1
|
Saleem M, Masenga SK, Ishimwe JA, Demirci M, Ahmad T, Jamison S, Albritton CF, Mwesigwa N, Porcia Haynes A, White J, Neikirk K, Vue Z, Hinton A, Arshad S, Desta S, Kirabo A. Recent Advances in Understanding Peripheral and Gut Immune Cell-Mediated Salt-Sensitive Hypertension and Nephropathy. Hypertension 2024; 81:436-446. [PMID: 38164753 PMCID: PMC10922672 DOI: 10.1161/hypertensionaha.123.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Hypertension is the primary modifiable risk factor for cardiovascular, renal, and cerebrovascular diseases and is considered the main contributing factor to morbidity and mortality worldwide. Approximately 50% of hypertensive and 25% of normotensive people exhibit salt sensitivity of blood pressure, which is an independent risk factor for cardiovascular disease. Human and animal studies demonstrate that the immune system plays an important role in the etiology and pathogenesis of salt sensitivity of blood pressure, kidney damage, and vascular diseases. Antigen-presenting and adaptive immune cells are implicated in salt-sensitive hypertension and salt-induced renal and vascular injury. Elevated sodium activates antigen-presenting cells to release proinflammatory cytokines including IL (interleukin) 6, tumor necrosis factor-α, IL-1β, and accumulate isolevuglandin-protein adducts. In turn, these activate T cells release prohypertensive cytokines including IL-17A. Moreover, high-salt intake is associated with gut dysbiosis, leading to inflammation, oxidative stress, and blood pressure elevation but the mechanistic contribution to salt-sensitivity of blood pressure is not clearly understood. Here, we discuss recent advances in research investigating the cause, potential biomarkers, and therapeutic targets for salt-sensitive hypertension as they pertain to the gut microbiome, immunity, and inflammation.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sepiso K Masenga
- Mulungushi University, School of Medicine and Health Sciences, HAND Research Group, Livingstone, Zambia
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mert Demirci
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sydney Jamison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Claude F. Albritton
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Naome Mwesigwa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jalyn White
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Spelman College Department of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Suha Arshad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
2
|
Xu J, Shi X, Pan Y. The Association of Aspartate Aminotransferase/Alanine Aminotransferase Ratio with Diabetic Nephropathy in Patients with Type 2 Diabetes. Diabetes Metab Syndr Obes 2021; 14:3831-3837. [PMID: 34522109 PMCID: PMC8434854 DOI: 10.2147/dmso.s330741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To investigate the relationship between aspartate aminotransferase to alanine aminotransferase ratio (AST/ALT) and diabetic nephropathy (DN). PATIENTS AND METHODS A total of 402 patients with type 2 diabetes mellitus were divided into three groups, such as normoalbuminuria (n = 196), microalbuminuria (n = 131) and macroalbuminuria (n = 75) groups. Basic information and laboratory results were collected. Serum AST/ALT, tumor necrosis factor-α (TNF-α), interleukin (IL)-2, IL-4, IL-6, IL-10 and interferon- γ (INF- γ) were also measured. DN was defined as microalbuminuria or macroalbuminuria. The estimated glomerular filtration rate (eGFR) was calculated using the following formula: 186 × (serum creatinine)-1.154× (age)-0.203× (0.742 if female). RESULTS The AST/ALT in the macroalbuminuria group was higher than in the microalbuminuria and normoalbuminuria groups. The concentrations of tumor necrosis factor-α (TNF-α), IL-2, IL-4, IL-10 and INF-γ in the macroalbuminuria group were significantly higher than those in the two other groups. Multivariate logistical analysis showed that after adjusting confounding factors, TNF-α and high AST/ALT were independent risks for DN and macroalbuminuria. Furthermore, the AST/ALT had significantly positive correlation with TNF-α (r = 0.101, P = 0.048), IL-4 (r = 0.185, P = 0.005) and IL-6 (r = 0.274, P < 0.001) levels. CONCLUSION This study showed that high AST/ALT was an independent risk factor for the DN. Additionally, AST/ALT was positively correlated with inflammation cytokines, such as TNF-α, IL-4 and IL-6 levels.
