1
|
Cao Y, Lin JH, Hammes HP, Zhang C. Cellular phenotypic transitions in diabetic nephropathy: An update. Front Pharmacol 2022; 13:1038073. [PMID: 36408221 PMCID: PMC9666367 DOI: 10.3389/fphar.2022.1038073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of morbidity and mortality in diabetes and is the most common cause of end stage renal disease (ESRD). Renal fibrosis is the final pathological change in DN. It is widely believed that cellular phenotypic switching is the cause of renal fibrosis in diabetic nephropathy. Several types of kidney cells undergo activation and differentiation and become reprogrammed to express markers of mesenchymal cells or podocyte-like cells. However, the development of targeted therapy for DN has not yet been identified. Here, we discussed the pathophysiologic changes of DN and delineated the possible origins that contribute to myofibroblasts and podocytes through phenotypic transitions. We also highlight the molecular signaling pathways involved in the phenotypic transition, which would provide valuable information for the activation of phenotypic switching and designing effective therapies for DN.
Collapse
Affiliation(s)
- Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wei X, Ma Y, Li Y, Zhang W, Zhong Y, Yu Y, Zhang LC, Wang Z, Tu Y. Anti-Apoptosis of Podocytes and Pro-Apoptosis of Mesangial Cells for Telmisartan in Alleviating Diabetic Kidney Injury. Front Pharmacol 2022; 13:876469. [PMID: 35517816 PMCID: PMC9061946 DOI: 10.3389/fphar.2022.876469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Podocytes damage and mesangial cells expansion are two important pathological manifestations of glomerular injury in early diabetes. Telmisartan, as an angiotensin type 1 (AT1) receptor inhibitor, could improve advanced glycation end (AGE) products or angiotensin Ⅱ (Ang Ⅱ)-induced podocytes injury including detachment or apoptosis. In this current paper, we first confirmed the protective effect of telmisartan on early diabetic kidney injury in type 1 diabetic rats. Telmisartan reduced the loss of podocin and inhibited the expression of α-SMA, reflecting its protective effect on podocyte injury and mesangial proliferation, respectively. More interestingly we observed an opposite effect of telmisartan on the cell viability and apoptosis of podocytes and mesangial cells in a high-glucose environment in vitro. The anti-apoptotic effect of telmisartan on podocytes might be related to its inhibition of swiprosin-1 (a protein can mediate high glucose-induced podocyte apoptosis) expression. While telmisartan induced a high expression of PPARγ in mesangial cells, and GW9662 (a PPARγ antagonist) partially inhibited telmisartan-induced apoptosis and reduced viability of mesangial cells. In addition, high glucose-induced PKCβ1/TGFβ1 expression in mesangial cells could be blocked by telmisartan. These data provide a more precise cellular mechanism for revealing the protective effect of telmisartan in diabetic kidney injury.
Collapse
Affiliation(s)
- Xin Wei
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yabin Ma
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Ya Li
- Department of Clinical Pharmacy, Clinical Trial Center, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wenzhao Zhang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Yuting Zhong
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yue Yu
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Zhibin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Tawfik MK, Keshawy MM, Makary S. Blocking angiotensin 2 receptor attenuates diabetic nephropathy via mitigating ANGPTL2/TL4/NF-κB expression. Mol Biol Rep 2021; 48:6457-6470. [PMID: 34431038 DOI: 10.1007/s11033-021-06647-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/11/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a consequence of diabetes mellitus (DM) and is associated with early changes in renal angiotensin II (ANG II). These changes were evaluated using ANG II blocker valsartan early from week two of diabetes (experiment I, renoprotective) and late from week nine of diabetes (experiment II, renotherapeutic) to the end of both experiments at week twelve. METHODS AND RESULTS In both experiments, adult male Wister rats were divided into (i) vehicle group; (ii) valsartan received oral 30 mg/Kg/day; (iii) diabetic received single 50 mg/Kg intraperitoneal streptozotocin injection; (iv) renoprotection, diabetic rats received valsartan treated in experiments I and II. DM effects on urine albumin excretion, blood pressure, and renal ANG II were measured. Urinary nephrin, kidney injury molecule-1 (KIM-1), renal angiopoietin-like protein 2 (ANGPTL2), and toll-like receptor 4 (TLR 4) mRNA expression were tested. DM-initiated fibrotic markers integrin, α-smooth muscle actin expression, and collagen IV and apoptotic protein caspase 3 were tested. DM induced early changes starting from week four in the tested variables. At week twelve, in both experiments, valsartan intervention showed a significant reduction in ANG II, ANGPTL2, TLR 4 and integrin expression and improvement in albuminuria, blood pressure, urinary biomarkers, fibrotic and apoptotic markers. CONCLUSIONS Changes leading to DN starts early in the disease course and ANG II reduction decreased the expression of ANGPTL2 and integrin which preserve the glomerular barrier. Blocking ANG II was able to decrease TLR 4 and inflammatory cytokines leading to decreasing DN.
