninephrectomized, and an osmotic mini pump was implanted to infuse the remnant kidney cortex with a specific NCX1 inhibitor, SEA0400 (SEA), or vehicle for 7 days. RESULTS Serum Ca(2+) concentration and urinary Ca(2+) excretion were similar between the vehicle- and SEA-treated groups. However, serum phosphate was significantly decreased by 8 % in the SEA group, with similar urinary phosphate excretion between the two groups. Systolic blood pressure was higher in the SEA group (117 ± 3 vs. 126 ± 1 mmHg, n = 9-11), with a 1.6-fold increase in plasma aldosterone concentration. However, SEA significantly reduced urinary protein excretion and the glomerular sectional area by 16 and 8 %, respectively. Similar experiment in spontaneously hypertensive rats produced different results. CONCLUSION Renal SEA treatment reduced serum phosphate concentration, urinary protein and glomerular size with higher systemic blood pressure compared to control Wistar-Kyoto rats. Further study on renal NCX1 may be beneficial in delineating the pathophysiology of glomerular pressure control and calcium/phosphate regulations.
Collapse
|
16
|
Sharma A, Prasongwattana V, Cha’on U, Selmi C, Hipkaeo W, Boonnate P, Pethlert S, Titipungul T, Intarawichian P, Waraasawapati S, Puapiroj A, Sitprija V, Reungjui S. Monosodium glutamate (MSG) consumption is associated with urolithiasis and urinary tract obstruction in rats. PLoS One 2013; 8:e75546. [PMID: 24086562 PMCID: PMC3784461 DOI: 10.1371/journal.pone.0075546] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/17/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The peritoneal injection of monosodium glutamate (MSG) can induce kidney injury in adult rats but the effects of long-term oral intake have not been determined. METHODS We investigated the kidney histology and function in adult male Wistar rats that were fed ad libitum with a standard rat chow pellet and water with or without the addition of 2 mg/g body weight MSG/day in drinking water (n=10 per group). Both MSG-treated and control animals were sacrificed after 9 months when renal function parameters, blood and urine electrolytes, and tissue histopathology were determined. RESULTS MSG-treated rats were more prone to kidney stone formation, as represented by the alkaline urine and significantly higher activity product of calcium phosphate. Accordingly, 3/10 MSG-treated rats developed kidney stones over 9 months versus none of the control animals. Further, 2/10 MSG-treated rats but none (0/10) of the controls manifested hydronephrosis. MSG-treated rats had significantly higher levels of serum creatinine and potassium including urine output volume, urinary excretion sodium and citrate compared to controls. In contrast, MSG-treated rats had significantly lower ammonium and magnesium urinary excretion. CONCLUSION Oral MSG consumption appears to cause alkaline urine and may increase the risks of kidney stones with hydronephrosis in rats. Similar effects in humans must be verified by dedicated studies.
Collapse
Affiliation(s)
- Amod Sharma
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vitoon Prasongwattana
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ubon Cha’on
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Carlo Selmi
- Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Milan, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - Wiphawi Hipkaeo
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyanard Boonnate
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supattra Pethlert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tanin Titipungul
- Department of Pathology, Mahasarakham Hospital, Mahasarakham, Thailand
| | | | - Sakda Waraasawapati
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Anucha Puapiroj
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Sirirat Reungjui
- Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|