Collapse
Affiliation(s)
- Jing Xu
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaomin Shi
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Youjin Pan
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Youjin Pan Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, Zhejiang Province, People’s Republic of ChinaTel +86 15068256508Fax +86 577-85678813 Email
| |
Collapse
|
3
|
Araújo LS, Torquato BGS, da Silva CA, Dos Reis Monteiro MLG, Dos Santos Martins ALM, da Silva MV, Dos Reis MA, Machado JR. Renal expression of cytokines and chemokines in diabetic nephropathy. BMC Nephrol 2020; 21:308. [PMID: 32723296 PMCID: PMC7389446 DOI: 10.1186/s12882-020-01960-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/17/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. Inflammatory mediators have been implicated in the pathogenesis of DN, thus considered an inflammatory disease. However, further studies are required to assess the renal damage caused by the action of these molecules. Therefore, the objective of this study was to analyze the expression of cytokines and chemokines in renal biopsies from patients with DN and to correlate it with interstitial inflammation and decreased renal function. METHODS Forty-four native renal biopsies from patients with DN and 23 control cases were selected. In situ expression of eotaxin, MIP-1α (macrophage inflammatory protein-1α), IL-8 (interleukin-8), IL-4, IL-10, TNF-α (tumor necrosis factor-α), TNFR1 (tumor necrosis factor receptor-1), IL-1β, and IL-6 were evaluated by immunohistochemistry. RESULTS The DN group showed a significant increase in IL-6 (p < 0.0001), IL-1β (p < 0.0001), IL-4 (p < 0.0001) and eotaxin (p = 0.0012) expression, and a decrease in TNFR1 (p = 0.0107) and IL-8 (p = 0.0262) expression compared to the control group. However, there were no significant differences in IL-10 (p = 0.4951), TNF-α (p = 0.7534), and MIP-1α (p = 0.3816) expression among groups. Regarding interstitial inflammation, there was a significant increase in IL-6 in scores 0 and 1 compared to score 2 (p = 0.0035), in IL-10 in score 2 compared to score 0 (p = 0.0479), and in eotaxin in score 2 compared to scores 0 and 1 (p < 0.0001), whereas IL-8 (p = 0.0513) and MIP-1α (p = 0.1801) showed no significant differences. There was a tendency for negative correlation between eotaxin and estimated glomerular filtration rate (eGFR) (p = 0.0566). CONCLUSIONS Our results indicated an increased in situ production of cytokines and chemokines in DN, including IL-6, IL-1β, IL-4, and eotaxin. It was observed that, possibly, eotaxin may have an important role in the progression of interstitial inflammation in DN and in eGFR decrease of these patients.
Collapse
Affiliation(s)
- Liliane Silvano Araújo
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Bianca Gonçalves Silva Torquato
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Crislaine Aparecida da Silva
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Maria Luíza Gonçalves Dos Reis Monteiro
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Ana Luisa Monteiro Dos Santos Martins
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Av. Getúlio Guaritá, n° 130, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-440, Brazil
| | - Marlene Antônia Dos Reis
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil
| | - Juliana Reis Machado
- Discipline of General Pathology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Praça Manoel Terra, 330, Nossa Senhora da Abadia, Uberaba, Minas Gerais, 38025-015, Brazil.
| |
Collapse
|
4
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol Rev 2019; 71:345-382. [PMID: 31235653 PMCID: PMC6592405 DOI: 10.1124/pr.117.014878] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Pál Pacher
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - György Haskó
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| |
Collapse
|
5
|
Wang YH, Zhang YG. Kidney and innate immunity. Immunol Lett 2017; 183:73-78. [PMID: 28143791 DOI: 10.1016/j.imlet.2017.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/25/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022]
Abstract
Innate immune system is an important modulator of the inflammatory response during infection and tissue injury/repair. The kidney as a vital organ with high energy demand plays a key role in regulating the disease related metabolic process. Increasing research interest has focused on the immune pathogenesis of many kidney diseases. However, innate immune cells such as dendritic cells, macrophages, NK cells and a few innate lymphocytes, as well as the complement system are essential for renal immune homeostasis and ensure a coordinated balance between tissue injury and regeneration. The innate immune response provides the first line of host defense initiated by several classes of pattern recognition receptors (PRRs), such as membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), together with inflammasomes responsible for early innate immune response. Although the innate immune system is well studied, the research on the detailed relationship between innate immunity and kidney is still very limited. In this review, we will focus on the innate immune sensing system in renal immune homeostasis, as well as the corresponding pathogenesis of many kidney diseases. The pivotal roles of innate immunity in renal injury and regeneration with special emphasis on kidney disease related immunoregulatory mechanism are also discussed.