Collapse
Affiliation(s)
- Mona K Tawfik
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohammed M Keshawy
- Nephrology Division, Department of Internal Medicine, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Samy Makary
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
4
|
Meng X, Ma J, Kang AN, Kang SY, Jung HW, Park YK. A Novel Approach Based on Metabolomics Coupled With Intestinal Flora Analysis and Network Pharmacology to Explain the Mechanisms of Action of Bekhogainsam Decoction in the Improvement of Symptoms of Streptozotocin-Induced Diabetic Nephropathy in Mice. Front Pharmacol 2020; 11:633. [PMID: 32508632 PMCID: PMC7253635 DOI: 10.3389/fphar.2020.00633] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/21/2020] [Indexed: 01/20/2023] Open
Abstract
Bekhogainsam decoction (BHID), a representative prescription for the treatment of diabetes mellitus (DM) and diabetic complications in both traditional Korean and Chinese medicine, was examined for its ability to ameliorate diabetic nephropathy (DN), and its mechanism of action was evaluated by metabolomics, gut microbiota, and network pharmacology. In this study, male specific pathogen-free C57BL/6 mice were intraperitoneally injected with streptozotocin (STZ, 100 mg/kg) once per day for 3 days consecutively, and were then orally administered BHID at 100 and 500 mg/kg, and metformin at 250 mg/kg once per day for 4 weeks. Our results showed that the administration of BHID to mice with STZ-induced DN prevented physiological and serological changes, structural damage, and kidney dysfunction. Based on a metabolomics test with serum, the profoundly altered metabolites in the BHID treatment group were identified. Thirty-six BHID-related proteins and four signaling pathways, including valine, leucine, and isoleucine biosynthesis, nicotinate and nicotinamide metabolism, tryptophan metabolism, and alanine, aspartate, and glutamate metabolism pathways, were explored. Principal coordinates analysis (PCoA) of the gut microbiota revealed that BHID treatment significantly affected the flora composition. In addition, the network pharmacology analysis revealed that BHID acted through phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and MAPK-related protein targets. Our findings on the anti-DN effects of BHID and its mechanism of action, from the perspective of systems biology, have provided scientific evidence to support the clinical treatment of patients with diabetes, and implied that BHID has the potential to prevent the progression of DN.
Collapse
Affiliation(s)
- Xianglong Meng
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, South Korea.,Experimental Teaching Center, College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Junnan Ma
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, South Korea
| | - An Na Kang
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, South Korea
| | - Seok Yong Kang
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, South Korea.,Korean Medicine R&D Center, Dongguk University, Gyeongju, South Korea
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, South Korea.,Korean Medicine R&D Center, Dongguk University, Gyeongju, South Korea
| | - Yong-Ki Park
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, South Korea.,Korean Medicine R&D Center, Dongguk University, Gyeongju, South Korea
| |
Collapse
|
5
|
Li H, Wang Y, Zhou Z, Tian F, Yang H, Yan J. Combination of leflunomide and benazepril reduces renal injury of diabetic nephropathy rats and inhibits high-glucose induced cell apoptosis through regulation of NF-κB, TGF-β and TRPC6. Ren Fail 2020; 41:899-906. [PMID: 31552773 PMCID: PMC6764370 DOI: 10.1080/0886022x.2019.1665547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: To investigate effects of combination use of leflunomide and benazepril on diabetic nephropathy (DN) both in vivo and in vitro. Methods: The streptozotocin (STZ) induced Sprague-Dawley rats were treated with leflunomide (15 mg/kg/d), benazepril (15 mg/kg/d) or both the two drugs. Fasting blood glucose (FBG) and renal function indexes including blood urea nitrogen (BUN), serum creatinine (Scr), and proteinuria and kidney/body weight ratio (KW/BW) were measured. HE staining was used for histological analysis. The rat glomerular mesangial cells (RMCs) were treated with high-glucose (150 mg/ml) and the leflunomide and benazepril with both concentrations of 50 μmol/l were used to treat the high-glucose induced cells. TUNEL assay was used for measurement of cell apoptosis. Western blotting was conducted to determine expression of nuclear factor Kappa B (NF-κB), transforming growth factor-β (TGF-β) and transient receptor potential canonical 6 (TRPC6). Results: The body weight was significantly lower and all indexes of FBG, BUN, Scr, proteinuria and KW/BW ratio, GFR, as well as inflammatory factors TNF-α and IL-6 were significantly increased in the DN group after STZ treatment for 4 weeks. The treatment with leflunomide, benazepril or the both dramatically reduced the above effects induced by STZ, and the alteration was the most significant in the combination group. Treatment of leflunomide and benazepril significantly reduced expression levels of NF-κB, TGF-β and TRPC6 in renal tissues of DN rats as well as in high-glucose induced RMCs. It was also observed leflunomide and benazepril reduced high-glucose induced cell apoptosis of RMCs. Conclusion: The combination use of leflunomide and benazepril could improve the renal function and reduce the renal injury of DN rats and could reduce the levels of NF-κb, TGF-β and TRPC6 in both DN rats and high-glucose induced RMCs.