Collapse
Affiliation(s)
- Ying-Hui Wang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Yu-Gen Zhang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
6
|
Anis S. Immunologists' perspective of nephropathology. J Nephropathol 2016; 5:62-4. [PMID: 27152291 PMCID: PMC4844910 DOI: 10.15171/jnp.2016.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/29/2016] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sabiha Anis
- Department of Immunology and Molecular Biology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| |
Collapse
|
7
|
Weinberger J, Jimenez-Heredia R, Schaller S, Suessner S, Sunzenauer J, Reindl-Schwaighofer R, Weiss R, Winkler S, Gabriel C, Danzer M, Oberbauer R. Immune Repertoire Profiling Reveals that Clonally Expanded B and T Cells Infiltrating Diseased Human Kidneys Can Also Be Tracked in Blood. PLoS One 2015; 10:e0143125. [PMID: 26600245 PMCID: PMC4658119 DOI: 10.1371/journal.pone.0143125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/30/2015] [Indexed: 12/28/2022] Open
Abstract
Recent advances in high-throughput sequencing allow for the competitive analysis of the human B and T cell immune repertoire. In this study we compared Immunoglobulin and T cell receptor repertoires of lymphocytes found in kidney and blood samples of 10 patients with various renal diseases based on next-generation sequencing data. We used Biomed-2 primer panels and ImmunExplorer software to sequence, analyze and compare complementarity determining regions and V-(D)-J elements. While generally an individual's renal receptor repertoire is different from the repertoire present in blood, 94% (30/32) of the lymphocytes with clonal expansion in kidney can also be traced in blood however, not all of these clonotypes are equally abundant. Summarizing the data of all analyzed patients, 68% of highly expanded T cell clonotypes and 30% of the highly expanded B cell clonotypes that have infiltrated the kidney can be found amongst the five most abundant clonotypes in blood. In addition, complementarity determining region 3 sequences of the immunoglobulin heavy chains are on average more diverse than T cell receptor beta chains. Immune repertoire analysis of tissue infiltrating B and T cells adds new approaches to the assessment of adaptive immune response in kidney diseases. Our data suggest that expanded clonotypes in the tissues might be traceable in blood samples in the course of treatment or the natural history of the disease.
Collapse
Affiliation(s)
- Johannes Weinberger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria
- Department of Immunogenetics, Red Cross Transfusion Service of Upper Austria, Linz, Austria
| | - Raul Jimenez-Heredia
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria
- Department of Immunogenetics, Red Cross Transfusion Service of Upper Austria, Linz, Austria
| | - Susanne Schaller
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Hagenberg, Austria
| | - Susanne Suessner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria
- Department of Immunogenetics, Red Cross Transfusion Service of Upper Austria, Linz, Austria
| | - Judith Sunzenauer
- Department of Internal Medicine III, KH Elisabethinen, Linz, Austria
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Department of Internal Medicine III, KH Elisabethinen, Linz, Austria
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Richard Weiss
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Stephan Winkler
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Hagenberg, Austria
| | - Christian Gabriel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria
- Department of Immunogenetics, Red Cross Transfusion Service of Upper Austria, Linz, Austria
| | - Martin Danzer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz, Austria
- Department of Immunogenetics, Red Cross Transfusion Service of Upper Austria, Linz, Austria
- * E-mail: (MD); (RO)
| | - Rainer Oberbauer
- Department of Internal Medicine III, KH Elisabethinen, Linz, Austria
- Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- * E-mail: (MD); (RO)
| |
Collapse
|