Collapse
Affiliation(s)
- Huili Li
- Department of Nephrology, Xixi Hospital of Hangzhou (Hangzhou XIXI Affiliated Hospital of Zhejiang Chinese Medical University) , Hangzhou , Zhejiang Province , People's Republic of China
| | - Yuanyuan Wang
- Department of Nephrology, Xixi Hospital of Hangzhou (Hangzhou XIXI Affiliated Hospital of Zhejiang Chinese Medical University) , Hangzhou , Zhejiang Province , People's Republic of China
| | - Zhangqing Zhou
- Department of Nephrology, Xixi Hospital of Hangzhou (Hangzhou XIXI Affiliated Hospital of Zhejiang Chinese Medical University) , Hangzhou , Zhejiang Province , People's Republic of China
| | - Fang Tian
- Department of Nephrology, Xixi Hospital of Hangzhou (Hangzhou XIXI Affiliated Hospital of Zhejiang Chinese Medical University) , Hangzhou , Zhejiang Province , People's Republic of China
| | - Huanhuan Yang
- Department of Nephrology, Xixi Hospital of Hangzhou (Hangzhou XIXI Affiliated Hospital of Zhejiang Chinese Medical University) , Hangzhou , Zhejiang Province , People's Republic of China
| | - Juzhen Yan
- Department of Nephrology, Xixi Hospital of Hangzhou (Hangzhou XIXI Affiliated Hospital of Zhejiang Chinese Medical University) , Hangzhou , Zhejiang Province , People's Republic of China
| |
Collapse
|
6
|
Bildyug N. Extracellular Matrix in Regulation of Contractile System in Cardiomyocytes. Int J Mol Sci 2019; 20:E5054. [PMID: 31614676 PMCID: PMC6834325 DOI: 10.3390/ijms20205054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The contractile apparatus of cardiomyocytes is considered to be a stable system. However, it undergoes strong rearrangements during heart development as cells progress from their non-muscle precursors. Long-term culturing of mature cardiomyocytes is also accompanied by the reorganization of their contractile apparatus with the conversion of typical myofibrils into structures of non-muscle type. Processes of heart development as well as cell adaptation to culture conditions in cardiomyocytes both involve extracellular matrix changes, which appear to be crucial for the maturation of contractile apparatus. The aim of this review is to analyze the role of extracellular matrix in the regulation of contractile system dynamics in cardiomyocytes. Here, the remodeling of actin contractile structures and the expression of actin isoforms in cardiomyocytes during differentiation and adaptation to the culture system are described along with the extracellular matrix alterations. The data supporting the regulation of actin dynamics by extracellular matrix are highlighted and the possible mechanisms of such regulation are discussed.
Collapse
Affiliation(s)
- Natalya Bildyug
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia.
| |
Collapse
|
7
|
Dong R, Yu J, Yu F, Yang S, Qian Q, Zha Y. IGF-1/IGF-1R blockade ameliorates diabetic kidney disease through normalizing Snail1 expression in a mouse model. Am J Physiol Endocrinol Metab 2019; 317:E686-E698. [PMID: 31361542 DOI: 10.1152/ajpendo.00071.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study investigated the role of insulin-like growth factor-1/insulin-like growth factor-1 receptor (IGF-1/IGF-1R) in the genesis and progression of diabetic kidney disease (DKD) in a streptozotocin (STZ)-induced mouse diabetes model. We showed elevated IGF-1 expression in the DKD kidneys after 16 wk of diabetic onset. Intraperitoneal administration of IGF-1R inhibitor (glycogen synthase kinase-3β, GSK4529) from week 8 to week 16 postdiabetes induction ameliorated urinary albumin excretion and kidney histological changes due to diabetes, including amelioration of glomerulomegaly, inflammatory infiltration, and tubulointerstitial fibrosis. The GSK4529 treatment also attenuated alterations in renal tubular expression of E-cad and matrix protein fibronectin. Moreover, renal fibrosis in DKD (without treatment) was associated with Snail1 overexpression that was effectively prevented by IGF-1R inhibition. Further experiments in cultured renal epithelial cells (NRK) showed that IGF-1 silencing reproduced in vivo effects of IGF-1R inhibition with markedly attenuated Snail1 expression and near normalization of the Ecad1 and fibronectin expression pattern. Further Snail1 silencing prevented high-glucose-induced changes without affecting IGF-1 expression, consistent with Snail1 acting downstream to IGF-1. The antifibrotic effects were also shown with benazepril or insulin treatment but to a much lesser degree. In summary, in STZ-induced diabetic mice, activation of IGF-1 in diabetic kidneys induces fibrogenesis through Snail1 upregulation. The diabetes-related histological and functional changes, as well as fibrogenesis, can be attenuated by IGF-1/IGF-1R inhibition.
Collapse
Affiliation(s)
- Rong Dong
- Guizhou University School of medicine, Gui Yang, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Gui Yang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Jiali Yu
- Department of Nephrology, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Funxun Yu
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Gui Yang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Gui Yang, China
| | - Qi Qian
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Yan Zha
- Guizhou University School of medicine, Gui Yang, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Gui Yang, China
| |
Collapse
|
8
|
白 志, 陆 静, 杨 亦. [Role of TGF-β1/ILK/FSP1 signaling pathway in cyclosporin A-induced epithelialmesenchymal transition in cultured renal tubular epithelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:804-809. [PMID: 31340913 PMCID: PMC6765554 DOI: 10.12122/j.issn.1673-4254.2019.07.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the role of transforming growth factor-β1/integrin-linked kinase/fibroblast-specific protein 1 (TGF- β1/ILK/FSP1) signaling pathway in cyclosporine A (CsA)-induced renal tubular epithelial cell transdifferentiation. METHODS Rat renal tubular epithelial NRK-52E cells were induced with 1 mg/L CsA, treated with TGF-β1 inhibitor (SB431542, 10 μmol/L), or transfected with the ILK-RNAi lentiviral expression vector (ILKshRNA) or a negative control vector before CsA induction. The expressions of TGF-β1, ILK and FSP-1 mRNAs and proteins in the cells were detected using real-time PCR and Western blotting. The positive cells for α-SMA expression were detected by immunohistochemistry. RESULTS Compared with the blank control cells, the cells treated with CsA showed significantly increased levels of TGF-β1, ILK and FSP-1 mRNAs and proteins (P < 0.05). The expressions of TGF-β1, ILK and FSP-1 were significantly lower in TGF-β1 inhibitor group than in CsA group (P < 0.05). The levels of ILK and FSP-1 were significantly decreased after shRNA-mediated ILK silencing (P < 0.05). The number of positive cells for α-SMA was significantly lower in cells treated with SB431542 and in cells with ILK silencing than in the cells treated with CsA alone (P < 0.05). CONCLUSIONS The activation of TGF-β1/ILK/FSP-1 signaling pathway is an important mechanism for CsA-induced transdifferentiation in rat renal tubular epithelial cells. ILK participates in CsA-induced epithelialmesenchymal transition of renal tubular epithelial cells.
Collapse
Affiliation(s)
- 志勋 白
- 遵义医科大学第二附属医院肾病风湿科,贵州 遵义 563000Department of Nephrology and Rheumatology, Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - 静 陆
- 遵义医药高等专科学校,贵州 遵义 563006Zunyi Medical and Pharmaceutical College, Zunyi 563006, China
| | - 亦彬 杨
- 遵义医科大学附属医院肾病风湿科,贵州 遵义 563006Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
9
|
Li J, Dong R, Yu J, Yi S, Da J, Yu F, Zha Y. Inhibitor of IGF1 receptor alleviates the inflammation process in the diabetic kidney mouse model without activating SOCS2. Drug Des Devel Ther 2018; 12:2887-2896. [PMID: 30254418 PMCID: PMC6141121 DOI: 10.2147/dddt.s171638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective To explore the anti-inflammatory mechanism of IGF1R inhibitor in diabetic nephropathy. Methods C57/BL6 mice were reared with high-fat diet for 8 weeks, then were injected 30 mg/kg streptozotocin intraperitoneally to induce type 2 diabetes. After 8 weeks, the type 2 diabetes nephropathy model was successfully set up the different drugs were administrated to mice with diabetes (insulin 1-2 U/day, benazepril 10 mg/kg per day intragastrically, IGF-1R inhibitor 30 mg/kg per day intragastrically). After 8 weeks drugs administration, all mice were collected the kidney tissue, measured levels of inflammatory factor (F4/80, TLR4and CD68) and fibrosis markers(αSMA, E-cadherin and SR) using immunohistochemistry and in situ hybridization. Results The type 2 diabetes nephropathy model was built successfully, which along with increased urinary protein excretion rate and increased inflammatory infiltration, and the correlation was characterized by increased CD68+, F4/80+ cells and increased TLR4, αSMA, SR expression. IGF-1R inhibitors reversed this changes, but benazepril and insulin were without significant changes. The insulin decreased the expression level of IGF-1, and increased the levels of suppressor of cytokine signaling 2 (SOCS2). Benazepril and IGF-1R inhibitor were no significant changes like insulin. Conclusion Inhibition of IGF1R was a more effective choice for inflammation treatment than Ben or Ins in diabetic kidney disease (DKD). The IGF1R inhibitor blocked pathological changes induced by the over-expression of IGF1 in DKD without up-regulating SOCS2 protein levels.
Collapse
Affiliation(s)
- Jiayu Li
- Guizhou University School of Medicine, Guizhou University
| | - Rong Dong
- Department of Nephrology, Guizhou Provincial People's Hospital,
| | - Jiali Yu
- Department of Nephrology, Guizhou Provincial People's Hospital,
| | - Sun Yi
- Department of Nephrology, Guizhou Provincial People's Hospital,
| | - Jingjing Da
- Department of Nephrology, Guizhou Provincial People's Hospital,
| | - Fuxun Yu
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital,
| |
Collapse
|
10
|
Involvement of the TGFβ1- ILK-Akt signaling pathway in the effects of hesperidin in type 2 diabetic nephropathy. Biomed Pharmacother 2018; 105:766-772. [PMID: 29909344 DOI: 10.1016/j.biopha.2018.06.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy is one of the manifestations of systemic microangiopathy in diabetes. Hesperetin, a natural flavanone glycoside compound in citrus fruits, has been demonstrated to exert hypoglycemic effects and protect kidney in experimental diabetic animals. The current study was aimed to investigate the mechanisms underlying the hypoglycemic effects of hesperetin in high-fat/streptozocin (STZ)-induced diabetic nephropathy. The results showed that mice in whom hesperetin was administered for 4 weeks attenuated the increased fasting blood glucose and impaired glucose tolerance ability that was observed in high-fat/STZ mice. In addition, we found that hesperetin ameliorated the abnormalities of biochemical parameters in serum, liver, and kidney of mice with diabetic nephropathy. Hesperetin also rescued the irregular distortions in glomerular basement membrane and expanded mesangial regions. Moreover, hesperetin repaired the function of podocyte by increasing renal nephrin expression and decreasing renal alpha-smooth muscle actin expression. Furthermore, hesperetin inhibited the expression of transforming growth factor-β1 (TGF-β1) and its downstream effectors integrin-linked kinase (ILK) and Akt. In conclusion, our study implies that hesperetin produced protective effects in diabetic nephropathy possibly by suppressing TGF-β1-ILK-Akt signaling.
Collapse
|
11
|
Osteomeles schwerinae Extract Prevents Diabetes-Induced Renal Injury in Spontaneously Diabetic Torii Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6824215. [PMID: 29849722 PMCID: PMC5941800 DOI: 10.1155/2018/6824215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Mesangial cell proliferation contributes to the development of glomerulosclerosis in diabetic nephropathy. This study was aimed at determining whether Osteomeles schwerinae (OSSC) extract can ameliorate renal damage in Spontaneously Diabetic Torii (SDT) rats. OSSC extract (100 and 250 mg/kg/day) was administered to the SDT rats through oral gavage for 17 weeks. At the end of the experiment, glucose, HbA1c, and albuminuria were measured. In addition, the levels of mesangial proliferation-related proteins were determined by western blotting and immunohistochemistry. Our results show that albuminuria, accumulation of the extracellular matrix (ECM), and renal expansion were markedly restored by OSSC extract administration. The OSSC treatment also inhibited α-smooth muscle actin and transforming growth factor-β1 protein expression. In addition, OSSC and its bioactive compounds hyperoside and quercitrin inhibited the platelet-derived growth factor-BB (PDGF-BB)/platelet-derived growth factor-B receptor (PDGFR-β) ligand binding in an in vitro assay. Taken together, these results indicate that OSSC inhibits ECM accumulation and mesangial proliferation of the glomeruli in SDT rats through inhibition of the interaction between PDGF-BB and PDGFR-β. OSSC has ameliorating effects on the initiation and progression of diabetes complications and can be used for the treatment of early diabetic renal dysfunction.
Collapse
|
12
|
Herba Artemisiae Capillaris Extract Prevents the Development of Streptozotocin-Induced Diabetic Nephropathy of Rat. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5180165. [PMID: 29636780 PMCID: PMC5832121 DOI: 10.1155/2018/5180165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/01/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022]
Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease throughout the world; until now there is no specific drug available. In this work, we use herba artemisiae capillaris extract (HACE) to alleviate renal fibrosis characterized by the excessive accumulation of extracellular matrix (ECM) in rats, aiming to investigate the protective effect of the HACE on DN. We found that the intragastric treatment of high-dose HACE could reverse the effect of streptozotocin not only to decrease the level of blood glucose and blood lipid in different degree but also further to improve renal functions. It is worth mentioning that the effect of HACE treatment was comparable to the positive drug benazepril. Moreover, we found that HACE treatment could on one hand inhibit oxidative stress in DN rats through regulating enzymatic activity for scavenging reactive oxygen species and on the other hand increase the ECM degradation through regulating the activity of metalloproteinase-2 (MMP-2) and the expression of tissue transglutaminase (tTG), which explained why HACE treatment inhibited ECM accumulation. On the basis of above experimental results, we conclude that HACE prevents DN development in a streptozotocin-induced DN rat model, and HACE is a promising candidate to cure DN in clinic.
Collapse
|
13
|
Mou Y, Zhang Y, Guo C, Zhao J, Zhang Z, Zhou X, Dong J, Liao L. Integrated Treatment of Prostaglandin E1 and Angiotensin-Converting Enzyme Inhibitor in Diabetic Kidney Disease Rats: Possible Role of Antiapoptosis in Renal Tubular Epithelial Cells. DNA Cell Biol 2017; 37:133-141. [PMID: 29185789 DOI: 10.1089/dna.2017.3690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To investigate the therapeutic mechanisms underlying prostaglandin E1 (PGE1) and angiotensin-converting enzyme inhibitor (ACEI) on reducing urinary protein in diabetic kidney disease (DKD). DKD rats were established and randomly divided into four groups: PGE1 (10 μg/kg/day) (P group), ACEI (10 mg/kg/day) (A group), combination of PGE1 with ACEI treatment (P + A group), and saline treatment group (DKD group). Untreated rats were used as normal control (N group). Urinary albumin, endothelin-1 (ET-1), angiotensin II (AngII), TUNEL assay, Masson's trichrome staining, and immunohistochemistry staining for CD68 were evaluated in all groups. Ten days after treatment, urinary albumin was significantly decreased in the P and P + A groups (p < 0.01 vs. the DKD group). At the end of 8 weeks, the albumin was still significantly reduced in the P + A group (p < 0.05 vs. the A group). ET-1 and AngII were also significantly decreased in three treatment groups (p < 0.01 vs. the DKD group), especially in the P + A group. Few cells underwent apoptosis in glomerular regions in DKD rats, while amounts of apoptotic cells were seen in tubules regions. Further, apoptosis and the areas of fibrosis in tubulointerstitial were both decreased most in the P + A group compared with the DKD group. Apoptosis of renal tubular epithelial cells may participate in the development and progression of DKD in rats. Combination of PGE1 with AGEI remarkably protects renal function compared with PGE1 or ACEI monotherapy. The potential therapeutic mechanisms of PGE1 and AGEI might be via multiple targets and, at least in part, through inhibiting the apoptosis of renal tubular epithelial cells.
Collapse
Affiliation(s)
- Yaru Mou
- 1 Division of Cardiology, Department of Internal Medicine, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Yaqin Zhang
- 2 Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan, China
| | - Congcong Guo
- 2 Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan, China .,3 First Clinical Medical College, Shandong University of Traditional Chinese Medicine , Jinan, China
| | - Junyu Zhao
- 2 Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan, China
| | - Zhongwen Zhang
- 2 Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan, China
| | - Xiaojun Zhou
- 2 Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan, China
| | - Jianjun Dong
- 4 Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University , Jinan, China
| | - Lin Liao
- 2 Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University , Jinan, China
| |
Collapse
|
14
|
Jha JC, Banal C, Okabe J, Gray SP, Hettige T, Chow BSM, Thallas-Bonke V, De Vos L, Holterman CE, Coughlan MT, Power DA, Skene A, Ekinci EI, Cooper ME, Touyz RM, Kennedy CR, Jandeleit-Dahm K. NADPH Oxidase Nox5 Accelerates Renal Injury in Diabetic Nephropathy. Diabetes 2017; 66:2691-2703. [PMID: 28747378 DOI: 10.2337/db16-1585] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022]
Abstract
NADPH oxidase-derived excessive production of reactive oxygen species (ROS) in the kidney plays a key role in mediating renal injury in diabetes. Pathological changes in diabetes include mesangial expansion and accumulation of extracellular matrix (ECM) leading to glomerulosclerosis. There is a paucity of data about the role of the Nox5 isoform of NADPH oxidase in animal models of diabetic nephropathy since Nox5 is absent in the mouse genome. Thus, we examined the role of Nox5 in human diabetic nephropathy in human mesangial cells and in an inducible human Nox5 transgenic mouse exposed to streptozotocin-induced diabetes. In human kidney biopsies, Nox5 was identified to be expressed in glomeruli, which appeared to be increased in diabetes. Colocalization demonstrated Nox5 expression in mesangial cells. In vitro, silencing of Nox5 in human mesangial cells was associated with attenuation of the hyperglycemia and TGF-β1-induced enhanced ROS production, increased expression of profibrotic and proinflammatory mediators, and increased TRPC6, PKC-α, and PKC-β expression. In vivo, vascular smooth muscle cell/mesangial cell-specific overexpression of Nox5 in a mouse model of diabetic nephropathy showed enhanced glomerular ROS production, accelerated glomerulosclerosis, mesangial expansion, and ECM protein (collagen IV and fibronectin) accumulation as well as increased macrophage infiltration and expression of the proinflammatory chemokine MCP-1. Collectively, this study provides evidence of a role for Nox5 and its derived ROS in promoting progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Jay C Jha
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Claudine Banal
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Jun Okabe
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Human Epigenetics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Stephen P Gray
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Thushan Hettige
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Bryna S M Chow
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Vicki Thallas-Bonke
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Lisanne De Vos
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Chet E Holterman
- Kidney Research Centre, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Melinda T Coughlan
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - David A Power
- Department of Nephrology and Institute of Breathing and Sleep, Austin Health, Heidelberg, Australia
| | - Alison Skene
- Department of Anatomical Pathology, Austin Health, Heidelberg, Australia
| | - Elif I Ekinci
- Endocrine Centre, Austin Health, Repatriation Campus, Heidelberg, Australia
| | - Mark E Cooper
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K
| | - Chris R Kennedy
- Kidney Research Centre, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Karin Jandeleit-Dahm
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetic Complications Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
15
|
Ying Q, Wu G. Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases: an update. Ren Fail 2017; 39:474-483. [PMID: 28413908 PMCID: PMC6014344 DOI: 10.1080/0886022x.2017.1313164] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a tightly regulated process by which epithelial cells lose their hallmark epithelial characteristics and gain the features of mesenchymal cells. For podocytes, expression of nephrin, podocin, P-cadherin, and ZO-1 is downregulated, the slit diaphragm (SD) will be altered, and the actin cytoskeleton will be rearranged. Diabetes, especially hyperglycemia, has been demonstrated to incite podocyte EMT through several molecular mechanisms such as TGF-β/Smad classic pathway, Wnt/β-catenin signaling pathway, Integrins/integrin-linked kinase (ILK) signaling pathway, MAPKs signaling pathway, Jagged/Notch signaling pathway, and NF-κB signaling pathway. As one of the most fundamental prerequisites to develop ground-breaking therapeutic options to prevent the development and progression of diabetic kidney disease (DKD), a comprehensive understanding of the molecular mechanisms involved in the pathogenesis of podocyte EMT is compulsory. Therefore, the purpose of this paper is to update the research progress of these underlying signaling pathways and expound the podocyte EMT-related DKDs.
Collapse
Affiliation(s)
- Qidi Ying
- a Department of Pharmacology, Pharmacy , China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Guanzhong Wu
- a Department of Pharmacology, Pharmacy , China Pharmaceutical University , Nanjing , Jiangsu , China
| |
Collapse
|
16
|
Chen Z, Yuan Y, Zou X, Hong M, Zhao M, Zhao Y, Liu Y, Li G, Zhu Y, Luo L, Bao B, Bu S. Radix Puerariae and Fructus Crataegi mixture inhibits renal injury in type 2 diabetes via decreasing of AKT/PI3K. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:454. [PMID: 28886733 PMCID: PMC5591499 DOI: 10.1186/s12906-017-1945-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 08/22/2017] [Indexed: 12/20/2022]
Abstract
Background Radix puerariae (RP) is a herbal medicines for diabetes, mainly because of anti-oxidative, insulin resistance and hypoglycemic effect. Fructus crataegi (FC) also possesses strong antioxidant activity in vitro. This study focused on the effects of herbal mixture of RP and FC (RPFC) on renal protection through a diabetic rat model. Methods Type 2 Diabetic model was established with high fat diet followed by injecting rats a low dose of STZ (25 mg/kg body weight). Rats were randomly divided into five groups: normal, high fat diet, diabetes mellitus, high fat diet plus RPFC prevention, and RPFC prevention before diabetes mellitus. RPFC was given to rats daily by intragastric gavage. The blood bio-chemical index and renal pathological changes were examined. The later includes hematoxylin and eosin staining, periodic acid schiff staining, and Masson trichrome staining. Protein levels of were determined by Western blot and immunohistochemical staining. mRNA levels were detected by RT-PCR. Results Rats prevented with RPFC resulted in decreasing blood glucose with corresponding vehicle treated rats. Glomerulus mesangial matrix expansion, renal capsule constriction, and renal tubular epithelial cell edema were less severe following RPFC prevention. Moreover, RPFC prevention reduced protein levels of PI3K, AKT, α-SMA and collagen IV in the kidney of diabetic rats. Conclusion Combined prevention with RPFC may inhibit the PI3K/AKT pathway in the kidney, thereby prevent renal injury in diabetic rats.
Collapse
|
17
|
Wu XM, Gao YB, Xu LP, Zou DW, Zhu ZY, Wang XL, Yao WJ, Luo LT, Tong Y, Tian NX, Han ZJ, Dang WY. Tongxinluo Inhibits Renal Fibrosis in Diabetic Nephropathy: Involvement of the Suppression of Intercellular Transfer of TGF-β1-Containing Exosomes from GECs to GMCs. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1075-1092. [DOI: 10.1142/s0192415x17500586] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glomerular mesangial cells (GMCs) activation is implicated in the pathogenesis of diabetic nephropathy (DN). Our previous study revealed that high glucose (HG)-treated glomerular endothelial cells (GECs) produce an increased number of TGF-[Formula: see text]1-containing exosomes to activate GMCs through the TGF-[Formula: see text]1/Smad3 signaling pathway. We also identified that Tongxinluo (TXL), a traditional Chinese medicine, has beneficial effects on the treatment of DN in DN patients and type 2 diabetic mice. However, it remained elusive whether TXL could ameliorate renal structure and function through suppression of intercellular transfer of TGF-[Formula: see text]1-containing exosomes from GECs to GMCs. In this study, we demonstrate that TXL can inhibit the secretion of TGF-[Formula: see text]1-containing exosomes from HG-treated GECs. Furthermore, exosomes produced by HG induced-GECs treated with TXL cannot trigger GMC activation, proliferation and extracellular matrix (ECM) overproduction both in vitro and in vivo. These results suggest that TXL can prevent the transfer of TGF-[Formula: see text]1 from GECs to GMCs via exosomes, which may be one of the mechanisms of TXL in the treatment of DN.
Collapse
Affiliation(s)
- Xiao-Ming Wu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Yan-Bin Gao
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Li-Ping Xu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Da-Wei Zou
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Zhi-Yao Zhu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Xiao-Lei Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Wei-Jie Yao
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Liang-Tao Luo
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Yu Tong
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Nian-Xiu Tian
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Zhe-Ji Han
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, No. 10, Youanmenwai, Xitoutiao, Fengtai District, Beijing 100069, China
| | - Wan-Yu Dang
- Beijing Children’s Hospital, Capital Medical University, No. 56, Nanlishilu, Xicheng District, Beijing 100045, China
| |
Collapse
|
18
|
Woo N, Kim SK, Kang SH. Voltage-programming-based capillary gel electrophoresis for the fast detection of angiotensin-converting enzyme insertion/deletion polymorphism with high sensitivity. J Sep Sci 2016; 39:3230-8. [PMID: 27307099 DOI: 10.1002/jssc.201600439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 01/19/2023]
Abstract
A voltage-programming-based capillary gel electrophoresis method with a laser-induced fluorescence detector was developed for the fast and highly sensitive detection of DNA molecules related to angiotensin-converting enzyme insertion/deletion polymorphism, which has been reported to influence predisposition to various diseases such as cardiovascular disease, high blood pressure, myocardial infarction, and Alzheimer's disease. Various voltage programs were investigated for fast detection of specific DNA molecules of angiotensin-converting enzyme insertion/deletion polymorphism as a function of migration time and separation efficiency to establish the effect of voltage strength to resolution. Finally, the amplified products of the angiotensin-converting enzyme insertion/deletion polymorphism (190 and 490 bp DNA) were analyzed in 3.2 min without losing resolution under optimum voltage programming conditions, which were at least 75 times faster than conventional slab gel electrophoresis. In addition, the capillary gel electrophoresis method also successfully applied to the analysis of real human blood samples, although no polymorphism genes were detected by slab gel electrophoresis. Consequently, the developed voltage-programming capillary gel electrophoresis method with laser-induced fluorescence detection is an effective, rapid analysis technique for highly sensitive detection of disease-related specific DNA molecules.
Collapse
Affiliation(s)
- Nain Woo
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Su-Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong Ho Kang
- Department of Chemistry, Graduate School, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.,Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
19
|
Zhao J, Niu H, Li A, Nie L. Acetylbritannilactone Modulates Vascular Endothelial Growth Factor Signaling and Regulates Angiogenesis in Endothelial Cells. PLoS One 2016; 11:e0148968. [PMID: 26863518 PMCID: PMC4749253 DOI: 10.1371/journal.pone.0148968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022] Open
Abstract
The present study was conducted to determine the effects of 1-O-acetylbritannilactone (ABL), a compound extracted from Inula britannica L., on vascular endothelial growth factor (VEGF) signaling and angiogenesis in endothelial cells (ECs). We showed that ABL promotes VEGF-induced cell proliferation, growth, migration, and tube formation in cultured human ECs. Furthermore, the modulatory effect of ABL on VEGF-induced Akt, MAPK p42/44, and p38 phosphorylation, as well as on upstream VEGFR-2 phosphorylation, were associated with VEGF-dependent Matrigel angiogenesis in vivo. In addition, animals treated with ABL (26 mg/kg/day) recovered blood flow significantly earlier than control animals, suggesting that ABL affects ischemia-mediated angiogenesis and arteriogenesis in vivo. Finally, we demonstrated that ABL strongly reduced the levels of VEGFR-2 on the cell surface, enhanced VEGFR-2 endocytosis, which consistent with inhibited VE-cadherin, a negative regulator of VEGF signaling associated with VEGFR-2 complex formation, but did not alter VE-cadherin or VEGFR-2 expression in ECs. Our results suggest that ABL may serve as a novel therapeutic intervention for various cardiovascular diseases, including chronic ischemia, by regulating VEGF signaling and modulating angiogenesis.
Collapse
Affiliation(s)
- Jingshan Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Honglin Niu
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
- Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, 050071, China
| | - Aiying Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Lei Nie
- Key Laboratory of Medical Biotechnology of Hebei Province and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
- * E-mail:
| |
Collapse
|
20
|
Niu H, Li Y, Li H, Chi Y, Zhuang M, Zhang T, Liu M, Nie L. Matrix metalloproteinase 12 modulates high-fat-diet induced glomerular fibrogenesis and inflammation in a mouse model of obesity. Sci Rep 2016; 6:20171. [PMID: 26822129 PMCID: PMC4731752 DOI: 10.1038/srep20171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/23/2015] [Indexed: 01/04/2023] Open
Abstract
Obesity-induced kidney injury contributes to albuminuria, which is characterized by a progressive decline in renal function leading to glomerulosclerosis and renal fibrosis. Matrix metalloproteinases (MMPs) modulate inflammation and fibrosis by degrading a variety of extracellular matrix and regulating the activities of effector proteins. Abnormal regulation of MMP-12 expression has been implicated in abdominal aortic aneurysm, atherosclerosis, and emphysema, but the underlying mechanisms remain unclear. The present study examined the function of MMP-12 in glomerular fibrogenesis and inflammation using apo E−/− or apo E−/−MMP-12−/− mice and maintained on a high-fat-diet (HFD) for 3, 6, or 9 months. MMP-12 deletion reduced glomerular matrix accumulation, and downregulated the expression of NADPH oxidase 4 and the subunit-p67phox, indicating the inhibition of renal oxidative stress. In addition, the expression of the inflammation-associated molecule MCP-1 and macrophage marker-CD11b was decreased in glomeruli of apo E−/−MMP-12−/− mice fed HFD. MMP-12 produced by macrophages infiltrating into glomeruli contributed to the degradation of collagen type IV and fibronectin. Crescent formation due to renal oxidative stress in Bowman’s space was a major factor in the development of fibrogenesis and inflammation. These results suggest that regulating MMP-12 activity could be a therapeutic strategy for the treatment of crescentic glomerulonephritis and fibrogenesis.
Collapse
Affiliation(s)
- Honglin Niu
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.,Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, 050071, China
| | - Ying Li
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.,Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, 050071, China
| | - Haibin Li
- Department of Cardiology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Yanqing Chi
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.,Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, 050071, China
| | - Minghui Zhuang
- Department of Nephrology, First Central Hospital of Baoding, Baoding, 071000, China
| | - Tao Zhang
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.,Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, 050071, China
| | - Maodong Liu
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China.,Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, 050071, China
| | - Lei Nie
- Key Laboratory of Medical Biotechnology of Hebei Province and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.,Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
21
|
Wu JS, Shi R, Lu X, Ma YM, Cheng NN. Combination of active components of Xiexin decoction ameliorates renal fibrosis through the inhibition of NF-κB and TGF-β1/Smad pathways in db/db diabetic mice. PLoS One 2015; 10:e0122661. [PMID: 25803610 PMCID: PMC4372382 DOI: 10.1371/journal.pone.0122661] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 02/12/2015] [Indexed: 11/22/2022] Open
Abstract
Xiexin decoction, a herbal therapeutic agent commonly used in traditional Chinese medicine, is recognized for its beneficial effects on diabetic nephropathy exerted through the combined action of multiple components, including Rhizoma Coptidis alkaloids (A), Radix et Rhizoma Rhei polysaccharides (P), and Radix Scutellaria flavones (F). Our previous studies have shown that a combination of A, P, and F (APF) exhibits renoprotective effects against diabetic nephropathy. This study was aimed at determining the effects of APF on renal fibrosis in diabetic nephropathy and elucidating the underlying molecular mechanisms. To evaluate the effects of APF, in vivo, db/db diabetic mice were orally administered a low or high dose of APF (300 or 600 mg/kg, respectively) once a day for 8 weeks. We evaluated the blood and urine indices of metabolic and renal function, renal tissue histopathology, renal inflammation, and fibrosis. APF treatment significantly ameliorated glucose and lipid metabolism dysfunction, decreased urinary albumin excretion, normalized creatinine clearance, and reduced the morphological changes in renal tissue. Additionally, APF administration in db/db diabetic mice reduced the elevated levels of renal inflammation mediators such as intercellular adhesion molecule-1, monocyte chemotactic protein-1, tumor necrosis factor-α, interleukin-1β, and active nuclear factor κB (NF-κB). APF treatment also reduced type I and IV collagen, transforming growth factor-β1 (TGF-β1), and TGF-β1 type II receptor expression levels, and decreased the phosphorylation of Smad2/3 in the kidneys of db/db diabetic mice. These results suggest that APF reduces renal fibrosis in diabetic nephropathy through the NF-κB and TGF-β1/Smad signaling pathways. In vitro, APF treatment reduced cell proliferation and protein expression of α-smooth muscle actin, collagen I, TGF-β1 and NF-κB in mesangial cells cultured with high glucose concentrations. Our findings indicate that treatment with multi-component herbal therapeutic formulations may be a useful approach for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Jia-Sheng Wu
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiong Lu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Ming Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (YMM); (NNC)
| | - Neng-Neng Cheng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- * E-mail: (YMM); (NNC)
| |
Collapse
|